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Abstract
Surface parameterization is a fundamental issue widely studied and applied in various image
and geometry processing tasks, such as surface registration, remeshing, and texture mapping.
In this paper, we propose an efficient constructive algorithm for the computation of disk con-
formal parameterizations of simply connected open surfaces by combining the spherical
harmonic mapping of the doubly covered surface and the geodesic algorithm. In addition,
we prove the number of unknowns involved in the computation of the spherical harmonic
mapping of the doubly covered surface can be reduced by roughly half. Numerical experi-
ments indicate that the efficiency of the proposed algorithm is improved while the accuracy
remains similar or even slightly better compared to the other state-of-the-art algorithms.

Keywords Triangular mesh · Conformal parameterization · Double covering · Geodesic
algorithm · Laplace–Beltrami operator

Mathematics Subject Classification 15B48 · 52C26 · 65F05 · 68U05 · 65D18

1 Introduction

A parameterization of a surface is a diffeomorphism that maps the surface onto a planar
domain. A canonical coordinate system on the surface can be induced by parameterization.
Surface parameterizations have been widely studied and applied in various tasks of computer
graphics, such as surface registration, remeshing, morphing, alignment, and texture mapping.
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An ideal parameterization usually preserves as much as possible of the geometric infor-
mation such as length, angle, and area. A length-preserving map is also called an isometry.
Classical parameterization methods that minimize the length distortion include the as-rigid-
as-possible surface parameterization [33, 47], the most isometric parametrization [11, 23],
and the isometric distortion minimization [37]. In addition, an area-preserving map is also
called an authalic map or equiareal map. Classical computational methods for equiareal
parameterizations include the stretch-minimizing method [39, 49], the Lie advection method
[58], the discrete optimal mass transportation [12, 16, 45, 46, 57], the density-equalizing
mapping [9], and the stretch energy minimization [50, 52, 53, 55].

In contrast, an angle-preserving map is called a conformal map. Classical computational
methods for conformal parameterizations include the circle packing method [27, 44], the
linear Laplace–Beltrami equation [6, 22], the angle-based flattening method [41, 43], the
least squares conformalmap [32], the holomorphic one-formmethod [18, 19, 29], the spectral
conformal parameterization [26, 35], the discrete Ricci flow [28, 56], and the boundary first
flattening [40]. In particular, for a simply connected openRiemann surface, the uniformization
theorem guarantees that the shape of the domain can be a unit disk. The computation of the
disk conformal mapping is a fundamental issue that has been widely studied. Several efficient
algorithms have been developed in recent years, including the heat diffusion [17, 25], the fast
disk conformal parameterization (FDCP) [10], the linear disk conformal parameterization
(LDCP) [8], the conformal energyminimization (CEM) [30, 54], and the parallelizable global
conformal parameterization [7].

Furthermore, some parameterizationmethods aim to reach a trade-off betweenminimizing
the angle and area distortions, such as the polar decomposition method [36] and the balanced
energy minimization [51].

The development of the algorithms and applications of surface parameterization can be
found in several classic survey papers [5, 14, 15, 21, 24, 42].
Contribution In this paper, we develop a constructive disk conformal parameterization
(CDCP) algorithm via the composition of conformal operations, namely, the spherical
harmonic mapping of the doubly covered surface, a conformal mapping by the geodesic
algorithm [34], and a Möbius transformation. The contributions and advantages of the pro-
posed CDCP algorithm are threefold:

(i) The bijectivity of the mapping computed by our CDCP algorithm is guaranteed under
the Delaunay assumption of the triangular mesh.

(ii) We prove that the number of unknowns of the associated linear system for the spherical
harmonic mapping of a doubly covered surface can be reduced by roughly half so that
the computational time cost is significantly reduced.

(iii) According to numerical experiments, both the efficiency and accuracy of our CDCP
algorithm are competitive or even improved compared to the other two state-of-the-art
algorithms.

Notations In this paper, we use the following notations.

• Bold letters, for instance, f, denote (complex) vectors.
• Capital letters, for instance, L , denote matrices.
• Typewriter letters, for instance, I, B, denote ordered sets of indices.
• nI denotes the number of elements of the set I.
• fi denotes the i th entry of the vector f.
• fI denotes the subvector of f composed of fi , for i ∈ I.
• Ai, j denotes the (i, j)th entry of the matrix A.
• AI,J denotes the submatrix of A composed of Ai, j , for i ∈ I and j ∈ J.
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• R denotes the set of real numbers.
• S

n := {x ∈ R
n+1 | ‖x‖ = 1} denotes the n-sphere in R

n+1.
• C := {u + iv | u, v ∈ R} denotes the complex plane.
• H := {u + iv | u ∈ R, v > 0} denotes the upper-half complex plane.
• Re(z) denotes the real part of the complex number z.
• Im(z) denotes the imaginary part of the complex number z.
• [v0, . . . , vm] denotes the m-simplex of the vertices v0, . . . , vm .
• |[v0, . . . , vm]| denotes the volume of the m-simplex [v0, . . . , vm].
• i denotes the imaginary unit

√−1.
• In denotes the identity matrix of size n × n.
• 0 denotes zero vectors and matrices of appropriate sizes.

Outline The remaining part of this paper is organized as follows. In Sect. 2, we briefly review
the most related works to our CDCP algorithm. In Sect. 3, we introduce the discretization of
surfaces and mappings by triangular meshes and piecewise affine mappings, respectively. In
Sect. 4, we describe the proposed CDCP algorithm in detail. In Sect. 5, we prove the number
of unknowns of the linear system involved in the spherical harmonic mapping of a doubly
covered surface can be reduced by roughly half. In Sect. 6, we present numerical results of
the proposed CDCP algorithm and compare them to the other two state-of-the-art algorithms
in terms of efficiency and accuracy. Concluding remarks are given in Sect. 7.

2 PreviousWorks

Now, we review the most related works to the proposed CDCP algorithm, namely, the double
covering technique for computing disk conformal parameterization in Sect. 2.1, and the zipper
algorithm for computing conformal mappings between Jordan regions in Sect. 2.2.

2.1 Double Covering Technique

The double covering technique for computing disk conformal parameterization was first
proposed by Gu and Yau [19]. Given a simply connected open surface M and let M− be
an identical copy of M with the reverse orientation. The double covering of M is a closed
surface ˜M composed ofM andM− with their boundaries ∂M and ∂M− identified. Based
on the fact that harmonic mappings between closed surfaces are conformal, the heat diffusion
can be applied to conformally map the closed surface ˜M to S

2. Finally, the stereographic
projection and the Möbius transformation are used to obtain the desired disk conformal
parameterization, as illustrated in Fig. 1.

The double covering technique nicely avoids the boundary decision problem on the com-
putation of the disk conformal parameterization; however, themain drawback of this approach
is that the number of triangular faces and interior vertices of themesh becomes doubled so that
the computational time cost would significantly increase. To remedy this issue, we applied
the structure of the associated discrete Laplace–Beltrami operator of the doubly covered tri-
angular mesh and reduce roughly half the number of unknowns in the linear system, which
is introduced in Sect. 5. In addition, to ensure the boundary vertices are precisely mapped on
S
1, we apply the geodesic algorithm [34] to do so, which is introduced in Sect. 2.2.
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Fig. 1 An illustration of the algorithm [19] for the computation of the disk conformal mapping using the heat
diffusion with the double covering technique

2.2 Geodesic Algorithm

Suppose z1, . . . , zn ∈ C counterclockwise forms a piecewise affine curve that enclose a
region Ω ⊂ C. The fundamental issue is to find a conformal map that maps Ω to H. In
the 1980s, an elementary algorithm for computing such conformal mappings was proposed
independently by Kühnau and Marshall, but the convergence was not proved yet. Later,
the convergence of the geodesic algorithm, a variant of the zipper algorithm, is proven by
Marshall and Rohde [34]. They use a sequence of conformal mappings to map a specified
region Ω to the upper-half plane H. In particular, each boundary point of Ω is mapped on
the real axis. Now, we introduce in detail the geodesic algorithm [34].

First, we map the interval [z1, z2] onto the imaginary axis by

ϕ1(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if z = ∞,

∞ if z = z1,
√

z−z2
z−z1

otherwise.

(1)

The mapping ϕ1 is composed of (ϕ1)
2 : z �→ z−z2

z−z1
and the square root mapping with the

branch
√−1 = i. The mapping (ϕ1)

2 is a Möbius transformation that maps the interval
[z1, z2] onto the nonpositive real axis, and the square root mapping is holomorphic with
a nonvanishing first derivative. As a result, ϕ1 is conformal. For convenience, we denote
ζ3 = ϕ1(z3).

Remark 1 For z ∈ Ω , we write z− z1 = r1eiθ1 and z− z2 = r2eiθ2 as the polar forms, where
θ1, θ2 ∈ [−π, π]. As a result, ϕ1(z) can be written as

ϕ1(z) =
√

z − z2
z − z1

=
√

r2
r1
ei

θ2−θ1
2 .
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Fig. 2 An illustration of the geodesic algorithm, where ζ j = ϕ j−2(z j ), for j = 3, . . . , n

Since z1, z2 are on the same line, the argument θ1−θ2
2 ∈ [0, π

2 ]. Namely, ϕ1(Ω) is in the first
quadrant, as illustrated in Fig. 2. In particular, Re ζ3 > 0.

On the image of ϕ1, the interval ϕ1([z2, z3]) = [0, ζ3]. Next, we map the interval [0, ζ3]
onto the imaginary axis by

ϕ2(z) =

⎧

⎪

⎨

⎪

⎩

i if z = ϕ1(z2),

0 if z = ϕ1(z3),
√

Mζ3(z)
2 − 1 otherwise,

(2)
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where Mc : C → C is the Möbius transformation with respect to c ∈ C as

Mc(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re(c)
i Im(c) if z = ∞,

∞ if z = −|c|2
i Im(c) ,

Re(c)z
|c|2+i Im(c)z

otherwise.

Remark 2 The intuition of ϕ2 is stated as follows. Note that Mζ3 maps 0, ζ3,
−|ζ3|2
i Im(ζ3)

to 0,

1, ∞, respectively. From a geometrical perspective, a semicircular arc from 0 to −|ζ3|2
i Im(ζ3)

is
mapped to the non-negative real line R≥0 from 0 to ∞, as illustrated in Fig. 2. Then, the
interval Mζ3([0, ζ3]) is mapped to the imaginary axis by z �→ √

z2 − 1.

Next, suppose we have mapped the point z j to 0 and would like to map the interval
[0, ζ j+1] onto the imaginary axis, where

ζ j+1 := Φ j−1(z j+1) := ϕ j−1 ◦ · · · ◦ ϕ1(z j+1).

The conformal map

ϕ j (z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

i if z = Φ j−1(z j ),

0 if z = Φ j−1(z j+1),
√

Mζ j+1(z)
2 − 1 otherwise,

(3)

j = 3, . . . , n − 1, can be applied to do so.
Finally, we define

ϕn(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Φn−1(z1)2 if z = ∞,

∞ if z = Φn−1(z1),
(

Φn−1(z1)z
Φn−1(z1)−z

)2
otherwise.

(4)

Then, the composition mapping

Φn := ϕn ◦ · · · ◦ ϕ1 (5)

is the desired conformal map that maps Ω onto H, where ϕ1, . . . , ϕn are defined in (1),
(2), (3) and (4), respectively. These mappings have been applied to the conformal welding
procedure for the computation of conformal parameterizations [7].

Ultimately, the disk conformal parameterization can be achieved by the Möbius transfor-
mation ψD : H → D defined as

ψD(z) =

⎧

⎪

⎨

⎪

⎩

1 if z = ∞,

∞ if z = Φn(0),
z−Φn(0)
z−Φn(0)

otherwise.
(6)

As a result, ψD ◦ Φn : Ω → D is a conformal mapping that maps Ω onto D and preserves
the origin.

3 Discrete Surfaces, Mappings, and Operators

In this section, we introduce the discretization of surfaces, mappings, and the Laplace–
Beltrami operator in Sects. 3.1, 3.2 and 3.3, respectively.
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3.1 Discrete Surfaces

The discrete surface considered in this paper is the triangular mesh of genus-zero with a
boundary. A triangular mesh M is consisted of a set of n vertices

V(M) =
{

vs ≡ (

v1s , v
2
s , v

3
s

)� ∈ R
3
}n

s=1

with coordinates in R
3, and a set of oriented triangular faces

F(M) = {[

vi , v j , vk
] ⊂ R

3 for some vertices
{

vi , v j , vk
} ⊂ V(M)

}

,

where the bracket
[

vi , v j , vk
]

denotes the convex hull or the 2-simplex of affinely independent
set of points {vi , v j , vk}. In addition, the set of non-oriented edges of M is denoted as

E(M) = {[

vi , v j
] | [vi , v j , vk

] ∈ F(M) for some vk ∈ V(M)
}

.

The union V(M) ∪ E(M) ∪ F(M) forms a homogeneous simplicial 2-complex.

3.2 Discrete Mappings

A discrete mapping f : M → C on M is a piecewise affine map defined as

f (v) =
{

fi if v is the i th vertex vi ∈ V(M),

λi fi + λ j f j + λk fk if v ∈ [vi , v j , vk] ∈ F(M),

with coefficients λi = |[v,v j ,vk ]|
|[vi ,v j ,vk ]| , λ j = |[vi ,v,vk ]||[vi ,v j ,vk ]| and λk = |[vi ,v j ,v]|

|[vi ,v j ,vk ]| being the barycentric
coordinates of v in the triangle [vi , v j , vk]. Here the notation |[v0, . . . , vm]| denotes the
volume of the m-simplex [v0, . . . , vm]. In particular, |[vi , v j , vk]| and |[vi , v j ]| denote the
area and length of the triangle [vi , v j , vk] and interval [vi , v j ], respectively. It is common to
denote the space of piecewise affine maps on M as CPL(M) [17]. A map f ∈ CPL(M)

can be represented as a complex-valued vector

f ≡ (f1, . . . , fn)� = ( f (v1), . . . , f (vn))
� ∈ C

n .

A discrete conformal mapping on a triangular mesh M is a piecewise affine mapping
f : M → D that preserves the angles, that is,

⎧

⎪

⎨

⎪

⎩

∠(u, v, w) = ∠( f (u), f (v), f (w)),

∠(w, u, v) = ∠( f (w), f (u), f (v)),

∠(v,w, u) = ∠( f (v), f (w), f (u)),

for every [u, v, w] ∈ F(M), where

∠(u, v, w) = arccos

( |[u, v]|2 + |[v,w]|2 − |[w, u]|2
2|[u, v]| |[v,w]|

)

.

However, in general, such mapping does not exist because the sum of neighboring angles of
a vertex is not necessarily 2π . Due to this fact, a discrete conformal mapping usually refers
to a piecewise affine mapping that minimizes the conformality distortion in some sense. One
of the most commonly considered conformality distortion is the mean and standard deviation
(SD) of the angular distortions defined as

Dangle( f , τ, v) = |∠(u, v, w) − ∠( f (u), f (v), f (w))|, (7)
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Fig. 3 An illustration for the
cotangent weights

where τ = [u, v, w] ∈ F(M) and v ∈ V(M) ∩ τ . A conformal map has both the mean and
SD of the angular distortions being 0.

3.3 Discrete Laplace–Beltrami Operator

The discrete Laplace–Beltrami operator on CPL(M) is a matrix LM defined as

[LM]i, j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 1
2

(

cot θi, j + cot θ j,i
)

if [vi , v j ] �⊂ ∂M,

− 1
2 cot θi, j if [vi , v j ] ⊂ ∂M,

−∑

k �=i [LM]i,k if i = j,

0 otherwise

(8)

in which θi, j and θ j,i are the two angles opposite to the edge [vi , v j ] connecting vertices vi
and v j on M, as illustrated in Fig. 3.

The formula of LM is derived from the discrete Dirichlet energy

EM(f) = 1

2
f∗LM f, (9)

where f∗ denotes the conjugate transpose of f and LM is the matrix in (8). The discrete
Dirichlet energy (9) is derived by substituting f ∈ CPL(M) into the Dirichlet energy
EM( f ) = ∫

M ‖∇ f ‖2dvM and omitting those singularities of measure zero at vertices
and edges of the triangular mesh M. A critical point of (9) is called a discrete harmonic
mapping that satisfies ∇EM(f) = 0, i.e., LM f = 0. The derivation in detail can be found
in [20,Section 10.1]. Under a given boundary condition fB, the interior mapping is uniquely
determined by the linear system

[LM]I,IfI = −[LM]I,BfB. (10)

Remark 3 In the finite element method, the Laplace–Beltrami operator for triangular mesh
is discretized as �M ≈ M−1LM, where LM is the cotangent Laplacian defined as in
(8), and M is a mass matrix for the area normalization usually being a diagonal matrix
with entries being areas of Voronoi or barycentric cells of vertices [38]. As minimizing the
discrete Dirichlet energy (9) is the main concern, �M is discretized by LM, i.e., M = In .
In particular, for the boundary value problem of the Laplace–Beltrami equation (10), the
solution is independent of the choices of vertex mass.
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4 Numerical Methods

In this section, we introduce our new algorithm for the computation of the disk conformal
mapping. Suppose M is a simply connected open triangular mesh of n vertices with I
and B being the sets of indices of interior and boundary vertices, respectively. Let ˜M be
the doubly covered surface of M, which is a genus-zero closed surface. First, we find the
central triangular face of the meshM by applying the heat diffusion, which is introduced in
Sect. 4.1. Then, we compute a spherical harmonic map˜h : ˜M → C, which is introduced in
Sect. 4.2. Then, the restriction map h :=˜h|M is a conformal map that mapsM onto a region
Ω = h(M) ⊂ C. Finally, we apply the geodesic algorithm [34] to map Ω onto D ⊂ C and
obtain the disk conformal map, which is introduced in Sect. 4.3.

4.1 Central Triangular Face

First, we find the surface center of M by the heat diffusion

∂ f (v, t)

∂t
= �M f (v, t) (11)

with the initial function being

f (v, 0) =
{

1 if v ∈ ∂M,

0 otherwise,

and a suitable terminal time t1. By applying the implicit Euler method, the heat diffusion
(11) is discretized as a sequence of linear systems

(In + δt LM) f(k+1) = f(k), (12)

where δt is an appropriate step size of the time step, f(0) = 1∂M, and

f(k) = ( f (v1, kδt), . . . , f (vn, kδt))
� , for k = 0, 1, . . . ,

t1
δt

.

In particular, by choosing both the terminal time t1 and the time step size δt in (12) to be 104,
the iteration (12) becomes the linear system

(

In + 104LM
)

f = 1∂M, (13)

where the matrix LM is defined in (8) and the right-hand-side vector 1∂M is the indicator
vector defined as

(1∂M)i =
{

1 if vi ∈ ∂M,

0 otherwise.

The central vertex is then defined as

vc = argmin
vi∈V(M)

fi , (14)

and the central triangular face is defined as

τc = argmin
[vi ,v j ,vk ]∈F(M)

(fi + f j + fk). (15)
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Fig. 4 The surface centers of the mesh models Ear, Foot, Chinese Lion and Stanford Bunny computed by (14)
with t1 being 103, 104 and 105, respectively

Remark 4 A suitable terminal time t1 should be sufficiently large so that each entry of f is
far from zero. In addition, t1 should also be far from infinity so that entries of f would be far
from constant. Based on these two facts, the value 104 is a nice option. The result would be
the same or similar if we change the value of t1 into, e.g., 103 or 105, as shown in Fig. 4.
On the other hand, the smaller time step size δt is used, the more linear systems need to be
solved to reach the terminal time. In that case, the sparse Cholesky decomposition of the
symmetric matrix In + δt LM should be first computed so that each linear system of the
form (12) would cost merely two triangular systems, which can be computed efficiently by
forward and backward substitutions.

4.2 Spherical Harmonic Map

The spherical harmonic map can be computed by solving the Laplace–Beltrami equation [6,
22]

�
˜M˜h =

(

∂

∂u
− i

∂

∂v

)

δp, (16)
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where δp is the Dirac delta function with p being the center of M. In practice, we let
P = {i, j, k} be the index set given by the central face τc = [vi , v j , vk] in (15). Under the
piecewise affine approximation, (16) is represented as a linear system

L
˜M˜h = r̃, (17)

where the discrete Laplace–Beltrami operator with respect to ˜M and the right-hand-side
vector are represented as

L
˜M =

⎡

⎣

[LM]I,I [LM]I,B

[LM]B,I 2[LM]B,B [LM]B,I

[LM]I,B [LM]I,I

⎤

⎦ and r̃ =
⎡

⎣

rI
0
0

⎤

⎦ ,

respectively, and r is the vector with only 3 nonzero entries

rP =
⎡

⎢

⎣

−1
‖v j−vi‖2

1
‖v j−vi‖2

0

⎤

⎥

⎦
+ i

⎡

⎢

⎣

1−α
‖vk−(vi+α(v j−vi ))‖2

α
‖vk−(vi+α(v j−vi ))‖2−1
‖vk−(vi+α(v j−vi ))‖2

⎤

⎥

⎦
, α = (vk − vi )

�(v j − vi )

‖v j − vi‖22
.

Since harmonic maps between genus-zero closed surfaces are conformal [48], the restric-

tion h = (˜h
�
I ,˜h

�
B )� is a discrete conformal mapping that maps M to Ω = h(M) ⊂ C.

Remark 5 Under the Delaunay assumption of the triangular mesh, the bijectivity of the map-
ping computed by (17) is guaranteed by applying [13,Theorem 6.7], because the 3-point
boundary condition would form a triangle—a convex shape.

Remark 6 The angular distortion of the map˜h would be relatively large near the constrained
points˜hP. Due to this observation, we choose the triangular face at the center of the surface
M as the index set P so that the angular distortion would be relatively small at˜hB. In our
approach, the heat diffusion (11) with a sufficient large terminal time t1 is applied to find such
a triangular face due to the fact that it would approximate �M f = 0, which is consistent
with (16).

Noting that the matrix L
˜M in the linear system (17) is of size 2nI + nB and almost half

of blocks are replica of the other blocks, which can be reduced into a linear system of size
nI + nB as

LMh = r. (18)

The solutions of the linear systems (17) and (18) are equivalent up to a translation and a
scaling by 1

2 . A proof for this statement is given in Corollary 1 in Sect. 5.
In addition, the matrix LM in 18 is singular with the kernel being

ker(LM) = span{(1, . . . , 1)�}.
In practice, we fix hB(1) = 0, then the system 18 becomes nonsingular with a unique solution.

4.3 Disk Conformal Map

Due to the symmetry of the doubly covered triangular mesh, the boundary map hB is close to
a circle. To ensure the boundary vertices are mapped to S1, we apply the geodesic algorithm
[34] introduced in Sect. 2.2 to do so. Namely, the boundary map is updated by

fB(�) = ψD ◦ Φn(hB(�)), for � = 1, . . . , nB,
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where Φn and ψD are given in (5) and (6), respectively. Then, the interior map is computed
by solving the linear system

[LM]I,IfI = −[LM]I,BfB.

To further reduce the angular distortions of the resulting mapping f , the parameterization
can be improved by the Möbius transformation ψω : D → D defined as

ψω(z) = z − ω

1 − ωz
(19)

in which ω is chosen to be

ω = argmin
ω∈D

mean
τ∈F(M)

v∈V(M)∩τ

Dangle(ψω ◦ f , τ, v), (20)

where Dangle is the angular distortion defined in (7). The optimization problem (20) can be
efficiently solved by the Nelder–Mead simplex method [31].

The algorithm for the computation of disk conformal mappings is summarized in Algo-
rithm 1.

Algorithm 1 Constructive Disk Conformal Parameterizations (CDCP)
Input: A simply connected open triangular mesh M.
Output: A disk conformal map f.
1: Define the matrix L := LM by (8).
2: Define the sets of interior and boundary vertices I and B, respectively.
3: Let n be the number of vertices and nB be the number of boundary vertices.
4: Compute the central triangular face of M by (13) and (15).
5: Compute a harmonic map f by (18).
6: Update fB(‘) ← Φn(fB(‘)) as in (5), for � = 1, . . . , nB.
7: Update fB(‘) ← ψD(fB(‘)) as in (6), for � = 1, . . . , nB.
8: Compute fI by the linear system LI,IfI = −LI,BfB.
9: Compute ω by solving (20).
10: Update f� ← ψω(f�) as in (19), for � = 1, . . . , n.
11: return f.

5 Equivalence of Boundary Maps

Now, we prove the equivalence of the boundary maps computed by (17) and (18) up to a
translation and a scaling by 1

2 .

Theorem 1 Given two linear systems of block forms
⎡

⎣

A C
C� 2B C�

C A

⎤

⎦

⎡

⎣

˜f
g̃
˜h

⎤

⎦ =
⎡

⎣

b
0
0

⎤

⎦ (21)

and
[

A C
C� B

] [

f
g

]

=
[

b
0

]

, (22)
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where A is nonsingular. Suppose (˜f
�
, g̃�,˜h

�
)� is a solution to (21). Then, g̃� = 1

2g
� for

some solution (f�, g�)� to (22).

Proof Suppose (˜f
�
, g̃�,˜h

�
)� is a solution to (21). Then,˜f, g̃ and˜h satisfies

⎧

⎪

⎨

⎪

⎩

A˜f + C g̃ = b, (23a)

C�(˜f +˜h) + 2Bg̃ = 0, (23b)

C g̃ + A˜h = 0. (23c)

From (23a) and the assumption that A is nonsingular,

˜f = A−1(b − C g̃) = A−1b − A−1C g̃. (24)

Similarly, from (23c), we have

˜h = −A−1C g̃. (25)

Substituting (24) and (25) into (23b), we obtain

C�(A−1b − 2A−1C g̃) + 2Bg̃ = 0.

That is,

(B − C�A−1C)(2̃g) = −C�A−1b. (26)

On the other hand, the linear system (22) can be written as
{

Af = b − Cg, (27a)

Bg = −C�f. (27b)

From (27a) and the assumption that A is nonsingular,

f = A−1(b − Cg) = A−1b − A−1Cg. (28)

Substituting (28) into (27b), we obtain

Bg = −C�A−1b + C�A−1Cg.

That is,

(B − C�A−1C)g = −C�A−1b. (29)

Therefore, from (26) and (29), there is a solution (f�, g�)� to (22) that satisfies g = 2̃g as
desired. ��

By substituting LI,I, LI,B, and LB,B into A, B, and C in Theorem 1, respectively, we
have the desired consequence as follows.

Corollary 1 The boundary maps˜hB and hB computed by the linear systems (17) and (18),
respectively, satisfy hB = 2˜hB + c, where c is a constant.

Corollary 1 indicates that we can solve the reduced linear system (18) of size nI + nB − 1
instead of solving the linear system (17) of size 2nI + nB − 1. As a result, the computational
time cost for computing the boundary map is significantly reduced.

Remark 7 Corollary 1 could also explain the reason that the initial mapping of the CEM
algorithm in [30, 54] is already very close to conformal so that the number of iteration steps
for the convergence is usually less than 20.
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Fig. 5 The mesh models Max
Planck, Buddha and Nefertiti
Statue and their disk conformal
parameterizations computed by
the CDCP algorithm

6 Numerical Experiments

In this section, we demonstrate the numerical results of the proposed CDCP algorithm for the
computation of the disk conformal parameterizations of simply connected open triangular
meshes. In addition, we compare the accuracy and the efficiency of the CDCP algorithmwith
other state-of-the-art algorithms, FDCP and LDCP. Furthermore, in Sect. 6.3, we discuss the
utility of the Möbius transformation performed in Lines 9, 10 of Algorithm 1.

Some of the triangular mesh models are obtained from TurboSquid [3], AIM@SHAPE
shape repository [1], the Stanford 3D scanning repository [2], and Sketchfab [4]. All numer-
ical experiments are performed in MATLAB on a personal laptop with a 2.30 GHz CPU and
16 GB RAM.

In Fig. 5, we present the mesh modelsMax Planck, Buddha and Nefertiti Statue and their
disk conformal parameterizations computed by the proposed CDCP algorithm. The color
represents the normal map of the surface. In Fig. 6, we present the histogram of the angular
distortions defined in (7). We see that most of the angular distortions are less than 2 degrees,
which is quite satisfactory.

In the following, we compare the accuracy and efficiency of the proposed CDCP algorithm
with other state-of-the-art algorithms in Sect. 6.1. In addition, we discuss the choices of
the central triangular face and the utility if Möbius transformations in Sects. 6.2 and 6.3,
respectively.
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Fig. 6 The histogram of angular distortions of the disk conformal parameterizations computed by the CDCP
algorithm for a Face Lin, b Knit Cap Man, c Bimba Statue, d Max Planck, e Buddha, and f Nefertiti Statue

6.1 Comparison with State-of-the-Art Algorithms

In Table 1, we present the mean and SD of the angular distortion, defined in (7), of the
parameterizations of benchmark mesh models computed by the FDCP [10], LDCP [8], and
the proposed CDCP algorithm. The data in Table 1 is also presented in Fig. 7 for a better
visualization. From Fig. 7, we see that the mean and SD of the angular distortions of the
proposed CDCP algorithm is similar or the best compared to the other two state-of-the-art
algorithms.

In Table 2, we present the computational time cost of disk conformal parameterizations
of benchmark mesh models by FDCP, LDCP, and the CDCP algorithm. In Fig. 8, we further
present the relationship between the number of vertices and the computational time cost.
From Fig. 8, we see that the proposed CDCP algorithm has the smallest computational time
cost compared to the other two state-of-the-art algorithms. In particular, for a mesh model
with roughly 1million vertices, it would costmerely 33 seconds to compute its disk conformal
parameterization, which is satisfactory.
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Table 1 The mean and SD of angular distortions of the disk conformal maps computed by the FDCP, LDCP,
and CDCP algorithms

Model Name # Vertices FDCP [10] LDCP [8] CDCP
Mean SD Mean SD Mean SD

Ear 367 5.62 5.68 5.88 5.97 5.44 5.39

Foot 10, 010 1.41 1.13 1.40 1.14 1.41 1.14

Chinese Lion 17, 334 1.42 2.04 1.42 2.05 1.42 2.05

Femur 21, 699 0.94 0.75 0.94 0.75 0.94 0.75

Stanford Bunny 31, 593 1.03 1.52 1.03 1.52 1.03 1.52

Max Planck 41, 588 0.62 0.87 0.62 0.87 0.62 0.88

Human Brain 48, 463 1.46 1.59 1.57 1.62 1.46 1.59

Left Hand 53, 011 1.20 1.17 1.20 1.18 1.20 1.18

Knit Cap Man 59, 561 0.55 0.94 0.55 0.94 0.55 0.94

Face Ho 81, 065 0.16 0.30 0.16 0.30 0.16 0.30

Face Lin 140, 085 0.19 0.86 0.41 1.05 0.18 0.87

Bimba Statue 216, 873 0.36 0.66 0.41 0.66 0.36 0.66

Buddha 473, 362 0.29 0.44 0.30 0.45 0.29 0.44

Nefertiti Statue 996, 838 0.31 0.52 0.95 0.72 0.31 0.52

(a) (b)

Fig. 7 The a mean and b SD of angular distortions (in degree) of the conformal parameterization by FDCP,
LDCP, and the CDCP algorithms

It is worth noting that all the demonstrated mesh models do not satisfy the Delaunay
assumption. Nevertheless, all the resulting parameterizations computed by the CDCP algo-
rithm are bijective.

In summary, the proposed CDCP algorithm has similar accuracy and significantly
improved efficiency compared to the other two state-of-the-art algorithms. The files of mesh
models, mapping results, and MATLAB executables of the CDCP algorithm are available at
http://tiny.cc/CDCP.
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Table 2 The computational time
costs (sec.) of the conformal
parameterizations computed by
the FDCP, LDCP, and CDCP
algorithms

Model Name # Vertices FDCP LDCP CDCP

Ear 367 0.23 0.16 0.03

Foot 10, 010 0.42 0.29 0.20

Chinese Lion 17, 334 1.54 0.56 0.47

Femur 21, 699 1.73 0.75 0.54

Stanford Bunny 31, 593 2.83 1.19 0.99

Max Planck 41, 588 2.93 1.45 1.11

Human Brain 48, 463 4.17 1.71 1.62

Left Hand 53, 011 7.54 2.30 2.15

Knit Cap Man 59, 561 9.05 2.79 2.28

Face Ho 81, 065 12.74 4.20 2.94

Face Lin 140, 085 25.04 7.86 4.73

Bimba Statue 216, 873 55.16 16.24 9.31

Buddha 473, 362 118.74 43.12 29.64

Nefertiti Statue 996, 838 274.22 75.96 44.75

(a) (b)

Fig. 8 a The computational time costs for the conformal parameterizations by FDCP, LDCP, and the CDCP
algorithms. b The relationship between the numbers of vertices and the computational time costs for the
conformal parameterizations by FDCP, LDCP, and the CDCP algorithms

6.2 Choices of the Central Triangular Face

As in Remark 6, the central triangular face is better chosen to be as far from the boundary as
possible. In our approach, the heat diffusion (11) is applied to find such a central triangular
face. Another heuristic method by directly finding the triangular face closest to the centroid
of the surface could also deal with the task. We now compare these two methods for finding
a central triangular face.

From Fig. 9, we observe that the vertex closest to the centroid of the surface could be
distant from the actual surface center. It is crucial to know whether the choices of the central
triangular faces would affect the accuracy of the resulting mapping in terms of angular
distortions.
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Fig. 9 The surface centers of the mesh models Ear, Foot, Chinese Lion and Stanford Bunny computed by the
directly finding the vertex closest to the centroid and the heat diffusion with t1 = 104, respectively

In Fig. 10, we present themean and SD of the angular distortion of themappings computed
by the CDCP algorithm with τc being the face closest to the surface centroid and the surface
center (obtained by the heat diffusion), respectively, without the Möbius correction. We
observe that the choices of the central faces do not significantly affect the angular distortions
for most of the demonstrated mesh models, however, for the very coarse mesh model Ear,
the CDCP with τc being the face closest to the surface center is significantly better. Thus, we
adopted the surface center obtained by the heat diffusion, although it would cost solving a
linear system.

6.3 Utility of Möbius Transformations

Themappings in (5) and (6) are conformal, however, the transformation performed in Lines 6
and 7 in Algorithm 1 are piecewise affine approximations of (5) and (6), respectively. As a
result, a piecewise affine approximation of the Möbius transformation in (19) can be applied
to further improve the parameterization in terms of angular distortions in (7).

It is crucial to know howmuch theMöbius transformation in (19) can improve the angular
distortions and how much time the optimization problem 20 costs.
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(a) (b)

Fig. 10 The amean and b SD of the angular distortions (in degree) with τc being the face closest to the surface
centroid and the surface center (obtained by the heat diffusion), respectively
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Fig. 11 The a mean and b SD of the angular distortions (in degree) of the conformal parameterization by the
CDCP algorithm with and without Möbius transformation (19)

In Fig. 11, we present the mean and SD of the angular distortions of the conformal
parameterization by the CDCP algorithm with and without Möbius transformation (19).
We observe that the Möbius transformation (19) could merely slightly improve the angular
distortions for most of the benchmark mesh models, however, for the models Face Ho and
Face Lin, the Möbius transformation (19) significantly improves the angular distortions.

On the other hand, in Fig. 12, we present the computational time costs for the conformal
parameterizations by the CDCP algorithm with and without Möbius transformation (19). We
observe that solving the optimization problem 20 would cost even more time than that of the
other procedures. In particular, without Möbius transformation (19), it would costs about 14
secs. to compute the conformal parameterization for the mesh model Nefertiti Statue by the
CDCP algorithm, but solving the optimization problem 20 for the Möbius transformation
(19) would costs about 30 secs.
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Fig. 12 a The computational time costs for the conformal parameterizations by the CDCP algorithm with and
withoutMöbius transformation (19).bThe relationship between the numbers of vertices and the computational
time costs for the conformal parameterizations by theCDCPalgorithmwith andwithoutMöbius transformation
(19)

In summary, when the angular distortion is the main concern, the Möbius transformation
(19) can be applied to slightly improve the parameterization. Otherwise, Lines 9–10 of
Algorithm 1 can be omitted so that the efficiency is highly improved.

7 Concluding Remarks

In this paper, we have developed an efficient constructive algorithm called CDCP, combined
with the spherical harmonic mapping, geodesic algorithm, and Möbius transformation, for
the computation of disk conformal parameterizations of simply connected open surfaces.
Although the double covering is applied, we have proved that the number of unknowns
can be kept the same by applying the structure of the associated linear system so that the
computational time cost can be significantly reduced. Numerical results indicate that the
proposed CDCP algorithm has similar accuracy and the best efficiency compared to the other
two state-of-the-art algorithms. In particular, it would cost less than 15 sec. on a personal
laptop for the computation of a disk conformal parameterization of a simply connected open
triangular mesh of roughly 1 million vertices. Such promising results show the potential of
the CDCP algorithm on real-time applications of disk conformal parameterizations.
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