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Abstract
We consider a least-squares/relaxation finite element method for the numerical solution of
the prescribed Jacobian equation. We look for its solution via a least-squares approach. We
introduce a relaxation algorithm that decouples this least-squares problem into a sequence
of local nonlinear problems and variational linear problems. We develop dedicated solvers
for the algebraic problems based on Newton’s method and we solve the differential prob-
lems using mixed low-order finite elements. Various numerical experiments demonstrate the
accuracy, efficiency and the robustness of the proposed method, compared for instance to
augmented Lagrangian approaches.
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1 Introduction

Numerical methods for fully nonlinear equations have recently started to receive a lot of
attention, the most well-known equation in that category being the so-called Monge-Ampère
equation. Various approaches have been proposed for the numerical solution of second order
fully nonlinear equations: the Monge-Ampère equation, see, e.g. [1–6], but also the Pucci’s
equation [7–9] or the curvature equation [10, 11].

First order fully nonlinear equations have received slightly less attention: we can mention
here the Eikonal equation [12, 13], or the Hamilton-Jacobi equation [14], which have several
applications in optics, wave propagation, material science, differential geometry (geodesics),
or even economics [15].

The problem of interest here is a particular equation involving the Jacobian of the unknown
function, which has been introduced by Dacorogna and Moser (1990) [16]. More precisely,
we consider here a Dirichlet boundary value problem inspired by [16–18], which states
that, for a given data f , we want to find a vector field u satisfying det∇u = f in a bounded
domain� ⊂ R

2 (together with appropriate Dirichlet boundary conditions). A special interest
is paid to problems for which the data f is non-smooth. Several works in the literature have
focused on this prescribed Jacobian equation, starting with the seminal article [16], which
has been developed and extended in, e.g., [17, 19–25]. Existence of classical solutions rely on
solutions in Hölder spaces [16]. Weak solutions to the prescribed Jacobian equation must be
considered in the sense of Aleksandrov [26], as emphasized, e.g., in [27, 28]. This problem is
linked to the Monge-Ampère equation if considering the case where the vector function u is
the gradient of a scalar function ϕ, as det∇u becomes detD2ϕ. Another related problem in
incompressible elasticity has been addressed in [29] (see also the references therein), where
the incompressibility condition reads as det(Id + ∇u) = 1, Id being the identity tensor and
u the unknown displacement field.

Theoretical solutions, obtained with explicit constructions, exist in the literature for cases
in simple geometries, and usually with identity boundary conditions. However, numerical
methods for this particular problem are rather scarce. The goal of the present article is to
design a numerical method for the finite element approximation of the prescribed Jacobian
equation for arbitrary two-dimensional domains, including non-convex domains and non-
smooth data.

A first methodology has been proposed in [30, 31] by using an Alternating Direction
MethodofMultipliers (ADMM)approach.Thenumerical algorithmhas proved to be efficient,
but requires a tedious fine tuning of parameters.

Following previous works on the Monge-Ampère equation [1, 32], we advocate here a
variational approach for the solution of the prescribed Jacobian equation that is based on a
least-squares approach. In order to decouple the nonlinearities of the problem from the linear
variational aspects, we use a relaxation algorithm. Low order finite elements are used for
the space discretization, while mathematical programming methods [33] allow to solve local
constrained optimization problems. Equality constraints are taken into consideration via a
Lagrangian approach.

In order to demonstrate the flexibility of the proposed method, we also consider in addi-
tion the prescribed Jacobian inequality. The, strongly underdertemined, problem consists
in finding a vector field u satisfying det∇u ≥ f instead of det∇u = f (together with
appropriate Dirichlet boundary conditions). Theoretical results of the prescribed Jacobian
inequality are given, e.g., in [34], and to the best of our knowledge there are no proposed
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numerical methods to solve this type of inequality. It will be addressed by, e.g., including
interior-point methods [33].

The numerical validation is achieved first via the solution of test problems allowing a
computational investigation of the convergence properties of our methodology. The treat-
ment of more demanding test problems associated with non-smooth data and/or non-convex
domains, allows to investigate the accuracy and the robustness of the proposed methodology.

2 TheMathematical Problem

Let � be a bounded domain of R2. We denote by � the boundary of �. Let f : � → R

and g : � → R
2 be given sufficiently smooth functions. The partial differential equation

involving the Jacobian determinant we want to solve reads as follows: find u : � → R
2

satisfying {
det∇u = f in �,

u = g on �.
(1)

Generally, we assume that f ≥ 0. This problem has been originally investigated in [16]
from a theoretical point of view, when the boundary condition is the identity function (i.e.
g (x) = x for x ∈ �). The corresponding problem is of the following type:{

det∇u = f in �,

u (x) = x a.e. x on �.
(2)

Problem (2) corresponds to finding a mapping u that preserves both the boundary data and
some kind of volume (up to some stretching of the mapping). These problems have been
addressed in [30, 31] with a numerical approach based on augmented Lagrangian techniques.
We will provide here an alternative, more robust, numerical method, based on a least-squares
approach.

Note that the solution to (2) is not necessarily unique and the same remark holds for (1).
Indeed, let us consider (2) with f = 1 and � the unit disk centered at the origin; in this case,
u (x) = x is an obvious solution. But, when using the polar coordinates (ρ, θ), one can see

that v defined by v (ρ, θ) = (ρ cos
(
θ + 2kπρ2

)
, ρ sin

(
θ + 2kπρ2

))T
is also a solution.

The proof of the existence of a solution to (1) (via the divergence theorem) requires data
to be compatible with the geometrical domain, see [16]. When the boundary conditions are
given by u (x) = x on �, this compatibility condition reads as:∫

�

f dx = measure (�) . (3)

The positiveness of the right-hand side f is useful from an analytical point of view to prove
existence results. Moreover, it makes problem (1) an elliptic problem, which is important for
the solution methodology discussed in this article. However, it has been loosened (slightly)
to accept locally negative data (see, e.g., [17]). From now on we will assume that (3) holds.

Originally, the regularity of (classical) solutions in Hölder spaces can be found in [16].
In order to derive such regularity results and obtain classical solutions in Ck+1,α(�̄), the
regularity needed on the data is f , g ∈ Ck,α(�̄), together with f , g > 0 and the compatibility
condition (3). Moreover, existence results require that the regularity of the domain is ∂� has
to be Ck+3,α(�̄).

On the other hand,weak solutions to the generated Jacobian equationmust be considered in
the Aleksandrov-sense [26–28, 35, 36]. The derivation and proofs are similar to the approach
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for solutions to the Monge-Ampère equation, see, e.g., [2]. As stated earlier, the relationship
between the Monge-Ampère equation detD2ψ = f and the Jacobian equation det∇u = f
is explicit, by setting u = ∇ψ [22]. It is thus not surprising to find similar concepts of weak
solutions.

The proposed method allows to find a finite element approximation in a least-squares
sense. As in [1, 32], there is no evidence that the discrete solution is converging to an
Aleksandrov-type of solution. However, experiments have exhibited a strong numerical evi-
dence of a convergent behavior of the approximations when the discretization parameters
tend to zero.

Remark 1 (Jacobian problem with inequalities) In parallel, we consider the following partial
differential inequality : find u : � → R

2 satisfying{
det∇u ≥ f in �,

u = g on �.
(4)

with again, in particular, the case of the identity boundary condition (i.e. g (x) = x for x ∈ �).
This problem has been addressed in [34] where existence results are established under the
condition ∫

�

f dx ≤ measure (�) . (5)

Wewill show in the sequel that the numerical techniques developed for (1) also apply naturally
to (4), with small modifications. �	

3 A Numerical Algorithm

We advocate a numerical algorithm based on a least-squares approach and a relaxation algo-
rithm. The relaxation algorithm allows to split the minimization problem into a sequence of
subproblems. The first subproblem consists of low dimensional local nonlinear problems,
the number of them being determined from the chosen mesh grid. The second subproblem
is a linear variational problem and it results in a fourth-order partial differential equation.

3.1 A Least-Squares Method

Let us define

Q f =
{
q ∈ (L2 (�)

)2×2
, detq = f

}
, Vg =

{
v ∈ (H1 (�)

)2
, v|∂� = g

}
.

We assume that f and g are sufficiently smooth, so that Q f and Vg are non-empty. The
least squares problem introduces an auxiliary variable q ∈ Q f , and reads as follows: find
{u,p} ∈ Vg × Q f such that

J (u,p) ≤ J (v,q) , ∀ {v,q} ∈ Vg × Q f , (6)

where J (·, ·) is defined by

J (v,q) = 1

2

∫
�

|∇v − q|2 dx. (7)

Here | · | denotes the Frobenius norm |T| = (T : T)1/2, with the inner product S : T =∑2
i, j=1 si j ti j where S,T are 2×2 matrices with elements si j , ti j for i, j = 1, 2, respectively.
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We propose a biharmonic regularization of the objective function. The added term is
motivated by previous works involving first-order elliptic equations, see [12, 31, 37]. The
modified objective function is defined as

Jε (v,q) = J (v,q) + ε

2

∫
�

∣∣∇2v
∣∣2 dx, (8)

where ε ≥ 0. Numerical experiments will illustrate that the biharmonic regularization allows
to accelerate the convergence of the numerical algorithm.Themodifiedminimization problem
reads as: find {u,p} ∈ V̄g × Q f such that

Jε (u,p) ≤ Jε (v,q) , ∀ {v,q} ∈ V̄g × Q f , (9)

where V̄g = Vg ∩ (H2 (�)
)2
.

Remark 2 (Jacobian problem with inequality) In the case of the inequality (4), we modify
the functional space Q f as

Q̃ f =
{
q ∈ (L2 (�)

)2×2
, det q ≥ f

}
.

The objective function Jε (·, ·) remains the same as in (8), and the minimization problem
reads as: find {u,p} ∈ V̄g × Q̃ f such that

Jε (u,p) ≤ Jε (v,q) , ∀ {v,q} ∈ V̄g × Q̃ f . (10)

�	

3.2 A Relaxation Algorithm

For the solution of (9) and (10) respectively, we propose the following relaxation algorithm:

1. The initial guess of the algorithm is obtained by solving:

− ∇2u1 = f̃ in �, u1 = g on �, (11)

where f̃ = (1, 1). The solution of (11) is smooth, convex, and matches the boundary
conditions of (1). Then, for n ≥ 1:

2. When un is known, we look for

pn = arg min
q∈Q f

Jε
(
un,q

) ; (12)

3. When pn is known, we look for

un+1/2 = arg min
v∈V̄g

Jε
(
v,pn

) ; (13)

4. When un+1/2 is known, we update the solution by

un+1 = un + ω
(
un+1/2 − un

)
, (14)

where ω ∈ (0, 2) is a relaxation parameter that helps controlling the convergence speed.

Remark 3 (Jacobian problem with inequality) For the Jacobian inequality (4), the solution
can be found by replacing in (12) the functional space Q f by Q̃ f defined in (10). �	
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3.3 Numerical Solution of the Local Nonlinear Problems

We focus here on the solution of (12). Since un is known, the solution pn is obtained by
solving the minimization problem

pn = arg min
q∈Q f

[∫
�

1

2
|q|2 dx −

∫
�

∇un : qdx
]

. (15)

Problem (15) can be solved point-wise since it does not involve any derivative for the variable
q. The solution can be obtained, locally for all x ∈ �, as

pn (x) = arg min
q∈E f (x)

[
1

2
|q|2 − b : q

]
, (16)

where E f (x) = {q (x) ∈ R
2×2 , q11 (x) q22 (x) − q12 (x) q21 (x) = f (x)

}
, and b = ∇un−1

(x). Following [29, 31], we reduce the dimension of the problem with a proper change of
variables. Let us introduce the vectors b = (b11, b22, b12, b21), and q = (q11, q22, q12, q21)
and the 4 × 4 matrix

S =

⎛
⎜⎜⎝
1/

√
2 1/

√
2 0 0

1/
√
2 −1/

√
2 0 0

0 0 1/
√
2 1/

√
2

0 0 1/
√
2 −1/

√
2

⎞
⎟⎟⎠ .

By introducing the new variables y = SqT and a = SbT , (16) is equivalent to

min
y∈F f (x)

[
1

2
|y|2 − a · y

]
, (17)

with F f (x) = {y ∈ R
4 , y21 − y22 − y23 + y24 = 2 f (x)

}
. In order to solve (17), we introduce

the Lagrangian functional L defined by:

L (y, μ) = 1

2
|y|2 − a · y − μ

2

(
y21 − y22 − y23 + y24 − 2 f (x)

)
. (18)

Let z denote the solution of (17), with λ the corresponding Lagrange multiplier. The first
order optimality conditions read:

z1 − a1 = λz1,

z2 − a2 = −λz2,

z3 − a3 = −λz3,

z4 − a4 = λz4,

z21 − z22 − z23 + z24 = 2 f (x).

(19)

After elimination, (19) can be solved by a (scalar) Newton method to find λ first, and then
the primal variables. Moreover, we target a solution λ that is close to zero. Indeed, if λ = 0,
then zi = ai , i = 1, . . . , 4, and the last equation of (19) reads as

1

2

(
det∇un−1 (x) − f (x)

) = 0 ∀x ∈ �,

and therefore un−1 is the solution of (1) and qn−1 = ∇un−1. Numerical experiments will
show that, in practise, the solution for λ is close to zero.
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When considering the Jacobian inequality (4), the solution of the minimization problem,
for all x ∈ �, reads as

pn (x) = arg min
q∈Ẽ f (x)

[
1

2
|q|2 − b : q

]
, (20)

where Ẽ f (x) = {
q (x) ∈ R

2×2 , q11 (x) q22 (x) − q12 (x) q21 (x) ≥ f (x)
}
and b = ∇un−1

(x). In order to solve (20), we can introduce a slack variable and re-write the problem as

min
q∈R2×2

[
1

2
|q|2 − b : q

]

s.t. det q − f (x) − s = 0,

s ≥ 0.

(21)

Then, a logarithmic barrier function allows to eliminate the inequality constraint (see e.g.
[33]):

min
q∈Ẽ f

[
1

2
|q|2 − b : q

]
− μ log s

s.t. det q − f (x) − s = 0,

(22)

where μ ≥ 0. The minimization problem (22) is similar to (16). Its solution will be imple-
mented with the same approach, relying on the same change of variables, the Lagrangian
functional, and its first order optimality conditions, which are solved with a Newton method.

3.4 Numerical Solution of the Linear Variational Problems

We focus here on the solution of (13), which is equivalent to solving:

min
v∈V̄g

[
1

2

∫
�

∣∣∇v − pn
∣∣2 dx + ε

2

∫
�

∣∣∇2v
∣∣2 dx

]
. (23)

We derive the first optimality conditions and obtain a fourth order partial differential equation:
find un+1/2 ∈ V̄g such that

ε

∫
�

∇2un+1/2 · ∇2vdx +
∫

�

∇un+1/2 : ∇vdx =
∫

�

pn : ∇vdx, (24)

for all v ∈ V̄0 =
{
v ∈ (H1

0 (�) ∩ H2 (�)
)2}

.

4 Finite Element Approximation

Let h > 0 be a space discretization step and let {Th}h be family of conformal triangulations
of � (see [38, Appendix 1]). Let Qh be defined as

Qh = {q ∈ L2 (�)2×2 , q|T ∈ R
2×2, ∀T ∈ Th

}
,

equipped with the discrete inner product and corresponding norm:

((p,q))0h =
∑
T∈Th

|T | p|T : q|T , |||q|||0h = √((q,q))0h .
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Let Q f h and Q̃ f h be the finite dimensional subsets approximating Q f and Q̃ f , respectively
defined by

Q f h = {q ∈ Qh, det q|T = f̄T , ∀T ∈ Th
}
,

Q̃ f h = {q ∈ Qh, det q|T ≥ f̄T , ∀T ∈ Th
}
,

where f̄T = 1

|T |
∫
T
f (x) dx. Let Vgh and V0h be the finite dimensional subspaces of

Vg and V0 given by

Vgh =
{
v ∈ (C0 (�))2 , v|T ∈ (P1)

2 , ∀T ∈ Th, v|�h = gh
}

,

V0h =
{
v ∈ (C0 (�))2 , v|T ∈ (P1)

2 , ∀T ∈ Th, v|�h = 0
}

,

where P1 the space of the two-variable polynomials of degree ≤ 1, and gh is a piecewise
linear interpolant of g. We define a discrete inner product and corresponding norm for Vgh
and V0h as

(u, v)0h =
∑
T∈Th

m∑
i=1

Wiu (ζi ) · v (ζi ) , ||u||0h = √(u,u)0h ,

with Wi the weights and ζi the evaluation points of a Gauss quadrature rule, m denoting the
number of points of the quadrature rule.

The discrete formulation of the least-squares method to solve (9) reads as follows: find
{u,p} ∈ Vgh × Q f h such that

Jε (u,p) ≤ Jε (v,q) , ∀ {v,q} ∈ Vgh × Q f h .

Remark 4 (Jacobian problem with inequalities) Similarly, the discrete formulation of the
least-squares method to solve (10) reads as follows: find {u,p} ∈ Vgh × Q̃ f h such that

Jε (u,p) ≤ Jε (v,q) , ∀ {v,q} ∈ Vgh × Q f h .

�	
The discrete formulation of the relaxation algorithm (11)–(14) described in Sect. 3.2

becomes the following:

1. We initialize the algorithm by finding u1h ∈ Vgh such that:

((∇u1h,∇vh
))

0h =
(
f̃, vh

)
, ∀vh ∈ V0h, (25)

where f̃ = (1, 1)T for all x ∈ �. Then, for n ≥ 1,
2. We solve the discrete local nonlinear problem:

pnh = arg min
q∈Q f h

[
1

2
((q,q))20h − ((∇unh,q

))
0h

]
. (26)

When considering the Jacobian problem with inequality constraints (4), we replace Q f h

by Q̃ f h in (26). The solution of the discrete minimization problem (26), pnh , is obtained
on each element T of Th , in an identical manner as the solution of the continuous problem
described in Sect. 3.3.
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3. We solve the discrete linear variational problem:

un+1/2
h = arg min

v∈Vgh
Jε
(
v,pnh

)
.

The first order optimality conditions read: find un+1/2
h ∈ Vgh satisfying

ε
(
∇2un+1/2

h ,∇2vh
)
0h

+
((

∇un+1/2
h ,∇vh

))
0h

= ((pnh,∇vh
))

0h , (27)

for all vh ∈ V0h . By applying amixedfinite elementmethod to (27),we solve an equivalent

augmented system of equations: find
{
un+1/2
h ,wn

h

}
∈ Vgh × V0h such that,

ε
((∇wn

h,∇vh
))

0h + (wn
h, vh

)
0h = ((pnh,∇vh

))
0h ,((

∇un+1/2
h ,∇ϕh

))
0h

= (wn
h,ϕh

)
0h ,

for all
{
vh,ϕh

} ∈ V0h × V0h .
4. We update the solution by:

un+1
h = unh + ω

(
un+1/2
h − unh

)
.

5 Numerical Experiments

We validate the convergence and accuracy of the proposed least-squares method with various
numerical experiments. We consider several domains, namely the unit square �q = (0, 1)2,
the unit disk �d = {x ∈ R

2, ||x||2 < 1
}
, the so-called ’pacman’ domain

�p = �d\
{
(x1, x2) ∈ R

2, x > 0, |x2| < x1
}
,

and the cracked unit disk

�c = �d\
{
(x1, x2) ∈ R

2, x > 0, |x2| < tan
( π

100

)
x1
}

.

Figure 1 illustrates typical triangulations of these domains. For coarse meshes, we initialize
the algorithm by solving (25) with given boundary data. For finer meshes, we initialize the
algorithm by using the numerical solution obtained on a coarser mesh. In all experiments,
ε  h2 (unless specified otherwise). The relaxation parameter is ω  1 initially, and then
gradually increases to ω = 2. The stopping criterion for the relaxation algorithm is ||unh −
un−1
h ||0h < 10−8. The Newton’s method to solve the local nonlinear problems stops when

the difference between two successive iterations is smaller than 10−15. Usually, this number
of iterations does not exceed 5. The interior-point parameter μ is specified later.

The estimation of λ is denoted by λ̄, and is obtained by averaging its values λT on each
triangle, for each triangle T ∈ Th . It is accompanied by the standard deviation of the estimator,
σ̄ , to describe the variability over the mesh elements. These indicators are:

λ̄ =

∑
T∈Th

λT

N
, σ̄ =

√√√√√
∑
T∈Th

(
λT − λ̄

)2

N − 1
,

where N is the number of triangles of the triangulation Th .
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Fig. 1 Finite element meshes used for the numerical experiments. Top left: structured mesh for the unit square
(�q = (0, 1)2, h = 0.0125); Top middle: unstructured mesh for the unit square (�q = (0, 1)2, h = 0.01882);
Top right: structured mesh for the unit disk (�d = {(x1, x2) ∈ R

2 : x21 + x22 < 1}, h  0.0209); Bottom left:

unstructuredmesh for the unit disk (�d = {(x1, x2) ∈ R
2 : x21 +x22 < 1}, h  0.08); Bottommiddle: unstruc-

tured mesh for the pacman domain (�p = �d\
{
(x1, x2) ∈ R

2, x1 > 0, |x2| < x1
}
, h = 0.0252); Bottom

right: unstructured mesh for the cracked unit disk (�c = �d\
{
(x1, x2) ∈ R

2, x1 > 0, |x2| < tan
(

π
100
)
x1
}
,

h = 0.0486)

5.1 Numerical Approximation of the Identity Map

The first experiment corresponds to considering the identity map as the exact solution. The
data are chosen as f = 1 andu (x) = x on�. The problem can bewritten as: findu : � → R

2

such that: ⎧⎨
⎩
det∇u (x) = 1 in �,

u (x) = x on �.

(28)

When � = �q = (0, 1)2, we use structured meshes with mesh size h = {0.00625, 0.025,
0.0125, 0.05}, The errors for the obtained approximations are of order 10−10 in the L2 (�)

error norm, and of order 10−9 to 10−10 in the H1 (�) error norm. In addition, ||∇uh −ph ||0h
and λ̄ are of the order of 10−10. Figure 2 illustrates the approximation on the structured mesh
of the two components of the numerical solution. More precisely, with h = 0.025, after 29
iterations, we obtain

||u − uh ||L2(�) = 1.24 · 10−10, |u − uh |H1(�) = 7.09 · 10−10,

and

||∇uh − ph ||0h = 4.21 · 10−10, λ̄ = 2.96 · 10−10.
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Fig. 2 Identity map test case on the unit square with data f = 1 and g(x) = x. Visualization of the numerical
approximation of the solution uh . Left: the component u1,h ; Right: the component u2,h . Results are obtained
on a structured mesh with h = 0.0125

Fig. 3 Identity map test case on the unit disk with data f = 1 and g(x) = x. Visualization of the numerical
approximation of the solution uh . Left: the component u1,h ; Right: the component u2,h . Results are obtained
on a structured mesh with h = 0.0209

When � = �d = {(x1, x2) ∈ R
2, x21 + x22 < 1}, we use structured meshes with mesh

size h = {0.0831, 0.0421, 0.0209, 0.0104}. Similar to when working on the unit square, the
errors for the approximations are again of order 10−10 in the L2 (�) error norm, and of order
10−9 to 10−10 in the H1 (�) error norm. Furthermore, ||∇uh − ph ||0h and λ̄ are of the order
of 10−10 to 10−11. In particular, for h = 0.025, and after 29 iterations, we obtain

||u − uh ||L2(�) = 2.06 · 10−10, |u − uh |H1(�) = 7.24 · 10−10,

and

||∇uh − ph ||0h = 2.06 · 10−10, λ̄ = 9.77 · 10−11.

Figure 3 illustrates the approximation of the two components of the numerical solution on
the structured mesh of the unit disk.

Then, the algorithm is tested by considering the inequality problem (4). We consider the
following problem ( f = 0, g(x) = x and � = �d = {(x1, x2) ∈ R

2, x21 + x22 < 1}):
⎧⎨
⎩
det∇u (x) ≥ 0 in �,

u (x) = x on �.

(29)
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There is some information missing in (29) since f = 0, and the only available relevant
information on the solution comes from the boundary conditions. The algorithm converges
to an exact solution u (x) = x, in a similar fashion as for (28). Actually the solution obtained
when solving (29) is similar to the one obtained by solving (28).

In this test case we chooseμ = 0.1 andwe decrease it with a factor of
√
h at each iteration.

By contrast to solving the Jacobian equality in (28), numerical errors in L2 (�) and H1 (�)

norms of solving the inequality (29) using the same mesh size values are of the order of 10−2

and 10−3, respectively. These parameters depend on the choice of μ: if initially μ is chosen
to be large, ||∇uh −ph ||0h will be also large; if μ is small, we experience some convergence
problems. When considering h = 0.025, we obtain after 69 iterations:

||u − uh ||L2(�) = 6.86 · 10−10, |u − uh |H1(�) = 2.67 · 10−9,

and

||∇uh − ph ||0h = 1.04 · 10−2, λ̄ = 2.08 · 10−3.

5.2 Smooth Solution with Radial Right-Hand Side

Let � = {(x1, x2) ∈ R
2, x21 + x22 < 1} be the unit disk. We consider the following problem:

find u : � → R
2 such that: ⎧⎨

⎩
det∇u(x) = f (x) in �,

u (x) = g (x) on �,

(30)

where

f (x) = 2
(
x21 + x22

)
, g (x) = √

2

( 1
2

(
x21 − x22

)
x1x2

)
. (31)

One exact solution satisfies

u (x) = √
2

( 1
2

(
x21 − x22

)
x1x2

)
. (32)

The non-uniqueness of the solution of Eq. (30) makes this test case challenging. For instance,
this may cause the algorithm to fluctuate between two different solutions. Later on, we show
that our algorithm converges to a solution for different sets of parameters. The numerical
solution of (30) is illustrated in Fig. 4 (top row). Note that both the right-hand side of this
equation and ||uh || (bottom left), are radial symmetric. However, the solution uh does not
exhibit the same symmetry pattern.

Table 1 provides insights about the convergence of the relaxation algorithm towards the
numerical solution on the structured mesh for the unit disk. The only difference with the
results presented in the previous section is that the numerical solution converges in L2-norm
with a nearly optimal rate of O

(
h1.7
)
to O

(
h2
)
, and in H1 semi-norm with an optimal rate

of O (h). Similar results are observed in Table 2, where the unstructured mesh is used. We
observe that the numerical solution converges in L2-norm and H1-semi norm with rates of
O
(
h1.9
)
and O(h), respectively. This confirms that the behavior of the algorithm does not

depend on the structure of the mesh.
In a second step, we consider the Jacobian inequality problem (4). Let us consider the unit

disk � = {(x1, x2) ∈ R
2, x21 + x22 < 1}, together with f ≡ 0, and the same function g(x)

from (31). Numerical results show that the numerical approximation of the solution to the
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Fig. 4 Smooth solution with radial right-hand side test case ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) =

√
2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Top left: Numerical approximation of the solution of the component u1,h .

Top right: Numerical approximation of the solution of the component u2,h . Bottom left: Visualization of ||uh ||.
Bottom right: Visualization of the vector field uh . The results are obtained on structured mesh of the unit disk
with h = 0.0209

Table 1 Smooth solution with radial right-hand side test case. The case of the unit disk with a structured

mesh. ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = √

2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Computational results

include themesh size h, the L2 and H1 error normswith the corresponding rates, the error ||∇uh − ph ||L2(�),

the average value λ̄ and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.0831 5.95e−03 2.14e−01 9.05e−02 1.37e−02(0.063) 19

0.0421 1.27e−03 2.19 1.03e−01 1.05 4.25e−02 7.50e−03(0.036) 39

0.0209 3.38e−04 1.91 5.22e−02 0.98 2.17e−02 3.58e−03(0.020) 79

0.0104 1.05e−04 1.70 2.63e−02 0.98 1.10e−02 1.76e−03(0.011) 219
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Table 2 Smooth solution with radial right-hand side test case. The case of the unit disk with an unstructured

mesh. ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = √

2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Computational results

include themesh size h, the L2 and H1 error normswith the corresponding rates, the error ||∇uh − ph ||L2(�),

the average value λ̄ and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.1327 5.79e−03 2.25e−01 1.14e−01 1.31e−02(0.062) 19

0.0665 1.53e−03 1.92 1.13e−01 1.00 5.74e−02 5.88e−03(0.038) 29

0.0332 4.06e−04 1.92 5.65e−02 1.00 2.85e−02 2.15e−03(0.022) 69

0.0166 1.30e−04 1.64 2.83e−02 1.00 1.42e−02 1.02e−03(0.012) 199

Table 3 Smooth solution of the Jacobian inequality problem with radial right-hand side test case. The case

of the unit disk with a structured mesh. ( f (x1, x2) = 0 and g(x1, x2) = √
2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �).

Computational results include the mesh size h, the L2 and H1 error norms with the corresponding rates, the
error ||∇uh − ph ||L2(�)

, the average value λ̄ and its standard deviation σ̄ , and the number of iterations of the
relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.0831 6.12e−03 2.14e−01 1.08e−03 7.42e−04(0.010) 59

0.0421 1.33e−03 2.20 1.03e−01 1.05 4.74e−04 2.94e−04(0.007) 99

0.0209 3.48e−04 1.93 5.23e−02 0.98 3.20e−04 2.42e−04(0.007) 119

0.0104 9.36e−05 1.89 2.63e−02 0.99 2.09e−04 1.62e−04(0.005) 219

inequality problem obtained is the same as the one of the Jacobian equality problem (32).
Table 3 shows results obtained with the structured mesh. The parameter μ for the solution
of the local non-linear problems is chosen to be 0.1 and we decrease it by a factor 0.001

√
h

at each iteration of the interior point method. We can observe that the numerical solution in
this case converges in L2-norm and H1-semi norm with a rate of O

(
h1.9
)
(nearly optimal)

and O(h) (optimal), respectively.

5.3 Smooth Radial Solution with Non-smooth Gradient

This numerical experiment introduces a singularity in the gradient of the solution. Let � =
{(x1, x2) ∈ R

2, x21 + x22 < 1} be the unit disk, f (x1, x2) = 2
(
x21 + x22

)
, and g (x) = x in

(1). Problem (1) therefore admits an exact solution in that case, given by:

u (x1, x2) =
√
x21 + x22

(
x1
x2

)
,

whose gradient is

∇u (x1, x2) = 1√
x21 + x22

(
2x21 + x22 x1x2
x1x2 x2 + 2x22

)
.

Note that the solution u is a smooth radial function, but ∇u is not defined at the origin (0, 0).
Figure 5 visualizes the numerical solution. We can notice that i) both components of the
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Table 4 Smooth solution with radial right-hand side test case. The case of the unit disk with a structured mesh.

( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = (x1, x2)

T on �). Computational results include the mesh size h,

the L2 and H1 error norms with the corresponding rates, the error ||∇uh − ph ||L2(�)
, the average value λ̄

and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�)
|u − uh |H1(�)

||∇uh − ph ||L2(�)
λ̄(σ̄ ) iter

0.0831 1.57e−01 6.44e−01 3.84e−01 −2.72e−01(0.270) 999

0.0421 6.60e−02 1.25 3.18e−01 1.02 1.73e−01 −1.13e−01(0.129) 199

0.0209 2.62e−02 1.33 1.56e−01 1.02 7.87e−02 −3.72e−02(0.057) 309

0.0104 9.20e−03 1.51 7.07e−02 1.14 3.31e−02 −1.07e−02(0.023) 999

Table 5 Smooth solution with radial right-hand side test case. The case of the unit disk with an unstructured

mesh. ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = (x1, x2)

T on �). Computational results include the mesh

size h, the L2 and H1 error norms with the corresponding rates, the error ||∇uh − ph ||L2(�), the average

value λ̄ and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.1327 1.71e−01 6.77e−01 4.40e−01 −9.82e−02(0.244) 359

0.0665 7.39e−02 1.21 3.19e−01 1.09 1.93e−01 −5.24e−02(0.130) 259

0.0332 2.65e−02 1.48 1.39e−01 1.20 7.44e−02 −1.86e−02(0.059) 489

0.0166 9.51e−03 1.48 6.17e−02 1.17 2.87e−02 −5.31e−03(0.026) 999

solution are smooth (first row), ii) the norm ||uh ||0h is radially symmetric (bottom left), and
iii) the solution field is directed towards the origin (bottom right). Convergence properties of
the relaxation algorithm on the structured mesh on the unit disk are presented in Table 4. We
see that the numerical solution converges with a rate of O

(
h1.1
)
to O

(
h1.5
)
, in L2-norm, and

with an optimal rate of O (h) in the H1 semi norm. This test case is more computationally
expensive, and the maximum allowed number of iterations may be reached. Similar results
are reported in Table 5 when using unstructured meshes.

5.4 Smooth Solution with Radial Right-Hand Side on Non-convex Domains

In this experiment we revisit the case presented in Sect. 5.2 on non-convex domains �.
Generally speaking, the existence of a solution to a fully nonlinear equation in non-convex
domains is not guaranteed, see, e.g., [39]. Nevertheless, we treat here one case that admits
an exact solution. We focus on the following problem: find u : � → R

2 such that:
⎧⎪⎪⎨
⎪⎪⎩

det∇u(x1, x2) = 2(x21 + x22 ) in �,

u (x1, x2) = √
2

( 1
2

(
x21 − x22

)
x1x2

)
on �.

(33)

In this case, the exact solution in � is

u (x1, x2) = √
2

( 1
2

(
x21 − x22

)
x1x2

)
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Fig. 5 Smooth radial symmetric solution with non-smooth gradient ( f (x1, x2) = 2
(
x21 + x22

)
and

g(x1, x2) = (x1, x2)
T on �). Top left: Numerical approximation of the solution of the component u1,h .

Top right: Numerical approximation of the solution of the component u2,h . Bottom left: Visualization of
||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on structured mesh of the
unit disk with h = 0.0209

Tables 6 and 7 illustrate the results for both non-convex domains (pacman with unstructured
mesh, and cracked disk with an unstructured mesh respectively). We see that the numerical
solutions converge in L2-norm with a rate of O

(
h1.9
)
to O

(
h1.7
)
and O

(
h1.8
)
, respectively.

Convergence in H1 semi norm is of (optimal) order O(h) for both domains. The number of
iterations of the relaxation algorithm is linearly increasing for decreasing h. Comparing these
two tables, we can say that the performance of the algorithm is the same for the two non-
convex domains. Comparing with Table 1, the algorithm has the same level of performance
for both convex and non-convex domains.

The numerical solution of (33) for both domains is illustrated in the top row of Figs. 6
and 7, respectively. In particular, we observe that the difference between det∇uh and det ph
is vanishing, showing convergence of the least-squares method.

123



Journal of Scientific Computing (2022) 93 :15 Page 17 of 32 15

Table 6 Smooth solutionwith radial right-hand side test case. The case of the pacman diskwith an unstructured

mesh. ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = √

2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Computational results

include themesh size h, the L2 and H1 error normswith the corresponding rates, the error ||∇uh − ph ||L2(�),

the average value λ̄ and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.0747 3.24e−03 1.51e−01 7.68e−02 3.43e−03(0.045) 19

0.0503 8.65e−04 1.90 7.59e−02 1.00 3.90e−02 1.47e−03(0.025) 29

0.0252 2.26e−04 1.94 3.80e−02 1.00 1.95e−02 7.16e−04(0.013) 59

0.0126 6.67e−05 1.76 1.90e−02 1.00 9.73e−03 2.99e−04(0.007) 119

Table 7 Smooth solutionwith radial right-hand side test case. The case of the cracked diskwith an unstructured

mesh. ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) = √

2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Computational results

include themesh size h, the L2 and H1 error normswith the corresponding rates, the error ||∇uh − ph ||L2(�),

the average value λ̄ and its standard deviation σ̄ , and the number of iterations of the relaxation algorithm

h ||u − uh ||L2(�) |u − uh |H1(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

0.1525 1.42e−02 3.44e−01 1.81e−01 1.89e−02(0.101) 19

0.0971 3.98e−03 1.83 1.72e−01 1.00 9.15e−02 1.11e−02(0.056) 19

0.0486 1.12e−03 1.83 8.63e−02 1.00 4.53e−02 5.62e−03(0.030) 39

0.0243 3.33e−04 1.75 4.32e−02 1.00 2.23e−02 2.89e−03(0.016) 69

5.5 Nonsmooth Right-Hand Side with a Line Singularity

Let us now consider � the unit disk, and a non-smooth right hand side with a singularity
(jump) along a line in �, and given by:

f (x) =
{
0.1 if x1 ≤ 0,

1.9 if x1 > 0.
(34)

Note that f satisfies the necessary condition
∫

�

f = measure (�). On the boundary, we

impose g(x) = x. This problem has no known exact solution to the best of our knowledge.
Table 8 shows results for ε = 0 and ε = h2 for the disk structuredmeshes.We observe that

the L2 error between the numerical solution ∇uh and the auxiliary variable ph is of the order
of O (h) for both values of ε, although it is more accurate for ε = 0. This confirms that the
accuracy of the method improves when h tends to zero. The same observations can be made
for λ̄ and σ̄ . The approximation λ̄ decreases when h tends to zero and, more importantly,
the same holds for σ̄ ; this shows that the variability of those values across all triangles tends
to zero, meaning the overall method accuracy increases. In addition, the iterations of the
relaxation algorithm are reaching the limit of stopping criterion for ε = 0; on the other hand,
for ε = h2, the iterations are well controlled. This shows that there are cases where the
ε-regularization helps the convergence of the algorithm.

The numerical approximation of the solution for ε = 0 is illustrated in Fig. 8. A close
inspection shows that u1,h (top left) is discontinuous across x2 = 0, as expected, while u2,h
(top right) remains smooth. The numerical approximation of det∇uh and det ph are displayed
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Fig. 6 Smooth solution with radial right-hand side test case ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) =

√
2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Top left: Numerical approximation of the solution of the component

u1,h . Top right: Numerical approximation of the solution of the component u2,h . Bottom left: Numerical
approximation of det∇uh . Bottom right: Numerical approximation of det ph . The results are obtained on a
structured mesh of the pacman domain with h = 0.0252

Table 8 Nonsmooth right-hand
side with a line singularity.
Results for ε = 0 and ε = h2.
Computational results include the
mesh size h, the error
||∇uh − ph ||L2(�), the average

value λ̄ and its standard deviation
σ̄ , and the number of iterations of
the relaxation algorithm. The
case of the unit disk with a
structured mesh

h ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

ε = 0

0.0831 3.61e−02 7.27e−04(0.007) 999

0.0421 1.77e−02 1.81e−04(0.005) 999

0.0209 1.15e−02 −1.52e−05(0.003) 999

0.0104 8.65e−03 −1.40e−05(0.002) 999

ε = h2

0.0831 4.68e−01 −1.31e−01(0.166) 189

0.0421 2.69e−01 −3.36e−02(0.090) 129

0.0209 1.73e−01 −8.84e−03(0.059) 269

0.0104 1.14e−01 −2.42e−03(0.041) 779

123



Journal of Scientific Computing (2022) 93 :15 Page 19 of 32 15

Fig. 7 Smooth solution with radial right-hand side test case ( f (x1, x2) = 2
(
x21 + x22

)
and g(x1, x2) =

√
2
(
1
2

(
x21 − x22

)
, x1x2

)T
on �). Top left: Numerical approximation of the solution of the component

u1,h . Top right: Numerical approximation of the solution of the component u2,h . Middle left: Numerical
approximation of det∇uh . Middle right: Numerical approximation of det ph . The results are obtained on a
structured mesh of the cracked domain with h = 0.0486

in the second row and are identical. The numerical approximation of the solution for ε = h2

is illustrated in Fig. 9. Both components look smooth. The second row shows the numerical
approximations det∇uh and det ph , which look different.

Figure 10 illustrates a comparison between the two choices of ε, along the cutting line
x2 = 0. On the top row, – u1,h (left) and ||uh || (right)– a smoothing effect is observed
when ε > 0 at the discontinuity point. On the bottom row, we observe an overshoot of the
approximation det∇uh (left), while the approximation det ph (right) shows a solution that is
independent of the choice of ε.

5.6 Nonsmooth Problem Involving a Dirac Delta Function

Let us consider the unit disk �, and a Dirac delta function f (x1, x2) = πδ(0,0) for the right-
hand side, and g(x1, x2) = (x1, x2)T for the boundary conditions. One exact solution of the
problem is, in this case,
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Fig. 8 Nonsmooth right-hand side with a line singularity. Top left: Numerical approximation of the solution
of the component u1,h . Top right: Numerical approximation of the solution of the component u2,h . Middle
left: Numerical approximation of det∇uh . Middle right: Numerical approximation of det ph . Bottom left:
Visualization of ||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on a
structured mesh of the unit disk with h = 0209 and ε = 0

u (x) = x
||x||2 . (35)

In order to apply our methodology, we approximate f by fη defined by
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Fig. 9 Nonsmooth right-hand side with a line singularity. Top left: Numerical approximation of the solution
of the component u1,h . Top right: Numerical approximation of the solution of the component u2,h . Middle
left: Numerical approximation of det∇uh . Middle right: Numerical approximation of det ph . Bottom left:
Visualization of ||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on a
structured mesh of the unit disk with h = 0209 and ε = h2

fη (x) = η2(
η2 + ||x||22

)2 ,

where η > 0 is a small positive value, see [1, 40]. When η tends to 0, the approximate
function fη converges to f . Note that fη satisfies
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Fig. 10 Nonsmooth right-hand side with a line singularity. Comparison plot between the approximations
obtained with ε = 0 and ε = h2 respectively. Computation on a structured mesh with h = 0.0209. Data is
extracted along the line x2 = 0. Top left : u1,h versus x1. Top right: ||uh || vs x1. Bottom left: det∇uh vs x1.
Bottom right: det ph vs x1. The results are obtained on a structured mesh of the unit disk with h = 0.209 and
ε = h2

∫
�

fηdx = π

η + 1
,

and also tends to the measure of � when η tends to 0 (necessary condition). The modified
problem then reads as

⎧⎨
⎩
det∇uη(x) = fη(x) in �,

uη (x) = x on �,

(36)

and the exact solution is

uη(x) = x

√
1 + η2

η2 + ||x||22
. (37)

We can show that limη→0 uη = u.
We will examine the approximation of the solution for various values of η, ε and

h. Table 9 illustrates the computation of numerical approximations for different η and
h, and for an unstructured mesh on a unit disk. For the values of η considered (η ∈
{1/8, 1/16, 1/32, 1/64}), the error in L2 norm decreases with an order equal or larger than
O(h). The smaller the value of η, the less smooth the problem, and the smaller the conver-
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Table 9 Nonsmooth problem involving a Dirac delta function, with f (x) = η2(
η2+||x||22

)2 and g(x) =

x
√

1+η2

η2+||x||22
. Convergence results for various η. Computational results include the mesh size h, the errors

||u − uh ||L2(�)
and ||∇uh − ph ||L2(�)

, the average value λ̄ and its standard deviation σ̄ , and the number of
iterations of the relaxation algorithm. The case of the unit disk with a structured mesh

h ||u − uh ||L2(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

η = 1/4

0.0831 1.69e−01 5.69e−01 −4.94e−02(0.178) 59

0.0421 5.80e−02 1.54 2.01e−01 −2.87e−02(0.057) 99

0.0209 2.33e−02 1.31 8.55e−02 −2.16e−02(0.019) 239

0.0104 1.31e−02 0.83 6.01e−02 −1.87e−02(0.006) 999

η = 1/8

0.0831 2.13e−01 9.20e−01 −1.09e−01(0.181) 119

0.0421 7.73e−02 1.46 4.19e−01 −4.60e−02(0.069) 39

0.0209 2.66e−02 1.54 1.64e−01 −1.79e−02(0.026) 299

0.0104 9.71e−03 1.45 5.66e−02 −7.54e−03(0.009) 999

η = 1/16

0.0831 2.68e−01 1.43e+00 −2.08e−01(0.177) 359

0.0421 1.14e−01 1.23 8.40e−01 −9.08e−02(0.083) 249

0.0209 4.37e−02 1.39 4.11e−01 −3.37e−02(0.035) 329

0.0104 1.47e−02 1.57 1.61e−01 −1.09e−02(0.013) 999

η = 1/32

0.0831 3.21e−01 2.03e+00 −3.04e−01(0.167) 999

0.0421 1.61e−01 0.99 1.38e+00 −1.46e−01(0.092) 79

0.0209 7.33e−02 1.14 8.37e−01 −6.16e−02(0.044) 589

0.0104 2.85e−02 1.36 4.11e−01 −2.26e−02(0.018) 379

η = 1/64

0.0831 3.68e−01 2.39e+00 −3.88e−01(0.153) 999

0.0421 2.09e−01 0.81 1.99e+00 −2.05e−01(0.097) 229

0.0209 1.13e−01 0.89 1.38e+00 −1.00e−01(0.051) 999

0.0104 5.29e−02 1.09 8.36e−01 −4.39e−02(0.023) 999

gence order of our algorithm. Indeed small values of η are associated with solutions with
large gradients, which would require a finer mesh in order for the algorithm to converge.

The same convergence behavior is observed for ||∇uh − ph ||L2(�), and for the estimates
of λ̄ and σ̄ . Note that the variability (symbolized by σ̄ ) is decreasing when h tends to zero.
Note also that, for large values of η, the necessary condition

∫
�

fη = π is not satisfied, which
impacts the convergence of the algorithm.

Table 10 illustrates numerical results for a fixed h = 0.0209 and various η. We observe
that, when η tends to zero, the solutions presents a stronger singularity, and all indicators in
the table are increasing.

Table 11 represents the L∞ norm of fη, det ph and det∇uh for various values of η.
We observe that the values of det ph and fη have the same order of magnitude, for η =
{1/4, 1/8, 1/16, 1/32}. However, the last row of Table 11 exhibits large differences, which
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Table 10 Nonsmooth problem involving a Dirac delta function, with f (x) = η2(
η2+||x||22

)2 and g(x) =

x
√

1+η2

η2+||x||22
. Convergence results for various η and fixed mesh (h = 0.0209). Computational results include

η, the errors ||u − uh ||L2(�)
and ||∇uh − ph ||L2(�)

, the average value λ̄ and its standard deviation σ̄ , and
the number of iterations of the relaxation algorithm. The case of the unit disk with a structured mesh

η ||u − uh ||L2(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

h = 0.0209

1/4 2.33e−02 8.55e−02 −2.16e−02(0.019) 239

1/8 2.66e−02 1.64e−01 −1.79e−02(0.026) 299

1/16 4.37e−02 4.11e−01 −3.37e−02(0.035) 329

1/32 7.33e−02 8.37e−01 −6.16e−02(0.044) 589

1/64 1.13e−01 1.38e+00 −1.00e−01(0.051) 999

Table 11 Nonsmooth problem involving a Dirac delta function, with f (x) = η2(
η2+||x||22

)2 and g(x) =

x
√

1+η2

η2+||x||22
. Convergence results for various η and a fixed mesh (h = 0.0209). Computational results include

η, and the values of the L∞-norm of det ph , det∇uh , and fη . The case of the unit disk with a structured mesh

η || det ph ||L∞(�) || det∇uh ||L∞(�) || fη||L∞(�)

h = 0.0209

1/4 15.99 14.81 16

1/8 63.88 46.97 64

1/16 254.23 119.25 256

1/32 996.13 218.06 1024

1/64 3676.18 280.17 4096

is sign of the need of a finer mesh. Table 12 shows, for two fixed values of η, convergence
results when h and ε vary. We observe that, for ε = {0, h2}, the numerical solution converges
in L2-norm with a rate O (h) (or better). Moreover, ||∇uh − ph ||L2(�) decreases with an
order of O (h). Similar effects occur for λ̄ and σ̄ . The number of iterations of the relaxation
algorithm reaches its maximal number when ε = 0.

Figures 11 and 12 illustrate the numerical approximation obtained for η = 1/4 and
η = 1/64 respectively (with ε = h2). We see that the solution of the two components u1,h
and u2,h are smooth for η sufficiently large (η = {1/4, 1/8}), and the singularity in (0, 0) is
visible for η smaller (η = {1/16, 1/32, 1/64}). The numerical approximations of det∇uh
and det ph are illustrated in the second row of both figures, and shows that as η gets smaller,
the singularity become more prominent. The largest values of these determinants have been
shown in Table 11.

Figure 13 visualizes a comparison of the different figures associated with various values
of η, with plots along the line x2 = 0 (by symmetry). In the top row, both the approximation
of u1,h (left) and ||uh || (right) are visualized. As η gets smaller, the tangent line to the graph
of u1,h at the singularity point (0, 0) becomes vertical, and the gradient undefined. This
singularity point significantly appears on the plot of ||uh ||. Figure 13 (second row) shows
det∇uh (left) and det ph(right).
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Table 12 Nonsmooth problem involving a Dirac delta function, with f (x) = η2(
η2+||x||22

)2 and g(x) =

x
√

1+η2

η2+||x||22
. Convergence results for various ε (η = 1/32). Computational results include the mesh size h,

the errors ||u − uh ||L2(�)
and ||∇uh − ph ||L2(�)

, the average value λ̄ and its standard deviation σ̄ , and the
number of iterations of the relaxation algorithm. The case of the unit disk with a structured mesh

h ||u − uh ||L2(�) ||∇uh − ph ||L2(�) λ̄(σ̄ ) iter

η = 1/32, ε = 0

0.0831 7.90e−01 4.98e−01 9.51e−03(0.042) 999

0.0421 2.14e−01 1.89 3.08e−01 −1.24e−02(0.026) 999

0.0209 9.60e−02 1.16 1.65e−01 −7.98e−04(0.013) 999

0.0104 4.87e−02 0.98 9.73e−02 −2.04e−04(0.007) 999

η = 1/32, ε = h2

0.0831 3.21e−01 2.03e+00 −3.04e−01(0.167) 999

0.0421 1.61e−01 0.99 1.38e+00 −1.46e−01(0.092) 79

0.0209 7.33e−02 1.14 8.37e−01 −6.16e−02(0.044) 589

0.0104 2.85e−02 1.36 4.11e−01 −2.26e−02(0.018) 379

Figure 14 illustrates the numerical approximation of the solution when η = 1/32, ε = 0
and h = 0.0209. The solutions of the two componentsu1,h and u2,h (first row) are non-smooth
and the singularity at the origin is visible; this point also appears in the plots of det∇uh and
det ph (second row). Figure 15 shows a comparison between the solution obtained with ε = 0
and ε = h2 (η = 1/32, h = 0.0209), by plotting the solution along the line x2 = 0. We
observe that the curves obtained when ε = h2 have less oscillations and are smoother than
those obtained when ε = 0.

6 Conclusions and Perspectives

A least-squares/relaxation finite element method has been advocated for the numerical
solution of the prescribed Jacobian equation. The relaxation algorithm that decouples this
least-squares problem into a sequence of local nonlinear problems and variational linear
problems has shown optimal convergence orders for smooth problems. It has also proved to
be robust in non-smooth cases, with nearly optimal convergence orders.

Generally speaking, the least-squares approach is as efficient as the augmented Lagrangian
methodology introduced in [31], but without the required fine-tuning of the augmentation
parameters, a well known drawback of ADMM algorithms.
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Fig. 11 Non-smooth problem involving a Dirac delta function ( f (x) = η2(
η2+||x||22

)2 , g(x) = x
√

1+η2

η2+||x||22
,

η = 1/4). Top left: Numerical approximation of the solution of the component u1,h . Top right: Numerical
approximation of the solution of the component u2,h . Middle left: Numerical approximation of det∇uh . Mid-
dle right: Numerical approximation of det ph . Bottom left: Visualization of ||uh ||. Bottom right: Visualization
of the vector field uh . The results are obtained on structured mesh of the unit disk with h = 0.0209 and ε = h2
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Fig. 12 Non-smooth problem involving a Dirac delta function ( f (x) = η2(
η2+||x||22

)2 , g(x) = x
√

1+η2

η2+||x||22
,

η = 1/64). Top left: Numerical approximation of the solution of the component u1,h . Top right: Numerical
approximation of the solution of the component u2,h . Middle left: Numerical approximation of det∇uh . Mid-
dle right: Numerical approximation of det ph . Bottom left: Visualization of ||uh ||. Bottom right: Visualization
of the vector field uh . The results are obtained on structured mesh of the unit disk with h = 0.0209 and ε = h2
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Fig. 13 Non-smooth problem involving a Dirac delta function ( f (x) = η2(
η2+||x||22

)2 , g(x) = x
√

1+η2

η2+||x||22
),

with various values of the parameter η. Comparing profiles along the line x2 = 0, for u1,h (top left), ||uh ||
(top right), det∇uh (bottom left), and det ph (bottom right). The results are obtained on structured mesh of
the unit disk with h = 0.0209
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Fig. 14 Non-smooth problem involving a Dirac delta function ( f (x) = η2(
η2+||x||22

)2 , g(x) = x
√

1+η2

η2+||x||22
),

with various values of the parameter η. Top left: Numerical approximation of the solution of the component
u1,h . Top right: Numerical approximation of the solution of the component u2,h . Middle left: Numerical
approximation of det∇uh . Middle right: Numerical approximation of det ph . Bottom left: Visualization of
||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on structured mesh of the
unit disk with h = 0.0209 and ε = 0
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Fig. 15 Non-smooth problem involving a Dirac delta function ( f (x) = η2(
η2+||x||22

)2 , g(x) = x
√

1+η2

η2+||x||22
),

with various values of the parameter η, with ε = 0 and ε = h2. Comparing profiles along the line x2 = 0, for
u1,h (top left), ||uh || (top right), det∇uh (bottom left), and det ph (bottom right). The results are obtained on
structured mesh of the unit disk with h = 0.0209
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