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Abstract
A finite difference method is constructed to solve singularly perturbed convection-diffusion
problems posed on smooth domains. Constraints are imposed on the data so that only regular
exponential boundary layers appear in the solution. A domain decomposition method is used,
which uses a rectangular grid outside the boundary layer and a Shishkin mesh, aligned to the
curvature of the outflow boundary, near the boundary layer. Numerical results are presented
to demonstrate the effectiveness of the proposed numerical algorithm.
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1 Introduction

The numerical solution of singularly perturbed elliptic problems, of convection-diffusion
type, posed on smooth domains presents several challenges. In order to generate a pointwise
accurate global approximation to the solution using piecewise polynomial basis functions,
the grid needs to insert mesh points into the layer regions, where the derivatives of the
solution depend inversely on the magnitude of the singular perturbation parameter. To avoid
the dimension of the discrete problem depending on the inverse of the singular perturbation
parameter, a quasi-uniform discretization of the continuous domain will not suffice [3].
Outside the layer regions one only needs a coarse mesh and within the layers one requires
a fine mesh. However, spurious oscillations will appear on a coarse mesh, unless some
particular discretization is used to preserve the inverse monotoniticity of the differential
operator [2, 5]. Finite element discretizations using triangles are well suited to discretizing
domains with smooth geometries; but it is difficult to generate an inverse-monotone system
matrix to a singularly perturbed convection-diffusion problem using triangular elements [1,
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4]. Upwinded finite difference operators (or finite volumes [15]) can be used to guarantee
stability, but it is not easy to work with these constructions over anisotropic meshes posed
on a smooth domain.

In addition to these complications, our objective is to design a parameter-uniform numer-
ical method [3], which will be accurate both for the classical case (where the singular
perturbation parameter is large) and the singularly perturbed case (where the singular per-
turbation parameter is very small), and will also deal with all the intermediate values of the
singular perturbation parameter. Moreover, given that boundary layers will be present, we
are only interested in global approximations that are pointwise accurate at all points in the
domain. Hence, although we use a finite difference formulation, our focus is not primarily on
the nodal accuracy of the numerical method, but on the global accuracy of the interpolated
approximation generated by the numerical algorithm.

The presence of a regular boundary layer [3] near a curved boundary requires a coordinate
transformation so that the layer region can be mapped to a rectangular computational region,
on which a suitable mesh can be aligned to the direction of steepest descent. In the special
case of a domain that is a circle [7] or an annulus [8], this coordinate transformation exists.
However, for a general smooth domain, it is difficult to apply such a coordinate transformation
across the entire domain. Hence, we need to use a mixture of coordinate systems. In the case
of singularly perturbed elliptic problems on smooth domains which are of reaction-diffusion
type, mixed coordinate systems have been applied to get energy norm error bounds [16–18]
or pointwise L∞ error bounds [10, 11]. In the case of convection-diffusion problems, the
interaction between the outer solution and the boundary layer function is more significant
than in the case of reaction-diffusion and the mixing of coordinate systems can be more
challenging.

To circumvent the difficulties mentioned above, we employ a domain decomposition
algorithm. The domain is first covered with a rectangle to generate an initial approximation
to the solution. On this rectangle, we simply use an upwinded finite difference operator on a
tensor product of uniform meshes. This classical method will produce an accurate and stable
approximation outside of the boundary layers. A correction within the layers is generated
across a subdomain that is aligned to the curved outflow boundary of the original domain
[16, 17]. Across this subdomain, a coordinate transformation is used and a piecewise-uniform
Shishkin mesh [3] is employed in the normal direction to the boundary.

On any closed domain, there will be characteristic points on the boundary, where the
tangent to the boundary is parallel to the convective direction, which is associated with the
characteristics of the reduced first order problem. In order to establish the theoretical error
bound in Theorem 2 below, we impose constraints on the data via three assumptions. The
first assumption prevents characteristic boundary layers forming; the second assumption
ensures that the solution is sufficiently regular for the numerical analysis within the paper
to apply and the final assumption prevents internal layers emerging within the solution.
The numerical results in Sect. 4 suggest that these theoretical constraints are excessive, as
the numerical method continues to display first order parameter-uniform under significantly
weaker constraints. The identification of necessary data constraints to retain the error bound
in Theorem 2 remains an open question.

In Sect. 2, the continuous problem is discussed and the solution is decomposed into a
regular and a singular component. Pointwise bounds on the derivatives (up to third order)
of these components are deduced. In Sect. 3, a numerical method is constructed and an
asymptotic error bound is deduced inTheorem2.Numerical results for three sample problems
are presented in the final section.
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Notation If D is the domain of some function f and D ⊂ D∗, then throughout we denote the
extension of the function to the larger domain by f ∗. In addition, f (x, y) = f̃ (r , t), where
(r , t) is a co-ordinate system aligned to the boundary of the domain. Thoughout the paper C
denotes a generic constant that is independent of both the singular perturbation parameter ε

and the discretization parameter N .

2 Continuous Problem

Let� be a two dimensional domain with a smooth closed boundary ∂�. The origin is located
within the domain. As in [11] we introduce a local curvilinear coordinate system associated
with the boundary. Let the boundary ∂� be parameterized by

∂� := {(x, y) | x = φ(t), y = ψ(t), 0 ≤ t ≤ T }, γ (t) := (φ(t), ψ(t));
where (φ(0), ψ(0)) = (φ(T ), ψ(T )). As the variable t increases, the boundary points move
in an anti-clockwise direction. At any point on the boundary, the magnitude of the tangent
vector (φ′, ψ ′) is denoted by τ(t) and the curvature of the boundary by |κ(t)|, which are
given by

τ(t) :=
√

(φ′)2 + (ψ ′)2 and κ(t) := φ′ψ ′′ − ψ ′φ′′

τ 3
.

A curvilinear local coordinate system (r , t) is defined by

x = φ(t) + rn1(t), n1 := −ψ ′

τ
; y = ψ(t) + rn2(t), n2 := φ′

τ
. (1)

Note that �n = (n1, n2) is the inward unit normal and

n′
1 = −φ′κ = −κτn2, n′

2 = −ψ ′κ = κτn1.

These coordinates are orthogonal in the sense that
(

∂x

∂r
,
∂ y

∂r

)
·
(

∂x

∂t
,
∂ y

∂t

)
= (n1, n2) · (φ′ + rn′

1, ψ
′ + rn′

2) = 0.

In these coordinates , the transformedLaplacianwill contain nomixed second order derivative
and we have [11, Lemma 2.1]

�u = η−1 ∂

∂r

(
η

∂ ũ

∂r

)
+ ζ

∂

∂t

(
ζ

∂ ũ

∂t

)
, where ζ := 1

τη
, η := 1 − κr . (2)

Consider the singularly perturbed convection-diffusion elliptic problem1

Lu ≡ −ε�u + aux + bu = f , (x, y) ∈ �, (3a)

1 For nonnegative integers k and all v ∈ Ck (D), D ⊂ R
2, we define

|v|k,D :=
∑

i+ j=k

sup
(x,y)∈D

∣∣∣ ∂kv

∂xi ∂ y j

∣∣∣, ‖v‖k,D :=
∑

0≤ j≤k

|v| j,D .

If D = �̄ we omit the subscript D and if k = 0 we omit the subscript k. The space Cγ (D) is the set of
all functions that are Hölder continuous of degree γ with respect to the Euclidean norm ‖ · ‖e . A function
f ∈ Cγ (D) if

� f 0,γ,D = sup
u �=v, u,v∈D

| f (u) − f (v)|
‖u − v‖e
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u = 0, (x, y) ∈ ∂�, a > α > 0, b ≥ 0, a, b, f ∈ C5,γ (�̄). (3b)

We define the inflow boundary ∂�I and the outflow boundary ∂�O by

∂�I := {(φ, ψ) | n1 > 0} and ∂�O := {(φ, ψ) | n1 < 0}.
If ψ ′(tC ) = 0 (i.e., �n = (0,±1)), then this will correspond to a characteristic point
(φ(tC ), ψ(tC )) on the boundary. To exclude the presence of parabolic boundary layers [3,
Chapter 6] and [9, Chap. 4, §1], we assume that there is only a finite number of isolated char-
acteristic points on the boundary. We confine the discussion to characteristic points where
the component n1 changes sign.

Assumption 1 Assume that there is a finite number of characteristic points on the boundary
∂�. Moreover, at each characteristic point t = tC assume that there exists a δ > 0 and a
neighbourhood tC ∈ IC := (t0, t1) such that |ψ ′(t0)| = 2δ = |ψ ′(t1)| and

ψ ′′(t) > 0 or ψ ′′(t) < 0, ∀t ∈ IC . (4)

We identify three subintervals of IC = I δ
O ∪ I δ

C ∪ I δ
I ., associated with each characteristic

point (φ(tC ), ψ(tC )):

I δ
O (tC ) := {t ∈ IC | 2δ > ψ ′(t) ≥ δ}, (5a)

I δ
I (tC ) := {t ∈ IC | − 2δ < ψ ′(t) ≤ −δ}, (5b)

I δ
C (tC ) := {t ∈ IC | |ψ ′(t)| < δ}. (5c)

As the domain is closed, therewill be at least two distinct characteristic points on the boundary
∂�. If the domain has an internal tangent to the boundary at t = tC and n1 changes sign at
this point, then we shall call (φ(tC ), ψ(tC )) an internal characteristic point. Otherwise, if n1
changes sign at t = tC , we call (φ(tC ), ψ(tC )) an external characteristic point [9, Chap. 4].

In the local coordinate system, the differential equation transforms into:

−ε

(
η−1 ∂

∂r

(
η

∂ ũ

∂r

)
+ ζ

∂

∂t

(
ζ

∂ ũ

∂t

))
+ ãn1ũr + ãζn2ũt + b̃ũ = f̃ .

Let us partition the domain� into a finite number of non-overlapping subdomains {Di }ni=1
such that

Di ∩ Dj = ∅, i �= j, �̄ = ∪n
i=1 D̄i and �i, j := D̄i ∩ D̄ j .

Let ∂u
∂ni

denote the outward normal derivative of each subdomain Di and define the jump in
the normal derivative across an interface �i, j to be

[
∂u

∂n

]

�i, j

:= ∂u

∂ni

∣∣∣∣
�i, j

+ ∂u

∂n j

∣∣∣∣
�i, j

.

Using the usual proof by contradiction argument (with a separate argument for the interfaces
�i, j ) we can establish the following

Footnote 1 continued
is finite. The space Ck,γ (D) is the set of all functions in Ck (D) whose derivatives of order k are Hölder
continuous of degree γ . Also we define

�vk,γ,D :=
∑

i+ j=k

⌈ ∂kv

∂xi ∂ y j

⌉
0,γ,D

, ‖v‖k,γ,D :=
∑

0≤n≤k

|v|n,D + �vk,γ,D .
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Theorem 1 If w, v ∈ C0(�̄) ∩ (∪n
i=1C

2(Di )) is such that for all i , Lw(x, y) ≥
Lv(x, y), ∀(x, y) ∈ Di ; for all i, j :

[
∂w
∂n

]
�i, j

≥ [
∂v
∂n

]
�i, j

and w ≥ v on the boundary

∂�, then w(x, y) ≥ v(x, y), ∀(x, y) ∈ �̄.

Wenext assume that the dataa, b, f is sufficiently regular and the boundary ∂� sufficiently
smooth so that u ∈ C3,γ (�). See [6, pg. 94] for definition of smooth domain and boundary.
Also see [6, Theorem 6.14] and [6, Theorem 6.19] to justify the following assumption.

Assumption 2 Assume that � is a C3,γ domain and the data a, b, f ∈ C1,γ (�̄), so that

u ∈ C3,γ (�). (6)

As the problem is linear, there is no loss in generality in dealingwith homogeneous bound-
ary data. Nevertheless, below we decompose the solution into regular and layer components,
which satisfy a singularly perturbed differential equation with inhomogeneous boundary
data. Hence, we state a result on a priori bounds on the derivatives of the solution of the more
general problem: find z such that

Lz = p(x, y), (x, y) ∈ �, z = q(x, y), (x, y) ∈ ∂�, (7)

where the data and the boundary ∂� are sufficiently smooth so that z ∈ C3,γ (�̄).
Using stretched variables ζ = x/ε, τ = y/ε and bounds from [12], one can establish the

following result (see the argument in [14, Appendix A] or [13, Theorem 3.2]).

Lemma 1 Assume a, b, p ∈ C1,γ (�̄) and q ∈ C3,γ (∂�). The solution z of (7) satisfies

||z|| ≤ C ||p|| + ||q||∂�,

|z|1 + εγ �z1,γ ≤ Cε−1||z|| + C

(
|p|0 + εγ �p0,γ +

2∑
i=0

εi−1|q|i + ε1+γ �q2,γ,∂�

)
,

and for l = 0, 1

|z|2+l + εγ �zl+2,γ ≤ Cε−(2+l)||z|| + C

(
l∑

i=0

εi−(1+l)|p|i +
l∑

i=0

εγ−1�pi,γ
)

+C

(
l∑

i=0

εi−l−2|q|i + εγ
l∑

i=0

�q2+i,γ

)
.

From these bounds, we have the crude bounds on the solution u of (3)

|u|i ≤ Cε−i , i = 0, 1, 2, 3. (8)

The solution u of problem (3) can be decomposed into the sum u = v + w, where v is a
regular component and w is a boundary layer function associated with the outflow boundary.
The reduced solution v0 is defined as the solution of the first order problem

a(v0)x + bv0 = f , (x, y) ∈ �̄\∂�I , v0(x, y) = 0, (x, y) ∈ ∂�I ; (9)

and the first correction v1 is defined as the solution of

a(v1)x + bv1 = �v0, (x, y) ∈ �̄\∂�I , v1(x, y) = 0, (x, y) ∈ ∂�I . (10)

Our next assumption guarantees that only regular boundary layers appear near the outflow
boundary.
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Assumption 3 At each characteristic point (xC , yC ) = (φ(tC ), ψ(tC )), define the rectangle

Qδ(xC , yC ) := (
(−∞, xC + δ] × [yC − δ, yC + δ]) ∩ �̄.

Assume that a, b, f ∈ C5,γ (�) and that there exists some δ > 0 such that

f (x, y) ≡ 0 for all (x, y) ∈ Qδ(xC , yC ), ∀(xC , yC ). (11)

Remark 1 At any external characteristic point �p, assumption (11) constrains the data in a
O(δ2) neighbourhood of �p. If the characteristic point �p is an internal characteristic point,
then assumption (11) constrains the data in a O(δ) neighbourhood of �p.

As v0, v1 are solutions of a first order differential equation (either (9) or (10)), it follows
from Assumption 3 that

v0(x, y) ≡ v1(x, y) ≡ 0, for all |y − yC | < δ.

The regular component v is defined as the solution of the problem: Find v such that

Lv = f , (x, y) ∈ �, (12a)

v = v0 + εv1, (x, y) ∈ ∂�O , v = 0, (x, y) ∈ ∂�\∂�O . (12b)

Note that, if z = v − (v0 + εv1), then z satisfies

Lz = ε2�v1 (x, y) ∈ �, z = 0, (x, y) ∈ ∂�.

As in [14, Appendix A] and since Assumption 3 eliminates any regularity difficulties at the
characteristic points, we then have v0 ∈ C5,γ (�̄), v1 ∈ C3,γ (�̄) and z ∈ C3,γ (�̄). Using
Lemma 1, we deduce that

‖z‖ ≤ Cε2, |z|i ≤ C(1 + ε2−i ), 1 ≤ i ≤ 3.

Hence, we have the following bounds on the regular component

‖v‖ ≤ C, |v|i + εγ �vi,γ ≤ C(1 + ε2−i ), 1 ≤ i ≤ 3. (13)

Assumption (11) also prevents any internal characteristic layers emerging from any internal
characteristic points.

The boundary layer component w is the solution of the problem: Find w such that

Lw = 0, (x, y) ∈ �, (14a)

w = (u − v)(x, y), (x, y) ∈ ∂�O w(x, y) = 0, (x, y) ∈ ∂�\∂�O . (14b)

From assumption (6), it follows that for all characteristic points

w(x, y) = 0, if (x, y) ∈ ∂�O and |y − yC | < δ.

In other words, the boundary layer function is not only zero on the inflow boundary, but also
on those parts of the outflow boundary near the characteristic points.

For some fixed R = O(1), we define the strip

�S := {(r , t) ∈ � | ψ ′(t) > 0, r ∈ (0, R)}, R < min{δ, ‖κ‖−1
∂�O

}, (15)

which is aligned to the outer boundary ∂�O . The width R of this strip �S is further limited
in (24). Note that if there are internal characteristic points, then �S will not be a connected
set. The outer boundary ∂� ∩ ∂�S of the strip will have characteristic points as end-points.
At each of these characteristic points, the strip �S will have a vertical boundary of the form
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{(xC , y)||y − yC | ≤ R}. If R < δ then the boundary layer function w ≡ 0 along these
vertical boundaries of �S , by (6).

In the next lemma, we show that the boundary layer function decreases exponentially in
the radial direction as one moves away from the outer boundary. To establish this result, we
assume that ε ≤ ε∗ = O(1), where ε∗ is sufficiently small and depends on the problem data
f , a, b, φ, ψ and in particular on δ.

Lemma 2 Assume (4), (6), (11) and ε ≤ ε∗ = O(1) is sufficiently small. If w is the solution
of (14) then within the strip �S (15),

|w̃(r , t)| ≤ Ce− αθr
ε + Ce− μαθR

ε , 0 ≤ r ≤ R; θ := min
ψ ′≥δ>0

|n1|, μ < 1; (16)

and exterior to the strip |w(x, y)| ≤ Ce− μαθR
ε , (x, y) ∈ �\�S .

Proof Associated with the neighbourhood IC (5) of each characteristic point, we construct a
cut-off function �C (t; 2δ) ∈ C2[0, T ] such that

0 < �C (t; 2δ) < 1, t ∈ I δ
O ; (17a)

�C (t; 2δ) ≡ 1, t ∈ ∂�O\IC ; �C (t; 2δ) ≡ 0, t ∈ ∂�I ∪ I δ
C . (17b)

Consider the barrier function

B̃(r , t) := �C (t; 2δ)
(
e− αθr

ε − e− αθR
ε

1 − e− αθR
ε

)
, (r , t) ∈ �̄S .

Observe that ψ ′(t) ≥ δ, |� ′
C (t)| + |� ′′

C (t)| ≤ C, t ∈ I δ
0 and �C (t) ≡ 0, t ∈ IC\I δ

O . Then,
for ε sufficiently small and (r , t) ∈ �S , using the definition of θ we have

L̃ B̃ = αθ

ε

(
ã

ψ ′(t)
τ (t)

− αθ + O(ε)

)
B̃(r , t) >

α2θ

ε
(−n1 − θ)B̃(r , t) ≥ 0.

Observe that B̃ = �C (t; 2δ) on the outer boundary ∂�O and B̃ = 0 on the other three
boundaries of the strip. This function B̃(r , t) is currently only defined on the strip �̄S . We
extend this function to �̄ as follows:

B(x, y) :=
{
B̃(r , t), (x, y) ∈ �̄S

0, (x, y) ∈ �\�̄S
,

such that at the inner boundary ∂�−
S := ∂�S ∩ �,

∂B

∂nS
= ∂ B̃

∂r
= −�C (t; 2δ)

ε

αθe− αθR
ε

1 − e− αθR
ε

< 0 and
∂B

∂nO
= 0,

where ∂B
∂nS

, ∂B
∂nO

denote, respectively, the normal derivative to �S,�O . We define a second
barrier function of the form

B1(x, y) :=
{

φ(t) − mx + 0.5(r + R)n1(t), (x, y) ∈ �̄S

x − mx , (x, y) ∈ �\�̄S
,

where mx := min0≤t≤T φ(t). On the strip, for ε sufficiently small,

L̃ B̃1 ≥ ã

2

(
1 + ζ

τ
(φ′)2(1 − Rκ)

)
+ O(ε) > 0.
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At the inner boundary of the strip ∂�−
S , we have

∂B1

∂nO
= −∂ B̃1

∂r
= ψ ′

τ

∂B1

∂x
|∂�−

S
= ψ ′

τ
and

∂B1

∂nS
= −ψ ′

2τ
.

We complete the proof by forming the barrier function

B2(x, y) := B(x, y) + 2‖τ‖
δ

αθ

ε
e− αθR

ε B1(x, y).

By the design of this barrier function, we see that on the inner boundary

∂B2

∂nS
+ ∂B2

∂nO
≥ 0.

Complete the proof using the inequality

te−t ≤ (1 − μ)−1e−μt , μ < 1, t ≥ 0

and the comparison principle in Theorem 1. ��
The crude bounds

|w|�̄,i ≤ Cε−i , i = 0, 1, 2, 3. (18)

on the derivatives of the layer function follow from (8). We can further decompose the
boundary layer function within the strip:

w̃ = w̃0 + w̃1, (r , t) ∈ �̄S, where

L̃w̃0 = L̃w̃1 = 0, (r , t) ∈ �S, w0(xC , y) = w1(xC , y) = 0;
w̃0(0, t) = w̃(0, t), w̃0(R, t) = 0, w̃1(0, t) = 0, w̃1(R, t) = w̃(R, t).

By Lemma 2 and the maximum principle, ‖w̃1‖�S ≤ Ce− αμθR
ε . Moreover, from the bounds

in (18),

∥∥∥∂ i w̃0

∂r i

∥∥∥
�S

≤ C(1 + ε−i ), i ≤ 3. (19)

Consider the function z̃(r , t) = w̃0(r , t) − �(r , t), where, for each t , �(r , t) is the solution
of the problem

−ε�rr + ã(0, t)ψ ′(t)
τ (t)

�r = 0, r ∈ (0, R), �(0, t) = w̃(0, t), �(R, t) = 0.

Then z̃ ≡ 0 on ∂�S and we can check that

|L̃ z̃(r , t)| ≤ Cε−1e− ã(0,t)ψ ′(t)r
τ(t)ε , (r , t) ∈ �S .

Applying the arguments from [14, Theorem 12.4], we deduce that

∥∥∥∂ j w̃0

∂t j

∥∥∥
�S

≤ C(1 + ε1− j ), j ≤ 3. (20)

Let �̄ ⊂ �∗ be an extended smooth closed domain that encloses �̄ and is constructed so
that any characteristic point (xC , yC ) ∈ ∂� is extended to (xC , y∗

C ) ∈ ∂�∗ and |y∗
C | ≥ |yC |.

In this way, all the points on the inflow boundary ∂�I are extended to the inflow boundary
∂�∗

I and likewise for the outflow boundaries. With each point �p ∈ ∂� on the boundary, we
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associate �p∗ ∈ ∂�∗ as the point lying on the outward normal to ∂� and passing through �p.
If the the two boundaries intersect, then �p∗ = �p. We define the width of the extension to be

δE := max
�p∈∂�

| �p − �p∗|. (21)

Let the boundary of this extended domain be parameterized by

∂�∗ := {(x, y) | x = φ∗(t), y = ψ∗(t), 0 ≤ t ≤ T }, γ ∗(t) := (φ∗(t), ψ∗(t));
and a∗, f ∗ are smooth extensions of a, f from � to �∗. Define v∗, w∗ as the solutions of

L∗v∗ = f ∗, (x, y) ∈ �∗, v∗ = 0, (x, y) ∈ ∂�∗
I , v∗ = v∗

0 + εv∗
1 , (x, y) ∈ ∂�∗

O ,

L∗w∗ = 0, (x, y) ∈ �∗, w∗ = 0, (x, y) ∈ ∂�∗
I , w∗ = u∗ − v∗, (x, y) ∈ ∂�∗

O .

As v0, v1, v
∗
0 , v

∗
1 are solutions of first order problems (9), (10) and ‖v∗

0‖∂�I ≤ CδE , ‖v∗
1‖∂�I

≤ CδE , then

‖(v∗
0 + εv∗

1) − (v0 + εv1)‖�̄ ≤ CδE .

Then, using a comparison principle for the elliptic operator L

‖v∗ − v‖�̄ ≤ CδE (x + C1) ≤ CδE .

Hence, on any subdomain D ⊂ �̄, we have

‖v∗ − u‖D ≤ ‖v∗ − v − w‖D ≤ CδE + ‖w‖D .

We define an approximation u1 to u on the strip �S as the solution of

L̃ũ1 = f̃ , (r , t) ∈ �S, ũ1(0, t) = ũ(0, t) = 0, ũ1(R, t) = ṽ∗(R, t), t ∈ IO ,

where IO denotes the subinterval of [0, T ] where ψ ′(t) > 0. Outside the strip u1 :=
v∗, (x, y) ∈ �\�S . Then

‖u − u1‖� ≤ CδE + ‖w‖�\�S .

In the next section, we describe a numerical method which initially generates an approxi-
mation Ū0 to v∗ across �̄ and, using Ū0 along the inner boundary �−

S , it corrects this initial
approximation within the strip using a piecewise-uniform Shishkin mesh.

3 Numerical Method

A global approximation Ū is generated in this section, using a two-step numerical procedure.
An initial approximation Ū0 is generated across a rectangular domain Q̄E , which contains
the original domain �̄. In the second stage, an approximation Ū1 is generated in the strip�S ,
which is adjacent to the outflow boundary ∂�O . The initial approximation Ū0 is used as a
boundary condition along the inner boundary ∂�̃S ∩ �. The approximation Ū corresponds
to Ū1 within the strip and to Ū0 outside of the strip.

Enclose the domain with a rectangle Q̄E := [mx , Mx ] × [my, My], where
mx ≤ min

t∈[0,T ] φ(t), Mx ≥ max
t∈[0,T ] φ(t), Lx := Mx − mx ; (22a)

my ≤ min
t∈[0,T ] ψ(t), My ≥ max

t∈[0,T ] ψ(t), Ly := My − my . (22b)
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Set u(x, y) ≡ 0, (x, y) ∈ Q̄E\� for points outside �, then solve the problem (3) using
upwinding on a uniform rectangular mesh

Q̄N :=
{
(xi , y j ) | xi = mx + i

Lx

N
, y j = my + j

L y

N

}N

i, j=0
.

That is, find U0 such that2

LNU0(xi , y j ) = f (xi , y j ), (xi , y j ) ∈ � ∩ QN ; (23a)

U0(xi , y j ) = 0, (xi , y j ) ∈ Q̄N\�; (23b)

where LN := −ε(δ2x + δ2y) + aD−
x + bI . (23c)

Use bilinear interpolation to form an initial global approximation Ū0 to u, defined as

Ū0(x, y) =
N−1∑
i, j=1

U0(xi , y j )φi (x)φ
j (y), (x, y) ∈ �̄,

whereφi (x) (φ j (y)) is the standard piecewise linear hat functions centered at x = xi (y = y j ).
Since we are using upwinding, the numerical solution will be stable; in the sense that the
operator LN satisfies a discrete comparison principle of the form: If Z(xi , t j ) ≥ 0, (xi , t j ) ∈
Q̄N\� and LN Z(xi , t j ) ≥ 0, (xi , t j ) ∈ QN , then Z(xi , t j ) ≥ 0, (xi , t j ) ∈ Q̄N . However,
the layers at the outflow will be smeared and Ū0 will not be accurate in the boundary layer
region.

We correct this approximation in the strip (15), where the width of the strip is such that

R < min

{
Mx , |my |, My,

1

‖κ‖∂�O

}
. (24)

On the strip, we will use the following upwinded finite difference operator

L̃ N Z̃(ri , t j ) :=
(
−εη−1

i, j h̄
−1
i

(
ηi+1/2, j D

+
r − ηi−1/2, j D

−
r

) + (ãn1)i, j D
±
r

− εζi, j k̄
−1
j

(
ζi, j+1/2D

+
t − ζi, j−1/2D

−
t

) + (ãn2ζ )i, j D
±
t + b̃i, j I

)
Z̃(ri , t j );

where Z̃ is any mesh function,

hi := ri − ri−1, h̄i := hi+1 + hi
2

; k j := t j − t j−1, k̄ j := k j+1 + k j
2

;

ηi, j := η(ri , t j ), and ηi+1/2, j := η

(
ri + ri+1

2
, t j

)
.

The operator L̃ N again satisfies a discrete comparison principle on the strip. Over �S , we
generate a Shishkin mesh [3] in the r coordinate and a uniform mesh in the t direction. The

2 The finite difference operators are defined as

D+
x Z(xi , y j ) := Z(xi+1, y j ) − Z(xi , y j )

xi+1 − xi
, D−

x Z(xi , y j ) := Z(xi , y j ) − Z(xi−1, y j )

xi − xi−1
;

2(bD±
x )Z := (b − |b|)D+

x Z + (b + |b|)D−
x Z; δ2x Z(xi , y j ) := D+

x Z(xi , y j ) − D−
x Z(xi , y j )

(xi+1 − xi−1)/2
.
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interval [0, R] = [0, σ ] ∪ [σ, R] and the Shishkin transition point [3] is taken to be

σ := min

{
R

2
,C∗

ε

α
ln N

}
, C∗ >

1

θ
, θ = min

ψ ′≥δ>0
|n1|. (25)

Remark 2 In the neighbourhood of each characteristic point t = tC , consider the parabola

y − yC = κ(tC )(x − xC )2, on which |n1(t)| = 2|κ(tC )t |√
1 + (2κ(tC )t)2

.

If we choose the parameter δ in Assumption 3 such that |κ(tC )|−1 > δ ≥ (m|κ(tC )|)−1, m >

1 and if the boundary ∂� coincided with this parabola then θ ≥ 2√
4+m

. Based on this

observation, we shall take C∗ = 2 in (25) in our numerical experiments.

The mesh on the strip will be denoted by �̃N
S and the mesh points on the boundary of the

strip will be denoted by ∂�̃N
S . Solve for the corrected approximation in the transformed

co-ordinates

L̃ N Ũ1(ri , t j ) = f̃ (ri , t j ), (ri , t j ) ∈ �̃N
S , (26a)

Ũ1(ri , t j ) = 0, (ri , t j ) ∈ ∂�̃N
S ∩ ∂�O , Ũ1 = Ũ0, (ri , t j ) ∈ ∂�̃N

S \∂�O . (26b)

Use bilinear interpolationwithin the strip to form Ū1. Our corrected numerical approximation
Ū is defined by

Ū (x, y) =
{
Ū1(x, y), (x, y) ∈ �̄S,

Ū0(x, y), (x, y) ∈ �\�S
. (27)

Theorem 2 Assume (4), (6), (11) and that the strip width R < δ. If U is the corrected
numerical solution (27) and u is the continuous solution of (3) then

‖Ū − u‖ ≤ CN−1(ln N )2.

Proof In the first phase of the numerical algorithm, we solve on the rectangular mesh Q̄N .
For each vertical height y = y j , we identify the external mesh points S j := Q̄N\�̄ and the
edge co-ordinates

x0, j := max
S j

{xi < 0} and xN , j := min
S j

{xi > 0}.

Asmooth curve ∂�∗ can be created to pass through these edgemesh points {(x0, j , y j ), (xN , j ,

y j )}Nj=0, which will define the boundary of an extension �∗ of the domain �. Note that the

width of this extension (21) is such that δE ≤ CN−1. If ε is sufficently large such that
ε ln N > C0 or ε > ε∗ = O(1), then using the derivative bounds (8) we can deduce that

‖Ū0 − u‖ ≤ CN−1(ln N )2, if ε ln N > C0. (28)

In the other case where ε ln N ≤ C0, we decompose the initial approximationU0 = V0+W0,
where the regular and singular components are defined as the solutions of

LNV0 = f (xi , y j ), (xi , y j ) ∈ �, V0 = v∗, (xi , y j ) ∈ Q̄N\�,

LNW0 = 0, (xi , y j ) ∈ �, W0 = w∗, (xi , y j ) ∈ Q̄N\�.

Let us first bound the error in the regular component V0. The truncation error and the inter-
polation error on the boundary yield

∣∣∣LN (V0 − v)(xi , y j )
∣∣∣ =

∣∣∣(LNv − Lv)(xi , y j )
∣∣∣ ≤ CN−1, (xi , y j ) ∈ �,
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|(V0 − v)(xi , y j )| = |(v∗ − v)(xi , y j )| ≤ CN−1, (xi , y j ) ∈ Q̄N\�.

Hence,

‖V̄0 − v‖ ≤ CN−1. (29)

observe that

|W0(xi , y j )| ≤ C

(
1 + αH

ε

)i−N

≤ C

(
1 + αLx

Nε

)−pN

, xi ≤ (1 − p)N , p < 1.

As in [14, Lemma 5.1], we have the inequality,3

(
1 + q ln N

N

)−pN

≤ N−pq , ∀N ≥ 1, p, q > 0.

If ε ln N ≤ C0 := pq, 0 < p < 1, q := αLx , then for all xi ≤ (1 − p)N , p < 1,

|W0(xi , y j )| ≤ C
(
1 + q

Nε

)−pN ≤
(
1 + ln N

pN

)−pN

≤ CN−1.

Then, in the outer domain �O := �\�S , for ε ln N ≤ pq , we have the bound

‖Ū0 − u‖�0 ≤ ‖V̄0 − v‖�0 + ‖w‖�0 + ‖W̄0‖�0 ≤ CN−1,

where we have used the bound (16) from Lemma 2. Hence, in all cases, outside the strip

‖Ū0 − u‖�0 ≤ CN−1(ln N )2.

We next examine the error ‖Ū1 − u‖ on the strip.
In the case of functions a(r), u(r) of a single variable, over the interval Ii := [ri−1, ri+1]

with Hi := max{hi , hi+1}, we have that
hi
h̄i

D−
r (a(ri+1/2)D

+
r u(ri ))

= 1

h̄i

(a(ri+1/2)

hi+1

∫ ri+1

s=ri
u′(s) ds − a(ri−1/2)

hi

∫ ri

s=ri−1

u′(s) ds
)

= a(ri+1/2) − a(ri )

h̄i hi+1

∫ ri+1

s=ri

∫ s

t=ri
u′′(t) dt ds + (a′u′)(ri ) + a(ri )δ

2
r u(ri )

−a(ri−1/2) − a(ri )

h̄i hi

∫ ri

s=ri−1

∫ s

t=ri
u′′(t) dt ds + u′(ri )

h̄i

∫ ri+1/2

s=ri−1/2

∫ s

t=ri
a′′(t) dt ds

= a(ri+1/2) − a(ri )

h̄i hi+1

∫ ri+1

s=ri

∫ s

t=ri

∫ t

w=ri
u′′′(w) dw dt ds + (a′u′)(ri )

−a(ri−1/2) − a(ri )

h̄i hi

∫ ri

s=ri−1

∫ ri

t=s

∫ t

w=ri
u′′′(w) dw dt ds + a(ri )δ

2
r u(ri )

+u′′(ri )
h̄i

(hi+1

2

∫ ri+1/2

s=ri

∫ s

t=ri
a′′(t) dt ds − hi

2

∫ ri

s=ri−1/2

∫ s

t=ri
a′′(t) dt ds

)

+u′(ri )
h̄i

∫ ri+1/2

s=ri−1/2

∫ s

t=ri

∫ t

w=ri
a′′′(t) dw dt ds + (u′a′′ + 2u′′a′)(ri )

4
(hi+1 − hi ).

3 Take the natural logarithm of both sides and use ln(1 + t) ≥ t(1 − t/2), ∀t ≥ 0.
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From this expression, we have the following truncation error bound,
∣∣∣∣(aur )r (ri ) − hi

h̄i
D−
r (a(ri+1/2)D

+
r u(ri )

∣∣∣∣

≤ C |hi+1 − hi |
3∑

k=1

∣∣∣∣
∂3−ka

∂r3−k
(ri )

∣∣∣∣ ·
∣∣∣∣
∂ku

∂rk
(ri )

∣∣∣∣

+CH2
i

2∑
k=1

∥∥∥∥
∂4−ka

∂r4−k

∥∥∥∥
Ii

·
∣∣∣∣
∂ku

∂rk
(ri )

∣∣∣∣ + CHi min

{∥∥∥∥
∂3u

∂r3

∥∥∥∥
Ii

, Hi

4∑
k=3

∥∥∥∥
∂ku

∂rk

∥∥∥∥
Ii

}
.

By the choice of transition point (25), we can identify the following barrier function

Ẽ(ri ) := �i
n=1(1 + αθhi

ε
)

�N
n=1(1 + αθhi

ε
)
, so that L̃ Ẽ(ri ) ≥ 0, 0 < ri < R. (30)

The proof is completed using the arguments in [14, Chapter 13], the barrier function (30),
Lemma 2, the above truncation error bounds coupled with the bounds on the derivatives in
(8) and (20). The first case of ε ln N > αR

2C∗ , when the mesh is uniform, uses the truncation
error bound

‖L̃(Ũ1 − ũ)(ri , t j )‖ ≤ CN−1ε−2 ≤ CN−1(ln N )2,

coupled with the boundary value ‖(Ũ1 − ũ)(R, t j )‖ ≤ CN−1(ln N )2 to deduce that ‖Ũ1 −
ũ‖ ≤ CN−1(ln N )2 in the classical case of ε large. In the other case of 2C∗ε ln N ≤ αR,
the discrete solution Ũ1 is again decomposed into a regular Ṽ1 and singular component W̃1,
defined as the solutions of

L̃ N Ṽ1(ri , t j ) = f̃ (ri , t j ), L̃ N W̃1(ri , t j ) = 0 (ri , t j ) ∈ �̃N
S ,

Ṽ1(ri , t j ) = ṽ(ri , t j ), W̃1(ri , t j ) = w̃(ri , t j ), (ri , t j ) ∈ ∂�̃N
S .

The errors ‖Ṽ1 − ṽ‖�S , ‖W̃1 − w̃‖�S are then bounded as in the case of the outer errors
‖V0 − v‖�O , ‖W0 − w‖�O . ��
Remark 3 Recall that throughout this paper, we have assumed that the boundary ∂� is
smooth. This assumption is implicitly used in the Proof of Theorem 2 as all the deriva-

tives ∂ i ζ

∂t i
,

∂ iη

∂t i
, 0 ≤ i ≤ 3 (see the definitions in (2)) are assumed to be bounded within

the strip. Hence, for the error analysis, the smoothness of the outflow boundary ∂�O is of
particular importance in the error analysis.

4 Numerical Results

The following set of examples are all related to the following: Let β > 0 and

∂� := {(ρ cos t, ρ sin t)} or ∂� := {(ρ sin t, ρ cos t)},
ρ(t) := β ± t i sin2 t or ρ(t) := β ± t i cos2 t with i = 0, 1, 2.

Once φ,ψ are smooth functions, the level of smoothness of the boundary ∂� will be deter-
mined by identifying the value of p for which φ(i)(0) = φ(i)(2π), ψ(i)(0) = ψ(i)(2π), 0 ≤
i ≤ p. (See Example 2 below).
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Fig. 1 Domain �1 with β = 0.5

To numerically estimate the order of convergence of the numerical method as it is applied
to several test problems, we use the double-mesh method [3]. Denote the mesh points on the
rectangular grid Q̄N , which lie within the domain �̄ by Q̄N

I := Q̄N ∩ �̄. For each particular
value of ε ∈ Rε := {2−i , i = 0, 1, 2, . . . 20} and N ∈ RN := {2− j , j = 3, 4, 5 . . . 10},
let UN be the computed solutions numerical solution (27), where N denotes the number of
mesh elements used in each co-ordinate directionwithin the rectangle Q̄N andwithin the strip
�̄S . Define the maximum local two-mesh global differences DN

ε and the parameter-uniform
two-mesh global differences DN by

DN
ε := max{‖Ū N

0 − Ū 2N
0 ‖(QN

I ∪Q2N
I )\�S

, ‖Ū N
1 − Ū 2N

1 ‖�̃N
S ∪�̃2N

S
}; DN := max

ε∈Rε

DN
ε .

Then, for any particular value of ε and N , the local orders of global convergence are denoted
by p̄Nε and, for any particular value of N and all values of ε, the parameter-uniform global
orders of convergence p̄N are defined, respectively, by

p̄Nε := log2

(
DN

ε

D2N
ε

)
and p̄N := log2

(
DN

D2N

)
.

In implementing the numerical method, we will apply the method to problems which do not
satisy the assumptions (4), (6) and (11). Hence, unless otherwise indicated, we simply take
R = 0.1 (for the width of the strip) and C∗ = 2 (in (25)).

Example 1 Consider ∂�1 := {(φ(t), ψ(t))} = {(ρ cos t, ρ sin t)}, with ρ := β + sin2 t .
The domain is displayed in Fig. 1 for the case of β = 0.5. The outflow is all points on the
boundary where x > 0 and the inflow is for the boundary points where x < 0. There are
two external characteristic points at (0,±(1+ β)) and no internal characteristic points. The
curvature at the two characteristic points is κ = (3 + β)(1 + β)−2 and the upper bound in
(24) is R < 1

6 .
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Table 1 Computed double-mesh global orders of convergence p̄Nε for the corrected approximations Ū for
problem (31) and β = 0.5

ε|N N = 8 16 32 64 128 256 512

1.000000 0.5137 0.5011 1.4917 0.2148 1.7443 0.0500 1.3869

0.500000 0.1955 0.6965 1.3812 0.2949 1.7130 0.0752 1.3852

0.250000 −0.1489 0.8925 1.0994 0.5916 1.2696 0.5234 1.3834

0.125000 −0.1181 0.9350 1.0108 0.7912 1.0026 0.8120 1.3808

0.062500 0.1995 0.8365 0.3256 1.4904 0.7879 1.0620 1.2017

0.031250 0.4192 0.5178 −0.0990 1.5718 0.6644 1.0636 1.0025

0.015625 0.5074 0.5854 −0.1666 1.5261 0.9509 1.1332 1.0657

0.007813 0.5821 0.8212 0.0382 1.8144 1.2916 0.6715 1.3201

0.003906 0.6319 0.8092 0.7434 1.1094 1.2111 0.7548 1.2573

0.001953 0.6607 0.8019 0.9146 0.9390 1.0947 0.8686 1.1738

0.000977 0.6763 0.7984 0.9101 0.9444 1.0248 0.9377 1.0889

0.000488 0.6843 0.7968 0.9093 0.9455 0.9887 0.9737 1.0304

0.000244 0.6884 0.7961 0.9093 0.9455 0.9796 0.9558 1.0201

0.000122 0.6905 0.7958 0.9095 0.9453 0.9830 0.9489 0.9877

0.000061 0.6915 0.7956 0.9096 0.9452 0.9823 0.9643 0.9623

0.000031 0.6920 0.7955 0.9097 0.9452 0.9806 0.9818 0.9536

0.000015 0.6923 0.7955 0.9097 0.9451 0.9787 0.9837 0.9731

0.000008 0.6924 0.7955 0.9098 0.9451 0.9778 0.9846 0.9941

0.000004 0.6925 0.7955 0.9098 0.9451 0.9773 0.9851 0.9940

0.000002 0.6925 0.7954 0.9098 0.9451 0.9769 0.9855 0.9604

0.000001 0.6926 0.7954 0.9098 0.9451 0.9766 0.9780 0.9448

p̄N 0.6558 0.6238 −0.1517 1.5261 0.7629 1.0636 1.0025

Fig. 2 Computed solution of problem (31) for ε = 10−3 and N = 1024 on the domain �1 with β = 0.5
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Fig. 3 Example 1: Location of
mesh points used in the
calculation of
Ū0(x, y), (x, y) ∈ �\�S , with
N = 128 on the rectangular grid

In Table 1 we present orders for the following test problem:

− ε�u + ux + u = (1 + β)2 − y2, (x, y) ∈ �1, u = 0, (x, y) ∈ ∂�1. (31)

A sample computed solution is displayed in Fig. 2.

Remark 4 In determining the double-mesh global orders of convergence, we note that we
can underestimate the orders due to a potential overestimate of the maximum two mesh
differences. This overestimate is caused by the fact that the interpolant Ū0 over the rectangular
grid, will use mesh points lying within the strip �̄S . This overspill is visible in Fig. 3. An
overestimate can occur when the maximum two mesh differences are located near the inner
boundary of the strip.

Example 2 The boundary is ∂�2 := {(ρ sin t, ρ cos t)}, with ρ := 2.5π2 + β − t2 sin2 t . In
this case the orientation of the curve is clockwise as the parameter t increases and the domain
is not symmetrical. The domain is displayed in Fig. 4 for the case of β = 0.5. This domain
does not have a smooth boundary at t = 0, where there is a jump (|[κ](0)| ≈ 0.1246) in the
curvature. However, this point does not lie within the outflow boundary and hence it does
not have any adverse effect on the rates of convergence. There are two external characteristic
points at (0,±My), My = 2.5π2 + β. Also Mx = 2.25π2 + β and the upper bound in (24)
is R ≈ 14.28. In Table 2 we present global orders for the test problem, with R = 1:

− ε�u + ux + u =
((

1 − y2

M2
y

) (
x

Mx

))4

, (x, y) ∈ �2, u = 0, (x, y) ∈ ∂�2. (32)

A sample computed solution is displayed in Fig. 5.
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Fig. 4 Domain �2 with β = 0.5

Table 2 Computed double-mesh global orders of convergence p̄Nε for the corrected approximations Ū , using
a strip of width R = 1, for problem (32) and β = 0.5

ε|N N = 8 16 32 64 128 256 512

1.000000 1.1815 0.8659 1.2460 0.7149 2.1452 0.4748 2.0765

0.500000 1.5030 0.9087 0.7154 1.0345 1.1353 1.4214 1.2746

0.250000 1.6797 1.0045 0.6723 1.1996 1.7662 1.0373 0.9828

0.125000 1.6394 1.2235 1.4583 0.9942 0.9491 0.9721 0.9782

0.062500 1.6173 1.3528 1.2847 0.9799 0.9524 0.9745 0.9955

0.031250 1.6061 1.3424 0.9507 0.9831 0.9934 0.9969 0.9986

0.015625 1.6006 0.4432 0.9738 0.9372 0.9678 0.9833 0.9913

0.007813 1.5978 0.6144 0.6812 0.8724 0.7878 0.7226 0.7270

0.003906 1.5964 0.6192 0.6815 0.8722 0.7880 0.7225 0.8377

0.001953 1.5957 0.6216 0.6816 0.8721 0.7881 0.7224 0.8377

0.000977 1.5954 0.6228 0.6816 0.8720 0.7881 0.7224 0.8377

0.000488 1.5952 0.6234 0.6817 0.8720 0.7881 0.7224 0.8377

0.000244 1.5951 0.6237 0.6817 0.8720 0.7881 0.7224 0.8377

0.000122 1.5951 0.6238 0.6817 0.8720 0.7882 0.7224 0.8377

0.000061 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377

0.000031 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377

0.000015 1.5951 0.6239 0.6817 0.8720 0.7881 0.7224 0.8377

0.000008 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377

0.000004 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377

0.000002 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377

0.000001 1.5951 0.6240 0.6817 0.8720 0.7881 0.7224 0.8377

p̄N 1.5951 0.4599 0.8440 0.8724 0.7878 0.7226 0.7270
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Fig. 5 Computed solution of problem (32) for ε = 2−10 and N = 1024 on the domain �2 with β = 0.5

Fig. 6 Domain �3 with β = 0.5

Example 3 The boundary is ∂�3 := {(φ(t), ψ(t))} = {(ρ cos t, ρ sin t)}, where ρ := β +
cos2 t and 0 < β < 2 and the domain �3 is displayed in Fig. 6 for the case of β = 0.5. The
inflow boundary is disjointed and corresponds to the intervals (in the t variable)

(0, θ) ∪ (π/2, π − θ) ∪ (π + θ, 3π/2) ∪ (2π − θ, 2π), θ = arcsin

√
1 + β

3
.

The domain has four exterior characteristic points (where for β = 0.5, κ = 3/(2
√
2)) at

(±P,±Q), P := 2(1 + β)

3

√
2 − β

3
Q := 2(1 + β)

3

√
1 + β

3
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Table 3 Computed double-mesh global orders of convergence p̄Nε for the corrected approximations Ū for
problem (33) and β = 0.5

ε|N N = 8 16 32 64 128 256 512

1.000000 1.0702 0.3644 0.8105 0.5711 0.6534 0.8372 0.6988

0.500000 1.3472 0.6217 0.7877 0.5623 0.6173 0.8308 0.8403

0.250000 1.1339 1.5496 0.7490 0.4977 0.5958 0.8188 0.8354

0.125000 0.8425 1.5538 1.0672 1.1292 0.5590 0.7984 0.8272

0.062500 0.5542 1.5041 0.8783 1.1497 1.0228 1.2867 0.9587

0.031250 0.3465 1.8518 0.8686 1.0378 1.0317 1.2056 1.0415

0.015625 0.2300 2.2651 1.2117 1.4030 1.3229 0.7461 0.8992

0.007813 0.1682 2.6703 1.5264 1.3204 0.8332 0.7949 0.9250

0.003906 0.1367 2.8922 1.6560 1.0698 0.7922 0.8311 0.9404

0.001953 0.1206 2.9286 1.6488 1.0898 0.7699 0.8540 0.9416

0.000977 0.1124 2.8983 1.6037 1.1256 0.8283 0.8676 0.9377

0.000488 0.1082 2.8689 1.4319 1.2229 0.9477 0.8704 0.9388

0.000244 0.1003 2.8576 1.3268 1.2763 1.0112 0.8838 0.9416

0.000122 0.0930 2.8554 1.2726 1.2552 1.0361 0.9471 0.9417

0.000061 0.0892 2.8547 1.2456 1.2200 1.0735 0.9525 0.9553

0.000031 0.0873 2.8544 1.2323 1.2028 1.0944 0.9378 0.9365

0.000015 0.0863 2.8542 1.2257 1.1943 1.1063 0.9313 0.9236

0.000008 0.0859 2.8542 1.2224 1.1902 1.1128 0.9290 0.9170

0.000004 0.0856 2.8542 1.2208 1.1882 1.1161 0.9283 0.9142

0.000002 0.0855 2.8542 1.2200 1.1871 1.1179 0.9282 0.9132

0.000001 0.0854 2.8541 1.2196 1.1866 1.1187 0.9281 0.9127

p̄N 0.0854 2.8541 1.0716 1.0378 1.0317 1.2056 1.0191

Fig. 7 Computed solution of problem (33) for ε = 2−10 and N = 1024 on the domain �3 with β = 0.5
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and two interior characteristic points (where for β = 0.5, κ = 2) at (0,±β). In Table 3 we
present global orders for the test problem (with R = 1):

− ε�u + ux + u =
(
1 − y

β

)4 (
1 + y

β

)4

H(y − β)H(y + β), (x, y) ∈ �3,

u = 0, (x, y) ∈ ∂�3; (33)

where H(·) is the Heaviside unit step function. A sample computed solution is displayed in
Fig. 7.

Remark 5 The data in test problem (33) has been chosen to satisfy Assumption 3, with
δ = 0.5. The data in the test problems (31) and (32) do not satisfy the compatibility constraints
in Assumption 3 for any choice of δ > 0. Nevertheless, for all three test problems we observe
parameter-uniform convergence in each of the corresponding tables of orders of convergence.
However, if the test problem (33) is modified so that f = (1 − y

β
)4(1 + y

β
)4 then the

numerical method will fail to converge due to insufficient compatibility being imposed at the
characteristic points.
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