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Abstract
The pressure-velocity formulation of the incompressible Navier-Stokes equations is solved
using high-order finite difference operators satisfying a summation-by-parts property. Two
methods for imposingDirichlet boundary conditions (one strong and oneweak) are presented
and proven stable using the energy method. Additionally, novel diagonal-norm second-
derivative finite difference operators are derived with highly improved boundary accuracy.
Accuracy and convergence measurements are presented and verified against theoretical
expectations. Numerical experiments also show that subtle effects close to solid walls are
more efficiently captured with strong boundary condition imposition methods rather than
weak (less degrees of freedom required).

Keywords Navier-Stokes · Wall boundary conditions · Incompressibility · Finite difference
methods · High order accuracy

1 Introduction

Multiple numerical methods for the incompressible Navier-Stokes equations have been sug-
gested in the past. Among the popular ones are fractional step projection methods [1–3],
where an approximation of the velocity field is computed and then corrected in a following
step to impose the divergence free condition. Used together with staggered grids [4] this
type of method has achieved great success and is probably the most commonly used today.
However, although flexible (in principle any method can be used for the spatial discretiza-
tion) and efficient (the velocity and pressure computations are decoupled), it exhibits some
issues in terms of temporal accuracy and boundary conditions. Another common approach
is to rewrite the problem in terms of the streamfunction and vorticity of the velocity field,
which results in the streamfunction-vorticity formulation [5]. This approach has achieved
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efficient and stable incompressible flow simulations in two spatial dimensions. However, the
benefits are not retained in three dimensions, particularly due to computational costs and
the complexity of boundary conditions [6]. In this paper we consider the velocity-pressure
formulation of the incompressible Navier-Stokes equations. The main benefit of this formu-
lation is that there are no theoretical order barriers and that it is equally applicable in two and
three spatial dimensions. The downsides to the velocity-pressure formulation are that special
care needs to be taken with regards to the incompressibility constraint and that additional
pressure boundary conditions have to be derived.

It is well known that high-order methods can be used to more efficiently resolve fine
structures in flow simulations, compared to more widely used low-order (first and second-
order accurate) methods. The main difficulty when constructing high order schemes is the
imposition of boundary conditions such that the discretization is stable for long-time simu-
lations. One way to achieve this is to use high-order finite difference methods satisfying a
summation-by-parts (SBP) property [7–9], together with either the simultaneous approxima-
tion term (SAT) or the projection (P) method to impose boundary conditions. Using either
SBP-SAT or SBP-P allows one to prove stability using the energy method. Examples of the
SBP-SAT and SBP-P methods can be found in [10–12] and [13–15] respectively. Further-
more, the SBP-SAT approach have successfully been applied to problems with complex and
non-smooth geometries, see for example [16, 17].

The primary focus of this paper is to compare SBP-SAT and SBP-P for imposing Dirich-
let boundary conditions in general, and no-slip wall boundary conditions in particular. We
present stable SBP-P and SBP-SAT discretizations of the incompressible Navier-Stokes
equations with Dirichlet boundary conditions, including procedures for enforcing the diver-
gence free condition and deriving consistent pressure boundary data. Numerical experiments
show that the two methods are similar in terms of accuracy and convergence, but that fluid
dynamical effects close to walls require less grid-points to develop if the homogeneous
Dirichlet boundary conditions are imposed strongly (SBP-P) rather than weakly (SBP-
SAT).

Recent developments have shown that a significant improvement of accuracy can be gained
by employing so-called optimal first derivative SBP operators over traditional SBP operators
for hyperbolic problems [12, 18]. The optimal operators are optimized for boundary accuracy
by allowing a non-equidistant distribution of grid points close to the boundaries. In this paper
we derive novel narrow-stencil second-derivative SBP operators that are compatible with the
optimal diagonal-norm first-derivative SBP operators presented in [18]. The new operators
are compared numerically to traditional SBP operators and shown to be highly superior in
terms of accuracy, convergence, and efficiency. This is the second main result of the present
study.

The paper is organized as follows: in Sect. 2 we present the continuous analysis including
derivation of the velocity-pressure formulation and energy stability of the momentum equa-
tion. Section 3 covers the corresponding analysis in the semi-discrete setting and describes
the divergence and pressure boundary procedures with SBP-P and SBP-SAT. The new
narrow-stencil optimal second-derivative SBP operators are also presented in Sect. 3. In
Sect. 4 the numerical experiments and results are presented. Conclusions are drawn in
Sect. 5.
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2 Continuous Analysis

The dimensionless incompressible Navier-Stokes equations are given by

Vt + (V · ∇)V = −∇ p + 1

Re
�V, x, y ∈ �, t ≥ 0,

∇ · V = 0, x, y ∈ �, t ≥ 0,

B(V, p) = G, x, y ∈ ∂�, t ≥ 0,

(V, p) = H, x, y ∈ �, t = 0,

(1)

where V is the velocity field, p the pressure, Re the Reynolds number, G the boundary data
and H the initial data. In two spatial dimensions we have V = (u, v)T , where u and v are
the velocities in the x- and y-direction, respectively. The boundary operator B and boundary
data G determine the boundary conditions. The spatial domain is � ∈ R

2 and its boundary
∂�. We refer to the first equation in (1) as the momentum equation and the second equation
as the divergence free condition.

Taking the divergence of the momentum equation leads to

φt + V · ∇φ = −u2x − 2uyvx − v2y − �p + 1

Re
�φ, (2)

where φ = ∇ · V. Here subscripts denote partial differentiation. Substituting the divergence
free condition φ = 0 leads to the pressure Poisson equation (PPE),

�p = −u2x − 2uyvx − v2y . (3)

Note that (3) by itself is not enough to replace the divergence free condition. This is seen by
substituting (3) in (2) and not imposing φ = 0. We get

φt + V · ∇φ = 1

Re
�φ, (4)

i.e. the divergence satisfies an advection-diffusion equation. For φ to be non-growing bound-
ary conditions for the divergence are required, here we use homogeneous Dirichlet boundary
conditions. See [19] for a derivation of maximally dissipative boundary conditions to this
problem. Additionally, for the divergence to be zero for all time the initial divergence has to
be zero. Finally, we arrive at the velocity-pressure formulation of (1):

Vt + (V · ∇)V = −∇ p + 1

Re
�V, x, y ∈ �, t ≥ 0,

�p = −u2x − 2uyvx − v2y, x, y ∈ �, t ≥ 0,

∇ · V = 0, x, y ∈ ∂�, t ≥ 0,

B(V, p) = G, x, y ∈ ∂�, t ≥ 0,

(V, p) = H, x, y ∈ �, t = 0,

∇ · V = 0, x, y ∈ �, t = 0,

(5)

Note that the divergence free condition in (1) has been replacedby thePPEand ahomogeneous
Dirichlet boundary condition for the divergence.
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2.1 Energy of theMomentum Equation

Let (u, v) = ∫
�
uv denote the L2-inner product of two real-valued functions u, v and ||u||2 =

(u, u) the corresponding norm. Taking the inner product of V and the momentum Eq. in (5)
(the energy method) leads to

∂E

∂t
+ 2

Re
(||∇u||2 + ||∇v||2) = BT +

∫

�

(2p + u2 + v2)∇ · V dx, (6)

where E is an energy defined by E = ||u||2 + ||v||2 and the boundary terms are given by

BT = −
∫

∂�

(2p + u2 + v2)(un(x) + vn(y)) − 2

Re
(u

∂u

∂n
+ v

∂v

∂n
) dS, (7)

where n = (n(x), n(y)) is the normal vector to the boundary. To arrive at (6) the following
identities are used:

uux = 1

2
(u2)x , vuy = 1

2
(vuy + (uv)y − vyu),

uvx = 1

2
(uvx + (uv)x − uxv), vvy = 1

2
(v2)y .

(8)

From (6) it is clear that the energy is decreasing if the boundary terms are taken care by suitable
(i.e. the correct number of) boundary conditions such that BT ≤ 0 (for homogeneous data)
and the divergence free condition ∇ · V = 0 is fulfilled.

2.2 Characteristic Boundary Conditions

In this paper we use characteristic boundary conditions (CBC) as non-reflecting outflow
boundary conditions and as interface conditions for the backwards facing step problem in
Sect. 4.3. They are derived for the incompressible Navier-Stokes equations in [19], look there
for more details.

Boundary characteristic variables to the incompressible Navier-Stokes equations are given
by

C (1) = −λ1Vt + 1

Re

∂Vt
∂n

,

C (2) = −λ2Vt + 1

Re

∂Vt
∂n

,

C (3) = 1

Re

∂Vn
∂n

+ p,

C (4) = −λ4Vn + 1

Re

∂Vn
∂n

− p,

C (5) = −λ5Vn + 1

Re

∂Vn
∂n

− p,

(9)

where

λ1,2 = Vn ± √
V 2
n + 4

2
, λ3 = 0, and λ4,5 = Vn ± √

V 2
n + 8

2
, (10)
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and Vn = unx + vny denotes the normal velocity and Vt = −uny + vnx the tangential
velocity. Since λ2,5 < 0 the CBC are

C (2) = −λ2Vt + 1

Re

∂Vt
∂n

= g2, C (5) = −λ5Vn + 1

Re

∂Vn
∂n

− p = g5, (11)

where g2 and g5 are boundary data. With these boundary conditions the energy Eq. (6)
becomes

∂E

∂t
+ 2

Re
(||∇u||2 + ||∇v||2) + c2∂� ≤ g2∂� +

∫

�

(2p + u2 + v2)∇ · V dx, (12)

where

c2∂� =
∫

∂�

∑

i=1,3,4

|λi |C2
i dS, g2∂� =

∫

∂�

∑

i=2,5

|λi |g2i dS. (13)

With g2,5 = 0 it is clear that these boundary conditions leads to additional energy dissipation.

2.3 Dirichlet Boundary Conditions

If we use Dirichlet boundary conditions for no-slip walls and inflow boundaries, then an
energy estimate can easily be obtained if the divergence free condition is fulfilled. Assuming
zero data or a wall (V = G = 0) the boundary terms (7) are zero and the energy Eq. (6)
becomes

∂E

∂t
+ 2

Re
(||∇u||2 + ||∇v||2) =

∫

�

(2p + u2 + v2)∇ · V dx . (14)

3 Discrete Analysis

3.1 Definitions

The spatial discretization is done using high order finite difference SBP operators. Here we
include a short description of the operators required for this problem. For more details on
SBP finite differences, see [8, 9, 20, 21].

The two-dimensional domain is discretized using m points in each dimension (the exten-
sion to rectangular domains is straightforward):

x = [x1, x2, . . . , xm]T , y = [y1, y2, . . . , ym]T , (15)

where x and y are vectors containing the grid points. For an equidistant grid we have

xi = xl + (i − 1)hx , i = 1, 2, . . . ,m, hx = xr − xl
m − 1

,

yi = yl + ( j − 1)hy, j = 1, 2, . . . ,m, hy = yr − yl
m − 1

,

(16)

where hx,y are the grid sizes and xl,r , yl,r are the domain limits. Let v denote a semi-

discrete solution vector so that vT = [v(1), v(2), . . . , v(m)], where v(i) = [v(i)
1 , v

(i)
2 , . . . , v

(i)
m ]

contains the solution points at xi along the y-axis, see Fig. 1. Here we have three such
solution vectors: u, v and p corresponding to the discrete values of x-velocity, y-velocity
and pressure respectively. Note that u, v and p previously denoted the space-continuous
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Fig. 1 Computational domain showing the orientation of the solution vectors

solutions, to avoid cluttered notation we use the same symbols for the semi-discrete solution
vectors in the coming sections.

The incompressible Navier-Stokes equations require first and second derivative SBP oper-
ators, the following definitions are central:

Definition 1 A difference operator D1 = H−1Q approximating ∂/∂x , using a pth-order
accurate narrow-stencil, is said to be a pth-order accurate narrow-stencil diagonal-norm
first derivative SBP operator if H is diagonal and positive definite and Q + QT = B =
diag(−1, 0, . . . , 0, 1).

Definition 2 A difference operator D2 = H−1(−M + BS) approximating ∂2/∂x2, using a
pth-order accurate narrow-stencil, is said to be a pth-order accurate narrow-stencil diagonal-
norm second derivative SBP operator if H is diagonal and positive definite, M is symmetric
and positive semi-definite, S approximates the first derivative operator at the boundaries and
B = diag(−1, 0, . . . , 0, 1).

The matrix B can be expressed in terms of the frequently used vectors

e1 = [1, 0, . . . , 0]T and em = [0, . . . , 0, 1]T , (17)

as B = −e1eT1 + emeTm . Additionally, the matrix S is often written in terms of one sided
first-derivative operators d1 and dm , approximating the first derivative at the left and right
boundary respectively, as BS = −e1d1 + emdm . The extension of the one-dimensional SBP
operators to two dimensions is done using the following relationships:

Dx = (D1 ⊗ Im), Dy = (Im ⊗ D1),

D2x = (D2 ⊗ Im), D2y = (Im ⊗ D2)

Hx = (H ⊗ Im), Hy = (Im ⊗ H),

ew = (e1 ⊗ Im), ee = (em ⊗ Im),

es = (Im ⊗ e1), en = (Im ⊗ em),

dw = (d1 ⊗ Im), de = (dm ⊗ Im),

ds = (Im ⊗ d1), dn = (Im ⊗ dm),

(18)
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where ⊗ denotes the Kronecker product and Im is the m × m identity matrix. The discrete
Laplace operator is given by

DL = D2x + D2y . (19)

We also define the following discrete inner products and corresponding norms:

(u, v)H = uT Hv, ||u||2H = (u, u)H , u, v ∈ R
m,

(u, v)H̄ = uT H̄v, ||u||2
H̄

= (u, u)H̄ , u, v ∈ R
m2

,

(u, v) ¯̄H = uT ¯̄Hv, ||u||2¯̄H = (u, u) ¯̄H , u, v ∈ R
2m2

,

(20)

where H̄ = Hx Hy = (H ⊗ H) and ¯̄H =
[
H̄ 0
0 H̄

]

. In this paper we consider two types of

narrow-stencil diagonal-norm SBP operators: traditional and optimal. The main difference
is in the distribution of grid points. The traditional operators are designed to act on standard
equidistant Cartesian grids. And the optimal operators on non-equidistant grids where the
distribution of grid points near the boundaries are chosen to maximize the accuracy of the
operators. See [12, 18] for more details. Note that we do not map the PDE in the usual sense,
we simply discretize it on different grids and use operators designed for those grids. In the
present study we use 6th and 8th order accurate operators of both types.

3.2 Compatible Second Derivative Operators

The derivation of the discrete PPE (see Sect. 3.5) necessitates that the discrete Laplace
operators in the momentum equation are given by the discrete divergence of the discrete
gradient operator, i.e.

D(w)
L = [

Dx Dy
]
[
Dx

Dy

]

= Dx Dx + DyDy . (21)

The superscript in (21) indicates that this is a wide operator (wide internal stencil) con-
structed from the wide second derivative operator D(w)

2 = D1D1. However, since central
first derivative operators do not resolve the highest frequency mode (the π-mode) that can
exist on the grid, the induced second derivative operator D(w)

2 will not either. This can lead to

odd-even decoupled oscillations in the solution [22]. To rectify this we combine D(w)
2 with

artificial dissipation to obtain narrow-stencil second derivative operators that are compatible.
The following definition, first introduced in [22], is central:

Definition 3 Let D1 and D(n)
2 be pth-order accurate narrow-stencil diagonal-norm first- and

second-derivative SBP operators. If

D(n)
2 = H−1(−DT

1 HD1 − R(p) + BD1), (22)

and the remainder R(p) is positive semi-definite, D1 and D(n)
2 are called compatible.

The narrow discrete Laplace operator D(n)
L , constructed according to (19) using D(n)

2 , is
given by

D(n)
L = D(w)

L + AD(p), (23)
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where

AD(p) = −(H−1R(p) ⊗ Im) − (Im ⊗ H−1R(p)). (24)

The remainders R(p) for p = 6, 8 were first derived for constant coefficient traditional
operators in [22]. To find them for the optimal operators we take inspiration from [23], where
narrow-stencil variable coefficient second-derivative SBP operators were derived, and make
the ansatz

R(6) = h7

80
(D(6)

4 )T D(6)
4 + h9

600
(D(6)

5 )T D(6)
5 + h11

3600
(D(6)

6 )T D(6)
6 ,

R(8) = h9

350
(D(8)

5 )T D(8)
5 + h11

2520
(D(8)

6 )T D(8)
6

+ h13

14700
(D(8)

7 )T D(8)
7 + h15

78400
(D(8)

8 )T D(8)
8 .

(25)

The internal stencils in D(p)
i are narrow-stencil approximations of the ith derivative using

the same non-equidistant grid point distribution as D1. Note that R(p) is symmetric and pos-
itive semi-definite by construction and that the term −H−1R(p) in (22) constitutes artificial
dissipation (since it is an even derivative approximation in the interior). To achieve non-stiff
second derivative SBP operators, we zero out the first few rows in D(p)

i . For more details
see [22, 23]. See also [24], where a similar technique is used to construct general artificial
dissipation operators for SBP operators.

The optimal SBP operators, including the new second-derivative operators, are available
online at https://github.com/guer7/sbp.

Remark The compatible second derivative SBP operators can be made more or less nar-
row by including or excluding terms in (25), each term corresponds to canceling out
one additional value on each side of the inner stencil. The choices in (25) are those that
yield second-derivative operators with minimal stencil width, referred to as narrow-stencil
second-derivative operators. Numerical experiments have shown that excluding the terms
corresponding to the lowest order derivatives in (25) has some favorable properties. Com-
pared to the minimally narrow scheme, this choice was found to be slightly more accurate
and allow for slightly larger time steps. Presently, the reason for this is not fully understood.
It may be related to the accuracy of the boundary closures, but a thorough investigation is out
of scope of the current work. The numerical results presented in Sect. 4 utilize this slightly
wider operator, since it leads to a more efficient scheme.

3.3 Semi-discrete Momentum Equation

Let

w =
[
u
v

]

, (26)

define the semi-discrete velocity field. Ignoring boundary conditions for now, a consistent
semi-discrete approximation of the momentum equation is given by

wt = D(u, v, p), (27)
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where the right-hand-side is given by

D(u, v, p) =
[
−D(s)

x u − D(s)
y u − Dx p + 1

ReD
(n)
L u

−D(s)
x v − D(s)

y v − Dy p + 1
ReD

(n)
L v

]

. (28)

Here

D(s)
x = 1

2
(ūDx + Dx ū − ūx ) and D(s)

y = 1

2
(v̄Dy + Dy v̄ − v̄y), (29)

are the skew-symmetric split advection operators (see (8)) and ū, v̄, ūx and v̄y denote diagonal
matrices with the elements of u, v, Dxu and Dyv respectively on the diagonal.

3.4 Discrete Energy Estimate

To make the stability analysis more readable, we only present boundary terms correspond-
ing to the western and eastern boundaries. The southern and northern boundaries are done
analogously. Taking the inner product of w and (27) and using Definitions 1 and 2 gives

∂E

∂t
+ DI = BT + RT , (30)

where

E = ||u||2H + ||v||2H , (31)

is the discrete energy,

DI = 2

Re
(||Dxu||2H + ||Dyu||2H + ||Dxv||2H + ||Dyv||2H

+ uT (R(p) ⊗ H + H ⊗ R(p))u + vT (R(p) ⊗ H + H ⊗ R(p))v)) ≥ 0,
(32)

the dissipation (the second row in (32) is due to the artificial dissipation AD(p)),

BT = (uw, ūwuw + 2pw − 2

Re
dwu)H + (vw, ūwvw − 2

Re
dwv)H

− (ue, ūeue + 2pe − 2

Re
deu)H − (ve, ūeve − 2

Re
dev)H ,

(33)

the boundary terms where ūw,e denote diagonal matrices with the elements of uw,e on the
diagonal and

RT = (u, (ūx + v̄y)u)H̄ + (v, (ūx + v̄y)v)H̄ + 2(Dxu + Dyv, p)H̄ , (34)

the remainder terms proportional to the discrete divergence.
The energy Eq. (30) is the discrete equivalent to the continuous Eq. (6). To obtain a

discrete energy estimate we need to fulfill two things: (i) impose the correct number of
boundary conditions such that BT ≤ 0 (with zero boundary data); and (ii) ensure that the
discrete divergence converges towards zero as the grid is refined, so that RT = 0 as h → 0.

3.5 Semi-discrete Pressure Poisson Equation

Regarding the PPE one has two options: (i) derive the continuous PPE (3) first and then
discretize; or (ii) discretize the momentum equation first and then derive a discrete PPE.
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To ensure that the semi-discrete momentum equation and PPE are compatible, we take the
second approach.

As in the continuous analysis, the first step in deriving a semi-discrete PPE is to multiply
(27) by

[
Dx Dy

]
from the left (take the discrete divergence of the semi-discrete momentum

equation). We get

φt = −D(w)
L p + F + 1

Re
D(w)

L φ, (35)

where φ = Dxu + Dyv denotes the discrete divergence and

F = Dx (−D(s)
x − D(s)

y + 1

Re
AD(p))u + Dy(−D(s)

x − D(s)
y + 1

Re
AD(p))v. (36)

The following lemma is one of the main results of this paper:

Lemma 3.1 The norm of the discrete divergence φ is non-increasing if the semi-discrete
momentum Eq. (27) holds, the discrete divergence satisfies

(Dxu + Dyv)w,e,s,n = 0, (37)

and the pressure satisfies the discrete PPE

D(w)
L p = F . (38)

Proof Taking the inner product of φ and (35) and using Definitions 1 and 2 lead to

d

dt
||φ||2H + 2

Re
(||Dxφ||2H + ||Dyφ||2H ) = BT + 2(φ,−D(w)

L p + F)H̄ , (39)

where

BT = 2

Re
((φw, dwφ)H − (φe, deφ)H + (φs, dsφ)H − (φn, dnφ)H ). (40)

If φw,e,s,n = 0 and D(w)
L p = F the right-hand-side of (39) is zero and

d

dt
||φ||2H ≤ 0. (41)

�	
Lemma 3.1 shows that the H -norm of the discrete divergence will decrease over time if the
boundary condition (37) holds. For the discrete divergence to be zero at all times, we also
require that the initial condition satisfies

Dxu + Dyv = 0, t = 0. (42)

Remark The derivation of the discrete PPE leads to a wide Laplace operator in (38). Onemay
consider using the narrow operator instead since it includes dissipation that does not allow
for π-mode oscillations. However, numerical experiments have shown that this has no clear
benefits in practice. Compared to the narrow options, the scheme with the wide operators is
slightly more accurate and allows for slightly larger time steps. As for the Laplace operator
in the momentum equation, the differences are minor and an extensive study of the reasons
for this is beyond the scope of the current work. But we point out that the derivation of
the discrete PPE presented in Sect. 3.5 directly leads to a wide Laplace operator. Adding
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the dissipative term to construct the narrow operator makes the discrete PPE in one sense
inconsistent with the discrete momentum equation. Which could be a reason for the small
decrease in accuracy.

3.6 Semi-Discrete Problem

We are now ready to formulate the semi-discrete problem:

wt = D(u, v, p), t > 0,

D(w)
L p = F, t > 0,

(Dxu + Dyv)w,e,s,n = 0, t > 0,

B̂(u, v, p) = Ĝ, t > 0,

(u, v, p) = Ĥ, t = 0,

Dxu + Dyv = 0, t = 0.

(43)

Here D(u, v, p) is given by (28), F is given by (36) and B̂, Ĝ and Ĥ define the discretized
boundary and initial conditions. In this paper we consider two methods to solve (43) with
Dirichlet boundary conditions: projection and SAT. Both methods augment the momentum
equation and PPE to impose the boundary conditions, resulting in provably stable systems of
ODEs. In Sects. 3.7 and 3.8 the two methods are presented separately, including procedures
for deriving and imposing consistent pressure boundary conditions.

Remark We use CBC as outflow and interface conditions for the numerical experiments on
the backwards facing step problem (presented in Sect. 4.3). An SBP-SAT discretization of
these conditions including energy estimates is presented in [19].

3.7 ProjectionMethod

In this section SBP-P discretizations of the momentum and pressure Poisson equations are
presented. In Sect. 3.7.3 themethod is summarized step-by-step forwall boundary conditions.

3.7.1 Momentum Equation

The Dirichlet velocity and divergence boundary conditions can be represented discretely as

Lw = g, (44)

where

L =
⎡

⎣
Lw

Le

Ldiv

⎤

⎦ and g =
⎡

⎣
gw

ge
0

⎤

⎦ , (45)

with

Lw,e =
[
ew,e 0
0 ew,e

]

and Ldiv =
[
dw D1ew

de D1ee

]

. (46)

Here Lw,ew = gw,e corresponds to the Dirichlet boundary conditions and Ldivw = 0 to the
divergence boundary condition on the western and eastern boundaries. A consistent semi-
discrete approximation of the momentum equation with (44) imposed using the projection
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method is given by

wt = PD(û, v̂, p) + (I − P)g̃t , (47)

where

[
û
v̂

]

= ŵ = Pw + (I − P)g̃. Here

P = I − ¯̄H−1LT (L ¯̄H−1LT )−1L, (48)

is a projection operator, g̃ satisfies Lg̃ = g and I is the identity matrix. Note that P is
self-adjoint with respect to the inner product (·, ·) ¯̄H , i.e.

(Pu, v) ¯̄H = (u, Pv) ¯̄H , u, v ∈ R
2m2

, (49)

and that g̃ never has to be computed explicitly since it only appears as Lg̃ in the equations
(the same is true for g̃t ). See [13] for more details on the projection method.

The following lemma is one of the main results in this paper:

Lemma 3.2 The system (47) is a stable approximation of themomentumequationwithDirich-
let boundary conditions if the projection operator P is given by (48).

Proof Taking the inner product of w and (47) with zero data, using Definitions 1 and 2 and
using (49) leads to boundary terms

BT = (ûw, ūwûw + 2pw − 2

Re
dw û)H + (v̂w, ūwv̂w − 2

Re
dwv̂)H

− (ûe, ūeûe + 2pe − 2

Re
deû)H − (v̂e, ūev̂e − 2

Re
dev̂)H ,

(50)

where ūw,e denote diagonal matrices with the elements of ûw,e on the diagonal. Since Lŵ =
LPw = 0, and thus ûw,e = v̂w,e = 0, we get BT = 0. �	

Note that with the projection method both the velocity and divergence boundary condi-
tions are imposed simultaneously, thus solving (47) with a pressure satisfying DL p = F is
sufficient to ensure that the divergence is zero.

Remark The projection method can be used to project zero divergence everywhere (not only
on the boundaries), this may be useful as pre- or post-processing step. Then the divergence
boundary operator becomes

Ldiv = [
Dx Dy

]
. (51)

3.7.2 Pressure Equation

If no pressure boundary data is available, consistent pressure values have to be derived
numerically. Here we extract the gradient of the pressure on the boundaries from the normal
component of the momentum equation. For example, on the western boundary we have

g(px )
w = ew(−D(s)

x + 1

Re
DLu − ut ). (52)

The validity of these boundary conditions has been a topic of discussion for a long time,
see for example [25–29]. In our view no consistency requirements are violated as long as
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the velocities in (52) satisfy the divergence boundary conditions. The Neumann pressure
boundary conditions are given by Lp = gp , where

L =

⎡

⎢
⎢
⎣

dw

de
ds
dn

⎤

⎥
⎥
⎦ and gp =

⎡

⎢
⎢
⎢
⎣

g(px )
w

g(px )
e

g
(py)
s

g
(py)
n

⎤

⎥
⎥
⎥
⎦

. (53)

The PPE with Neumann boundary conditions imposed using the projection method is given
by

H̄ PD(w)
L (Pp + (I − P)g̃p) − σ H̄(I − P)(p − g̃p) = H̄ PF, (54)

where σ is a positive scalar, Lg̃p = gp and

P = I − H̄−1L
(L H̄−1L
)−1L. (55)

The term σ H̄(I − P)(p − g̃p) in (54) is required to remove zero eigenvalues due to the
projection. A similar term is used in [13] to rectify inconsistent initial and boundary data
for PDEs. The parameter σ should be chosen proportional to (hxhy)

−1 so that the term
σ H̄(I − P)(p− g̃p) does not go to zero as we grid refine. From numerical experiments (not
presented here) we found that

σ = 1

hxhy
, (56)

is a good choice in terms of accuracy and robustness.
By rearranging (54) we get the system

AN p = bN , (57)

where

AN = H̄ PD(w)
L P − σ H̄(I − P),

bN = H̄ PF − H̄ PDL(I − P)g̃p − σ H̄(I − P)g̃p.
(58)

Note that AN is singular (even with σ �= 0). Since any constant vector p is a solution to
AN p = 0 (since D(w)

L p = Lp = 0), any solution to (57) is unique up to an arbitrary constant.
To avoid this singularity we impose the additional constraint that the average pressure across
the whole domain is zero. A simple numerical formulation of the resulting system is

[
AN 1
1T 0

] [
p
c

]

=
[
bN
0

]

, (59)

where 1 is a vector with all components equal to one [30].

3.7.3 Summary

We summarize the projection approach by describing the procedure for computing the right-
hand side of (47) with wall boundary conditions:

1. Project the velocities so that (37) holds.
2. Compute the pressure normal derivative using (52).
3. Solve the pressure Eq. (59) using the pressure normal derivative as data.
4. Compute (47).
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3.8 SATMethod

In this section SBP-SAT discretizations of the momentum and pressure Poisson equations are
presented. In Sect. 3.8.3 themethod is summarized step-by-step for wall boundary conditions

3.8.1 Momentum Equation

The ODE system (27) augmented with Dirichlet boundary conditions imposed using SAT is
given by

wt = D(u, v, p) +
[
SAT (u)

SAT (v)

]

, (60)

where

SAT (u) = H−1
x τ̄ (u)

w (uw − g(u)
w ) − H−1

x eTw(pw − g(p)
w )

+ H−1
x τ̄ (u)

e (ue − g(u)
e ) + H−1

x eTe (pe − g(p)
e ),

SAT (v) = H−1
x τ̄ (v)

w (vw − g(v)
w )

+ H−1
x τ̄ (v)

e (ve − g(v)
e ),

(61)

and

τ̄ (u)
w = −eTwσ̄ (u)

w + 1

Re
dTw, τ̄ (u)

e = eTe σ̄ (u)
e − 1

Re
dTe ,

τ̄ (v)
w = −eTwσ̄ (v)

w + 1

Re
dTw, τ̄ (v)

e = eTe σ̄ (v)
e − 1

Re
dTe .

(62)

Here σ̄
(u,v)
w,e ∈ R

m×m are chosen so that an energy estimate is obtained. Note that the pressure
terms in (61) are necessary to obtain an energy estimate due to the pressure terms in (33).
The following lemma is one of the main results of this paper:

Lemma 3.3 The system (60) is a stable approximation of themomentumequationwithDirich-
let boundary conditions if the discrete divergence free condition is fulfilled (so that RT = 0),

σ̄ (u,v)
w = ūw

2
and σ̄ (u,v)

e = ūe
2

. (63)

Proof Taking the inner product of w and (60) with zero data and using Definitions 1 and 2
leads to boundary terms

BT = (uw, (ūw − 2σ̄ (u)
w )uw)H + (vw, (ūw − 2σ̄ (v)

w )vw)H

− (ue, (ūe − 2σ̄ (u)
e )ue)H − (ve, (ūe − 2σ̄ (u)

e )ve)H .
(64)

Choosing

σ̄ (u,v)
w = ūw

2
and σ̄ (u,v)

e = ūe
2

, (65)

yields BT = 0. Thus, if RT = 0, an energy estimate is obtained and (60) is a stable ODE
system. �	

To impose the divergence boundary conditions with SAT we employ the same technique
as in [19]. With this approach the boundary values of the velocity in the normal direction are
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modified so that the divergence free condition (37) is fulfilled exactly. For example, using
Matlab index notation, on the western boundary we strongly enforce

uw = inv(dw(:,1 : m))(−ewDyv − dw(:,m + 1 : end)u(m + 1 : end)). (66)

3.8.2 Pressure Equation

An issue with the SATmethod for Dirichlet velocity boundary conditions is the pressure data
required in (61). As a consequence (52) can not be used directly as pressure boundary data
since it only provides the normal derivative. Here we use a numerical trick where the current
pressure is used to compute the boundary pressure values so that the normal derivative equals
g(px )
w given by (52). For example, using Matlab notation, on the western boundary we use

g(p)
w = inv(dw(:,1 : m))(g(px )

w − dw(:,m + 1 : end)p(m + 1 : end)). (67)

The PPE with Dirichlet boundary conditions imposed using SAT is given by

D(w)
L p = F + SATD, (68)

where

SATD = −H−1
x dTw(pw − g(p)

w ) + H−1
x dTe (pe − g(p)

e )

− H−1
y dTs (ps − g(p)

s ) + H−1
y dTn (pn − g(p)

n ),
(69)

We get the system

AD p = bD, (70)

where

AD = D(w)
L + H−1

x dTwe
T
w − H−1

x dTe e
T
e + H−1

y dTs e
T
s − H−1

y dTn e
T
n ,

bD = F + H−1
x dTwg(p)

w − H−1
x dTe g

(p)
e + H−1

y dTs g
(p)
s − H−1

y dTn g
(p)
n .

(71)

3.8.3 Summary

We summarize the SAT approach by describing the procedure for computing the right-hand
side of (60) with wall boundary conditions:

1. Modify the boundary values of the normal velocity using (66) so that (37) holds.
2. Compute the normal derivative pressure data using (52).
3. Compute pressure boundary values using (67).
4. Solve the pressure Eq. (70) using the pressure boundary values as data.
5. Compute (60).

4 Numerical Experiments

To verify and compare the projection and SAT methods for Dirichlet boundary conditions
we apply the methods to two problems: (i) The Taylor-Green vortex flow (analytical solu-
tion) and (ii) the lid-driven cavity problem. The first problem focuses on the accuracy and
convergence properties of the methods and SBP operators. The second problem compares
SAT and projection for wall boundary conditions in particular. Additionally, we solve the
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backwards-facing step problem and compare the results to experimental benchmark data.
To integrate the ODE systems (47) and (60) in time we use the classical 4th order explicit

Runge-Kutta method with time step �t ∝ h2
Re , where h is the minimum spatial grid interval.

The pressure systems (59) and (70) are solved using LU-factorization.

4.1 Convergence Study

An analytical solution to the incompressible Navier-Stokes equations in two dimensions is
the Taylor-Green vortex flow:

u(x, y, t) = − cos(πα) sin(πβ)e
−2π2
Re t + u∞ cos(θ),

v(x, y, t) = sin(πα) cos(πβ)e
−2π2
Re t + u∞ sin(θ),

p(x, y, t) = −1

4
(cos(2πα) + cos(2πβ))e

−4π2
Re t ,

α = x − x0 − u∞ cos(θ)t, β = y − y0 − u∞ sin(θ)t,

(72)

where (x0, y0) are the starting coordinates of the vortices, θ is the angle at which they are
moving and u∞ is their speed. We use a square domain x, y ∈ [−1, 1] with total degrees
of freedom N = m2 where m is the number of grid points in each dimension. The problem
parameters in (72) are chosen to Re = 100, u∞ = 1, (x0, y0) = (0, 0) and θ = π

4 . The
initial and boundary data are given by the analytical solution (72) (for this problem we use
exact pressure data). The errors of the approximations are measured in the H -norms given
by (20) of the difference between approximated and analytical solution, denoted ε(w,p), at
t = 1. The convergence rate is estimated as

q(w,p) =
log(

||ε(w,p)
1 || ¯̄H

||ε(w,p)
2 || ¯̄H

)

log
(
( N2
N1

)1/d
) , (73)

where N1 �= N2 are the degrees of freedom of two separate solutions and d is the spatial
dimension, here d = 2.

The theoretical rate of convergence for this problem is min (p, r + 2), where p is the
internal stencil order and r the boundary closure order of the least accurate SBP operator in
the scheme [31]. With a diagonal norm the closure order of the first derivative operator is half
that of the internal order, r = p/2. Furthermore, the wide-stencil second derivative operator
D(w)
2 yields a scheme with one order of accuracy less at the boundaries, r = p/2−1 [9]. The

decreased boundary order of the second derivative operators is not rectified by the artificial
dissipation discussed in Sect. 3.2, and thus it limits the convergence rates of the full schemes
to min (p, p/2 + 1) for both the traditional and optimal SBP operators. We get for the 6th
and 8th order operators (p = 6, 8) the theoretical convergence rates 4 and 5 respectively.

In Fig. 2 the velocity and pressure errors are plotted versus grid resolution for Dirichlet
boundary conditions imposed using projection and SAT. The results show that projection and
SAT are very similar in terms of accuracy and achieve close to or slightly above the expected
convergence rates. Furthermore, the results demonstrate a significant difference in efficiency
between the traditional and optimal SBP operators. For example, the optimal 8th order SBP
operators yield amore accurate solution with 51×51 grid points than the traditional 8th order
SBP operators with 151×151 grid points. We also emphasize that the gain in accuracy when
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Fig. 2 Error versus grid resolution for theTaylor-Green vortexflowproblem solvedwith traditional and optimal
6th and 8th order SBP operators. Top row: Dirichlet boundary conditions imposed using the projectionmethod.
Bottom row: Dirichlet boundary conditions imposed using SAT. The dashed lines indicate the theoretical
convergence rates 4 and 5 for the 6th and 8th order SBP operators respectively. The labels indicate the
convergence rate of each method and operator, estimated by (73) using the two finest grid resolutions

going from 6th to 8th order operators is much higher with the optimal operators compared
to the traditional, this is particularly clear for the pressure.

4.2 Lid-Driven Cavity

The lid-driven cavity is one of the most common benchmark problems for viscous incom-
pressible flows. The problem setup consists of a two-dimensional unit square domain with
walls at each boundary where the top wall is moving at a constant tangential velocity, see
Fig. 3. The velocity field and pressure are initiated from zero and simulated until the velocity
field has approximately converged towards a steady-state solution. We define the stopping
criteria as

||wn − wn−1||∞
||wn ||∞ ≤ �tε, (74)
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Fig. 3 Boundary conditions for
the lid-driven cavity problem.
The primary vortex in the center
of the cavity and the secondary
vortices in the bottom corners are
indicated

Fig. 4 Centerline velocities of the lid-driven cavity problem with Dirichlet boundary conditions using projec-
tion and SAT with Re = 100 and m = 151. The results are compared to benchmark data provided in [32].
Left: x-component of the velocity along the vertical line through the geometrical center of the cavity. Right:
y-component of the velocity along the horizontal line through the geometrical center of the cavity

where wn is the velocity field at time step n and ε = 10−8. To avoid temporal discontinuities
the non-zero boundary condition at the top wall is smoothly brought into the domain using a
hyperbolic tangent function of time. All results presented here are obtained using the optimal
8th order SBP operators with m grid points in each dimension.

In Fig. 5 the streamlines of steady state solutions to the lid-driven cavity problem with
Dirichlet boundary conditions imposed using projection (left column) andSAT (right column)
are plotted. With the projection method the secondary corner vortices are visible already
at m = 31, whereas with the SAT method the corner vortices require significantly more
degrees of freedom to develop, even with m = 151 the vortex in the bottom left corner is not
clear. This suggests that strong enforcement of physical boundary conditions (projection) is
preferable over weak enforcement methods (SAT) when effects close to the boundaries are of
primary interest. We hypothesize that this is a consequence of these effects requiring a clear
distinction between boundary and inner domain to develop. Therefore, since the accuracy of
the boundary conditions with SAT scales with the spatial resolution, one has to grid refine
until this distinction is sufficiently large. Grid refinement with projection this is not required
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Fig. 5 Steady-state solutions to the lid-driven cavity problem with Re = 100 and m = 31, 91, 151, where
m × m is the number of degrees of freedom. Left column: using projection to impose Dirichlet boundary
conditions. Right column: using SAT to impose Dirichlet boundary conditions

since the boundary conditions are fulfilled exactly, independently of grid resolution, and thus
the distinction is always there.

To verify the accuracy of the SAT and projectionmethods for the lid-driven cavity problem
we compare the results with m = 151 to benchmark solutions provided in [32]. In Fig. 4
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Fig. 6 Domain for the backward-facing step problem. The in- and outflow velocity profiles and recirculation
zones are indicated

Fig. 7 Boundary and interface conditions for the backwards facing step problem with the domain decom-
posed into five blocks. Dirichlet boundary conditions (DBC) on the inflow and walls, characteristic boundary
conditions (CBC) on the outflow and characteristic interface conditions (CIC) on the interfaces

the velocities in the x- and y-directions along the vertical and horizontal centerlines of the
cavity are plotted, indicating good agreement with the benchmark data for both methods.

Remark We do not stretch the grid by mapping the PDE, which is usually done with finite
difference methods to better resolve the boundary layer. The non-equidistant grid point dis-
tribution inherent to the optimal operators is in this case enough to capture the boundary
effects.

4.3 Backward-Facing Step

The third problem we consider is the backward-facing step problem. The domain consists of
an inflow pipe connected to an outflow pipe with larger radius, forming a step where the flow
is disrupted and interesting effects occur, see Fig. 6. Here we use Hi = 0.5 and Ho = 0.97
which determines the expansion ratio of the step to Ho

Hi
= 1.94. To solve this problem with

the SBP finite difference operators used here the computational domain has to be split into at
least three rectangular blocks (one for the inflow and at least two for the outflow). Here we
couple the blocks together by weakly imposing (using SAT) that the ingoing characteristic
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Fig. 8 Steady-state solution to the backward-facing step problem for Re = 600 with expansion ratio 1.94.
The number of unknowns are 29106. Top: streamlines of velocity field. Bottom: profiles of the x-component
of the velocity, the dashed lines indicate zero velocity

variables are equal on each side of the interfaces. This procedure has proven to be accurate
and stable in the past, see for example [17].

Since we solve a local PPE in each block we benefit greatly in terms of efficiency by
utilizing many smaller blocks as compared to a few larger ones. Therefore we set a fixed
block size in the outflow channel of width 4 and height 0.5 or 0.47 (for top and bottom block
respectively) with 168 × 21 grid points in each direction. The length of the outflow channel
is determined by the number of such blocks. The inflow consists of one block of width 1 and
height 0.5 with 42× 21 grid points in each direction. As boundary conditions for the inflow
we specify the normal velocity to be the theoretical solution of fully developed laminar flow
in an infinitely long pipe, given by

u(r) = Vmax (1 − r2

R2 ), −R ≤ r ≤ R, (75)

where Vmax is the velocity in the center of the pipe and R is its radius. Homogeneous
characteristic boundary conditions imposed using SAT are used at the outflow. The Dirichlet
boundary conditions (inflow and walls) are imposed using the projection method. In Fig. 7
the boundary and interface conditions are presented for a five-block domain. As for the lid-
driven cavity problem we use the optimal 8th order SBP operators and a stopping criteria
given by (74).

In Fig. 8 the velocity field of the steady-state solution to the backwards-facing step problem
with Re = 600 is shown. The primary and secondary vortices are clearly visible in the
streamlines plot. Additionally, one can see the tendencies towards a parabolic flow in the
outflow channel.

We verify the accuracy by comparing the reattachment and detachment lengths, denoted
x1,2,3 in Fig. 6, of our results to experimental data provided in [33]. For these results
the outflow pipe is chosen sufficiently long so that the considered lengths are unaf-
fected. In Fig. 9 the comparison is presented for Reynold’s numbers up to Re = 1000
with good agreement up until the secondary vortex is developed at around Re = 400.
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Fig. 9 Reattachment and
detachment lengths for varying
Reynold’s numbers. Dotted lines:
present study. Circles:
experimental data from [33]

As pointed out in [33], above approximately this Reynold’s number the flow becomes
three-dimensional and thus the modeling error of the two-dimensional equations becomes
dominant.

5 Conclusions

A high-order SBP finite difference method is developed for the velocity-pressure formula-
tion of the incompressible Navier-Stokes equations. Two boundary procedures for imposing
Dirichlet boundary conditions are presented based on the projection and SAT methods. The
resulting schemes are proven to be stable using the energymethod. Furthermore, new optimal
second-derivative SBP operators are derived and shown to be highly efficient compared to
traditional SBP operators.

The methods are evaluated on three benchmark problems: the Taylor-Green vortex flow,
the lid-driven cavity and the backwards-facing step. The accuracy and convergence properties
of the schemes are verified for the traditional and novel optimal SBP operators. For the lid-
driven cavity and backwards-facing step problems good agreement with benchmark data is
achieved. Additionally, imposing wall boundary conditions strongly (projection) rather than
weakly (SAT) is shown to be more efficient in the sense that corner vortices for the lid-driven
cavity problem requires less degrees of freedom to appear.

Interesting future extensions include expanding the methods to curvilinear grids in three
spatial dimensions and proving multiblock stability using the projection method.
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