
Journal of Scientific Computing (2022) 92:34
https://doi.org/10.1007/s10915-022-01883-y

Numerical Bifurcation Analysis of PDEs From Lattice
BoltzmannModel Simulations: a Parsimonious Machine
Learning Approach

Evangelos Galaris1 · Gianluca Fabiani2 · Ioannis Gallos3 · Ioannis Kevrekidis4 ·
Constantinos Siettos1,2

Received: 16 February 2022 / Revised: 2 May 2022 / Accepted: 18 May 2022 /
Published online: 24 June 2022
© The Author(s) 2022

Abstract
Weaddress a three-tier data-driven approach for the numerical solution of the inverse problem
in Partial Differential Equations (PDEs) and for their numerical bifurcation analysis from
spatio-temporal data produced by Lattice Boltzmannmodel simulations usingmachine learn-
ing. In the first step, we exploit manifold learning and in particular parsimonious Diffusion
Maps using leave-one-out cross-validation (LOOCV) to both identify the intrinsic dimension
of themanifoldwhere the emergent dynamics evolve and for feature selection over the param-
eter space. In the second step, based on the selected features, we learn the right-hand-side
of the effective PDEs using two machine learning schemes, namely shallow Feedforward
Neural Networks (FNNs) with two hidden layers and single-layer Random Projection Net-
works (RPNNs),which basis functions are constructed using an appropriate random sampling
approach. Finally, based on the learned black-box PDE model, we construct the corre-
sponding bifurcation diagram, thus exploiting the numerical bifurcation analysis toolkit.

B Constantinos Siettos
constantinos.siettos@unina.it

Evangelos Galaris
evangelos.galaris@unina.it

Gianluca Fabiani
gianluca.fabiani@unina.it

Ioannis Gallos
yiannis.gallos@gmail.com

Ioannis Kevrekidis
yannisk@jhu.edu

1 Dipartimento di Matematica e Applicazioni, Universitá degli Studi di Napoli Federico II, Naples,
Italy

2 Scuola Superiore Meridionale, Universitá degli Studi di Napoli Federico II, Naples, Italy

3 School of Applied Mathematical and Physical Sciences, National Technical University of Athens,
Athens, Greece

4 Department of Chemical and Biomolecular Engineering, Department of Applied Mathematics and
Statistics, Department of Medicine, Johns Hopkins University, Baltimore, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01883-y&domain=pdf
http://orcid.org/0000-0002-9568-3355

34 Page 2 of 30 Journal of Scientific Computing (2022) 92 :34

For our illustrations, we implemented the proposed method to perform numerical bifurcation
analysis of the 1D FitzHugh-Nagumo PDEs from data generated by D1Q3 Lattice Boltz-
mann simulations. The proposed method was quite effective in terms of numerical accuracy
regarding the construction of the coarse-scale bifurcation diagram. Furthermore, the pro-
posed RPNN scheme was ∼ 20 to 30 times less costly regarding the training phase than the
traditional shallow FNNs, thus arising as a promising alternative to deep learning for the
data-driven numerical solution of the inverse problem for high-dimensional PDEs.

Keywords Machine learning · Lattice Boltzmann modelling · Diffusion maps · Partial
differential equations · Inverse problem · Random projection Neural networks · Numerical
bifurcation analysis

1 Introduction

The discovery of physical laws and the numerical solution of the inverse problem in complex
systems modelling, i.e. the construction of Partial Differential Equations (PDEs) for the
emergent dynamics from data and consequently the systematic analysis of their dynamics
with established numerical analysis techniques is a holy grail in the study of complex systems
and has been the focus of intense research efforts over the the last years [1–4]. From the early
’90s, exploiting both theoretical and technological advances, researchers employed machine
learning algorithms for system identification using macroscopic observations, i.e. assuming
that we already know the set of coarse variables to model the underlying dynamics and
the derivation of normal forms ([5–15]). More recently, Bongard and Lipson [16] proposed
a method for generating symbolic equations for nonlinear dynamical systems that can be
described by ordinary differential equations (ODEs) from time series. Brunton et al. [17]
addressed the so-called sparse identification of nonlinear dynamics (SINDy)method to obtain
explicit data-driven PDEs when the variables are known, and construct normal forms for
bifurcation analysis. Wang et al. [3] addressed a physics-informed machine learning scheme
based on deep learning to learn the solution operator of arbitrary PDEs. Kovachki et al.
[4] addressed the concept of Neural Operators, mesh-free, infinite dimensional operators
with neural networks, to learn surrogate functional maps for the solution operators of PDEs.
Recently, Vlachas et al. [18] used ANNs and autoencoders to learn the dynamics of complex
systems, thus exploiting the concept of lifting and restriction operators as addressed in the
Equation-free framework.

However, for complex systems, such “good” macroscopic observables that can be used
effectively for modelling the dynamics of the emergent patterns are not always directly avail-
able. Thus, such an appropriate set of “hidden” macroscopic variables have to be identified
from data. Such data can be available either directly from experiments and/or from detailed
simulations using for example molecular dynamics, agent-based models, Monte-Carlo and
kinetic-based model simulations. Hence, all in all, we are confronted with two major prob-
lems: (a) the identification of a set of appropriate variables that define (parametrize) the
emerging (coarse-gained) dynamics, (b) the construction of models based on these variables.
In the early 2000’s, the Equation-Free and Variable-Free multiscale framework [19–23] pro-
vided a systematic framework for the numerical analysis (numerical bifurcation analysis,
design of controllers, optimization, rare-events analysis) of the emergent dynamics as well
as for the acceleration of microscopic/mesoscale/large-scale simulations, by bridging the
micro/mesoscale where the physical laws may be known and the macroscopic scale where

123

Journal of Scientific Computing (2022) 92 :34 Page 3 of 30 34

the emergent dynamics evolve. This bridging is achieved via the concept of the “coarse time
steppers”, i.e. the construction of a black-box map on the macroscopic scale. By doing so,
one can performmultiscale numerical analysis, even for microscopically large-scale systems
tasks by exploiting the algorithms (toolkit) of matrix-free methods in the Krylov subspace
[19, 23–27], thus bypassing the need to construct explicitly models in the form of PDEs.
In the case when the macroscopic variables are not known a-priori, one can resort to non-
linear manifold learning algorithms such as Diffusion maps [28–31] to identify the intrinsic
dimension of the slow manifold where the emergent dynamics evolve.

Over the last fewyears, efforts havebeen focusedondevelopingphysics-informedmachine
learning methods for solving both the forward and inverse problems, i.e. the numerical
solution of high-dimensionalmultiscale problems described by PDEs, and that of discovering
the hidden physics [1, 32–35], thus both identifying the set to coarse observables and based
on them to learn the effective PDEs. Lee et al. [35] presented a methodology to find the right-
hand-side of macroscopic PDEs directly from data using Diffusion maps and Automatic
Relevance Determination for selecting a good set of macroscopic variables, and Gaussian
processes and artificial neural networks for modelling purposes. The approach was applied
to learn a “black-box” PDE from data produced by Lattice Boltzmann simulations of the
FitzHugh-Nagumo PDEs at a specific value of the bifurcation parameter where sustained
oscillations are observed.

In this paper, building on previous efforts [35], we address a data-driven numerical
framework based on machine learning for the numerical bifurcation analysis of PDEs from
spatio-temporal data produced by high-dimensional kinetic-based model (here D1Q3 Lat-
tice Boltzmann model) simulations. For the discovery of an appropriate set of coarse-gained
variables, we used parsimonious Diffusion maps [36, 38], while for the identification of the
right-hand side of the coarse-grained PDEs, we used shallow Feedforward Neural Networks
(FNNs) and Random Projection Neural Networks (RPNNs), thus proposing an appropriate
sampling approach for the construction of the (random) basis functions. For our illustrations,
we have used a D1Q3 Lattice Boltzmann model simulator of the FitzHugh Nagumo (FHN)
spatio-temporal dynamics. Upon training, the tracing of the coarse-grained bifurcation dia-
gram was obtained by coupling the machine learning models with the pseudo-arc-length
numerical continuation approach. The performance of the machine learning schemes was
compared with the reference bifurcation diagram obtained by the one obtained with central
finite difference discretization of the FHN PDEs.

2 Methodology

The pipeline of the proposed machine learning framework for the coarse-grained numerical
bifurcation analysis from spatio-temporal data produced from detailed high-dimensional
spatio-temporal LBM simulations consists of three tasks: (a) the identification of a set of
coarse-scale variables from the spatio-temporal data usingmanifold learning and in particular
parsimonious Diffusion maps using leave-one-out cross-validation (LOOCV), (b) based on
the parsimonious coarse-grained set of variables, the reconstruction of the right-hand-side of
the effective PDEs using machine learning and, (c) based on the machine learning models,
the construction of the coarse-scale bifurcation diagrams of the emergent dynamics using the
numerical bifurcation analysis toolkit.

The assumption here is that the emergent dynamics of the complex system under study
on a domain � × [t0, tend] ⊆ R

d × R can be modelled by a system, of say m PDEs in the

123

34 Page 4 of 30 Journal of Scientific Computing (2022) 92 :34

form of:

∂u(i)(x, t)

∂t
≡ u(i)

t =F (i)(t, x, u(x, t),Du(x, t),D2u(x, t), . . . ,Dνu(x, t), ε),

(x, t) ∈ � × [t0, tend], i = 1, 2, . . . ,m
(1)

where u(x, t) = [u(1)(x, t), . . . , u(m)(x, t)], F (i), i = 1, 2, . . .m is a non-linear operator,
Dνu(x, t) is the generic multi-index ν-th order spatial derivative at time t i.e.:

Dνu(x, t) :=
{

∂ |ν|u(x, t)

∂xν1
1 · · · ∂xνd

d

, |ν| = ν1 + ν2 + · · · + νd , ν1, . . . , νd ≥ 0

}
, (2)

and ε denotes the (bifurcation) parameters of the system.
The boundary conditions read:

B(i)
l (u(i)(x, t)) = h(i)

l (x, t) x ∈ ∂�l , (3)

where {∂�l} denotes an l partition of the boundary of �, and initial conditions

u(i)(x, t0) = u(i)
0 , x ∈ �. (4)

The right-hand-side of the i-th PDE depend on say γ (i) number of variables and bifurcation
parameters from the set of variables

S(i) = {x, u(x, t),Du(x, t),D2u(x, t), . . . ,Dνu(x, t), ε}.
Let us denote this set as S(i), with cardinality |S(i)| = γ (i). Hence, at each spatial point

xq , q = 1, 2, . . . , M and time instant ts, s = 1, 2, . . . , N the set of features for the i-th PDE
can be described by a vector zq(ts) ∈ R

γ (i).
Here, we assume that such PDEs in principle exist but there are not available in a closed-form.
Instead, we assume that we have detailed observations from detailed/high-dimensional
kinetic-based model simulations fromwhich we can compute the time and spatial derivatives
of all the observables in N points in time and M points in space using e.g., finite differ-
ences. Thus, we aim to (a) identify the intrinsic dimension of the manifold on which the
coarse-grained dynamics evolve, i.e. for each PDE identify γ (i), and the coordinates that
define the low-dimensional manifold, i.e., the sets S(i), and based on them (b) identify the
right-hand-side (RHS) of the effective PDEs using machine learning.
To demonstrate the proposed approach, we have chosen to produce high-dimensional data
from D1Q3 Lattice Boltzmann model (LBM) simulations of the coupled FitzHugh-Nagumo
PDEs of activation-inhibition dynamics. Using the LBMsimulator, we produced data in space
and time from different initial conditions and values of the bifurcation parameter. For the
identification of an appropriate set of coarse-scale variables that define the low-dimensional
manifold on which the dynamics evolve, we performed feature selection using parsimo-
nious Diffusion Maps [36–38]. Then, we trained the machine learning schemes to learn the
right-hand-side of the PDEs on the low-dimensional manifold. Based on the constructed
models, we performed numerical bifurcation analysis employing the pseudo-arc-length con-
tinuation method. The performance of the proposed data-driven scheme for constructing the
coarse-grained bifurcation diagram was validated against the one computed with the FHN
PDEs using finite difference discretization. A schematic overview of the proposed framework
for the case of two effective PDEs (as in the problem of the FitzHugh-Nagumo activation-
inhibition dynamics) is shown in Fig. 1.
In what follows, we first describe the parsimonious Diffusion Maps algorithm for feature

123

Journal of Scientific Computing (2022) 92 :34 Page 5 of 30 34

Fig. 1 Schematic of the three-stage workflow for constructing coarse-grained bifurcation diagrams from fine
scale observations using the paradigm of two parabolic PDEs: 1) Identify a set of parsimonious coarse-grained
observables using Diffusion Maps from high-dimensional spatio-temporal data (here produced from D1Q3
Lattice Boltzmann model simulations) and compute their spatial and time derivatives using finite differences,
2) “learn” the right-hand-side of the PDEs using machine learning (here shallow FNNs with 2 hidden layers
and single-layer RPNNs), and, 3) employ the numerical bifurcation analysis toolkit (here the pseudo-arc-
length-continuation method) to construct the coarse-grained bifurcation diagram

selection. Then, we present the machine learning schemes used for identifying the right-
hand-side of the effective PDEs from the LBM simulations, and then we show how one
can couple the machine learning models with the pseudo-arc-length continuation method to
construct the coarse-scale bifurcation diagrams. Finally, we present the numerical results and
compare the performance of the proposed machine learning schemes.

2.1 Parsimonious DiffusionMaps

Diffusion Maps is a non-linear manifold learning algorithm [28–30] that identifies a low-
dimensional representation yi ∈ R

μ of a point zi ∈ R
n, i = 1, 2, . . . N in the high

dimensional space (μ << n) addressing the diffusion distance among points as the pre-
served metric [30]. Diffusion Maps assume that the high-dimensional data are embedded
in a smooth low-dimensional manifold. It can be shown that the eigenvectors of the large
normalized kernel matrices constructed from the data converge to the eigenfunctions of
the Laplace-Beltrami operator on this manifold at the limit of infinite data [28, 30]. The
approximation of this Laplace-Beltrami operator is made by representing the weighted edges
connecting nodes i and j commonly by a normalized diffusion kernel matrix W with ele-

123

34 Page 6 of 30 Journal of Scientific Computing (2022) 92 :34

ments:

wi j = exp

(
−||zi − z j ||2

σ

)
. (5)

Then, one can define the N × N diffusion matrix P by:

P = D−1W , D = diag

⎛
⎝ N∑

j=1

wi j

⎞
⎠ (6)

which elements pi j correspond to the probability of jumping from one point to another in
the high-dimensional space.

Taking the power of t of the diffusion matrix P is essentially identical of observing t steps
forward of a Markov chain process Zt on the data points. Thus, the transition probability of
moving from point i to point j reads:

pi j = p(zi , z j) = Prob(Zt+1 = z j |Zt = zi). (7)

On the weighted graph, the random walk can be defined as:

pi j = p(zi , z j) = wi j

deg(zi)
, (8)

where deg(zi) denotes the weighted degree of the point i defined as:

deg(zi) =
∑
j

wi j . (9)

At the next step, it is easy to compute the graph Laplacian matrix P̃ defined as:

P̃ = D̃1/2PD−1/2. (10)

The eigendecomposition of P̃ results to P̃ = U�U∗, where � is a diagonal matrix with the
eigenvalues and U is the matrix with columns the eigenvectors of P̃ . The eigenvalues of P
are the same of P̃ since P is the adjoint of the symmetric matrix P , while the left and right
eigenvectors of P (say � and) are related to those of P̃ as [39]:

� = UD1/2, 	 = UD−1/2. (11)

The embedding of the manifold in μ dimensions is realized by taking the first μ non-
trivial/parsimonious eigenvectors of P̃:

yi = (λt1φ1,i , . . . , λ
t
μφμ,i), i = 1, . . . , N , (12)

where t denotes the number of diffusion steps (usually t = 1) and λ1, . . . , λμ the eigenvalues
in descending order. For any pair of points zi and z j , the diffusion distance at the time step
t is defined as:

D2
t (zi , z j) =

∑
k

(pt (zi , zk) − pt (z j , zk))2

�0(zk)
, (13)

where �0 denotes the stationary distribution of the random walk described by the diffusion
matrix P [40]:

�0(zi) = deg(zi)∑
z j∈Z deg(z j)

. (14)

123

Journal of Scientific Computing (2022) 92 :34 Page 7 of 30 34

In practice, the embedding dimension μ is determined by the spectral gap in the eigenvalues
of the final decomposition. Such a numerical gap means that the first few eigenvalues would
be adequate for the approximation of the diffusion distance between all pairs of points [28,
29]. Here we retain only the μ parsimonious eigendimensions of the final decomposition as
proposed in [36, 38].

2.1.1 Feature Selection Using Diffusion Maps with Leave-One-Out Cross-Validation
(LOOCV)

Here, by identifying the coarse-scale spatio-temporal behaviour of a system of PDEs, we
mean learning their right-hand-sides as a black-box model. Hence, we first have to deal with
the task of discovering a set of coarse-grained variables embedded in the high-dimensional
input data space. For this task, one can employ various methods for feature selection such
as LASSO [41, 42] and Random Forests [43–45]. In our framework, we used a method that
extracts the dominant features based on manifold parametrization through output-informed
Diffusion Maps [36]. The core assumption of this method is that given a dataset in a high-
dimensional space, then we can parametrize it on a lower-dimensional manifold.
For this purpose, given a set of φ1,φ2, . . . ,φk−1 ∈ R

N Diffusion Maps eigenvectors, for
each element i = 1, 2 . . . , N of φk , we use a local linear regression model:

φk,i ≈ αk,i + βT
k,i�k−1,i , i = 1, 2, . . . , N (15)

to investigate if φk is a dependent eigendirection;�k−1,i = [φ1,i , φ2,i , . . . , φ
T
k−1,i], αk,i ∈ R

and βk,i ∈ R
k−1. The values of parameters αk,i and βk,i are found solving an optimization

problem of the form:

α̂k,i , β̂k,i = argmin
α,β

∑
j 	=i

K (�k−1,i ,�k−1, j)(φk, j − (α + βT�k−1, j))
2, (16)

where K is a kernel weighted function, usually the Gaussian kernel:

K (�k−1,i ,�k−1, j) = exp

(
−||�k−1,i − �k−1, j ||

σ 2

)
, (17)

where σ is the shape parameter. The final normalized leave-one-out cross-validation
(LOOCV) error for this local linear fit is defined as:

rk =
√√√√∑N

i=1(φk,i − (α̂k,i + β̂T
k,i�k−1,i)2∑μ

i=1(φk,i)2
. (18)

For small values of rk , φk is considered to be dependent of the other eigenvectors and hence
is considered a harmomic or repeated eigendirection, while large values of rk , suggest that
φk can serve as a new independent eigendirection.

In our approach, we provide as inputs to the Diffusion Maps algorithm the combined
input-output domain (the observables zi and their spatial and time derivatives). In principle,
any of the subsets that is capable to parametrize the discovered embedding coordinates that
were chosen after the above described methodology, can be considered as a new possible
input data domain that can be used for learning the right-hand-side of the effective PDEs.
Actually, we find the subsets of variables of the input space that minimally parametrize the

123

34 Page 8 of 30 Journal of Scientific Computing (2022) 92 :34

intrinsic embedding by quantifying it with a total regression loss LT based on amean squared
error:

LT =
(

μ∑
k=1

L2
φk

) 1
2

. (19)

Here, as Lφk
, we define the regression loss for representing the intrinsic coordinate φk as:

Lφk
= 1

N

N∑
i=1

(φk,i − g(·))2, (20)

where g(·) is the output of the regressors with inputs the values of the features in the ambient
space and target values the eigenvectors φk . Note, that in this procedure, we did not include
the values of the bifurcation parameter into the dataset. We have chosen to employ the above
method separately for every subset of the same value of the bifurcation parameter and finally
to select the subset of features with the minimum sum of the total regression losses across
all the embedding spaces.

2.2 Shallow Feedforward Neural Networks

It is well known that FNNs are universal approximators of any (piecewise) continuous (multi-
variate) function, to any desired accuracy [46–50]. This implies that any failure of a network
must arise from an inadequate choice/calibration of weights and biases or an insufficient
number of hidden nodes.

The output of a FNN with two hidden layers, with H hidden units in each layer, that
models the right-hand-side of the i-th PDE at each input point z(i)(xq , ts) ∈ R

γ (i), evaluated
at each point in space xq , q = 1, . . . , M , and time ts, s = 1, 2, . . . , N can be written as:

û(i)
t (xq , ts) = F̂ (i)(z(i)(xq , ts);W1(i),W2(i), b1(i), b2(i),ωo(i), bo(i))

=
H∑
j=1

ω
o(i)
j ψ

(
H∑
l=1

[ωl jψ(ω
(i)
l · z(i)(xq , ts) + b1(i)l) + b2(i)j

)
] + bo(i).

(21)

ψ(.) is the activation function (based on the above formulation it is assumed to be the same
for all nodes in the hidden layers) ωo(i) = (ω

o(i)
1 , ω

o(i)
2 , . . . , . . . ω

o(i)
H) ∈ R

1×H are the
external weights connecting the second hidden layer and the output, bo(i) ∈ R is the bias
of the output node, the matrix W1(i) ∈ R

H×γ (i) with rows ω
1(i)
l ∈ R

γ (i) are the weights

connecting the input and the first hidden layer, b1(i) = (b1(i)1 , b1(i)2 , . . . , b1(i)H) ∈ R
H are the

biases of the nodes of the first hidden layer, the matrix W2(i) ∈ R
H×H contains the weights

ωl j connecting the l-th unit of the first hidden layer with the j-th unit of the second hidden

layer and b2(i) = (b2(i)1 , b2(i)2 , . . . , b2(i)H) ∈ R
H are the biases of the second hidden layer.

In the same way, one can easily extend the above formula for more than two hidden layers.
Then, a loss function for each one of the m PDEs can be specified as:

E (i) =
M∑

q=1

N∑
s=1

(u(i)
t (xq , ts) − û(i)

t (xq , ts))2, (22)

Foresee and Hagan ([51]) showed that adding the regularization term Eω = ∑H
j=1 ω2

j to the
cost function will maximize the posterior probability based on Bayes’ rule. Hence, the total

123

Journal of Scientific Computing (2022) 92 :34 Page 9 of 30 34

cost function is:

Etotal = E + λEw, (23)

where λ is the regularization parameter that has to be tuned. For our simulations, we used
the Bayesian regularized back-propagation updating the weight values using the Levenberg-
Marquadt algorithm. ([52]) as implemented in Matlab2020b.

2.3 Random Projection Neural Networks

Random Projection Neural Networks (RPNNs) are a family of neural networks including
Random Vector Functional Links (RVFLs) [53, 54], Reservoir Computing/ Echo state net-
works [55, 56], Extreme Learning Machines [57] and Liquid-State Networks [58]. The basic
idea, which seed can be found in the pioneering work of Rosenblatt back in ’60s [59], behind
all these approaches is to use FNNs with fixed-weights between the input and the hidden
layer(s), fixed biases for the nodes of the hidden layer(s), and a linear output layer. Based
on that configuration, the output is projected linearly onto the functional subspace spanned
by the nonlinear basis functions of the hidden layer, and the only remaining unknowns are
the weights between the hidden and the output layer. Their estimation is done by solving a
nonlinear regularized least squares problem [60, 61]. The universal approximation properties
of the RPNNs has been proved in a series of papers (see e.g. [53, 54, 56, 57]). In general, the
universal approximation property of random projections can be rationalized by the celebrated
Johnson-Lindenstrauss (JL) Theorem [62]:

Theorem 1 (Johnson-Lindenstrauss) Let Z ∈ R
n×N matrix with N points zi ∈ R

n. Then,
∀ε ∈ (0, 1) and μ ∈ N such that μ ≥ O(ln N

ε2
), there exists a map G : Rn → R

μ such that
∀zi , z j ∈ Z:

(1 − ε)‖zi − z j‖2 ≤ ‖G(zi) − G(z j)‖2 ≤ (1 + ε)‖zi − z j‖2. (24)

Note, that while the above theorem is deterministic, its proof relies on probabilistic tech-
niques combined with Kirszbraun’s theorem to yield a so-called extension mapping [62]. In
particular, it can be shown, that one of the many such embedding maps is simply a linear
projection matrix R with entries ri j that are i.i.d. random variables sampled from a normal
distribution. In particular, the JL Theorem may be proved using the following lemma.

Lemma 1 LetZ be a set of N points inRn and let G(z) be the random projection defined by

G(z) = 1√
μ
R z, z ∈ R

n,

where R = [ri j] ∈ R
μ×n has components that are i.i.d. random variables sampled from a

normal distribution. Then, ∀ z ∈ Z
(1 − ε)‖z‖2 ≤ ‖G(z)‖2 ≤ (1 + ε)‖z‖2

is true with probability p ≥ 1 − 2 exp
(−(ε2 − ε3)

μ
4

)
.

Similar proofs have been given for distributions different from the normal one (see, e.g.
[63–66]).

The above is a featuremapping,whichmay result in a dimensionality reduction (μ < n) or,
in analogy to the case of kernel-based manifold learning methods, a projection into a higher
dimensional space (μ > n). We also note that while the above linear random projection is but

123

34 Page 10 of 30 Journal of Scientific Computing (2022) 92 :34

one of the choices for constructing a JL embedding, it has been experimentally demonstrated
and/or theoretically proven that appropriately constructed nonlinear randomembeddingsmay
outperform simple linear random projections. For example, in [67] it was shown that deep
networks with random weights for each layer result in even better approximation accuracy
than the simple linear random projection.

Here, for learning the right-hand-side of the set of PDEs, we used RPNNs (in the form of
an Extreme Learning Machine [57]) with a single hidden layer [60]. For H hidden units in
the hidden layer, the output of the proposed RPNN can be written as:

û(i)
t (xq , ts) = F̂ (i)(z(i)(xq , ts);W(i), b(i),ωo(i), bo(i)) =

=
H∑
j=1

ω
o(i)
j ψ(ω

(i)
j · z(i)(xq , ts) + b(i)

j) + bo(i),
(25)

where z(i)(xq , ts) ∈ R
γ (i) denotes the inputs computed at each point in space xq , q =

1, . . . , M , and time ts, s = 1, 2, . . . , N , ψ(.) is the activation function ωo(i) =
(ω

o(i)
1 , ω

o(i)
2 , . . . , . . . ω

o(i)
H) ∈ R

1×H are the external weights connecting the hidden layer
and the output and bo(i) ∈ R is the bias of the output node, while the matrixW(i) ∈ R

H×γ (i)

with rows ω
(i)
j ∈ R

γ (i)
and b(i) = (b(i)

1 , b(i)
2 , . . . , b(i)

H) ∈ R
H are the weights connecting

the input and the hidden layer and the biases of the hidden layer, respectively. Now, in the
proposed RPNN scheme, ω(i)

j and b(i)
j are random variables drawn from appropriate uniform

distributions, the output bias bo is set to zero, and the output weights ωo(i) ∈ R
1×H are

determined solving a linear least squares problem:

û(i)
t = ωo(i)A(i), i = 1, . . . ,m, (26)

where û(i)
t ∈ R

MN is the vector collecting all the outputs û(i)
t (xq , ts) of the RPNN for

q = 1, . . . , M and s = 1, . . . , N , and the matrix A(i) ∈ R
H×MN is the matrix which

elements A j,k are given by:

A(i)
j,k = ψ(ω

(i)
j · z(i)k + b(i)

j), (27)

where z(i)k = z(i)(xq , ts) and k = q+(s−1)M . Regarding the regression problem, generally
H << MN , the system Eq. (26) is over-determined. As the resulting projection matrix A
is not guaranteed to be full row-rank the solution can be computed with Singular Value
Decomposition (SVD). Given the SVD decomposition of A, the pseudo inverse A+ is:

A(i) = U�V T , (A(i))+ = V�+UT , (28)

whereU ∈ R
H×H and V ∈ R

MN×MN are the unitary matrices of left and right eigenvectors
respectively, and � ∈ R

H×MN is the diagonal matrix of H singular values σ j . Finally, in
order to regularize the problem, we can select just H̃ < H singular values σ̃ that are greater
than a given tolerance, i.e., σ̃ ∈ {σ j | σ j > tol, j = 1, . . . , H}. Hence, the output weights
ωo(i) are computed as:

ωo(i) = û(i)
t Ṽ �̃+Ũ T . (29)

where Ũ ∈ R
H×H̃ , Ṽ ∈ R

MN×H̃ and �̃ ∈ R
H̃×H̃ are restricted to the σ̃ s.

For the regression problem, we aim at learning the right-hand-side of the PDEs from
spatio-temporal data with single-layer RPNNs with H random basis functions:

ψ
(i)
j (z(i)) = ψ(ω

(i)
j · z(i) + b(i)

j). (30)

123

Journal of Scientific Computing (2022) 92 :34 Page 11 of 30 34

Then the approximated function F̂ (i) is just a linear combination of the random basis
functions ψ

(i)
j . For our computations, we selected as activation function the logistic sigmoid

ψ : y ∈ R → ψ(y) ∈ R given by:

ψ(y) = 1

1 + exp(−y)
, (31)

where, y is given by linear combination y = ω
(i)
j · z(i) + b(i)

j .

2.3.1 Random Sampling Procedure

For the construction of the appropriate set of random basis functions for the solution of the
inverse problem (i.e. that of learning the effective PDEs from data), we suggest a different
random sampling procedure, than the one usually implemented in RPNNs and in particular
in Extreme Learning Machines [60, 61, 68–71] for the solution of the forward problem, i.e.
that of the numerical solution of Partial Differential Equations. Since in the inverse problem,
we aim at solving a high-dimensional over-determined system (MN >> H) is important to
parsimoniously select the underlying basis functionsψ

(i)
j , i.e. to seek for appropriate internal

weights W (i) and biases b(i) that lead to non-trivial functions.
In general, the weights ω

(i)
j and biases b(i)

j are uniformly random sampled from a subset

of the input/feature space, e.g., ω(i)
j , b(i)

j ∼ U([−1, 1]γ (i), where a high dimension γ (i) of
the input/feature space leads to the phenomenon referred as the "curse of dimensionality".
Indeed, it is necessary to use many function (H ∝ 10γ (i)) to correctly “explore” the input
space and come up with a good basis function.

Hence, our goal is to construct ω(i)
j and b(i)

j with a simple data-driven manifold learning

in order to have a basis of functionsψ
(i)
j that well describe the manifoldM(i) where the data

z(i)(xq , ts) ∈ M(i),∀q,∀s are embedded. It iswell-known that the output of a neuron is given
by a ridge function f : RH → R such that f (z1, . . . , zn) = g(aT · z), where g : R → R

and a ∈ R
n . The inflection point of the logistic sigmoid is at (y = 0, ψ(y) = 1/2). The

points that satisfy the following relation [60, 61]:

y = ω
(i)
j · z(i)(xq , ts) + b(i)

j = 0 (32)

form an hyperplane H(i)
j of RMN (MN dimension of z) defined by the direction of ω

(i)
j .

Along H j , ψ
(i)
j is constantly 1/2. We call the points c(i)

j ∈ H(i)
j the centers of the ridge

functionψ
(i)
j . Here the goal is to select H centers c(i)

j that lie on the manifoldM(i) (note that

this is not achieved by random weights and biases) and find directions w
(i)
j that make ψ

(i)
j

non-constant/non-trivial along M(i) (note that for ridge functions there are many directions
for which this does not happen).

Thus, here, being H << MN we suggest to uniformly random sample H points c(i)
j from

z(xq , ts) to be the centers of the functions ψ
(i)
j : in this way the inflection points of ψ

(i)
j are

on the manifold M. Also, we independently randomly sample other H points c̃(i)
j from the

inputs z(xq , ts). Then, we construct the hidden weights as:

ω
(i)
j = c̃(i)

j − c(i)
j , (33)

123

34 Page 12 of 30 Journal of Scientific Computing (2022) 92 :34

in order to set the direction ω
(i)
j of the hyperplane H (i)

j parallel to the one connecting c̃(i)
j

and c(i)
j . By doing so, the ridge function will be constant on a direction orthogonal to the

connection between two points in the manifoldM(i) and along this line will change in value,
so it will be able to discriminate between the points lying on this direction. Thus, the biases
b(i)
j are set to:

b(i)
j = −ω

(i)
j · c(i)

j . (34)

Eq. (32) ensures that c(i)
j ∈ H(i)

j is a center of the ridge function.

3 Coarse-Grained Numerical Bifurcation Analysis From
Spatio-Temporal Data

For assessing the performance of the proposed scheme, we selected the celebrated, well
studied FitzHugh-Nagumo (FHN) model first introduced in [72] to simplify the Hodgkin-
Huxley model into a two-dimensional system of ODEs to describe the dynamics of the
voltage across a nerve cell. In particular, we considered the FHN equations which add a
spatial diffusion term to describe the propagation of an action potential as a traveling wave.
The bifurcation diagram of the one-dimensional set of PDEs is known to have a turning point
and two supercritical Andronov-Hopf bifurcation points. In what follows, we describe the
model along with the initial and boundary conditions and then we present the D1Q3 Lattice
Boltzmann model.

3.1 The FitzHugh-Nagumo PDEs

The evolution of activation u : [x0, xend] × [t0, tend] → R and inhibition v : [x0, xend] ×
[t0, tend] → R dynamics are described by the following two coupled nonlinear parabolic
PDEs:

∂u(x, t)

∂t
= Du ∂2u(x, t)

∂x2
+ u(x, t) − u(x, t)3 − v(x, t),

∂v(x, t)

∂t
= Dv ∂2v(x, t)

∂x2
+ ε(u(x, t) − α1v(x, t) − α0),

(35)

with homogeneous von Neumann Boundary conditions:

du(xend , t)

dx
= 0,

dv(x0, t)

dx
= 0.

du(xend , t)

dx
= 0,

dv(x0, t)

dx
= 0.

(36)

α0 and α1 are parameters, ε is the kinetic bifurcation parameter.
For our simulations, we have set x0 = 0, xend = 20, α1 = 2, α0 = −0.03, Du =

1, Dv = 4 and varied the bifurcation parameter ε in the interval [0.005, 0.955] [73]. For
our simulations, in order to explore the dynamic behaviour, we considered various initial
conditions u0(x) = u(x, 0) and v0(x) = v(x, 0) selected randomly as follows:

123

Journal of Scientific Computing (2022) 92 :34 Page 13 of 30 34

u0(x) = w tanh
(
α(x − c)

) + β

v0(x) = 0.12 · u0(x).
w ∼ U(0.8, 1.2), α ∼ U(0.5, 1)

c ∼ U(2, 18), β ∼ U(−0.4, 0),

(37)

where U(a, b) denotes the uniform distribution in the interval [a, b].

3.2 The D1Q3 Lattice Boltzmannmodel

Here, a Lattice Boltzman model (LBM) serves as our higher-dimensional simulator. The
LBMmethod has originated as a (mesoscopic) alternative to the numerical solution of PDEs
in fluid mechanics (see e.g. [74–79]) based on the Boltzmann kinetic equation (see [75, 80]
for a review and perspectives). The statistical description of the system at a mesoscopic level
uses the concept of distribution function f (�r , �c, t), i.e. f (�r , �c, t)d�rd�cdt is the infinitesimal
probability of having particles at location �r with velocities �c at a given time t , for reducing
the high-number of equations and unknowns. Then, at this level, a systemwithout an external
force is governed by the Boltzmann Transport equation [81]:

∂ f

∂t
+ �c · ∇ f = R(f), (38)

where the term R(f) describes the rate of collisions between particles. In 1954, Bhatnagar,
Gross and Krook (BGK) [82] introduced an approximation model for the collision operator:

R(f) = 1

τ
(f eq − f), (39)

where τ is the so-called relaxing time coefficient and f eq denote the local equilibrium
distribution function. As it has been recently shown [83], the BGK model of the Boltzmann
equation can serve as a generator of a broad class of nonlinear PDEs.
In the LBM approach, Eq.(38)-(39) is collocated (assumed valid) along specific directions
�ci on a lattice:

∂ fi
∂t

+ �ci · ∇ fi = 1

τ
(f eqi − fi) (40)

and then Eq.(40) is discretized with a time step �t as follows:

fi (�r + �ci�t, t + �t) = fi (�r , t) + �t

τ
(f eqi − fi). (41)

One common interpretation of Eq.(41) is to think about the distribution functions as fictitious
particles that stream and collide along specified linkages of the lattice. Lattices are usually
denoted by the notation DnQm, where n is the spatial dimension of the problem andm refer
to the number of connections of each node in the lattice. The node in the lattices coincide
with the points of a spatial grid with a spatial step �x .

Here, in order to estimate the coarse-scale observables u and v of the FHN dynamics, we
considered the D1Q3 implementation, i.e. we used the one-dimensional lattice with three
velocities ci : particles can stream to the right (c1 = �x

�t), to the left (c−1 = −�x
�t) or staying

still on the node (c0 = 0). Also, we assume the coexistence of two different distribution
functions for describing the distribution of the activator particles f ui and the distribution of
the inhibitor particles f v

i , where the subscript i refer to the associated direction. Therefore,
one can figure that at each instant there are six fictitious particles on each node of the

123

34 Page 14 of 30 Journal of Scientific Computing (2022) 92 :34

lattice: two resting on the node (with distribution f u0 and f v
0), two moving on the left (with

distribution f u−1 and f v−1) and two moving on the right (with distribution f u1 and f v
1). The

relation between the above distributions and the coarse-scale density u and v is given by the
zeroth moment (across the velocity directions) of the overall distribution function:

u(x j , tk) =
1∑

i=−1

f ui (x j , tk),

v(x j , tk) =
1∑

i=−1

f v
i (x j , tk).

(42)

The coexistence of multiple distributions renders necessary to introduce weights ωi for the
connections in the lattice that should satisfy the following properties:

(a) Normalization ω0 + ω1 + ω−1 = 1
(b) Simmetry ω1 − ω−1 = 0
(c) Isotropy:

(c.1) ω0c20 + ω1c21 + ω−1c2−1 = c2s
(c.2) ω0c30 + ω1c31 + ω−1c3−1 = 0
(c.3) ω0c40 + ω1c41 + ω−1c4−1 = 3c4s ,

where cs is the speed of sound in the lattice. Thus, the weights are equal to ω±1 = 1/6 for
the moving particles and ω0 = 4/6 for the resting particle. The resulting speed of sound in

the lattice is cs =
√
3�x
3�t .

As the BGK operator (39) suggests, one key step in applying LBM for solving reaction-
advection-diffusion PDEs is to determine the local equilibrium distribution function f eq

associated to a given model. For particles with macroscopic density ρ that move in a medium
macroscopic velocity �um , the Maxwell distribution is:

f eq(�c) = ρ

(2πRT)d/2 exp

(
− (�c − �um)2

2RT

)
=

= ρ

(2πRT)d/2 exp

(
− �c · �c
2RT

)
exp

(
−−2�c · �um + �um · �um

2RT

)
,

(43)

where d is the spatial dimension of the problem, T is the temperature and R is the universal
gas constant. The exponential in Eq. (43) can be expanded using Taylor series, ignoring terms
of order O(u3) and higher, thus obtaining:

f eq(�c) = ρω(�c)
[
1 + 2�c · �um − �um · �um

2c2s
+ (�c · �um)2

2c4s

]
, (44)

with ω(�c) = (2πRT)−d/2exp

(
− �c · �c
2RT

)
and RT = c2s , with cs speed of the sound.

Now, since the FHN PDEs do not have any advection terms, the medium is stationary
(�um = 0) and the equilibrium distribution function, discretized on the lattice direction ci , is
simplified in:

f u,eq
i (x j , tk) = ωi u(x j , tk), i = −1, 0, 1

f v,eq
i (x j , tk) = ωiv(x j , tk).

(45)

123

Journal of Scientific Computing (2022) 92 :34 Page 15 of 30 34

Now, in the FHN model, we need to consider also reaction terms Rl
i and so finally, the

time evolution of the LBM simulator associated to the FHN on a given D1Q3 lattice is:

f li (x j+i , tk+1) = f li (x j , tk) + �t

τ l
(f l,eqi (x j , tk) − f li (x j , tk)) + �t Rl

i (x j , tk), l ∈ {u, v}
(46)

where the superscript l denotes the activator u and the inhibitor v and the reaction terms Rl
i

are directly derived by:

Ru
i (x j , tk) = ωi (u(x j , tk) − u3(x j , tk) − v(x j , tk)),

Rv
i (x j , tk) = ωi ε(u(x j , tk) − α1v(x j , tk) − α0).

(47)

Finally, the relaxation coefficient
�t

τ l
is related to the macroscopic kinematic viscosity

Dl of the FHN model and in general depends on the speed of the sound cs associated to the
lattice [84]:

�t

τ l
= 2

1 + 2
c2s�t

Dl
= 2

1 + 6Dl �t
�x2

. (48)

4 Algorithm Flow Chart

Summarizing, the proposed three-tier algorithm for constructing bifurcation diagrams from
data is provided in the form of a pseudo code in Algorithm 1. The first two steps are related
to the identification of the effective coarse scale observables and the learning of the right-
hand-side of the effective PDEs. The third step is where the pseudo-arc-length continuation
method is applied for the tracing of the solution branch through saddle-node bifurcations.

5 Numerical Results

5.1 Numerical Bifurcation Analysis of the FHN PDEs

For comparison purposes,wefirst constructed the bifurcation diagramof the FHNPDEs using
central finite differences. The discretization of the one-dimensional PDEs in M points with
second-order central finite differences in the unit interval 0 ≤ x ≤ 20 leads to the following
system of 2(M − 2) non-linear algebraic equations ∀x j = (j − 1)h, j = 2, . . . M − 1,
h = 1

M−1 :

Fu
j (u, v) = Du

h2
(u j+1 − 2u j + u j−1) + u j − u3j − v j = 0

Fv
j (u, v) = Dv

h2
(v j+1 − 2v j + v j−1) + ε(u j − α1v j − α0) = 0.

At the boundaries, we imposed homogeneous von Neumann boundary conditions. The above
2(M − 2) set of non-linear algebraic equations is solved iteratively using Newton’s method.
The non-null elements of the Jacobian matrix are given by:

123

34 Page 16 of 30 Journal of Scientific Computing (2022) 92 :34

Algorithm 1 Numerical bifurcation analysis from high-dimensional spatio-temporal data
(here produced from D1Q3 LBM simulations)

Require: Grid Nε of ε � set grid for the values of the bifurcation parameter ε

Require: x and t be the space and time grid
1. Use Diffusions Maps to identify a parsimonious set of coarse scale observables from high-
dimensional spatio-temporal data
Lut ← 0, Lv

t ← 0
for ε = 1, . . . , Nε do

Select w ∼ U(0.8, 1.2), c ∼ U(2, 18),
α ∼ U(0.5, 1), β ∼ U(−0.4, 0).

u(x, 0, ε) ← wtanh(α(x − c)) + β

v(x, 0, ε) ← 0.12 · ui (x, 0, ε) � see eq. 37
u(x, t, ε), v(x, t, ε) ← LBM(u(x, 0, ε), v(x, 0, ε), t) � Lattice Boltzman simulator, see eq. 42
Compute ut , vt , ux , vx , uxx , vxx � here, using central finite differences.
Compute the first μ Diffusion Maps (DM) eigenvectors:

[φu
1 , . . . , φu

μ] ← DM(u, v, ut , ux , vx , uxx , vxx)
[φv

1 , . . . , φv
μ] ← DM(u, v, vt , ux , vx , u

,
xxvxx) � see eq. 12

z ← [u, v, ux .vx .uxx , vxx]
for every q ⊂ z do

for k = 1, . . . , μ do
φ̂u
k ← GP(q)

φ̂v
k ← GP(q) � GP: Gaussian process regressor

Lφu
k

← 1
N

∑N
i=1(φ

u
k,i − ˆφu

k,i)
2

Lφv
k

← 1
N

∑N
i=1(φ

v
k,i − ˆφv

k,i)
2 � see eq. 20

end for
Lut (q) ← Lut (q) + (

∑μ
j=1 L

2
φuj

)
1
2

Lv
t (q) ← Lv

t (q) + (
∑μ

j=1 L
2
φv
j
)
1
2 � see eq. 19 and 20

end for
end for
zu ← {q∗ : Lut (q∗) = min(Lut)}
zv ← {q∗ : Lut (q∗) = min(Lv

t)} � extract the effective features
2. Based on the extracted set of coarse variables from Step 2, learn the right-hand-sides of the coarse
scale PDEs
Train the FNNs/RPNNs:
F̂u
r ≡ ût,r ←FFN/RPNN(zu , ε)

F̂v
r ≡ v̂t,r ←FNN/RPNN(zv, ε)

3. Wrap around the machine learning models the numerical bifurcation analysis toolkit (here the
pseudo arc-length continuation method) to systematically study the emergent dynamics

∂Fu
j

∂u j−1
= Du

h2
; ∂Fu

j

∂u j
= −Du 2

h2
− 3u2j ;

∂Fu
j

∂u j+1
= Du

h2
; ∂Fu

j

∂v j
= −1

∂Fv
j

∂v j−1
= Dv

h2
; ∂Fv

j

∂v j
= −Dv 2

h2
− εα1v j ;

∂Fv
j

∂v j+1
= Du

h2
; ∂Fv

j

∂u j
= ε.

To trace the solution branch along the critical points, we used the pseudo arc-length-
continuation method ([85–87]). This involves the parametrization of u(x), v(x) and ε(x)
by the arc-length s on the solution branch. The solution is sought in terms of ũ(x, s), ṽ(x, s)
and ε̃(s) in an iterativemanner, by solving until convergence the following augmented system:

123

Journal of Scientific Computing (2022) 92 :34 Page 17 of 30 34

(a) (b)

Fig. 2 Reference bifurcation diagram of the FHN PDEs with respect to ε as computed with FD and N = 200
points. (a) Mean values < u > for stable and unstable branches, (b) Mean values < v > for stable and
unstable branches. Andronov-Hopf Point: HPε = 0.01827931. Turning Point: T Pε = 0.94457768

⎡
⎣∇uFu ∇vFu ∇εFu

∇uFv ∇vFv ∇εFv

∇uN ∇vN ∇εN

⎤
⎦

⎡
⎣du(n)(x, s)
dv(n)(x, s)
dε(n)(s)

⎤
⎦ = −

⎡
⎣Fu(u(n)(x, s), v(n)(x, s), ε(n)(s))
Fv(u(n)(x, s), v(n)(x, s), ε(n)(s))
N(u(n)(x, s), v(n)(x, s), ε(n)(s))

⎤
⎦ , (49)

where

∇εFu =
[

∂Fu
1

∂ε

∂Fu
2

∂ε
. . .

Fu
N

∂ε

]T
,∇εFv =

[
∂Fv

1
∂ε

∂Fv
2

∂ε
. . .

Fv
M

∂ε

]T
,

and

N(u(n)(x, s), v(n)(x, s), ε(n)(s))

= (u(n)(x, s) − ũ(x, s)−2)
T · (ũ(x)−2 − ũ(x)−1)

ds

+ (v(n)(x, s) − ṽ(x, s)−2)
T · (ṽ(x)−2 − ṽ(x)−1)

ds

+ (ε(n)(s) − ε̃−2) · (ε̃−2 − ε̃−1)

ds
− ds,

where (ũ(x)−2,ṽ(x)−2) and (ũ(x)−1,ṽ(x)−1) are two already found consequent solutions
for ε̃−2 and ε̃−1, respectively and ds is the arc-length step for which a new solution around
the previous solution (ũ(x)−2, ṽ(x)−2, ε̃−2) along the arc-length of the solution branch is
being sought. The corresponding reference bifurcation diagram is shown in Fig. 2. In this
range of values, there is an Andronov-Hopf bifurcation at ε ≈ 0.018497 and a fold point
at ε ≈ 0.95874. Finally, in Fig. 3, we also depict the convergence errors of the numerical
solutions as computed with finite differences.

5.2 Numerical Bifurcation Analysis from Lattice BoltzmannModel Simulations

We collected transients of u(x, t) and v(x, t) with a sampling rate of 1s, from 10 different
random sampled initial conditions for 40 different values for the bifurcation parameter ε.
In particular, we created a grid of 40 different ε in [0005, 0.955] using Gauss-Chebychev-
Lobatto points, while the 10 initial conditions are sampled according to Eq.(37). Figure 4
depicts the total of 400 training initial conditions. Thus, we end up with a dataset consisting

123

34 Page 18 of 30 Journal of Scientific Computing (2022) 92 :34

(a) (b)

(c) (d)

Fig. 3 Contour plot of the l2 norms of the convergence of the solutions as computed with finite differences
with respect to the size of the grid N computed as ||uN −u2N ||l2 , ||vN −v2N ||l2 . The convergence error was
computed on 1001 grid points, using linear piecewise interpolation. (a) upper branch for u, (b) upper branch
for v, (c) lower branch for u, (d) lower branch for v

(a) (b)

Fig. 4 Coarse initial conditions for (a) u and (b) v for the training. Every dot denotes a point whose ε andmean
u (or v) were used for input data. Red dots are training points, blue points are test points. The grid is spanned
with Chebychev-Gauss-Lobatto points for epsilons in the interval [0.005, 0.995] and the initial condition are
randomly selected as in Eq. (37)

123

Journal of Scientific Computing (2022) 92 :34 Page 19 of 30 34

Table 1 Mean-square error (MSE) and l∞ errors between the predicted ût and v̂t from the FNNs and RPNNs
and the actual time derivatives ut and vt without and with feature selection (FS)

Test set Training set

MSE (u) l∞ (u) MSE (v) l∞ (v) MSE (u) l∞ (u) MSE (v) l∞ (v)

FNN 7.90e-09 2.26e-02 1.56e-09 6.63e-03 1.31e-09 7.00e-03 2.78e-10 2.58e-03

FNN(FS) 5.39e-08 2.93e-02 1.16e-08 7.65e-03 1.90e-08 2.64e-02 1.37e-09 4.70e-03

RPNN 2.91e-08 2.98e-02 4.50e-10 2.22e-03 6.90e-09 2.37e-02 7.06e-11 9.40e-04

RPNN(FS) 7.10e-08 3.07e-02 1.73e-08 1.60e-02 2.16e-08 2.85e-02 6.30e-10 3.84e-03

of 40 (values of ε)×10 (initial conditions)×448 (time points ignoring the first 2s of the
transient)×40 (space points) � 7.168.000 data points.

For learning the coarse-grained dynamics and constructing the corresponding bifurcation
diagram, we trained two FNNs and two single-layer RPNNs (one for each one of the variables
u and v). The FNNs were constructed using two hidden layers with 12 units in each layer.
Hidden units were employed with the hyperbolic tangent sigmoid activation function, while
the regularization parameter was tuned and set λ = 0.01. For the training of the FNNs, we
used the Deep Learning toolbox of MATLAB 2021a on an Intel Core i5-8265U with up to
3.9 GHz frequency with a memory of 8 GB.

5.2.1 Numerical Bifurcation Analysis Without Feature Selection

Table 1 summarises the performance of the two schemes on both training and test datasets.
As it is shown, for any practical purposes, both schemes resulted to equivalent numerical
accuracy for all metrics. For the FNNs, the training phase (using the deep-learning toolbox
in Matlab R2020b) required ∼ 1000 epochs and ∼ 4 hours with the minimum tolerance set
to 1e − 07.

Differences between the predicted ût (x, t) and v̂t (x, t) and the actual values of the time
derivatives ut (x, t) and vt (x, t) for three different values of ε are shown in Fig. 5 when using
FNNs and in Fig. 6 when using RPNNs.

Instead, for the proposed RPNN scheme, the training phase, i.e. the solution of the least-
squares problem with regularization, required around 8 minutes, thus resulting to a training
phase of at least 20 times faster than that of the FNNs.

After training, we used the FNNs and RPNNs to compute with finite differences the
quantities required for performing the bifurcation analysis (see Eq. (49)), i.e.:

∂ F̂u

∂u j
= F̂u(u j , v j , ε) − F̂u(u j + δ, v j , ε)

2δ
; ∂ F̂u

∂v j
= F̂u(u j , v j , ε) − F̂u(u j , v j + δ, ε)

2δ

∂ F̂v

∂u j
= F̂v(u j , v j , ε) − F̂v(u j + δ, v j , ε)

2δ
; ∂ F̂v

∂v j
= F̂v(u j , v j , ε) − F̂v(u j , v j + δ, ε)

2δ

∂ F̂u

∂ε
= F̂u(u j , v j , ε) − F̂u(u j , v j , ε + δ)

2δ
; ∂ F̂v

∂ε
= F̂v(u j , v j , ε) − F̂v(u j , v j , ε + δ)

2δ
,

with δ = 1e − 06. The reconstructed bifurcation diagrams are shown in Fig. 7. Using
the FNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0191 and the turning point at
ε ≈ 0.9713; using the RPNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0193 and the
turning point at ε ≈ 0.9696. We approximated the same points using the finite differences

123

34 Page 20 of 30 Journal of Scientific Computing (2022) 92 :34

Fig. 5 Approximation accuracy in the test data without feature selection as obtained with FNNs. Contour
plot of the absolute values of differences in space and time, of |ut (x, t) − ût (x, t)|((a), (c), and (e)) and
of |vt (x, t) − v̂t (x, t)| ((b), (d), and (f)) for characteristic values of ε: (a) and (b) ε = 0.0114 near the
Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point

scheme in the previous section at ε ≈ 0.0183 for the Andronov-Hopf point and at ε ≈ 0.9446
for the turning point. Hence, compared to the FNNs, the RPNNs approximated slightly better
the reference turning point.

5.3 Numerical Bifurcation Analysis with Feature Selection

We used Diffusion Maps (setting the width parameter of the Gaussian kernel to σ = 10)
to identify the three parsimonious leading eigenvectors as described in Sect. 2.1. For our

123

Journal of Scientific Computing (2022) 92 :34 Page 21 of 30 34

Fig. 6 Approximation accuracy in the test data without feature selection as obtained with RPNNs. Contour
plot of the absolute values of differences in space and time, of |ut (x, t) − ût (x, t)| ((a), (c), and (e)) and
of |vt (x, t) − v̂t (x, t)| ((b), (d), and (f)) for characteristic values of ε: (a) and (b) ε = 0.0114 near the
Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point

computations, we used the datafold package in python [88]. We denote them as φ1, φ2, φ3.
The three parsimoniousDiffusionMaps coordinates for different values of the parameter ε are
shown in Fig. 8. For ε = 0.114 that is close to the Andronov-Hopf point, the embedded space
is a two dimensional “carpet” in the three dimensional space. The oscillatory behaviour leads
to different values of the time derivative which can be effectively parametrized as shown by
the coloring of the manifold (Fig. 8(a), (b)). For ε = 0.4010 and ε = 0.9383, the embedded
space is a one dimensional line, since time derivatives converges rapidly to zero (Fig. 8(c), (d),

123

34 Page 22 of 30 Journal of Scientific Computing (2022) 92 :34

(a) (b)

(c) (d)

Fig. 7 Reconstructed bifurcation diagrams from the Lattice Boltzmann simulations of the FHN dynamics with
respect to ε with FNNs and RPNNs with and without feature selection. (a)Mean values < u > for stable and
unstable branches; the inset zooms near the Andronov-Hopf bifurcation point (b) zoom near the turning Point
for < u >, (c)Mean values < v > for stable and unstable branches; the inset zooms near the Andronov-Hopf
bifurcation point, (d) zoom near the turning Point for < v >

(e) and (f)). Based on the feature selection methodology, the “good” subsets of the input data
domain are presented in Table 2. As expected, the best candidate features are the (u, v, uxx)
for ut and (u, v, vxx) for vt , which are the only features that indeed appear in the closed form
of the FHN PDEs.

Finally, we repeated the same steps but now using as inputs in the FNNs and RPNNs the
reduced input domain as obtained from the feature selection process. Table 1 summarizes
the performance of the schemes on the training and the test sets. Figs. 9 and 10 illustrate the
norms of the differences between the predicted from the FNNs and RPNNs and the actual
time derivatives of both variables.

Hence, as it is shown, the proposed feature selection approach based on the parsimonious
Diffusion Maps revealed correctly the structure of the embedded PDEs in the form of:

∂u(x, t)

∂t
= F̂u(u(x, t), v(x, t), uxx (x, t), ε),

∂v(x, t)

∂t
= F̂v(u(x, t), v(x, t), vxx (x, t), ε)

(50)

123

Journal of Scientific Computing (2022) 92 :34 Page 23 of 30 34

(a) (b)

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(c)

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(d)

-0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(e)

-0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(f)

Fig. 8 (a) and (b): The three parsimonious Diffusion Maps coordinates for ε = 0.01114 near the Andronov-
Hopf point, respectively. (c) and (d): the two parsimonious Diffusionmaps coordinates for ε = 0.4010. (e) and
(f): the two parsimonious Diffusion maps coordinates for ε = 0.9383 near the turning point. Colors represent
ut ((a), (c), (e)) and vt ((b), (d), (f))

123

34 Page 24 of 30 Journal of Scientific Computing (2022) 92 :34

Table 2 The “best” set of
variables that effectively
parametrize the intrinsic
coordinates ((φu

1 , φu
2 , φu

3) and
(φv

1 , φv
2 , φv

3)) and the
corresponding sums of total
losses across all the values of the
bifurcation parameter ε

ut = (φu
1 , φu

2 , φu
3) vt = (φv

1 , φv
2 , φv

3)

Features Total Loss Features Total Loss

1d (u) 4.3E-03 (u) 7.6E-03

2d (u, v) 6.37E-06 (u, v) 1.91E-05

3d (u, v, uxx) 2.77E-07 (u, v, vxx) 6.29E-07

4d (u, v, ux , uxx) 1.03E-07 (u, v, vx , vxx) 1.34E-07

Fig. 9 Approximation accuracy in the test data with feature selection as obtained with the FNNs. Contour
plot of the absolute values of differences in space and time, of |ut (x, t) − ût (x, t)| ((a), (c), and (e)) and
of |vt (x, t) − v̂t (x, t)| ((b), (d), and (f)) for characteristic values of ε: (a) and (b) ε = 0.0114 near the
Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point

123

Journal of Scientific Computing (2022) 92 :34 Page 25 of 30 34

Fig. 10 Approximation accuracy in the test data with feature selection as obtained with the RPNNs. Contour
plot of the absolute values of differences in space and time, of |ut (x, t) − ût (x, t)| ((a), (c), and (e)) and of
|vt (x, t)− v̂t (x, t)| ((b), (d), and (f)) for different values of ε: (a) and (b) ε = 0.0114 near the Andronov-Hopf
point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point

where F̂u and F̂v are the outputs of the FNNs (or the RPNNs). The constructed bifurca-
tion diagram with feature selection is shown in Fig. 7. Using the FNNs, we estimated the
Andronov-Hopf point at ε ≈ 0.0195 and the turning point at ε ≈ 0.9762. Using the RPNNs,
we estimated the Andronov-Hopf point at ε ≈ 0.0192 and the turning point at ε ≈ 0.9752.

123

34 Page 26 of 30 Journal of Scientific Computing (2022) 92 :34

6 Conclusions

Building on previous efforts [35], we present a machine learningmethodology for solving the
inverse problem in complex systems modelling and analysis, thus identifying effective PDEs
from spatio-temporal data produced by Lattice Boltzmannmodel simulations and performing
a numerical bifurcation analysis, thus solving the forward problem based on the constructed
machine learningmodels. Theproposed approach is a three tiered one. In thefirst step,weused
non-linear manifold-learning and in particular Diffusion Maps to select an appropriate set of
coarse-scale observables that define the low-dimensional manifold on which the emergent
dynamics evolve in the parameter space. At the second step, we learned the right-hand-side of
the effective PDEs with respect to the coarse-scale observables; here we used shallow FNNs
with two hidden layers and single layer RPNNs which basis functions were constructed
using appropriately designed random sampling. Finally, based on the constructed black-box
machine learning models, we constructed the coarse-grained bifurcation diagrams exploiting
the arsenal of numerical bifurcation toolkit. To demonstrate the approach, we used D1Q3
Lattice Boltzmann simulations of the FitzHugh-Nagumo PDEs and compared the machine
learning constructed bifurcation diagramwith the one obtained by discretizing the PDEswith
central finite differences.
The results show that the proposed machine learning framework was able to identify the
“correct" set of coarse-scale variables that are required to model the emergent dynamics
in the form of PDEs and based on them systematically study the coarse-scale dynamics
by constructing the emerging macroscopic bifurcation diagram. In terms of approximation
accuracy of the macroscopic dynamics, both schemes (the two hidden- layers FNNs and
the single-hidden layer RPNNs) performed for all practical purposes equivalently. However,
in terms of the computational cost in the training phase, the RPNNs were 20 to 30 times
faster than the two hidden layers FNNs. Hence, the proposed RPNN scheme is a promising
alternative approach to deep learning for solving the inverse problem for high-dimensional
PDEs from big data [1, 89, 90].
Here, we have focused on the construction of “black-box” PDEs and their numerical bifur-
cation analysis over the parametric space from data produced from Lattice Bolzmann model
simulations. The proposed machine learning approach can be extended to deal with higher-
dimensional multi-scale stochastic/microscopic simulators such as particle in cell (see e.g.
[91]), Brownian and molecular dynamics and agent-based models (see e.g. [19, 27]). In
such cases, one has to first identify an appropriate set of macroscopic observables that can
parametrize a coarse-scale manifold on which the emergent dynamics evolve, using for
example manifold learning algorithms such as Diffusion Maps (see e.g., [23, 30, 31, 38])
and based on this information to apply the proposed scheme to construct “black-box” PDEs
and consequently perform coarse-grained numerical analysis. Furthermore, the proposed
methodology can be extended to construct “gray-box” models by incorporating information
from the physics into the machine learning architecture [1, 92]. Finally, based on previous
efforts aiming at extracting normal forms of ODEs from data [14, 93], the proposed approach
can be exploited to discover normal forms of high-dimensional PDEs.

Funding Open access funding provided by Universitá degli Studi di Napoli Federico II within the CRUI-
CAREAgreement. This work was supported by the Italian program “Fondo Integrativo Speciale per la Ricerca
(FISR)” - FISR2020IP 02893/ B55F20002320001. I.G.K. acknowledges partial support from US Department
of Energy and the US Air Force Office of Scientific Research.

Availability of Data and Material (Data Transparency) Not applicable

123

Journal of Scientific Computing (2022) 92 :34 Page 27 of 30 34

Declarations

Conflict of interest The authors have no conflict of interests to disclose

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine
learning. Nat. Reviews Phys. 3(6), 422–440 (2021)

2. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Sci. 324(5923), 81–85
(2009)

3. Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differential equa-
tions with physics-informed deeponets. Sci. Adv. 7(40), 8605 (2021). https://doi.org/10.1126/sciadv.
abi8605 https://www.science.org/doi/pdf/10.1126/sciadv.abi8605

4. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.: Neural
operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481 (2021)

5. Hudson, J.L., Kube, M., Adomaitis, R.A., Kevrekidis, I.G., Lapedes, A.S., Farber, R.M.: Nonlinear signal
processing and system identification: applications to time series from electrochemical reactions. Chem.
Eng. Sci. 45(8), 2075–2081 (1990). https://doi.org/10.1016/0009-2509(90)80079-T

6. Rico-Martinez, R., Krischer, K., Kevrekidis, I., Kube, M., Hudson, J.: Discrete-vs. continuous-time non-
linear signal processing of cu electrodissolution data. Chem. Eng. Commun. 118(1), 25–48 (1992)

7. Krischer,K.,Rico-Martinez,R.,Kevrekidis, I.G.,Rotermund,H., Ertl,G.,Hudson, J.:Model identification
of a spatiotemporally varying catalytic reaction. Aiche JournalAiche J. 39(1), 89–98 (1993)

8. Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Identification of nonlinear dynamic systems using neural
networks. J. Appl. Mech. 60(1), 123–133 (1993). https://doi.org/10.1115/1.2900734

9. Rico-Martinez, R., Anderson, J.S., Kevrekidis, I.G.: Continuous-time nonlinear signal processing: a neu-
ral network based approach for gray box identification. In: Proceedings of IEEE Workshop on Neural
Networks for Signal Processing, pp. 596–605 (1994). https://doi.org/10.1109/NNSP.1994.366006

10. Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary
activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6(4), 911–917
(1995)

11. Anderson, J.S., Kevrekidis, I.G., Rico-Martinez, R.: A comparison of recurrent training algorithms for
time series analysis and system identification. Comput.&Chem. Eng. 20, 751–756 (1996). https://doi.org/
10.1016/0098-1354(96)00133-0. (EuropeanSymposiumonComputerAidedProcessEngineering-6)

12. González-García, R., Rico-Martínez, R., Kevrekidis, I.G.: Identification of distributed parameter systems:
A neural net based approach. Comput.&Chem. Eng. 22, 965–968 (1998). https://doi.org/10.1016/S0098-
1354(98)00191-4. (European Symposium on Computer Aided Process Engineering-8)

13. Siettos, C.I., Bafas, G.V.: Semiglobal stabilization of nonlinear systems using fuzzy control and singular
perturbation methods. Fuzzy Sets Syst. 129(3), 275–294 (2002)

14. Siettos, C.I., Bafas, G.V., Boudouvis, A.G.: Truncated chebyshev series approximation of fuzzy systems
for control and nonlinear system identification. Fuzzy Sets Syst. 126(1), 89–104 (2002)

15. Alexandridis, A., Siettos, C., Sarimveis, H., Boudouvis, A., Bafas, G.: Modelling of nonlinear process
dynamics using kohonen’s neural networks, fuzzy systems and chebyshev series. Comput. & Chem. Eng.
26(4–5), 479–486 (2002)

16. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl.
Acad. Sci. 104(24), 9943–9948 (2007)

17. Brunton, S.L., Proctor, J.L., Kutz, J.N.:Discovering governing equations fromdata by sparse identification
of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://www.science.org/doi/pdf/10.1126/sciadv.abi8605
http://arxiv.org/abs/2108.08481
https://doi.org/10.1016/0009-2509(90)80079-T
https://doi.org/10.1115/1.2900734
https://doi.org/10.1109/NNSP.1994.366006
https://doi.org/10.1016/0098-1354(96)00133-0
https://doi.org/10.1016/0098-1354(96)00133-0
https://doi.org/10.1016/S0098-1354(98)00191-4
https://doi.org/10.1016/S0098-1354(98)00191-4

34 Page 28 of 30 Journal of Scientific Computing (2022) 92 :34

18. Vlachas, P. R., Arampatzis, G., Uhler, C., Koumoutsakos, P.: Multiscale simulations of complex systems
by learning their effective dynamics. Nat. Mach. Intell. 4(4), 359–366 (2022)

19. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-
free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level
analysis. Commun. Math. Sci. 1(4), 715–762 (2003). https://doi.org/10.4310/cms.2003.v1.n4.a5

20. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: The computer-aided analysis of complex mul-
tiscale systems. AIChE J. 50(7), 1346–1355 (2004). https://doi.org/10.1002/aic.10106

21. Makeev, A.G., Maroudas, D., Kevrekidis, I.G.: “coarse” stability and bifurcation analysis using stochastic
simulators: Kinetic monte carlo examples. J. Chem. Phys. 116(23), 10083–10091 (2002). https://doi.org/
10.1063/1.1476929

22. Siettos, C.I., Graham, M.D., Kevrekidis, I.G.: Coarse brownian dynamics for nematic liquid crystals:
Bifurcation, projective integration, and control via stochastic simulation. J. Chem. Phys. 118(22), 10149–
10156 (2003). https://doi.org/10.1063/1.1572456

23. Erban, R., Frewen, T.A., Wang, X., Elston, T.C., Coifman, R., Nadler, B., Kevrekidis, I.G.: Variable-free
exploration of stochastic models: a gene regulatory network example. J. Chem. Phys. 126(15), 04–618
(2007)

24. Vandekerckhove, C., Kevrekidis, I., Roose, D.: An efficient newton-krylov implementation of the con-
strained runs scheme for initializing on a slow manifold. J. Sci. Comput. 39(2), 167–188 (2009)

25. Samaey, G., Vanroose, W., Roose, D., Kevrekidis, I.G.: Newton-krylov solvers for the equation-free
computation of coarse traveling waves. Comput. Methods Appl. Mech. Eng. 197(43–44), 3480–3491
(2008)

26. Samaey, G., Vanroose, W.: An analysis of equivalent operator preconditioning for equation-free newton-
krylov methods. SIAM J. Numer. Anal. 48(2), 633–658 (2010)

27. Siettos, C.I., Gear, C.W., Kevrekidis, I.G.: An equation-free approach to agent-based computation: Bifur-
cation analysis and control of stationary states. EPL (Europhysics Letters) 99(4), 48007 (2012). https://
doi.org/10.1209/0295-5075/99/48007

28. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric
diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl.
Acad. Sci. 102(21), 7426–7431 (2005). https://doi.org/10.1073/pnas.0500334102 https://www.pnas.org/
content/102/21/7426.full.pdf

29. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006). https://doi.
org/10.1016/j.acha.2006.04.006. (Special Issue: Diffusion Maps and Wavelets)

30. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction
coordinates of dynamical systems. Appl. Comput. Harmon. Anal. 21(1), 113–127 (2006)

31. Singer, A., Erban, R., Kevrekidis, I.G., Coifman, R.R.: Detecting intrinsic slow variables in stochastic
dynamical systems by anisotropic diffusion maps. Proc. Natl. Acad. Sci. 106(38), 16090–16095 (2009)

32. Lee, S., Kevrekidis, I.G., Karniadakis, G.E.: A resilient and efficient cfd framework: Statistical learning
tools for multi-fidelity and heterogeneous information fusion. J. Comput. Phys. 344, 516–533 (2017)

33. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Inferring solutions of differential equations using noisy
multi-fidelity data. J. Comput. Phys. 335, 736–746 (2017)

34. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential equations using
gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

35. Lee, S., Kooshkbaghi, M., Spiliotis, K., Siettos, C.I., Kevrekidis, I.G.: Coarse-scale pdes from fine-scale
observations via machine learning. Chaos: An Interdiscip. J. Nonlinear Sci. 30(1), 013141 (2020). https://
doi.org/10.1063/1.5126869

36. Dsilva, C.J., Talmon, R., Coifman, R.R., Kevrekidis, I.G.: Parsimonious representation of nonlinear
dynamical systems through manifold learning: A chemotaxis case study. Appl. Comput. Harmon. Anal.
44(3), 759–773 (2018). https://doi.org/10.1016/j.acha.2015.06.008

37. Thiem, T. N., Kemeth, F. P., Bertalan, T., Laing, C. R., Kevrekidis, I. G.: Global and local reduced models
for interacting, heterogeneous agents. Chaos: An Interdiscip. J. Nonlinear Sci. 31(7), 073139 (2021)

38. Holiday, A., Kooshkbaghi, M., Bello-Rivas, J.M., William Gear, C., Zagaris, A., Kevrekidis, I.G.: Mani-
fold learning for parameter reduction. J. Comput. Phys. 392, 419–431 (2019). https://doi.org/10.1016/j.
jcp.2019.04.015

39. Nadler, B., Lafon, S., Coifman,R., Kevrekidis, I.G.:Diffusionmaps-a probabilistic interpretation for spec-
tral embedding and clustering algorithms. In: Principal Manifolds for Data Visualization and Dimension
Reduction, pp. 238–260. Springer (2008)

40. Gao, S.,Mishne,G., Scheinost, D.:Nonlinearmanifold learning in functionalmagnetic resonance imaging
uncovers a low-dimensional space of brain dynamics. Hum. Brain Mapp. 42, 4510–4524 (2021). https://
doi.org/10.1002/hbm.25561

123

https://doi.org/10.4310/cms.2003.v1.n4.a5
https://doi.org/10.1002/aic.10106
https://doi.org/10.1063/1.1476929
https://doi.org/10.1063/1.1476929
https://doi.org/10.1063/1.1572456
https://doi.org/10.1209/0295-5075/99/48007
https://doi.org/10.1209/0295-5075/99/48007
https://doi.org/10.1073/pnas.0500334102
https://www.pnas.org/content/102/21/7426.full.pdf
https://www.pnas.org/content/102/21/7426.full.pdf
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1063/1.5126869
https://doi.org/10.1063/1.5126869
https://doi.org/10.1016/j.acha.2015.06.008
https://doi.org/10.1016/j.jcp.2019.04.015
https://doi.org/10.1016/j.jcp.2019.04.015
https://doi.org/10.1002/hbm.25561
https://doi.org/10.1002/hbm.25561

Journal of Scientific Computing (2022) 92 :34 Page 29 of 30 34

41. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat.
Comput. 7(4), 1307–1330 (1986). https://doi.org/10.1137/0907087

42. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.)
58(1), 267–288 (1996)

43. Gallos, I. K., Gkiatis, K., Matsopoulos, G. K., Siettos, C.: ISOMAP and machine learning algorithms for
the construction of embedded functional connectivity networks of anatomically separated brain regions
from resting state fMRI data of patients with Schizophrenia. AIMS Neurosci. 8(2), 295–321 (2021)

44. Ho,T.K.:Randomdecision forests. In: Proceedings of 3rd InternationalConferenceonDocumentAnalysis
and Recognition, vol. 1, pp. 278–2821 (1995). https://doi.org/10.1109/ICDAR.1995.598994

45. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal.
Mach. Intell. 20(8), 832–844 (1998). https://doi.org/10.1109/34.709601

46. Cybenko, G.V.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.
2, 303–314 (1989)

47. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators.
Neural Netw. 2(5), 359–366 (1989)

48. Hornik, K., Stinchcombe,M.,White, H.: Universal approximation of an unknownmapping and its deriva-
tives using multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)

49. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput.
3(2), 246–257 (1991)

50. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural Netw. 6(6), 861–867 (1993)

51. Dan Foresee, F., Hagan, M.T.: Gauss-newton approximation to bayesian learning. In: Proceedings of
International Conference on Neural Networks (ICNN’97), vol. 3, pp. 1930–19353 (1997). https://doi.
org/10.1109/ICNN.1997.614194

52. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the marquardt algorithm. IEEE Trans.
Neural Netw. 5(6), 989–993 (1994). https://doi.org/10.1109/72.329697

53. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans.
Inf. Theory 39(3), 930–945 (1993)

54. Igelnik, B., Pao, Y.-H.: Stochastic choice of basis functions in adaptive function approximation and the
functional-link net. IEEE Trans. Neural Netw. 6(6), 1320–1329 (1995)

55. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir
computing methods. Neural Netw. 20(3), 391–403 (2007)

56. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum
note. Bonn, Ger.: Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 148(34), 13 (2001)

57. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocom-
puting 70(1–3), 489–501 (2006)

58. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework
for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

59. Van DerMalsburg, C.: Frank rosenblatt: Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. In: Palm, G., Aertsen, A. (eds.) Brain Theory, pp. 245–248. Springer, Berlin, Heidelberg
(1986)

60. Fabiani, G., Calabrò, F., Russo, L., Siettos, C.: Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning machines. J. Sci. Comput. 89(2), 1–35 (2021)

61. Calabrò, F., Fabiani, G., Siettos, C.: Extreme learning machine collocation for the numerical solution of
elliptic pdes with sharp gradients. Comput. Methods Appl. Mech. Eng. 387, 114188 (2021)

62. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math.
26(1), 189–206 (1984)

63. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Com-
put. Syst. Sci. 66(4), 671–687 (2003)

64. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct.
& Algorithms 22(1), 60–65 (2003)

65. Vempala, S.S.: The Random Projection Method, vol. 65. American Mathematical Soc, United States
(2005)

66. Wang, J.: Geometric structure of high-dimensional data. In: Geometric Structure of High-Dimensional
Data and Dimensionality Reduction, pp. 51–77. Springer, Berlin, Heidelberg (2012)

67. Giryes, R., Sapiro, G., Bronstein, A.M.: Deep neural networks with random gaussian weights: A universal
classification strategy? IEEE Trans. Signal Process. 64(13), 3444–3457 (2016)

68. Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional
connections: A fast physics-informed neural network method for solving ordinary and partial differential
equations. Neurocomputing 457, 334–356 (2021)

123

https://doi.org/10.1137/0907087
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/ICNN.1997.614194
https://doi.org/10.1109/ICNN.1997.614194
https://doi.org/10.1109/72.329697

34 Page 30 of 30 Journal of Scientific Computing (2022) 92 :34

69. Dwivedi, V., Srinivasan, B.: Physics informed extreme learning machine (PIELM)-a rapid method for the
numerical solution of partial differential equations. Neurocomputing 391, 96–118 (2020)

70. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021)

71. Dong, S.: Local extreme learning machines: A neural network-based spectral element-like method for
computational pdes. Bulletin of the American Physical Society (2022)

72. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J .
1(6), 445–466 (1961)

73. Theodoropoulos, C., Qian, Y.-H., Kevrekidis, I.G.: “coarse” stability and bifurcation analysis using time-
steppers: A reaction-diffusion example. Proc. Natl. Acad. Sci. 97(18), 9840–9843 (2000). https://doi.org/
10.1073/pnas.97.18.9840https://www.pnas.org/content/97/18/9840.full.pdf

74. Ottaviani, M., Romanelli, F., Benzi, R., Briscolini, M., Santangelo, P., Succi, S.: Numerical simulations
of ion temperature gradient-driven turbulence. Phys. Fluids B 2(1), 67–74 (1990)

75. Succi, S.: The Lattice boltzmann equation: for fluid dynamics and beyond. Oxford University Press,
Oxford (2001)

76. Chikatamarla, S., Frouzakis, C., Karlin, I., Tomboulides, A., Boulouchos, K.: Lattice boltzmann method
for direct numerical simulation of turbulent flows. J. Fluid Mech. 656, 298–308 (2010)

77. La Rocca, M., Montessori, A., Prestininzi, P., Succi, S.: A multispeed discrete boltzmann model for
transcritical 2d shallow water flows. J. Comput. Phys. 284, 117–132 (2015)

78. Lai, H., Xu, A., Zhang, G., Gan, Y., Ying, Y., Succi, S.: Nonequilibrium thermohydrodynamic effects on
the rayleigh-taylor instability in compressible flows. Phys. Rev. E 94(2), 023106 (2016)

79. Dorschner, B., Chikatamarla, S.S., Karlin, I.V.: Fluid-structure interaction with the entropic lattice boltz-
mann method. Phys. Rev. E 97(2), 023305 (2018)

80. Succi, S.: Lattice boltzmann 2038. EPL (Europhysics Letters) 109(5), 50001 (2015)
81. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i. small amplitude

processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954). https://doi.
org/10.1103/PhysRev.94.511

82. Bhathnagor, P., Gross, E., Krook, M.: A model for collision processes in gases. Phys. Rev. 94(3), 511
(1954)

83. Otomo, H., Boghosian, B.M., Succi, S.: A kinetic generator for classical field theories with conservation
laws. EPL (Europhysics Letters) 132(6), 60002 (2021)

84. Qian, Y.H., Orszag, S.A.: Scalings in diffusion-driven reaction a + b → c: Numerical simulations by
lattice bgk models. J. Stat. Phys. 81, 237–253 (1995). https://doi.org/10.1007/BF02179978

85. Chan, T.F.C., Keller, H.B.: Arc-length continuation and multigrid techniques for nonlinear elliptic eigen-
value problems. SIAM J. Sci. Stat. Comput. 3(2), 173–194 (1982). https://doi.org/10.1137/0903012

86. Glowinski, R., Keller, H.B., Reinhart, L.: Continuation-conjugate gradient methods for the least squares
solution of nonlinear boundary value problems. SIAM J. Sci. Stat. Comput. 6, 793–832 (1985)

87. Govaerts, W.J.: Numerical methods for bifurcations of dynamical equilibria. SIAM, Philadelphia, PA
(2000)

88. Lehmberg, D., Dietrich, F., Köster, G., Bungartz, H.-J.: datafold: data-driven models for point clouds and
time series on manifolds. J. Open Source Softw. 5, 2283 (2020). https://doi.org/10.21105/joss.02283

89. Raissi, M.: Deep hidden physics models: Deep learning of nonlinear partial differential equations. J.
Machin. Learn. Res. 19(1), 932–955 (2018)

90. Raissi, M., Karniadakis, G.E.: Hidden physics models: Machine learning of nonlinear partial differential
equations. J. Comput. Phys. 357, 125–141 (2018)

91. Toschi, F., Vignolo, P., Succi, S., Tosi, M.: Dynamics of trapped two-component fermi gas: Temperature
dependence of the transition from collisionless to collisional regime. Phys. Rev. A 67(4), 041605 (2003)

92. Lovelett, R.J., Avalos, J.L., Kevrekidis, I.G.: Partial observations and conservation laws: Gray-box mod-
eling in biotechnology and optogenetics. Ind. & Eng. Chem. Res. 59(6), 2611–2620 (2019)

93. Yair, O., Talmon, R., Coifman, R.R., Kevrekidis, I.G.: Reconstruction of normal forms by learning
informed observation geometries from data. Proc. Natl. Acad. Sci. 114(38), 7865–7874 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1073/pnas.97.18.9840
https://doi.org/10.1073/pnas.97.18.9840
https://www.pnas.org/content/97/18/9840.full.pdf
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1007/BF02179978
https://doi.org/10.1137/0903012
https://doi.org/10.21105/joss.02283

	Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model Simulations: a Parsimonious Machine Learning Approach
	Abstract
	1 Introduction
	2 Methodology
	2.1 Parsimonious Diffusion Maps
	2.1.1 Feature Selection Using Diffusion Maps with Leave-One-Out Cross-Validation (LOOCV)

	2.2 Shallow Feedforward Neural Networks
	2.3 Random Projection Neural Networks
	2.3.1 Random Sampling Procedure

	3 Coarse-Grained Numerical Bifurcation Analysis From Spatio-Temporal Data
	3.1 The FitzHugh-Nagumo PDEs
	3.2 The D1Q3 Lattice Boltzmann model

	4 Algorithm Flow Chart
	5 Numerical Results
	5.1 Numerical Bifurcation Analysis of the FHN PDEs
	5.2 Numerical Bifurcation Analysis from Lattice Boltzmann Model Simulations
	5.2.1 Numerical Bifurcation Analysis Without Feature Selection

	5.3 Numerical Bifurcation Analysis with Feature Selection

	6 Conclusions
	References

