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Abstract
We analyze a class of meshfree semi-Lagrangian methods for solving advection problems
on smooth, closed surfaces with solenoidal velocity field. In particular, we prove the exis-
tence of an embedding equation whose corresponding semi-Lagrangian methods yield the
ones in the literature for solving problems on surfaces. Our analysis allows us to apply stan-
dard bulk domain convergence theories to the surface counterparts. In addition, we provide
detailed descriptions for implementing the proposed methods to run on point clouds. After
verifying the convergence rates against the theory, we show that the proposed method is
a robust building block for more complicated problems, such as advection problems with
non-solenoidal velocity field, inviscid Burgers’ equations and systems of reaction advection
diffusion equations for pattern formation.

Keywords Semi-Lagrangian method · Closest point method · Radial basis functions ·
Surface conservation laws

Mathematics Subject Classification 65M06 · 65M25

1 Introduction

Partial differential equations (PDEs) arise frequently in the applied and natural sciences. In
particular, conservation laws on surfaces can describe a variety of dynamics and mixing of
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surface intrinsic quantities, while preserving their initial concentrations. In some applica-
tions, the conservation laws do not include a diffusion term, or they appear to be advection
dominated, with a velocity that is orders of magnitude larger than the coefficient of the
diffusion.

Severalmethods are available to solve advection-dominated conservation laws on surfaces.
These include the finite element method [3], the level set method [17] and the closest point
method [15]. A typical approach when using finite elements is the inclusion of a stabilization
term in order to avoid numerical instabilities. Such techniques include the streamline upwind
Petrov-Galerkin method and the Galerkin least squares method [14]. Other stabilization
techniques used in meshfree radial basis functions (RBF) methods include the hyperviscosity
stabilization method, which has been applied on the solution of PDEs on surfaces using the
RBF least orthogonal interpolation method [19].

In the class of the closest point method, advection dominated problems were numerically
solved using an Eulerian approach and the RBF finite difference (FD) discretization in [12]
by some total variation diminishing schemes, such as the TVD-RKmethods [7]. When using
standard finite differences, upwind schemes or centered differences have been used with the
TVD-RK schemes [15]. Other numerical techniques use a semi-Lagrangian approach for
solving advection dominated PDEs on static and moving surfaces, as well as the Navier-
Stokes equation [1, 2]. However, the authors did not provide any convergence analysis of the
methods or the conservation of the mass and momentum of the solution along time.

In this paper, we introduce a semi-Lagrangian numerical framework inspired by [2] for
the numerical solution of advection dominated conservation laws. After providing proof
of theoretical consistency with the surface PDE and numerical convergence analysis, the
method is tested on a variety of examples on solenoidal velocity fields. Finally, a general
framework is described that allows for the solution of rather general PDEs, including surface
advection conservation laws with non-solenoidal velocity, strongly coupled systems and
reaction-advection-diffusion PDEs.

2 Advection Problems with Solenoidal Vector Field

Let Γ ⊂ R
d be a static surface embedded in Rd and u : Γ × R

+ → R be a scalar function.
For some differentiable velocity field function v : Γ × R

+ → TΓ ⊂ R
d mapping any point

on Γ to the corresponding tangent space, the continuity equation can be written as{
∂t u + ∇Γ · (vu) = 0,

u(·, 0) = u0,
on Γ . (1)

Further assume the velocity field v in (1) is solenoidal

∇Γ · v = 0.

Then we have {
∂t u + v · ∇Γ u = 0,

u(·, 0) = u0,
on Γ , (2)

using the product rule. Let x0 be some fixed point on Γ and let u(x0, 0) = u0(x0) be the
initial solution of (2) at the point x0. Our goal is to identify the solution u(z(t), t) along the
characteristic curve z(t) that starts from the initial point x0 satisfying (2), see [8, 18]. In order
to use the method of characteristics, which is a method for bulk domain type PDEs, a careful
embedding should be derived.
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Theorem 1 Let Γ be a closed C2-surface, n = n(x) be the unit outward pointing normal
vector at x ∈ Γ , and u : Γ → R be the solution to (2). Then, there exists a tubular
neighborhood Ω ⊃ Γ of Γ and an extended velocity field function vΩ : Ω → R

d (i.e.,
vΩ(x) = v(x) for all x ∈ Γ ) such that the constant-along-normal extension uΩ : Ω → R

of the solution

uΩ(z, t) = u(cpΓ (z), t) for z ∈ Ω,

solves the embedded PDE {
∂t uΩ + vΩ · ∇uΩ = 0, in Ω,

uΩ(·, 0) = (u0 ◦ cpΓ ), in Ω,
(3)

where cpΓ : Ω → Γ is the closest point mapping to the surface Γ .

Proof Since the surface Γ is closed and smooth, there exists a tubular neighborhood Ω of Γ

by the theories in [11]. Following [6] and by construction of uΩ , the system (3) is well posed.
Thus, using the method of characteristics, the solution uΩ must be constant along each path
z(t) defined as

d
dt z(t) = vΩ(z(t), t)
z(0) = z0,

(4)

where z0 is the initial location of the solution uΩ at time 0. Since the Ω is a tubular neigh-
borhood of Γ , there exists a C1-smooth closest point mapping cpΓ that maps points from
the domain Ω to their closest points [11]. Using the closest point mapping, we can write

z(t) = cpΓ (z(t)) + Φn(cpΓ (z(t))),

where cpΓ : Ω → Γ is the closest point mapping from the embedding space to the surface
Γ , and Φ is the corresponding signed distance function. Substituting in (4) yields

vΩ(z(t), t) = d

dt
(cpΓ (z(t))) + d

dt
(Φn(cpΓ (z(t))))

= v(cpΓ (z(t))) + Φ
d

dt
(n(cpΓ (z(t)))),

which is a well-defined extension wherever cpΓ is differentiable. �	
Given that the initial condition is not a characteristic, see [6], we can solve (2) by applying

themethod of characteristics to the embedded PDE in (3) via the following system of ordinary
differential equations (ODEs) ⎧⎨

⎩
d
dt z(t) = vΩ(z(t), t),
z(0) = z0 ∈ Ω,

uΩ(z(t), t) = u0(cpΓ (z0)).
(5)

Here, z(t) is the characteristic curve that starts from some point z0 ∈ Ω and vΩ is the
extended velocity defined in Theorem 1.

3 Semi-LagrangianMethods and Implementation on Point Clouds

Consider the characteristic curve z(t) of the embedded PDE (3) inΩ that starts from a surface
point x0 ∈ Γ ⊂ Ω , say, at time t = 0. Using the standard method of characteristics, we know
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that the solution uΩ must be constant along the characteristic curve z(t), which satisfies

d

dt
z(t) = vΩ (z(t), t) .

Thus, we must have

uΩ(z(t), t) = uΩ(x0, 0)

and, since uΩ is constant along the normal direction by construction,

uΩ(z(t), t) = uΩ(cpΓ (z(t)), t).

Thus, z(t) = cpΓ (z(t)) ∈ Γ is a characteristic curve. Restricting the extended velocity field
back to the surface yields an identity map, i.e.,

vΩ (cpΓ (z(t)), t) = v (cpΓ (z(t)), t) .

By applying the method of characteristics to an equivalent form of (3), we can rewrite ODE
(5) as ⎧⎨

⎩
d
dt z(t) = v (cpΓ (z(t)), t) ,

z(0) = x0 ∈ Γ ,

uΩ(z(t), t) = u0(x0),
(6)

for all t > 0. Theorem 1 ensures the analytical solution (6) solves the surface advection
problem (2) in Lagrangian coordinates.

Numerically, the bulk domain ODE system (6) can then be solved using any standard
discretization scheme, in which the use of the closest point mapping allows for the use of
quantities defined only on the surface. If we start at some initial data xn ∈ Γ and apply one
time step of an s-stage explicit Runge-Kutta method to the ODE (6), we arrive at a scheme
with some extra internal projections

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ki = v

(
cpΓ

(
xn + Δt

i−1∑
j=1

ai jk j

)
, tn + ciΔt

)
, i = 1, . . . , s,

xn+1 = xn + Δt
s∑

j=1
b jk j ,

(7)

where tn is the time, the superscript of x· is the step of the temporal discretization with
step-size Δt , and the coefficients ai j , b j and ci define the RK scheme.

Generally speaking, we know that xn+1 /∈ Γ from scheme (7) due to numerical error. To
correct this, we want to further project this new approximation point xn+1 back to the surface,
so that the result is in agreement with the analytical property of the solution of the embedded
PDE (3). This leads us to introduce the closest point mapping into the second equation in (7)
yielding a new scheme

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ki = v

(
cpΓ

(
xn + Δt

i−1∑
j=1

ai, jk j

)
, tn + ciΔt

)
, i = 1, . . . , s,

xn+1 = cpΓ

(
xn + Δt

s∑
j=1

b jk j

)
,

(8)

which is being used in [8, 18].
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xn = x(t)
x(t + Δt)

cpΓ (w)

w

Fig. 1 An illustration of the stepping procedures (7) and (8) using a forward Euler approximation. For the
local error, assume time step n+1 starts from xn = x(t) (solid circle). Then, the bulk domain type RK solution
w (square) is the approximated point using the standard scheme (7), while xn+1 = cpΓ (w) (cross) is the
approximation using scheme (8). Bothw and our surface-restricted RK solution cpΓ (w) are within a distance
O(Δt2) of the exact x(t + Δt) (green dot) (Color figure online)

To see that the extra cpΓ in (8) does not impair the consistency of the method, let

w = xn + Δt
s∑

j=1

b jk j ∈ Ω

be some (possibly) out-of-surface solution to (7). Then, cpΓ (w) is the corresponding solution
to the new problem (8). By the minimization property of cpΓ and the fact that the analytic
solution x(t + Δt) ∈ Γ , an error estimate follows

‖cpΓ (w) − x(t + Δt)‖ = ‖cpΓ (w) − w + w − x(t + Δt)‖,
≤ ‖cpΓ (w) − w‖ + ‖w − x(t + Δt)‖,
≤ 2‖w − x(t + Δt)‖.

The last inequality follows from the minimization property of cpΓ (w). In other words, the
numerical error in (8) is at most twice as large as that in (7). This is the theoretical justification
to the common sense approach in (8). An illustration of the stepping procedures (7) and (8)
using a forward Euler approximation is provided in Fig. 1. We sum up our discussion with a
theorem.

Theorem 2 Suppose the assumptions in Theorem 1 hold. Then, the surface-restricted RK
scheme (8) converges at the same rate as its standard bulk domain type counterpart.

We remarked that other numerical time integrators, i.e. linear multistep methods, can also
be used with on-surface quantities only and a similar argument can be employed to show
consistency via the embedded Eq. (3).

We point out that (8) requires the use of the cpΓ operator as v is only defined on Γ . Thus,
no extension of the velocity outside the surface is required, since the closest point mapping
projects the points back on the surface at each stage of the RK method.

3.1 Algorithm for Solving Advection Eq. (2)

Let Y be a set of data points on the surface, i.e. Y := {y j } j ⊂ Γ . Suppose at some time
tn ≥ 0, we know the solution values {uΩ(y j , tn)} j for all y j ∈ Y . The aim is to update all
nodal solution values to {uΩ(y j , tn+1)} j at time tn+1 := tn +Δt for some time step Δt > 0.
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The proposed numerical framework to solve the characteristic ODEs in (5) uses the following
steps:

Alg.1(a) Identify the backtraced points: For each surface point y j ∈ Y , solve the ODE{
d
dt cpΓ (z(t)) = v(cpΓ (z(t)), t),
z(tn+1) = y j ,

(9)

by the surface-restricted RK in (8) and approximate cpΓ as in Sect. 3.2 (if not
known) in the time interval [tn, tn+1] to approximate the backtraced points z̃(tn)
and store cpΓ (z̃(tn)) =: x j .

Alg.1(b) Interpolate the solution on the backtraced points:
Using existing nodal solution values {(y j , uΩ(y j , tn))} j as data and the RBF inter-
polation scheme in Sect. 3.3, interpolate uΩ . Store the interpolated value as ũΩ(x j ).

Alg.1(c) Update the nodal solution: Set uΩ(y j , tn+1) := ũΩ(x j ).

Note that Alg.1(c) identifies the solution at the initial point cloud Y at time tn+1. Thus, there
are no alterations introduced to the initial distribution of points after each time step.

3.2 Computing Closest Points on Point Clouds

For parametrized, implicit, or triangulated surfaces, the closest point mapping can be cal-
culated using the techniques described in [12, Sect.2.1.1]. However, for more general point
clouds, the identification of the closest point mapping is not a straightforward task. We now
describe a framework for finding the closest points on the surface based on some given
oriented point clouds X ⊂ Γ .

Let z ∈ Ω be a point in the embedding space, which could be the resulting approximated
location after any intermediate step in the RK method. Our goal is to approximate cpΓ (z).
To do so, we propose to use a local surface reconstruction procedure, which is a variation
of the resampling step of the grid based particle method in [10], to map the points in the
embedding space to their closest points on the surface.

We aim to identify the k closest surface points with proper orientation to the out-of-
surface point z ∈ Ω . Suppose that X is sufficiently dense with respect to the stencil size k.
One can easily collect a subset of Xk(z) := {xi }ki=1 ⊂ X by the k nearest points to z. We
avoid selecting any across-surface points with sufficient separating distances by enforcing
two criteria: points in Xk(z) need to be

(C1) on the same surface segment, and
(C2) numerically distinct up to some user defined tolerance.

Let x0 = minx∈X ‖x − z‖ be the closest point from the whole point cloud to the point
z, and n0 = n(x0) its unit normal vector. Using the normal information of the point cloud,
i.e., ni := n(xi ) for all xi ∈ X with 1 ≤ i ≤ k, the first criterion (C1) is met by applying a
normal continuity condition

cos−1(ni · n0) =: θi < θmax (10)

for some user defined threshold angle θmax.
Next, in (C2), we make sure the k collected points are well separated by enforcing

min{‖xp − xq‖2 : xp, xq ∈ Xk(z), p = q} > δmin,

where δmin is a specified threshold separating distance.
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Note: If the point z in the embedded space is a result of an intermediate RK step, then
x0 should lie on the same segment as the point before the motion, i.e., the point y in step
Alg.1(a). This introduces another Lagrangian consistency condition for the unit normal vector
continuity, similar to the one defined by Eq. (10).

At this stage, we have a stencil of on-surface points Xk(z) around the to-be-determined
point cpΓ (z).

We now focus our discussion on 2D surfaces in R
3; generalization to other dimensions

is straightforward. Define a rotation operator R : R3 → R
3 to rotate the unit normal vector

n0 ∈ R
3 to the (positive) z-axis in 3D. LetRXk(z) := {Rxi }ki=1 be the set of rotated stencil.

We use their (a.k.a. local) coordinates of the point Rxi = (ξi , ηi , ζi ) ∈ R
3, 1 ≤ i ≤ k, as

data and seek a local reconstruction function of the form

ζ = f (ξ, η).

The function f can be any smooth function resulting from some interpolation or approx-
imation/regression approach. We proceed to find f via a local least-squares polynomial
reconstruction. For some k > dim(Pn), where dim(Pn) is the number of basis elements
of the polynomial space Pp for the local surface reconstruction, the surface reconstruction
function is obtained by solving the least-squares system

f := argmin
g∈Pn

k∑
1

‖ζi − g(ξi , ηi )‖22.

Our rotated problem now is to identify the surface closest point ofRz to the surface given
by f (ξ, η). We do so by solving a minimization problem on the reconstructed surface

(ξ0, η0) = argmin
(ξ,η)

‖Rz − (ξ, η, f (ξ, η))‖22, (11)

say, via some Newton-type iterative method with a good initial guess provided by the closest
surface point Rx0 to the Rz. The searching domain of (11) is specified by the convex hull
formed by the first two coordinates in RXk(z).

Note:While Newton’s type methods for (11) with the good initial guess provided byRx0
typically converge in 1 or 2 iterations, in case of non-convergence, either other techniques of
mapping Rz to its closest point on the surface can be employed [13], or the contribution of
the point z can be discarded as in [10].

The newly found closest point

cp f (Rz) := f (ξ0, η0).

should lie within the data points in RXk(z) used to define the local surface reconstruction.
Finally, using the inverse rotation operatorR−1, the new closest point is mapped back to the
Cartesian coordinates to get the closest point on the surface Γ via

cpΓ (z) = R−1cp f (Rz).

Note that the above is only one of themany possible approaches for approximating cpΓ (z);
see [13] for an alternative surface reconstruction and minimizer identification. These local
surface approximation approaches also allow one to identify other quantities such as the
curvature, the unit normal or unit tangent vectors, as might be necessary.
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Table 1 The breakdown of the algorithmic complexity of each step of Alg.1 for the case of an analytic cpΓ

and an approximation of the closest points using the framework in Sect. 3.2

Alg. Step Alg.1 (a) Alg.1 (b) Alg.1 (c)

Analytic cpΓ O(sN ) O(mN ) O(1)

Computed cpΓ O(sN log(N )) O(mN ) O(1)

3.3 Surface Interpolations

An interpolation step is required in order to identify the solution value at some surface points
after the use of the cp-projection in Sect. 3.2. There are numerous techniques that can be
used, including meshfree or gridded interpolants. For non-smooth solutions, shock-capture
interpolants can be used such as ENO or WENO schemes.

In the current work, we consider the interpolation technique defined in [12], that uses
locally RBF-FD and an underlying grid. This interpolant allows for high order approximation
of smooth solutions on smooth surfaces, and it can also be applied on non-uniform point
distributions on the surface, thus exploring the aspects discussed in Sect. 3.2.

3.4 Algorithmic Complexity

A breakdown of the floating point operations required for each of the algorithmic steps of
Alg.1 at every time step using the scheme (8) is given in Table 1. Two different cases are
considered for the analysis of the complexity of the algorithm: the case where the closest
point function cpΓ is given analytically and the case where the framework defined in Sect. 3.2
is used for the identification of the closest points on point clouds. Given cpΓ , the overall
complexity of the algorithm isO(N ), and the dominant cost lies at the choice of the interpolant
(of stencil size m) in Alg.1 (b).

For a computed cpΓ , some additional computational work is required for Alg.1 (a). Using
the framework in Sect. 3.2 and assuming a kd-tree structure for the storage of the points on
the surface, a reduced QR solver for the local least squares fit and a Newton’s solver for
the minimization problem, the construction of the kd-tree requiresO(N log(N )) operations.
This is a one-time cost that can be computed as a pre-processing step. The dominant cost
is the search within the tree for each point and for each of the s-stages of the RK scheme,
which requires O(sN log(N )) operations. The local surface reconstruction cost using direct
solvers requiresO(k dim(Pn)N ) operations, where k is the number of points for local surface
reconstruction and dim(Pn) is the number of basis elements of the polynomial space Pp for
the local surface reconstruction. Finally, the Newton type solver for the minimization process
requires a total of O(N ) operations for all points on the surface.

Remark 1 The framework in Sect. 3.2 is parallelizable, since the calculation of the closest
point for each point is independent of the others.

Remark 2 Thepresented computational cost does not include the costs of theRBF-FDstencils
from [12], since the algorithm is rather general and independent of the interpolant chosen for
Alg.1 (b). The use of the RBF-FD stencils in [12] requires the use of another kd-tree requiring
O(N log(N )) operations and can be performed as a pre-processing step. The solution of
the local systems to estimate the RBF-FD stencil weights requires O((m + dim(Pp))

3N )

operations using direct solvers. This calculation is parallelizable.
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Fig. 2 Exmp. 4.1: The spatial (left) and temporal (right) convergence of the proposed method on the unit circle
(Color figure online)

4 Numerical Results

In the following numerical results, uniform Cartesian grids are considered with a spatial step-
size Δx . Unless stated otherwise, the minimum distance of the selected stencil δmin and the
angle for consistent Lagrangian information θmax are

√
dΔx/5 and π/2, respectively, where

d is the dimension of the embedding space. The local surface fit uses quadratic polynomials
with k = �2.5P� closest surface points (see Sect. 3.2), where P is the number of polynomial
terms. The Newton method is employed to solve the minimization problem (11) for the
identification of the new closest point on the surface with a relative error tolerance of 10−8.

ThePolyharmonic Spline (PHS)RBF-FD interpolant is considered augmentedwithmono-
mials that form a basis of the space Pp of order p, as defined in [12]. The stencil size is taken
as m = �2.5q�, where q = dim(Pp) is the number of monomials that form the basis of Pp

in R
d .

4.1 Unit Circle

To begin, we consider a simple example of a constant velocity v = T on the unit circle,
where T is the unit tangent vector. For this velocity, the solution of (5) for a smooth initial
solution u(0, s) = sin(s), where s is the arclength of the circle, is given by

u(s, t) = sin(s − t).

We perform numerical simulations to explore both the spatial and the temporal convergence
of the proposedmethod using different degrees p of the polynomial spacePp for the RBF-FD
PHS interpolant, and different RK schemes, the forward Euler method (RK1), the midpoint
method (RK2), Kutta’s third order method (RK3) and the classical fourth order method
(RK4). For the temporal convergence, we use RK4 with a temporal step-size of Δt = 0.01,
while for the spatial convergence we consider augmented polynomials that span P4 with a
spatial step-size of Δx = 0.01. The ∞-norm relative error is considered to compare the
numerical solution against the exact one. The results appear in Fig. 2.

The convergence rates appear to be consistent with the rates of the corresponding RBF-FD
in the spatial convergence figure. Better than anticipated temporal convergence appears for
the case of RK1 and RK3. This latter result arises due to the constant velocity chosen for this
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Fig. 3 Exmp. 4.2: The spatial (left) and temporal (right) convergence of the proposed method on an ellipse
(Color figure online)

example, since some cancellation errors in these temporal discretization schemes lead to a
higher order of convergence (see Appendix A.1.).

4.2 Ellipse

Next, we consider the surface advection equation on an ellipse with minor axis a = 0.75 on
the x-axis and major axis b = 1.25. Using a constant velocity v = T in the tangent direction,
the exact solution at all times t is given by

u(s, t) = sin(2π(s − t)/L),

for the initial solution u(s, 0) = sin(2πs/L), where s is the arclength and L is the circum-
ference of the ellipse. Using a similar setup as the example on the unit circle, we explore the
spatial and temporal convergence of our proposed method.

The results in Fig. 3 appear to follow the expected convergence that is directed from the
augmented polynomials of the RBF-FD scheme. A similar behavior as in the case of the unit
circle appears for the temporal convergence, while a faster convergence appears for the cases
of RK1 and RK3 (see Appendix A.1.).

4.3 Unit Sphere

For our three dimensional examples, we consider an initial smooth solution

u(θ, φ, 0) = cos(θ) cos(φ),

revolving around the unit sphere according to the velocity

v(θ, φ) = sin θ sin φTθ + cos θTφ,

where Tθ and Tφ are the unit tangent vectors that can be derived by differentiating the
parametrized surface in the θ and φ parameters, respectively. The solution performs a full
revolution around the sphere at time 2π . We explore the spatial and temporal convergence of
our method by comparing the numerical solution at the final time against the initial solution,
using a fixed Δt = π/80 and RK4 in the first case, and using the RBF-FD augmented with
polynomials that span P5 with Δx = 0.025 in the second case. The results appear in Fig. 4
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Fig. 4 Exmp. 4.3: The spatial (left) and temporal (right) convergence of the proposed method on the unit
sphere (Color figure online)

Fig. 5 Exmp. 4.3: The spatial (left) and temporal (right) convergence of the proposed method on the unit
sphere for a time dependent velocity (Color figure online)

and show the expected convergence, as dictated by the numerical discretizations in both space
and time.

Another example on the unit sphere appears in [18], where a time dependent deformational
flow v(θ, φ, t) = v1Tθ + v2Tφ is considered, where

v1 = 10

T
cos

(
π t

T

)
sin2

(
θ − 2π t

T

)
sin(2φ) + 2π

T
cosφ,

v2 = 10

T
cos

(
2π t

T

)
sin

(
2

(
θ − 2π t

T

))
cosφ.

The solution returns to its initial state at T = 5. Given a smooth initial solution

u(x, 0) = 0.95
(
exp(−5‖x − q1‖22) + exp(−5‖x − q2‖22)

)
the spatial and temporal convergence of the numerical method appears in Fig. 5. For the
temporal convergence, we consider a fixed spatial step-size Δx = 0.025 and the PHS RBF-
FD with augmented polynomials that span P5. In addition, a small, fixed time step-size of
Δt = 0.00625 is considered with the RK4 scheme in order to observe only the spatial errors.

The results show that we get the expected convergence for the methods considered in both
the spatial and temporal convergence tests.
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4.4 Torus

In this example, we consider a torus with outer radius R = 1 and inner radius r = 1/3
parametrized as

x(θ, φ) = ((R + r cosφ) cos θ, (R + r cosφ) sin θ, r sin φ).

Following [19], a torus knot (3,2) is considered for the velocity, defined as

vx = ρ2 cos(3Θ) − 3ρ1 sin(3Θ),

vy = ρ2 sin(3Θ) + 3ρ1 cos(3Θ),

vz = 2r cos(2Φ),

where

ρ =
√
x2 + y2, Θ = 1

3
tan−1

( y

x

)
, Φ = 1

2
tan−1

(
z

ρ − R

)
,

and ρ1 = R + r cos(2Φ), ρ2 = −2r sin(2Φ). In the notation above, x = (x, y, z) and
v = (vx , vy, vz). The solution returns to the initial position after a time T = 2π . For an
initial solution

u(x, 0) = exp(−a(x − q1)
2 + y2 − 1.5az2) + exp(−a(x − q2)

2 + y2 − 1.5az2),

where a = 20, q1 = 1 + 1/3 and q2 = −q1, the results for the spatial and temporal
convergence appear in Fig. 6.

Wecompare the numerical results at a full revolution against the initial solutionusing a time
step-size ofΔt = π/160 and theRK4 scheme for the spatial convergence, and aΔx = 0.0125
and augmented polynomials in the RBF-FD schemes that span P5 for the temporal one. As
expected, the spatial convergence rates agree with the order of the corresponding augmented
polynomial terms of the RBF-FD chosen. A faster convergence is obtained for RK1 and RK3,
possibly due to a cancellation error in the temporal discretization scheme (see Appendix A).
The relative error distribution on the torus at final time for the RK4 case with Δt = π/160,
Δx = 0.0125 and augmented polynomials in the RBF-FD schemes that span P5 appears in
Fig. 6.

5 Extension to General PDEs

Thealgorithm formoregeneral PDEsconsiders twomain classes of problems:weakly coupled
systems, where the velocity v is independent of the solution u, and strongly coupled systems,
where the velocity v depends on the solution u. For a point cloud Y = {y j } j ⊂ Γ , the
algorithmic steps for weakly coupled systems follow in Alg.2:

Alg.2(a) Identify the backtraced points: Use step Alg.1(a) of the algorithm presented in
Sect. 3.1 to approximate the backtraced points z̃(tn) and store cpΓ (z̃(tn)) =: x j .

Alg.2(b) Interpolate the solution on the backtraced points: Use step Alg.1(b) to obtain
ũΩ(x j ).

Alg.2(c) Solve the PDE: Using a standard numerical discretization method over the time
interval [tn, tn+1], solve the PDE on {x j } j to obtain the updated {ũΩ(x j )} j .

Alg.2(d) Update the nodal value: Use step Alg.1(c) to obtain uΩ(y j , tn+1).
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Fig. 6 Exmp. 4.4: The initial solution on the torus (top left) and the ∞-norm relative error against the initial
solution (top right) at the final time. The spatial (bottom left) and temporal (bottom right) convergence of the
proposed method on a torus for the (3,2) torus knot velocity (Color figure online)

Note: Alg.1 describes a framework for the solution of PDE systems of the form

Du

Dt
= 0,

where D(·)/Dt is the material derivative, while Alg.2 is an extension to more general PDEs
of the form

Du

Dt
= F(u(x, t), v(x, t), x, t),

where F denotes some general right-hand side function.
Unlike the previous two algorithms, in the strongly coupled system case the backtracing

of the surface nodes requires rigorous techniques such as [4, 16] that are out of the scope of
this paper due to the nature of the problem, where the velocity depends on the solution of the
PDE. Thus, a forward tracing is carried out, as described in Alg.3.

Alg.3(a) Solve the PDE: Using a standard numerical discretization method over the time
interval [tn, tn+1], solve the PDE on {y j } j to obtain {ũΩ(y j )} j .

Alg.3(b) Identify the forward traced points: For each surface point y j ∈ Y solve the ODE

d

dt
cpΓ (z(t)) = v(cpΓ (z(t)), t),

z(tn) = y j ,

(12)
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over the time interval [tn, tn+1] to identify the forward traced points z̃(tn+1) and
store cpΓ (z̃(tn+1)) =: x j . The solution is carried to the forward traced nodes, i.e.,
ũ(x j ) = ũ(y j ).

Alg.3(c) Interpolate the solution on the initial point cloud: Use existing nodal solution
values {(x j , ũΩ(x j ))}; as data to interpolate the solution ũΩ to the initial point
cloud {y j } j , obtaining the nodal solution uΩ(y j , tn+1).

Note that even for strongly coupled systems, Alg.3(c) guarantees that the solution is
mapped back to the initial point cloud Y .

5.1 Non-Solenoidal Velocity

In this section, we focus on Eq. (1) with some non-solenoidal velocity fields either on the
unit circle or the unit sphere, namely

{
∂t u + v · ∇Γ u = −u∇Γ · v,

u(·, 0) = u0,
on Γ . (13)

Alg. 2 is used to numerically approximate this weakly coupled system. Unless stated
otherwise, the same RK scheme is considered for both the solution of the ODE and the
solution of the PDE in Alg.2.

5.1.1 Unit Circle

We consider an example of a surface advection PDE with a non-solenoidal spatial dependent
velocity

v = (1 + cos(s))T.

Using the same initial solution as in Sect. 4.1, u(0, s) = sin(s), the solution is

u(s, t) = sin(ξ(s, t))
(c(s, t) + t)2 + 1

c2(s, t) + 1
,

where

ξ(s, t) = −2 tan−1(t − tan(s/2)) and c(s, t) = tan(ξ(s, t)/2).

The results appear in Fig. 7. The temporal convergence appears to follow the corresponding
theoretical rates of the RK methods and the observed spatial convergence agrees with the
expected rates.

In order to obtain the expected convergence rates shown for the cases of RK3 and RK4, the
use of an approximation for themidpoint xn+1/2

j that is at most one order of accuracy less than
the approximation of xnj is required in Alg.2(a) of Sect. 3.1. In particular, in the case of RK3
for the approximation of the backtraced points of xnj , we use RK2 for the approximation of

the backtracedmidpoint xn+1/2
j , and in the case of RK4we use RK3 for themidpoint. The use

of lower order methods to approximate the midpoints was found to reduce the convergence
order of Alg.2 for both RK3 and RK4.
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Fig. 7 Exmp. 5.1.1: The spatial (left) and temporal (right) convergence of the proposed method on the unit
circle for a spatial dependent velocity (Color figure online)

Fig. 8 Exmp. 5.1.2: The mass conservation of the solution (left) and the error of the mass conservation (right)
on the unit sphere along time (Color figure online)

5.1.2 Unit Sphere

In our next example, consider the Eq. (2) on the unit sphere, with the non-solenoidal velocity

v(θ, φ) = sin θ sin φTθ + (cos θ + cosφ)Tφ,

for which clearly ∇Γ · v = 0. Using the initial solution

u(θ, φ, 0) = cos(θ) cos(φ),

the evolution of the solution is numerically approximated with the proposed framework. The
solution is approximated until the final time t = 2 with a time step-size Δt = 0.1, and the
conservation of the solution is estimated by the second-order integration method presented in
[9]. Using a spatial discretization of Δx = 0.025 and RBF-FD augmented with polynomials
that span P4, the conservation of the solution over time and the error in the conserved initial
mass appear in Fig. 8.

The conservation of the solution improves as the order of the RK method increases, with
RK4 providing the best conservation results in time. Similar to the non-solenoidal example
on the unit circle, we use RK2 for the approximation of the midpoint in the RK3 case and
RK3 in the RK4 case.
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5.2 Inviscid Burgers’ Equation

The next example employs the surface inviscid Burgers’ equation, given as

∂t u + v · ∇Γ u = 0,

with v = uT, whereT is the unit normal vector. In this example, we consider thatΓ is the unit
circle. Using themethod of characteristics, the solution u is constant along the characteristics,
which are given as

θ(t) = u0(ξ)t + ξ,

where −π ≤ θ ≤ π is the arclength of the circle, ξ = θ(0), u0(ξ) is the initial solution and
t is the time. The exact solution is given implicitly as

u(θ, t) = u0(u0(ξ)t + ξ).

Since this is a strongly coupled system,weuse the algorithmAlg.3 inSect. 5. The interpolation
step is applied as indicated in the algorithm, however we apply the technique presented in
[5] using the PHS RBF-FD augmented with polynomials that span Pp . Any other meshfree
interpolant could be used for this example, since the forward evolution in the algorithm does
not allow the use of an interpolant that requires a grid.

Given an initial solution

u0(θ) = exp(−θ2),

Fig. 9 shows the spatial and temporal convergence of the method at the final time of t = 1.
This corresponds to an evolution before the first shock occurrence at Tc = √

e/2. When a
shock discontinuity occurs, the inviscidBurgers’ equation does not have a unique solution and
an entropy condition is required for the identification of the correct weak solution. Typical
numerical schemes fail to accurately capture the speed of the shock, and thus cannot be
convergent [20]. The exploration of numerical methods for the accurate capture of the shock
solution is beyond the scope of this paper.

We obtain a faster than expected convergence for the RK1 and RK3 schemes, since a
cancellation error leads to higher order of convergence (see Appendix A.2.). The spatial
convergence follows the expected rates dictated from the augmented polynomials in the
RBF-FD stencils.

5.3 Reaction-Advection-Diffusion Equation

Our final example considers the reaction-diffusion Gray-Scott system of equations with an
advection term, given as

ut + ∇Γ · (vu) = f (u, w) + νuΔΓ u,

wt + ∇Γ · (vw) = g(u, w) + νwΔΓ w,
(14)

where v is the velocity field, u and w are the concentrations of the chemicals, f and g are
the mixing functions and νu and νw are the diffusion rates. The mixing functions are given
as

f (u, w) = −uw2 + F(1 − u),

g(u, w) = uw2 − (F + k)w,
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Fig. 9 Exmp. 5.2: The solution at the initial time (in blue) and the transition (in black) to the final time (in
red) in 2D (top left) and 3D (top right). The spatial (bottom left) and temporal (bottom right) convergence of
the proposed method on the unit circle for the inviscid Burger’s equation (Color figure online)

where F and k are constants. The PDE is considered on four different surfaces: the unit
sphere (Γ1), the torus from the example in Sect. 4.4 (Γ2), the Dziuk surface (Γ3) given as an
implicit surface

(x − z2)2 + y2 + z2 = 1,

and the torus link 1 surface (Γ4) given as a parametrized surface

x(θ, φ) = ((R + rρ(θ, φ)) cos(2θ), (R + rρ(θ, φ)) sin(2θ), r(rz sin(2φ) + sin θ)),

where

ρ(θ, φ) = rz cos(2φ) + cos θ,

and −π ≤ θ, φ ≤ π , R = 1, r = 0.25 and rz = 0.7.
The velocities considered are given as

vΓ1(θ, φ) = 0.2(sin θ sin φTθ + cos θTφ),

vΓ2(Θ,Φ) = 0.1(ρ2 cos(3Θ) − 3ρ1 sin(3Θ), ρ2 sin(3Θ) + 3ρ1 cos(3Θ), 2r cos(2Φ)),

vΓ3 = 0.1(v1 − (v1 · n)n),

vΓ4 = 0.1n × (−y, x, 0),
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Fig. 10 Exmp. 5.3: The stripe patterns of the solution of the reaction-advection-diffusion system on the unit
sphere, the torus, the Dziuk surface and the torus link 1 surface

for each surface, where v1 is the spatially dependent velocity in the example in Sect. 4.3
scaled by 0.2 and v2 is the velocity in 4.4 scaled by 0.1. In all cases the velocity is solenoidal,
i.e., ∇Γ · vΓi = 0, for i = 1, . . . , 4.

Using the parameter set F = 0.054, k = 0.063, νu = (Δx/3)2 and νv = νu/3, the
resulting stripe patterns appear in Fig. 10. For the examples, the RK2 scheme for the tem-
poral discretization of the method of characteristics and the Forward Euler scheme for the
solution of the ODE system for u and w are considered. The PHS RBF-FD augmented with
polynomials that span P4 are employed, as presented in [12]. We select the time step-size
as Δt = 0.1Δx2/νu , with the spatial step-size Δx = 0.025. The Dziuk surface has high
curvature areas and the torus link 1 has segments that are close to each other, thus we use
a consistency condition on the normal vectors when selecting the local RBF-FD stencils,
similar to the one presented in Sect. 3.2. Note that in all cases the stripes patterns align with
the corresponding velocity field in Fig. 10.

6 Conclusion

In this paper, a semi-Lagrangian numerical framework for solving advection conservation
laws and advection dominated PDEs is presented. The framework uses the projection method
of Sect. 3 in combinationwith the closest point mapping and interpolation to track the particle
motion and advance the solution. The method is mesh independent and can be used as part
of general frameworks for point clouds. For the case where the closest point mapping is not
given, a point cloud based framework is presented, where local surface reconstruction allows
for the identification of the surface closest points. The method is proved to be consistent
with the PDE defined in the embedded space of the surface. Numerical results show the
convergence of the method for advection conservation laws with solenoidal velocity fields,
in which the expected convergence rates are obtained.

An extension of the framework to general PDEs is also presented, where the semi-
Lagrangian method is considered as part of the solution of rather general PDEs. Numerical
examples include advection conservation laws with non-solenoidal velocities, the invis-
cid Burger’s equation and reaction-advection-diffusion systems on rather general surfaces,
including surfaces with high curvature areas and with different surface segments being close
to one another.

The numerical framework is tested on smooth surfaces using smooth solutions. Further
work is required for the solution of advection conservation laws with non-smooth solutions,
where numerical schemes such as ENO/WENO should be employed. Another interesting
aspect is the generalization of this framework to moving surfaces. A similar approach has
been used in [2] for moving triangulated surfaces, however no work has been presented for
moving point clouds. These future directions are part of our ongoing research.
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Appendix A. Error estimation using RK1

We are interested in the calculation of the error of a function u carried along the trajectories
x(t). Assume a PDE of the form

Du

Dt
= ut + v · ∇Γ u = 0, v = v(x, t), x ∈ Γ

on a surfaceΓ . Using a semi-Lagrangian approach, the trajectories x(t) onwhich the solution
u should be constant follow the ODE

dx
dt

= v.

Let us assume that we are interested in the calculation of the error at time tn+1 = tn + Δt
using the RK1 scheme. Then, for a fixed x(0) at t0 = 0, we evaluate the local time stepping
error by introducing the RK1 scheme for the estimation of x(tn+1)

x(tn+1) ≈ x(tn) + Δtv(tn, x(tn)).

into the following term which evaluates to zero analytically

‖u(tn+1, x(tn+1)) − u(0, x(0))‖.
We assume infinitely smooth functions u and v and apply a Taylor series expansion around
tn and x(tn) to get

u(tn+1, x(tn) + Δtv(tn, x(tn))) = u(tn, x(tn)) + F1Δt + F2
Δt2

2
+ O(Δt3).

Let us calculate the terms of the series:

F1 = ut + v · ∇Γ u = 0 (from PDE)
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F2 = utt + 2v · ∇Γ ut + vT (∇Γ (∇Γ u))v (diff. PDE for t and sub.)

= −∂v
∂t

· ∇Γ u − v · ∇Γ (v · ∇Γ u) + vT (∇Γ (∇Γ u))v (sub. ut from PDE)

Thus, for a velocity that satisfies the condition

−∂v
∂t

· ∇Γ u − v · ∇Γ (v · ∇Γ u) + vT (∇Γ (∇Γ u))v = 0

our approximation procedure leads to an O(Δt2) error:

‖u(tn+1, x(tn+1)) − u(0, x(0))‖ ≈ ‖u(tn+1, x(tn) + Δtv(tn, x(tn))) − u(0, x(0))‖
≤ ‖u(tn, x(tn)) − u(0, x(0))‖ + O(Δt3)

≈ ‖u(tn, x(tn−1) + Δtv(tn−1, x(tn−1)))

−u(0, x(0))‖ + O(Δt3)

≤ ‖u(tn−1, x(tn−1)) − u(0, x(0))‖ + 2O(Δt3)

≤ . . . ≤
≤ (n + 1)O(Δt3) = O(Δt2)

Appendix A.1. Constant speed along trajectory case

Let us consider the special case of the constant speed along a continuous and smooth unit
tangent vector field. In the case of smooth curves in R

2, an example of such velocity for a
unit tangent vector T takes the form

v = cT,

for some c ∈ R. Assuming an arc-length s for the curve, we get

∂v
∂t

= 0 and v · ∇Γ (v · ∇Γ u) = vT (∇Γ (∇Γ u))v = c2
∂2u

∂s2
.

Thus, F2 = 0 and so each step of size Δt using the RK1 scheme yields an error of O(Δt3)
for the numerical approximation of the solution u.

On the other hand, for a smooth surfaceΓ inR3, letT1 andT2 be its orthonormal tangential
vectors, which are continuous along Γ . Then, for a velocity defined as

v = c1T1 + c2T2,

where c1, c2 ∈ R we get

F2 = c21

(
T1 ·

(
∂T1

∂T1
+ ∂T2

∂T1

))
∂u

∂T1
+ c22

(
T2 ·

(
∂T1

∂T2
+ ∂T2

∂T2

))
∂u

∂T2

+ c1c2

[
(T1 + T2) · ∂T1

∂T1

∂u

∂T1
+ T1 · ∂T1

∂T2

∂u

∂T1
+ T2 · ∂T2

∂T1

∂u

∂T2

+ (T1 + T2) · ∂T2

∂T2

∂u

∂T2

]
= 0.
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Appendix A.2. Inviscid Burgers’ equation case

Consider the inviscid Burgers’ equation defined on a smooth curve Γ ⊂ R
2

ut + v · ∇Γ u = 0, x ∈ Γ

where v = uT. We can write the semi-Lagrangian system as

dx
dt

= u(t, x(t))T,

where T is the continuous unit tangent vector and u is a function for which u(t, x(t)) =
u(0, x(0)) = u0. Thus, we can rewrite the ODE as

dx
dt

= u0T.

Let us use a similar analysis to our previous one to estimate the Taylor expansion terms for
the Burgers’ equation for a fixed x(0):

F1 = ut + v · ∇Γ u = 0 (from PDE)

F2 = utt + 2v · ∇Γ ut + vT (∇Γ (∇Γ u))v (diff. PDE for t and sub.)

= u(T · ∇Γ u)2 − uT · ∇Γ (uT · ∇Γ u) + u2TT (∇Γ (∇Γ u))T (sub. ut from PDE)

Let s be the arc-length of the curve Γ . Then, we can write

F2 = u

(
∂u

∂s

)2

− u
∂

∂s

(
u

∂u

∂s

)
+ u2

∂2u

∂s2
= 0.

Thus each step of size Δt using the RK1 scheme yields a local error of O(Δt3) for the
numerical approximation of the solution u.

On the other hand, assuming a smooth surface Γ with its orthonormal tangential vectors
T1 and T2, that define a continuous vector field along the surface, the inviscid Burgers’
equation can be written as

ut + v · ∇Γ u = 0,

vt + v · ∇Γ v = 0,

where the velocity is defined as

v = uT1 + vT2.

Similar to the previous case, using the Taylor expansion for u we get

F2 = u2
[
T1 ·

(
∂T1

∂T1
+ ∂T2

∂T1

)
∂u

∂T1

]
+ v2

[
T2 ·

(
∂T1

∂T2
+ ∂T2

∂T2

)
∂u

∂T2

]

+ uv

[
(T1 + T2) · ∂T1

∂T1

∂u

∂T1
+ T1 · ∂T1

∂T2

∂u

∂T1
+ T2 · ∂T2

∂T1

∂u

∂T2

+ (T1 + T2) · ∂T2

∂T2

∂u

∂T2

]
= 0.

An analogous result can be obtained for v, indicating that each step of size Δt using the
RK1 scheme yields an error of O(Δt2) for the numerical approximation of the solutions u
and v.
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