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Abstract

A finite difference method is constructed to solve singularly perturbed convection-diffusion
problems posed on smooth domains. Constraints are imposed on the data so that only regular
exponential boundary layers appear in the solution. A domain decomposition method is used,
which uses a rectangular grid outside the boundary layer and a Shishkin mesh, aligned to the
curvature of the outflow boundary, near the boundary layer. Numerical results are presented
to demonstrate the effectiveness of the proposed numerical algorithm.
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1 Introduction

The numerical solution of singularly perturbed elliptic problems, of convection-diffusion
type, posed on smooth domains presents several challenges. In order to generate a pointwise
accurate global approximation to the solution using piecewise polynomial basis functions,
the grid needs to insert mesh points into the layer regions, where the derivatives of the
solution depend inversely on the magnitude of the singular perturbation parameter. To avoid
the dimension of the discrete problem depending on the inverse of the singular perturbation
parameter, a quasi-uniform discretization of the continuous domain will not suffice [3].
Outside the layer regions one only needs a coarse mesh and within the layers one requires
a fine mesh. However, spurious oscillations will appear on a coarse mesh, unless some
particular discretization is used to preserve the inverse monotoniticity of the differential
operator [2, 5]. Finite element discretizations using triangles are well suited to discretizing
domains with smooth geometries; but it is difficult to generate an inverse-monotone system
matrix to a singularly perturbed convection-diffusion problem using triangular elements [1,
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4]. Upwinded finite difference operators (or finite volumes [15]) can be used to guarantee
stability, but it is not easy to work with these constructions over anisotropic meshes posed
on a smooth domain.

In addition to these complications, our objective is to design a parameter-uniform numer-
ical method [3], which will be accurate both for the classical case (where the singular
perturbation parameter is large) and the singularly perturbed case (where the singular per-
turbation parameter is very small), and will also deal with all the intermediate values of the
singular perturbation parameter. Moreover, given that boundary layers will be present, we
are only interested in global approximations that are pointwise accurate at all points in the
domain. Hence, although we use a finite difference formulation, our focus is not primarily on
the nodal accuracy of the numerical method, but on the global accuracy of the interpolated
approximation generated by the numerical algorithm.

The presence of a regular boundary layer [3] near a curved boundary requires a coordinate
transformation so that the layer region can be mapped to a rectangular computational region,
on which a suitable mesh can be aligned to the direction of steepest descent. In the special
case of a domain that is a circle [7] or an annulus [8], this coordinate transformation exists.
However, for a general smooth domain, it is difficult to apply such a coordinate transformation
across the entire domain. Hence, we need to use a mixture of coordinate systems. In the case
of singularly perturbed elliptic problems on smooth domains which are of reaction-diffusion
type, mixed coordinate systems have been applied to get energy norm error bounds [16—-18]
or pointwise L, error bounds [10, 11]. In the case of convection-diffusion problems, the
interaction between the outer solution and the boundary layer function is more significant
than in the case of reaction-diffusion and the mixing of coordinate systems can be more
challenging.

To circumvent the difficulties mentioned above, we employ a domain decomposition
algorithm. The domain is first covered with a rectangle to generate an initial approximation
to the solution. On this rectangle, we simply use an upwinded finite difference operator on a
tensor product of uniform meshes. This classical method will produce an accurate and stable
approximation outside of the boundary layers. A correction within the layers is generated
across a subdomain that is aligned to the curved outflow boundary of the original domain
[16, 17]. Across this subdomain, a coordinate transformation is used and a piecewise-uniform
Shishkin mesh [3] is employed in the normal direction to the boundary.

On any closed domain, there will be characteristic points on the boundary, where the
tangent to the boundary is parallel to the convective direction, which is associated with the
characteristics of the reduced first order problem. In order to establish the theoretical error
bound in Theorem 2 below, we impose constraints on the data via three assumptions. The
first assumption prevents characteristic boundary layers forming; the second assumption
ensures that the solution is sufficiently regular for the numerical analysis within the paper
to apply and the final assumption prevents internal layers emerging within the solution.
The numerical results in Sect. 4 suggest that these theoretical constraints are excessive, as
the numerical method continues to display first order parameter-uniform under significantly
weaker constraints. The identification of necessary data constraints to retain the error bound
in Theorem 2 remains an open question.

In Sect. 2, the continuous problem is discussed and the solution is decomposed into a
regular and a singular component. Pointwise bounds on the derivatives (up to third order)
of these components are deduced. In Sect. 3, a numerical method is constructed and an
asymptotic error bound is deduced in Theorem 2. Numerical results for three sample problems
are presented in the final section.
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Notation If D is the domain of some function f and D C D*, then throughout we denote the
extension of the function to the larger domain by f*. In addition, f(x, y) = f (r,t), where
(r, t) is a co-ordinate system aligned to the boundary of the domain. Thoughout the paper C
denotes a generic constant that is independent of both the singular perturbation parameter &
and the discretization parameter N.

2 Continuous Problem

Let 2 be a two dimensional domain with a smooth closed boundary 9€2. The origin is located
within the domain. As in [11] we introduce a local curvilinear coordinate system associated
with the boundary. Let the boundary d€2 be parameterized by

0Q:={(x, ) [x=¢@),y=9(), 0=t =T}, y@):=(@Q1), ¥ )

where (¢ (0), ¥ (0)) = (¢(T), ¥ (T)). As the variable ¢ increases, the boundary points move
in an anti-clockwise direction. At any point on the boundary, the magnitude of the tangent
vector (¢, ') is denoted by 7(¢) and the curvature of the boundary by |« (¢)|, which are

given by
; ; . ¢/1//// _ w/¢//
(@) ==/ (@) + @)% and «(t) = —

A curvilinear local coordinate system (r, t) is defined by

!/ /

-y ¢
x=¢@) +rni(), n:= — y=v@) +rnat), np = = (H
Note that 7 = (11, n») is the inward unit normal and
ny =—¢'x = —ktny, nh=—y'kx =ktn;.

These coordinates are orthogonal in the sense that

dx dJy dx dJy
(5, E) : (E’ a) = (n1,ny) - (¢, +rn/1, W/ +rn/2) =0.

In these coordinates , the transformed Laplacian will contain no mixed second order derivative
and we have [11, Lemma 2.1]

ad ou d ou 1
Au = rfl— n—u +¢— ;‘—u , where ¢ :=—, n:=1—«r. 2)
ar ar Jt at ™

Consider the singularly perturbed convection-diffusion elliptic problem!

Lu=—cAu+auy+bu=f, (x,y) e, (3a)

I For nonnegative integers k and all v € ck(D), D c R?, we define

vlg,p = Z

i+j=k

o ’ lvll = E [v]
—— 1, v = vl p.
axi0y) k,D j.D

sup
*.y)eb 0=j=k

If D = Q we omit the subscript D and if k = 0 we omit the subscript k. The space C¥ (D) is the set of
all functions that are Holder continuous of degree y with respect to the Euclidean norm || - ||. A function

fecr(D)if

[flo.y,p = sup IS =i

u#v, u,veD lu—vile
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u=0, (x,y) €0, a>a>0,b>0, a,b,feCS’y(E_Z). (3b)
We define the inflow boundary 0€2; and the outflow boundary 92 by
9 = {(¢,¥) |n1 >0} and Qo := {(@. ) | n1 <0).

-

If ¥/(t¢) = 0 (i.e., n = (0,%£1)), then this will correspond to a characteristic point
(¢ (tc), ¥ (tc)) on the boundary. To exclude the presence of parabolic boundary layers [3,
Chapter 6] and [9, Chap. 4, §1], we assume that there is only a finite number of isolated char-
acteristic points on the boundary. We confine the discussion to characteristic points where
the component n| changes sign.

Assumption 1 Assume that there is a finite number of characteristic points on the boundary
02. Moreover, at each characteristic point t = t¢ assume that there exists a § > 0 and a
neighbourhood t¢ € I¢ := (fy, t1) such that [/ (fp)| = 28 = |¢'(¢1)| and

¥ (t)>0 or ¥'(t) <0, vVt elc. 4)

We identify three subintervals of Ic = [ g U Ig U If., associated with each characteristic

point (¢ (tc), ¥ (tc)):

Ig(tc) ={telc|28 >y (t) > 8}, (5a)
I(tc) =t € Ic | =28 < ¥'(t) < 8}, (5b)
(i) = {t € Ic | [¥'(1)] < 8}. (5¢)

As the domain is closed, there will be at least two distinct characteristic points on the boundary

0%2. If the domain has an internal tangent to the boundary at ¢ = #¢ and n; changes sign at

this point, then we shall call (¢ (tc), ¥ (tc)) an internal characteristic point. Otherwise, if n

changes sign at t = t¢, we call (¢ (t¢c), ¥ (tc)) an external characteristic point [9, Chap. 4].
In the local coordinate system, the differential equation transforms into:

. 1 0 ou +§8 4_812 - dndy + acniiy + bi = f
— — = —\¢= aniiiy + agnai i=f.
e Tor ) T U st
Let us partition the domain €2 into a finite number of non-overlapping subdomains { D; }7_,
such that
DiﬂDj:@,l.#j, Q:U?:lbi and F,'J' ::D,'ﬂl_)j.

Let % denote the outward normal derivative of each subdomain D; and define the jump in
the normal derivative across an interface I'; ; to be

(o), =
n 1",4..,-. n;

Using the usual proof by contradiction argument (with a separate argument for the interfaces
I';,j) we can establish the following

du
anj

Lij Ly j

Footnote 1 continued
is finite. The space Ck'V(D) is the set of all functions in Ck(D) whose derivatives of order k are Holder
continuous of degree y. Also we define

oky
eyn= 3 (507l Wrpi= 32 Wb+ Wy
i+j=k 0<n<k
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Theorem1 If w,v € c9%Q) N (U:.’ZICZ(D;)) is such that for all i, Lw(x,y) >
. K d
Lv(x,y), Y(x,y) € D;; foralli,j: [_i#l)]l"ij > [ﬁ]rw_ and w > v on the boundary
0%, then w(x, y) > v(x,y), V(x,y) € Q.
We next assume that the dataa, b, f is sufficiently regular and the boundary 9 €2 sufficiently

smooth so that u € C37 (). See [6, pg. 94] for definition of smooth domain and boundary.
Also see [6, Theorem 6.14] and [6, Theorem 6.19] to justify the following assumption.

Assumption 2 Assume that 2 is a C37 domain and the data a, b, fe Cl7 (), so that
ueCH(Q). (6)

As the problem is linear, there is no loss in generality in dealing with homogeneous bound-
ary data. Nevertheless, below we decompose the solution into regular and layer components,
which satisfy a singularly perturbed differential equation with inhomogeneous boundary
data. Hence, we state a result on a priori bounds on the derivatives of the solution of the more
general problem: find z such that

Lz=p(x,y), (x,y)€Q, z=4qKx,y), (x,y) €0, @

where the data and the boundary 9€2 are sufficiently smooth so that z € C3>7 ().
Using stretched variables ¢ = x /¢, T = y/e and bounds from [12], one can establish the
following result (see the argument in [14, Appendix A] or [13, Theorem 3.2]).

Lemma 1 Assumea,b, p € chr() and q € C3Y(8Q). The solution z of (7) satisfies
llzIl < Clipll + llgllag,
2 .
lzli + & [211y < Ce7'Izl| + C <|P|o +e'ploy + Y& gl +&'7 fﬂz,y,asz) ,
i=0
and forl =0, 1

l I
2241 + &7 [2l142 < Ce~ iz + € (Z g pli 4 g7 ! rmi,y)
i=0 i=0

1 1
+C (Z &gl + &7 qumi,y> .
i=0 i=0

From these bounds, we have the crude bounds on the solution u of (3)
luli < Ce™, i=0,1,2,3. )

The solution u of problem (3) can be decomposed into the sum u = v + w, where v is a
regular component and w is a boundary layer function associated with the outflow boundary.
The reduced solution vy is defined as the solution of the first order problem

a(uo)y +bvo = f, (x,y) € Q\0Qs, vo(x,y) =0, (x,y) € IQ; (C))

and the first correction v is defined as the solution of
a(vi)x +bvy = Avg, (x,y) € Q\3Q, vi(x,y) =0, (x,y) €9Q;. (10)
Our next assumption guarantees that only regular boundary layers appear near the outflow

boundary.
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Assumption 3 At each characteristic point (xc, yc) = (¢ (tc), ¥ (tc)), define the rectangle
Qs(xc, yo) = ((—o0, x¢ + 8] x [yc — 8, yc +8]) N Q.
Assume thata, b, f € C>7 () and that there exists some § > 0 such that

S, y)=0 forall (x,y) € Qs(xc.yc), Y(xc,ye). an

Remark 1 At any external characteristic point p, assumption (11) constrains the data in a
0(8%) neighbourhood of p. If the characteristic point p is an internal characteristic point,
then assumption (11) constrains the data in a O () neighbourhood of p.

As vg, v; are solutions of a first order differential equation (either (9) or (10)), it follows
from Assumption 3 that

vo(x,y) =vi(x,y) =0, forall |y—yc| <.
The regular component v is defined as the solution of the problem: Find v such that
Lv=f, (x,y)e, (12a)
v=uv+evy, (x,y) €9RQop, v=0, (x,y) € 0Q2\0Q0. (12b)
Note that, if z = v — (vg + €vy), then z satisfies
Lz=¢Avy (x,y) €Q, z=0, (x,y) € 0Q.

Asin [14, Appendix A] and since Assumption 3 eliminates any regularity difficulties at the
characteristic points, we then have vy € C37(Q), v € C37(Q) and z € C3V(Q). Using
Lemma 1, we deduce that

Izl < Ce?, |zl < CA+&*7), 1 <i <3.

Hence, we have the following bounds on the regular component
ol <€, Juli + € [v]iy < CA+e*), 1<i<3. (13)

Assumption (11) also prevents any internal characteristic layers emerging from any internal
characteristic points.
The boundary layer component w is the solution of the problem: Find w such that

Lw =0, (x,y) e, (14a)
w=w-v)x,y), (x,y) €9Ro w(x,y)=0, (x,y) € 0Q\dRp. (14b)
From assumption (6), it follows that for all characteristic points
w(x,y) =0, if (x,y) €dQp and |y — yc| <3d.

In other words, the boundary layer function is not only zero on the inflow boundary, but also
on those parts of the outflow boundary near the characteristic points.
For some fixed R = O(1), we define the strip

Qs :={(r,) e Q| ¥'(t) >0, r € (0,R)}, R < min{s, ||K||gslzo}, (15)

which is aligned to the outer boundary d€2¢. The width R of this strip Q5 is further limited
in (24). Note that if there are internal characteristic points, then Qg will not be a connected
set. The outer boundary 92 N 925 of the strip will have characteristic points as end-points.
At each of these characteristic points, the strip 25 will have a vertical boundary of the form
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{(xc, Iy — yc| < R}. If R < § then the boundary layer function w = 0 along these
vertical boundaries of Qg, by (6).

In the next lemma, we show that the boundary layer function decreases exponentially in
the radial direction as one moves away from the outer boundary. To establish this result, we
assume that ¢ < g, = O(1), where &, is sufficiently small and depends on the problem data
f,a,b, ¢,y and in particular on 4.

Lemma 2 Assume (4), (6), (11) and ¢ < &, = O(1) is sufficiently small. If w is the solution
of (14) then within the strip Qg (15),
lw(r, )] < Ce_# —I—Ce_%, 0<r<R;0:= Ilf}ninolnll, n<1; (16)

>8>
afR
and exterior to the strip lw(x, y)| < Ce_MT, (x,y) € Q\Qs.

Proof Associated with the neighbourhood /¢ (5) of each characteristic point, we construct a
cut-off function We (t; 28) € C?[0, T] such that

0<Wc(r;28) <1, 1€l (17a)
We(t;25) =1, t € 0Qo\Ic; Ye(t;20) =0, t € QU Ig. (17b)
Consider the barrier function
_abr _afR
~ e ¢ —e £ —
B(r,t) := Wc(t; 28) (M) , (r,1) e Qs.
1—e &

Observe that ¥/ (t) > 8, |V, ()| + W/ (1) < C, t € I and Uc(t) =0, t € Ic\I},. Then,
for ¢ sufficiently small and (r, ) € Qg, using the definition of 6 we have

Ly = (a2
(1)

e

Observe that B = We(t;28) on the outer boundary 029 and B = 0 on the othe_r three
boundaries of the strip. This function B(r, t) is currently only defined on the strip £25. We
extend this function to €2 as follows:

2
—af + 0(8)) Br.0) > %(—nl —0)B(r.1) > 0.

B(r,1), (x,y) e Qs
B = _
(x, ) {0’ (. y) € Qs
such that at the inner boundary 92 := 9Q2s N €2,
~ afR
0B 0B We(t;28) abe™ = 0B
_— —= - C( )ae 9R<0 arldi:O,
ong ar g 1—e %5 ono
where %, ;B denote, respectively, the normal derivative to Qg, Q2. We define a second
N no

barrier function of the form

¢(t) —my +0.5( + R)ni (1),  (x,y) € Qs

Bi(x,y) ::{x—mx, (x,y) € Q\Qs’

where m, := ming<,;<7 ¢ (¢). On the strip, for ¢ sufficiently small,

LB > % <1 + §(¢’)2(1 - RK)) + 0() > 0.
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At the inner boundary of the strip 92, we have

3B, dB, Y/ 9B v 9B, v
— == and — =

|asz§ =7

no  or T dx T ng 27

We complete the proof by forming the barrier function

2Tl b _aor
—e

Bay(x,y) = B(x,y) + — "¢ Bi(x, y).
By the design of this barrier function, we see that on the inner boundary
B B
242 s,
dng  ongp

Complete the proof using the inequality
el <(l—wle™, u<1,t>0
and the comparison principle in Theorem 1. O

The crude bounds
lwlg, <Ce™", i=0,1,2,3. (18)

on the derivatives of the layer function follow from (8). We can further decompose the
boundary layer function within the strip:

W=+ Wi, 1) e, where
Lo =L =0, (r,1)eQs, wolxc,y) = wi(xc,y) = 0;
wo(0, 1) = w(0,1), wo(R,1) =0, wi(0,1) =0, wi(R, 1) = w(R,1).

OR

By Lemma 2 and the maximum principle, [|0]qy < Ce™ ¢ . Moreover, from the bounds
in (18),
H Biﬁ)o‘ <C(+e™), i<3 (19)
, e, i<3.
ort Qg -

Consider the function Z(r, t) = wo(r, t) — ®(r, t), where, for each ¢, ®(r, t) is the solution
of the problem

-, + M@, =0,re0,R), ®0,t) =w(,1), P(R,t)=0.

(1)
Then Z = 0 on 925 and we can check that

~ 1 _ZJ(O,;);[/;(t)r
[Lz(r,t)| < Ce e We —, (r,t) € Qs.

Applying the arguments from [14, Theorem 12.4], we deduce that

<Cc+e'7h, j<3. (20)

%
Qg

ot/

Let Q C Q* be an extended smooth closed domain that encloses € and is constructed so
that any characteristic point (xc, yc) € 92 is extended to (xc, y&) € 3Q* and |yg| > [ycl.
In this way, all the points on the inflow boundary d€2; are extended to the inflow boundary
997} and likewise for the outflow boundaries. With each point P € 3K on the boundary, we
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associate p, € dQ2* as the point lying on the outward normal to 32 and passing through p.
If the the two boundaries intersect, then p, = p. We define the width of the extension to be

8g = ﬁrré%lﬁ—ﬁﬂ. @n
Let the boundary of this extended domain be parameterized by
=) [ x =9 M),y =yYT(0), 0<t < T}, y*(1) = (@), ¥ (1)
and a*, f* are smooth extensions of a, f from Q to Q*. Define v*, w* as the solutions of

=f* (x,y) €Q¥, v*=0, (x,y) €9Q], v*  =vj + ev], (x,y) € 02},
L'w* =0, (x,y) € Q", w* =0, (x,y) €9Q), w" =u"—0v", (x,y) € 0Q}.

As vg, v1, v, v} are solutions of first order problems (9), (10) and [|v§llse, < CéE, v s,
< Cég , then

l(vg + €v]) — (vo + evllg < COE.
Then, using a comparison principle for the elliptic operator L
lv* —vllg < CSe(x + C1) < CSk.
Hence, on any subdomain D C Q. we have
v —ullp < lv* —v—wlp < Cég + |wllp.
We define an approximation #1 to u on the strip Q25 as the solution of
Liy = f,(r,1) € Qs, i1(0,1) = i(0,1) =0, @1 (R, 1) = 3*(R, 1), 1 € Io,

where 1o denotes the subinterval of [0, T] where /(1) > 0. Outside the strip u; :=
v¥, (x, y) € Q\Qgs. Then

lu —uille < Cég + lwllo\as-

In the next section, we describe a numerical method which initially generates an approxi-
mation Up to v* across 2 and, using Uy along the inner boundary Qy, it corrects this initial
approximation within the strip using a piecewise-uniform Shishkin mesh.

3 Numerical Method

A global approximation U is generated in this section, using a two-step numerical procedure.
An initial approximation Uy is generated across a rectangular domain Q £, which contains
the original domain 2. In the second stage, an approximation U is generated in the strip s,
which is adjacent to the outflow boundary 9€2¢. The initial approximation Uo is used as a
boundary condition along the inner boundary 925 N Q. The approximation U corresponds
to U, within the strip and to Uy outside of the strip.

Enclose the domain with a rectangle OF = [my, My] x [my, M,], where

< t M, > t L, =M, — ; 22
my < tl}lomﬂqb() x —,2[1&’%1‘75( ), Ly x — My (22a)

, < t M, > t), Ly,:=M,— . 22b

_ten[non}]w) y_tg&§]w() y y —my (22b)
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Set u(x,y) = 0, (x,y) € Qp\Q for points outside €2, then solve the problem (3) using
upwinding on a uniform rectangular mesh

QN =1 (xi, yi — & J— h N
= 17)’j)|xt—mx+lN,y/—my+J

N} i=o
That is, find Uy such that?
LNUo(xi, yj)) = fxiny)), (xi,y) € 2NN, (23a)
Uo(xi,yj) = 0, (xi,y;) € O\ (23b)
where LV := —£(8] +83) +aD; +bl. (23c)

Use bilinear interpolation to form an initial global approximation Uy to u, defined as

N—-1
Uo(x, y) = Y Up(xi, y)di()$! (y),  (x,3) € 2,

ij=1

where ¢; (x) (¢/ (y))is the standard piecewise linear hat functions centered atx = x; (y = y;).
Since we are using upwinding, the numerical solution will be stable; in the sense that the
operator LY satisfies a discrete comparison principle of the form: If Z(x;, t;) > 0, (x;, ¢;) €
OM\Qand LNZ(x;,1j) = 0, (x;, t;) € QV, then Z(x;, t;) > 0, (x;,1;) € OV. However,
the layers at the outflow will be smeared and Uy will not be accurate in the boundary layer
region.

We correct this approximation in the strip (15), where the width of the strip is such that

1
R<min{Mx,|my|,M ,7}. 24)
l«llag
On the strip, we will use the following upwinded finite difference operator
PN 5 ._ —17-1 + - ~ +
L™ Z(r;, t)) = <—8U,~,jh,~ (Mig1/2,; D — mi—1/2,; D) + (any)i, ; D;
- 8§i,j12j_1(§i,j+1/2D,+ — & j—12D7) + (5n2§)i,thi + Ei,jl)z(ri, tj);

where Z is any mesh function,

I Ty _ ki +k
hi :=ri —ri_1, hj = AR l; kj =1 =11, kj = ST j;
2 2
i +ritl
nij =0, ;), and nitip :=n<%,t,’).

The operator LV again satisfies a discrete comparison principle on the strip. Over Qg, we
generate a Shishkin mesh [3] in the r coordinate and a uniform mesh in the 7 direction. The

2 The finite difference operators are defined as

Z(xiq1,¥j) — Z(xi, yj) _ Z(xiyyj) — Z(Xi—1,Y})
D 2(ap yp o= DAL g ) i SO LD,
l 1 1 11—
DY Z(x;.yj) — Dx Z(x;.y})

200DE)Z = (b — b)DFZ + (b + b)) Dy Z;  §2Z(x;.y)) =

(xj41 —Xi—1)/2
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interval [0, R] = [0, o] U [0, R] and the Shishkin transition point [3] is taken to be

R 1
o=min]= CEmn!, Co>= 6= min |nl (25)
2 o 0 V' >5>0
Remark 2 1In the neighbourhood of each characteristic point ¢ = ¢, consider the parabola
2k (tc)t]

J1+ Qeto)n)?

If we choose the parameter 6 in Assumption 3 such that |K(lc)|_] > § > (m|/<(tc)|)‘1, m >
1 and if the boundary 92 coincided with this parabola then 6 > ﬁ. Based on this

y — yc = «(tc)(x —xc)?, onwhich |nj(t)] =

observation, we shall take C,, = 2 in (25) in our numerical experiments.

The mesh on the strip will be denoted by Qg’ and the mesh points on the boundary of the

strip will be denoted by 8§ZISV . Solve for the corrected approximation in the transformed
co-ordinates

LNU (ri, 1)) = fristp), (is1)) € QY (26a)
Ui(ri, tj) = 0, (ri,t;) € 9QY N3Q0, Uy = Up, (ri, 1)) € QY \0R0. (26b)

Use bilinear interpolation within the strip to form U;. Our corrected numerical approximation
U is defined by

Ui(x,y), (x,y) € Qs,
Uo(x, y), (x,y) € Q\Qs

Theorem 2 Assume (4), (6), (11) and that the strip width R < 8. If U is the corrected
numerical solution (27) and u is the continuous solution of (3) then

|U —ull < CN~'(In N)2.

Ulx,y) = [ 27

Proof In the first phase of the numerical algorithm, we solve on the rectangular mesh oV,
For each vertical height y = y;, we identify the external mesh points S/ := 0N\ and the
edge co-ordinates

X0,j = n;ej@x{x,- <0} and xy ;:= n;ijn{xi > 0}.

A smooth curve d2* can be created to pass through these edge mesh points {(xo, j, y;), (xn,;,
y j)}jyzo, which will define the boundary of an extension * of the domain 2. Note that the

width of this extension (21) is such that g < CN~L. If ¢ is sufficently large such that
elnN > Cpor e > g, = O(1), then using the derivative bounds (8) we can deduce that

10y —ull < CN~'(nN)?, if elnN > Cp. (28)

In the other case where ¢ In N < Cp, we decompose the initial approximation Uy = Vj+ Wy,
where the regular and singular components are defined as the solutions of

LNVo = f(xiy)), (i, yj) €Q, Vo=, (x,y) € OM\Q,
LYWy =0, (xi,y)) €2, Wo=uw* (x,y;) € 0"\Q.

Let us first bound the error in the regular component Vjy. The truncation error and the inter-
polation error on the boundary yield

LY (v, —v)(xi,yj)‘ = ’(LNU—LU)(xi,yj) <CN7L .y e
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I(Vo — v)(xi, y)| = [(0F = v)(xi, )l < CN7Y (xi, yj) € OM\Q.

Hence,
Vo — vl <CN. (29)
observe that
H\I~N L.\ —PN
|Wo<xl-,y,->|sc<1+“7) sc(1+°j\7;j‘> . xi<(U—pN, p<l.

Asin [14, Lemma 5.1], we have the inequallity,3

In N\ PV
(]+q11\1, ) <N7P VYN=>1, p,g>0.

IfelnN <Co:=pg, 0<p <1, g:=alLy,thenforalx; <(1—-p)N,p <1,

ok ypl = € (14 L) < (1 + h’N)pN <N
N¢g pN
Then, in the outer domain Q¢ := Q\Qg, for eIn N < pg, we have the bound
100 — ullgy < Vo — vlig, + lwlig, + IWollg, < CN™',
where we have used the bound (16) from Lemma 2. Hence, in all cases, outside the strip

100 — ullg, < CN~'(In N)2.

We next examine the error |U; — u|| on the strip.
In the case of functions a(r), u(r) of a single variable, over the interval I; := [r;_1, ri11]
with H; := max{h;, h;41}, we have that

hi +
;Dr (a(ri_l,-]/Z)Dr u(rl))
i

1 sa(riyr2) [0, a(ri—1/2) p
= (e u'(s) ds — ——L= u'(s) ds
h,'( hi+1 S=r; hi S=ri—] )
. _ . Fi4+1 s
- W/ f W (1) dt ds + (a'u')(ri) + a(r)8>u(ri)
i 141
— Tig1/2 N
G l/z) a(ry) / / W) di ds + 00 (> / a" (1) di ds
s=ri_1 Jt=r, S=ri—1/2 JI=T;
_ il
:“(”“/2) “(”)/ / / W (w) dw dt ds + (a'u)(r)
hi hl+] w=

— t
_ali- ”2) a(ri) / f " (w) dw dt ds + a(r)82u(r;)
S=ri_| w=r;

. /’l‘ Ti+1/2 i
+u _(rz)( i+1 / / a’(t) dt ds — 71/ / a’(t) dt dS)
i 2 = =r 2 s=ri—1/2 JI=ri

Ti+1/2 / " 2 // /
+ (r) / / a”(t) dwdt ds + (u + " )(rl)(hi+1 —hi).
t=r; Jw=r;

i S=ri—12

3 Take the natural logarithm of both sides and use In(1 4+¢) > (1 —¢/2), Vt > 0.
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From this expression, we have the following truncation error bound,

hi N
(auy)r(ri) — ;Dr (a(riv172) D u(ry)

33 *q oku
< Clhiyr — h|Z S 0| |5 00
9+kq o u 4
+C Ak , W(Vi) + CH; mln[ \ 2; 8r’< , )

By the choice of transition point (25), we can identify the following barrier function

. 1+a9h
E(r,-) = I(OM;

so that f,E(ri) >0, 0<r <R. (30)
n 1(1 +

The proof is completed using the arguments in [14, Chapter 13], the barrier function (30),
Lemma 2, the above truncation error bounds coupled with the bounds on the derivatives in
(8) and (20). The first case of eIn N > %, when the mesh is uniform, uses the truncation
error bound

IL(U, — @) (ri, 1)l < CN~'e™> < CN~H(In N)?,

coupled with the boundary value (U — @)(R, ;)| < CN~'(In N)? to deduce that || U} —
il < CN™! (In N)2 in the classical case of ¢ large. In the other case of 2C,eIn N < «R,
the discrete solution U; is again decomposed into a regular V; and singular component W,
defined as the solutions of

iNVl(ri,tj) = f(ri,tj), ZI\IVI’l(Vi,l‘j) =0 (,t) € Q.
Viri ) = 0(ri, t7), Wi, t;) = w(ri b)), (ri ;) € QY.

The errors ||\71 — gy, ||W1 — w|lq are then bounded as in the case of the outer errors
Vo — vy, IWo — wliq,- ]

Remark 3 Recall that throughout this paper, we have assumed that the boundary 9€2 is
smooth. This assumption is implicitly used in the Proof of Theorem 2 as all the deriva-
tives g’;, gl;’, 0 < i < 3 (see the definitions in (2)) are assumed to be bounded within
the strip. Hence, for the error analysis, the smoothness of the outflow boundary dQ2¢ is of

particular importance in the error analysis.

4 Numerical Results

The following set of examples are all related to the following: Let 8 > 0 and
0 :={(pcost, psint)} or 9 := {(psint, pcost)},
p(t) ;=B £t sin’t or p(t):=B+r cos’t with i =0,1,2.

Once ¢, ¥ are smooth functions, the level of smoothness qf the boundary o w1:ll be deter-
mined by identifying the value of p for which ¢ (0) = ¢ 27), ¥ (0) = v (27),0 <
i < p.(See Example 2 below).
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Fig. 1 Domain 2| with 8 = 0.5

To numerically estimate the order of convergence of the numerical method as it is applied
to several test problems, we use the double-mesh method [3]. Denote the mesh points on the
rectangular grid OV , which lie within the domain € by Q][V := O N Q. For each particular
value of ¢ € R, := {27,i =0,1,2,...20}and N € Ry := {27/, j = 3,4,5...10},
let UV be the computed solutions numerical solution (27), where N denotes the number of
mesh elements used in each co-ordinate direction within the rectangle O and within the strip
Qs. Define the maximum local two-mesh global differences Dév and the parameter-uniform
two-mesh global differences DV by

DY = max{|Ug’ — U™l grugavnas: 101 = U lgyugav ) DY = max DY.
Then, for any particular value of € and NV, the local orders of global convergence are denoted
by pY and, for any particular value of N and all values of ¢, the parameter-uniform global
orders of convergence p” are defined, respectively, by

_ DY _ DV
N :=log, <D7281V> and pY :=log, (W) .
&

In implementing the numerical method, we will apply the method to problems which do not
satisy the assumptions (4), (6) and (11). Hence, unless otherwise indicated, we simply take
R = 0.1 (for the width of the strip) and C, = 2 (in (25)).

Example 1 Consider 32; := {(¢(1), ¥(t))} = {(pcost, psint)}, with p := B + sin®r.
The domain is displayed in Fig. 1 for the case of § = 0.5. The outflow is all points on the
boundary where x > 0 and the inflow is for the boundary points where x < 0. There are
two external characteristic points at (0, (1 + 8)) and no internal characteristic points. The
curvature at the two characteristic points is k = (3 + 8)(1 + ,8)’2 and the upper bound in
4)is R < L.
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Table 1T Computed double-mesh global orders of convergence [)év for the corrected approximations U for

problem (31) and g = 0.5

e|N N =38 16 32 64 128 256 512

1.000000 0.5137 0.5011 1.4917 0.2148 1.7443 0.0500 1.3869
0.500000 0.1955 0.6965 1.3812 0.2949 1.7130 0.0752 1.3852
0.250000 —0.1489 0.8925 1.0994 0.5916 1.2696 0.5234 1.3834
0.125000 —0.1181 0.9350 1.0108 0.7912 1.0026 0.8120 1.3808
0.062500 0.1995 0.8365 0.3256 1.4904 0.7879 1.0620 1.2017
0.031250 0.4192 0.5178 —0.0990 1.5718 0.6644 1.0636 1.0025
0.015625 0.5074 0.5854 —0.1666 1.5261 0.9509 1.1332 1.0657
0.007813 0.5821 0.8212 0.0382 1.8144 1.2916 0.6715 1.3201
0.003906 0.6319 0.8092 0.7434 1.1094 1.2111 0.7548 1.2573
0.001953 0.6607 0.8019 0.9146 0.9390 1.0947 0.8686 1.1738
0.000977 0.6763 0.7984 0.9101 0.9444 1.0248 0.9377 1.0889
0.000488 0.6843 0.7968 0.9093 0.9455 0.9887 0.9737 1.0304
0.000244 0.6884 0.7961 0.9093 0.9455 0.9796 0.9558 1.0201
0.000122 0.6905 0.7958 0.9095 0.9453 0.9830 0.9489 0.9877
0.000061 0.6915 0.7956 0.9096 0.9452 0.9823 0.9643 0.9623
0.000031 0.6920 0.7955 0.9097 0.9452 0.9806 0.9818 0.9536
0.000015 0.6923 0.7955 0.9097 0.9451 0.9787 0.9837 0.9731
0.000008 0.6924 0.7955 0.9098 0.9451 0.9778 0.9846 0.9941
0.000004 0.6925 0.7955 0.9098 0.9451 0.9773 0.9851 0.9940
0.000002 0.6925 0.7954 0.9098 0.9451 0.9769 0.9855 0.9604
0.000001 0.6926 0.7954 0.9098 0.9451 0.9766 0.9780 0.9448
N 0.6558 0.6238 —0.1517 1.5261 0.7629 1.0636 1.0025

Fig.2 Computed solution of problem (31) for ¢ = 1073 and N = 1024 on the domain Q with g =0.5
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Fig.3 Example 1: Location of 157 —
mesh points used in the 11
calculation of
Up(x,y), (x,y) € Q\Qg, with
N = 128 on the rectangular grid 1r
0.5F
of
0.5
ak
-u~_~__‘

In Table 1 we present orders for the following test problem:
—eAutuy+u=~1+p7% -y (x,y) €Qy, u=0, (x,y) €dQ. (31

A sample computed solution is displayed in Fig. 2.

Remark 4 In determining the double-mesh global orders of convergence, we note that we
can underestimate the orders due to a potential overestimate of the maximum two mesh
differences. This overestimate is caused by the fact that the interpolant U over the rectangular
grid, will use mesh points lying within the strip Q. This overspill is visible in Fig. 3. An
overestimate can occur when the maximum two mesh differences are located near the inner
boundary of the strip.

Example 2 The boundary is 8, := {(psinz, p cos1)}, with p 1= 2.57% + f — 12 sin?¢. In
this case the orientation of the curve is clockwise as the parameter ¢ increases and the domain
is not symmetrical. The domain is displayed in Fig. 4 for the case of 8 = 0.5. This domain
does not have a smooth boundary at + = 0, where there is a jump (|[«](0)| & 0.1246) in the
curvature. However, this point does not lie within the outflow boundary and hence it does
not have any adverse effect on the rates of convergence. There are two external characteristic
points at (0, £M,), My = 2.57% + B. Also M, = 2.257* + B and the upper bound in (24)
is R ~ 14.28. In Table 2 we present global orders for the test problem, with R = 1:

4
2
y X
—eAu+uy+u= ((1 — M§> <Mx>> , (X, y) €2, u=0, (x,y) €9Q2. (32)

A sample computed solution is displayed in Fig. 5.
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A5 - /

Fig.4 Domain €2, with 8 = 0.5

Table2 Computed double-mesh global orders of convergence ﬁév for the corrected approximations U, using
a strip of width R = 1, for problem (32) and 8 = 0.5

e|N N =38 16 32 64 128 256 512

1.000000 1.1815 0.8659 1.2460 0.7149 2.1452 0.4748 2.0765
0.500000 1.5030 0.9087 0.7154 1.0345 1.1353 1.4214 1.2746
0.250000 1.6797 1.0045 0.6723 1.1996 1.7662 1.0373 0.9828
0.125000 1.6394 1.2235 1.4583 0.9942 0.9491 0.9721 0.9782
0.062500 1.6173 1.3528 1.2847 0.9799 0.9524 0.9745 0.9955
0.031250 1.6061 1.3424 0.9507 0.9831 0.9934 0.9969 0.9986
0.015625 1.6006 0.4432 0.9738 0.9372 0.9678 0.9833 0.9913
0.007813 1.5978 0.6144 0.6812 0.8724 0.7878 0.7226 0.7270
0.003906 1.5964 0.6192 0.6815 0.8722 0.7880 0.7225 0.8377
0.001953 1.5957 0.6216 0.6816 0.8721 0.7881 0.7224 0.8377
0.000977 1.5954 0.6228 0.6816 0.8720 0.7881 0.7224 0.8377
0.000488 1.5952 0.6234 0.6817 0.8720 0.7881 0.7224 0.8377
0.000244 1.5951 0.6237 0.6817 0.8720 0.7881 0.7224 0.8377
0.000122 1.5951 0.6238 0.6817 0.8720 0.7882 0.7224 0.8377
0.000061 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377
0.000031 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377
0.000015 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377
0.000008 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377
0.000004 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377
0.000002 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377
0.000001 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377
N 1.5951 0.4599 0.8440 0.8724 0.7878 0.7226 0.7270
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Fig.6 Domain Q23 with 8 = 0.5
Example 3 The boundary is 923 := {(¢(¢), ¥ (¢))} = {(pcost, psint)}, where p := B +

cos?tand 0 < B < 2 and the domain 23 is displayed in Fig. 6 for the case of 8§ = 0.5. The
inflow boundary is disjointed and corresponds to the intervals (in the ¢ variable)

0,0)U@/2,m —0)U (7 +0,37/2) U(2r —0,2m), 6 = arcsin,/ #

The domain has four exterior characteristic points (where for 8 = 0.5,k = 3/ (2V/2)) at

_200+p) 2= 20+p) [1+5
&P.£0). P="0 ,/—3 Q="
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Table 3 Computed double-mesh global orders of convergence [)év for the corrected approximations U for
problem (33) and g = 0.5

e|N N =38 16 32 64 128 256 512

1.000000 1.0702 0.3644 0.8105 0.5711 0.6534 0.8372 0.6988
0.500000 1.3472 0.6217 0.7877 0.5623 0.6173 0.8308 0.8403
0.250000 1.1339 1.5496 0.7490 0.4977 0.5958 0.8188 0.8354
0.125000 0.8425 1.5538 1.0672 1.1292 0.5590 0.7984 0.8272
0.062500 0.5542 1.5041 0.8783 1.1497 1.0228 1.2867 0.9587
0.031250 0.3465 1.8518 0.8686 1.0378 1.0317 1.2056 1.0415
0.015625 0.2300 2.2651 1.2117 1.4030 1.3229 0.7461 0.8992
0.007813 0.1682 2.6703 1.5264 1.3204 0.8332 0.7949 0.9250
0.003906 0.1367 2.8922 1.6560 1.0698 0.7922 0.8311 0.9404
0.001953 0.1206 2.9286 1.6488 1.0898 0.7699 0.8540 0.9416
0.000977 0.1124 2.8983 1.6037 1.1256 0.8283 0.8676 0.9377
0.000488 0.1082 2.8689 1.4319 1.2229 0.9477 0.8704 0.9388
0.000244 0.1003 2.8576 1.3268 1.2763 1.0112 0.8838 0.9416
0.000122 0.0930 2.8554 1.2726 1.2552 1.0361 0.9471 0.9417
0.000061 0.0892 2.8547 1.2456 1.2200 1.0735 0.9525 0.9553
0.000031 0.0873 2.8544 1.2323 1.2028 1.0944 0.9378 0.9365
0.000015 0.0863 2.8542 1.2257 1.1943 1.1063 0.9313 0.9236
0.000008 0.0859 2.8542 1.2224 1.1902 1.1128 0.9290 0.9170
0.000004 0.0856 2.8542 1.2208 1.1882 1.1161 0.9283 0.9142
0.000002 0.0855 2.8542 1.2200 1.1871 1.1179 0.9282 0.9132
0.000001 0.0854 2.8541 1.2196 1.1866 1.1187 0.9281 0.9127
N 0.0854 2.8541 1.0716 1.0378 1.0317 1.2056 1.0191

08 B}

Fig.7 Computed solution of problem (33) for ¢ = 2710 and N = 1024 on the domain Q3 with g =0.5
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and two interior characteristic points (where for § = 0.5, « = 2) at (0, ). In Table 3 we
present global orders for the test problem (with R = 1):

4 4
—sAu+ux+u:<l—%) (1+%) H(y—BH+B), (x,y) € Q3,
u=0, (x,y) € 0Q3; (33)

where H (-) is the Heaviside unit step function. A sample computed solution is displayed in
Fig. 7.

Remark 5 The data in test problem (33) has been chosen to satisfy Assumption 3, with
8 = 0.5. The data in the test problems (31) and (32) do not satisfy the compatibility constraints
in Assumption 3 for any choice of § > 0. Nevertheless, for all three test problems we observe
parameter-uniform convergence in each of the corresponding tables of orders of convergence.
However, if the test problem (33) is modified so that f = (1 — %)4(1 + %)4 then the
numerical method will fail to converge due to insufficient compatibility being imposed at the
characteristic points.
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