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Abstract
This paper presents a comprehensive study of non-linear systems of multi-order fractional
differential equations from aspects of theory and numerical approximation. In this regard,
we first establish the well-posedness of the underlying problem by investigations concerning
the existence, uniqueness, and influence of perturbed data on the behavior of the solutions as
well as smoothness of the solutions under some assumptions on the given data. Next, from the
numerical perspective, we develop and analyze a well-conditioned and high-order numerical
approach based on an operational spectral Galerkin method. The main advantage of our
strategy is that it characterizes the approximate solution via some recurrence formulas, instead
of solving a complex non-linear block algebraic system that requires high computational
costs. Moreover, the familiar spectral accuracy is justified in a weighted L2-norm, and some
practical test problems are provided to approve efficiency of the proposed method.

Keywords Non-linear systems of multi-order fractional differential equations (SMFDEs) ·
Well-posedness · Spectral Galerkin method · Fractional Jacobi functions (FJFs) ·
Convergence analysis

Mathematics Subject Classification 34A09 · 65L05 · 65L20 · 65L60 · 65L80

1 Introduction

Recently the fractional calculus has attracted the attention of many researchers due to its
capability in the modeling of problems influenced by memory properties and having non-
local behavior [18]. Among them, there are diverse physical phenomena for which their
separated elements make tight contact with each other. Thus, their mathematical modeling
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of these phenomena may result in the systems of fractional differential equations (FDEs).
These systems appear in numerous fields of science and technology, such as the fractional-
order SEIR epidemic model [1], pollution problems [4], hepatitis B disease [5], HIV/AIDS
fractional model [12], nuclear magnetic resonance (NMR) [13], magnetic resonance imaging
(MRI) [15], fractional-order COVID-19 model [16] and electron spin resonance (ESR) [19].

It turned out that the process of finding the analytical solution for systems of FDEs
is a challenging task, and even in some cases is impossible. Therefore, designing efficient
numericalmethods plays a crucial role in examining the solutions of these equations. Systems
of FDEs are generally divided into single-order and multi-order categories, which contain
fixed and various orders of fractional derivative operators, respectively. Researchers have
recently developed different approximate methods for the numerical solution of systems of
single-order FDEs (SSFDEs), such as fractional-order generalized Laguerre pseudo-spectral
method [2], Petrov-Galerkin method [9], fractional-order Jacobi Tau method [3], hybrid
non-polynomial collocation method [10], spline Collocation method [14] and Jacobi-Gauss
collocation method [20].

Systems ofmulti-order fractional differential equations (SMFDEs) seem to be investigated
less frequently than SSFDEs. For example, in papers [7, 8] Chebyshev Tau and fractional
collocationmethods have introduced for the numerical solution of constant and variable coef-
ficients linear SMFDEs, respectively.Most of the usedmethods for obtaining the approximate
solutions of non-linear SMFDEs suffer from the following crucial items, which play a key
role in establishing an efficient numerical scheme:

• Lack of comprehensive analysis regarding the well-posedness of the problem, including
existence, uniqueness, the effects of perturbations on the solutions and absence of a robust
smoothness investigation which is essential in designing high-order approaches such as
spectral methods.

• Solving complex non-linear algebraic systems with high computational costs that sig-
nificantly affects the accuracy of approximate solutions. Clearly, this weakness typically
causes even efficient numerical methods can not provide suitable approximations for the
solutions of equations arising from real-world phenomena, which are mostly considered
on the long integration domain.

• Ignoring the singularity arising from the fractional derivative operators in adopting appro-
priate basis functions that leads to characterize the approximate solutions by a linear
combination of infinitely smooth basis functions such as polynomials. In fact, one of
the requirements of producing high-order methods is to establish a consistency between
the asymptotic behavior of the exact solution, and the degree of smoothness of the basis
functions, which has been ignored in many of the methods presented so far.

In this paper, we intend to provide a comprehensive study taking the approach of removing
the above drawbacks to the following non-linear SMFDEs{

D
γ j
C z j (x) = g j (x, z(x)), j ∈ ℵn = {1, 2, . . . , n},

z(k)j (0) = z(k)j,0, k = 0, 1, . . . , �γ j� − 1, x ∈ χ = [0, X ], (1.1)

where γ j = η j
λ j

is a positive rational number with the co-prime integers η j ≥ 1 and λ j ≥ 2,

X is a finite positive real number, and �.� is the ceiling function. g j (x, z(x)) : χ ×R
n → R

are continuous functions, and z(x) = [z1(x), z2(x), . . . , zn(x)]T : χ → R
n is the vector of

unknowns. D
γ j
C is Caputo fractional derivative of order γ j defined by

D
γ j
C (.) = I �γ j �−γ j ∂

�γ j �
x (.),
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in which I �γ j �−γ j denotes the Riemann–Liouville fractional integral operator of order �γ j�−
γ j [6].

To this end, we first present a comprehensive analysis around the existence, uniqueness,
smoothness properties, and influence of perturbed data of (1.1), and then an efficient spectral
approximation using the fractional Jacobi functions is introduced to (1.1). Although spec-
tral methods are capable of providing highly accurate solutions to smooth problems, there
are some disadvantages, including the need to solve complex and ill-conditioned algebraic
systems. Moreover, the accuracy of the solutions would be significantly reduced in attacking
the problems with non-smooth solutions. However, during this investigation, the numerical
scheme is designed in such a way that it incorporates both high accuracy in dealing with non-
smooth solutions and computing approximate solutions through recurrence relations rather
than solving non-linear complex algebraic systems.

The rest of this paper is organized as follows. In Sect. 2, the well-posedness of (1.1)
including existence, uniqueness, and influence of perturbed data alongwith some smoothness
properties of (1.1) are established. Our analysis will reveal that the problem (1.1) is well-
posed, and some derivatives of the solutions may have a discontinuity at the origin. In Sect. 3,
a novel spectral Galerkin method based on the fractional Jacobi basis functions for the
numerical solution of (1.1) is implemented. In this regard, the numerical solvability and
complexity analysis of the corresponding non-linear block algebraic system are investigated.
In Sect. 4, the convergence analysis of the proposed method is rigorously studied. To support
our analysis, some examples are illustrated in Sect. 5. Finally, some concluding remarks are
expressed in Sect. 6.

2 Well-Posedness and Smoothness Properties

Before implementing our numerical approach, we investigate some results on the well-
posedness and smoothness of solutions of (1.1). Commonly, a problem is called well-posed
if it has a unique solution, and the solution depends on the given data continuously. In this
regard, we first recall the following existence and uniqueness theorem.

Theorem 2.1 (Existence and uniqueness [6]) Let the continuous functions g j in (1.1) satisfy
a Lipschitz condition with respect to all their variables except for the first one, i.e.,

|g j (x,u1) − g j (x,u2)| ≤ L||u1 − u2||∞, u1, u2 ∈ R
n,

with some constant L > 0, where ||.||∞ is the max norm on R
n, i.e.,

||u1||∞ = max{|u1,1|, |u1,2|, . . . , |u1,n |},
for all u1 = [u1,1, u1,2, . . . , u1,n]T ∈ R

n. Then, the problem (1.1) has a unique continuous
solution on χ .

Now, we investigate the dependence of the exact solution on some small perturbations in
the input data. Clearly, this is an important factor in the numerical solution of (1.1) because the
influence of perturbations on the discretized equation is a fundamental item in determining
the effect of roundoff errors. The next theorems will show that the solution of (1.1) depends
continuously on the given data. First, we investigate the dependence of the solution of (1.1)
on the initial values and the given function of the right-hand side.
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Theorem 2.2 Assume that the conditions of Theorem 2.1 hold for both equation (1.1) and
the perturbed equation{

D
γ j
C z̃ j (x) = g̃ j (x, z̃(x)), j ∈ ℵn,

z̃(k)j (0) = z̃(k)j,0, k = 0, 1, . . . , �γ j� − 1, x ∈ χ.
(2.1)

In addition, let

ε1j = max
k=0,1,...,�γ j �−1

|z(k)j,0 − z̃(k)j,0|, ε2j = max
(x,u)∈χ×Rn

|g j (x,u) − g̃ j (x,u)|.

If ε1j and ε2j are sufficiently small, then we have

max
x∈χ

|z j (x) − z̃ j (x)| = O(ε1j + ε2j ), j ∈ ℵn . (2.2)

Proof Subtracting (2.1) from (1.1), and defining Δ j (x) = z j (x) − z̃ j (x), we find that{
D

γ j
C Δ j (x) = g j (x, z(x)) − g̃ j (x, z̃(x)), j ∈ ℵn,

Δ
(k)
j (0) = z(k)j,0 − z̃(k)j,0, k = 0, 1, . . . , �γ j� − 1, x ∈ χ,

which is equivalent to the following system involvingVolterra integral equations of the second
kind

Δ j (x) =
�γ j �−1∑
k=0

xk

k!
(
z(k)j,0 − z̃(k)j,0

)
+ I γ j

(
g j (x, z(x)) − g̃ j (x, z̃(x))

)
, j ∈ ℵn .

It can be concluded that

|Δ j (x)| ≤ ε1j

�γ j �−1∑
k=0

Xk

k! + 1

Γ (γ j )∫ x

0
(x − t)γ j−1

(∣∣g j (t, z(t)) − g j (t, z̃(t))
∣∣ + ∣∣g j (t, z̃(t)) − g̃ j (t, z̃(t))

∣∣)dt .
In view of the Lipschitz assumption on g j and definition of max norm on Rn , we have

∣∣g j (t, z(t)) − g j (t, z̃(t))
∣∣ ≤ L||z(t) − z̃(t)||∞ ≤ L

n∑
i=1

|Δi (t)|, (2.3)

and thereby

|Δ j (x)| ≤ ε1j

�γ j �−1∑
k=0

Xk

k! + L

Γ (γ j )

n∑
i=1

∫ x

0
(x − t)γ j−1|Δi (t)|dt + ε2j

Γ (γ j )

∫ x

0
(x − t)γ j−1dt

≤ ε1j

�γ j �−1∑
k=0

Xk

k! + L

Γ (γ j )

n∑
i=1

∫ x

0
(x − t)γ j−1|Δi (t)|dt + ε2j

Xγ j

Γ (γ j + 1)

≤ ε1j

�γ j �−1∑
k=0

Xk

k! + L̃
n∑

i=1

∫ x

0
(x − t)

min
1≤s≤n

{γs }−1|Δi (t)|dt + ε2j
Xγ j

Γ (γ j + 1)
,
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where L̃ = L max
j∈ℵn

X
γ j− min

1≤s≤n
{γs }

Γ (γ j )
. The above inequality can be rewritten as the following

vector-matrix form

Δ(x) ≤ 
 + L̃ I
∫ x

0
(x − t)

min
1≤s≤n

{γs }−1
Δ(t)dt,

where I denotes a matrix of order n with entries one. In addition, we have Δ(x) =[|Δ1(x)|, |Δ2(x)|, . . . , |Δn(x)|
]T and 
 = [


1,
2, . . . , 
n
]T with


 j = ε1j

�γ j �−1∑
k=0

Xk

k! + ε2j
Xγ j

Γ (γ j + 1)
.

Equivalently, we arrive at

Δ(x) ≤ 
 + nL̃
∫ x

0
(x − t)

min
1≤s≤n

{γs }−1
Δ(t)dt,

in view of the fact that n is the max norm of matrix I on R
n×n . Gronwall’s inequality [7]

yield

Δ(x) ≤ C |
|,

where C is a generic positive constant, and equivalently

|Δ j (x)| ≤ C |
 j | ≤ C(ε1j + ε2j ),

which proves the theorem. 
�

Next, we survey the influence of changes in the fractional derivative orders.

Theorem 2.3 Suppose that the assumptions of Theorem 2.1 hold for both equation (1.1) and
the perturbed equation

{
D

γ̃ j
C z̃ j (x) = g j (x, z̃(x)), j ∈ ℵn,

z̃(k)j (0) = z(k)j,0, k = 0, 1, . . . , �γ̃ j� − 1, x ∈ χ,
(2.4)

where γ̃ j > γ j . Moreover, let ε3j = γ̃ j − γ j and

ε4j =
{
0, �γ j� = �γ̃ j�,
max{|z(k)j,0| : �γ j� ≤ k ≤ �γ̃ j� − 1}, else.

If ε3j and ε4j are sufficiently small, then for j ∈ ℵn, we have

max
x∈χ

|z j (x) − z̃ j (x)| = O(ε3j ) + O(ε4j ). (2.5)
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Proof Rewriting the equation (1.1) and the perturbed equation (2.4) as equivalent systems of
Volterra integral equations and subtracting the tow resulting systems from each other yields

Δ j (x) = −
�γ̃ j �−1∑
k=�γ j �

xk

k! z
(k)
j,0 + 1

Γ (γ j )

∫ x

0
(x − t)γ j−1g j (t, z(t))dt

− 1

Γ (γ̃ j )

∫ x

0
(x − t)γ̃ j−1g j (t, z̃(t))dt

= −
�γ̃ j �−1∑
k=�γ j �

xk

k! z
(k)
j,0 + 1

Γ (γ j )

∫ x

0
(x − t)γ j−1(g j (t, z(t)) − g j (t, z̃(t)))dt

+
∫ x

0

( (x − t)γ j−1

Γ (γ j )
− (x − t)γ̃ j−1

Γ (γ̃ j )

)
g j (t, z̃(t))dt .

From (2.3), we have

|Δ j (x)| ≤
�γ̃ j �−1∑
k=�γ j �

Xk

k! |z(k)j,0| + L

Γ (γ j )

n∑
i=1

∫ x

0
(x − t)γ j−1|Δi (t)|dt

+ max
(x,u)∈χ×Rn

|g j (x,u)|
∫ x

0

∣∣∣ (x − t)γ j−1

Γ (γ j )
− (x − t)γ̃ j−1

Γ (γ̃ j )

∣∣∣dt . (2.6)

Proceeding in exactly the same way as the previous theorem, we can rewrite (2.6) as the
following vector-matrix form

Δ(x) ≤ Ψ + nL̃
∫ x

0
(x − t)

min
1≤s≤n

{γs }−1
Δ(t)dt,

in which Ψ = [
Ψ1, Ψ2, . . . , Ψn

]T , with
Ψ j =

�γ̃ j �−1∑
k=�γ j �

Xk

k! |z(k)j,0| + max
(x,u)∈χ×Rn

|g j (x,u)|
∫ x

0

∣∣∣ (x − t)γ j−1

Γ (γ j )
− (x − t)γ̃ j−1

Γ (γ̃ j )

∣∣∣dt . (2.7)

Now, we can bound the integral on the right-hand side of Ψ j in accordance with∫ x

0

∣∣∣ (x − t)γ j−1

Γ (γ j )
− (x − t)γ̃ j−1

Γ (γ̃ j )

∣∣∣dt =
∫ x

0

∣∣∣wγ j−1

Γ (γ j )
− wγ̃ j−1

Γ (γ̃ j )

∣∣∣dw

≤
∫ X

0

∣∣∣wγ j−1

Γ (γ j )
− wγ̃ j−1

Γ (γ̃ j )

∣∣∣dw ≤ Cε3j .

Indeed, the integral can be computed explicitly: One first has to find the zero of the integrand,
which is located at (Γ (γ̃ j )/Γ (γ j ))

1/(γ̃ j−γ j ). If X is smaller than this value, then the integrand
has no change of sign, and we can move the absolute value operation outside the integral.
Otherwise we must split the interval of integration at this point, and each integral can be
handled in this way. In either case, we may use the Mean Value Theorem of Differential
Calculus to see that the resulting expression is bounded by O(γ̃ j − γ j ) = O(ε3j ). Using
Gronwall’s inequality [7], we have

Δ(x) ≤ C |Ψ |,
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where C is a generic positive constant, and thereby

|Δ j (x)| ≤ C |Ψ j | ≤ C(ε3j + ε4j ),

which concludes the relation (2.5). 
�
Clearly, Theorems 2.1–2.3 deduce the well-posedness of (1.1). In particular, Theorems 2.2
and 2.3 assert that small perturbations in the input data cannot have a meaningful effect
on the exact solution. Indeed, the existence of small perturbations in the right-hand sides
of (2.2) and (2.5) will translate into small discrete perturbations in the numerical solution
due to roundoff errors, and the well-posedness property does not allow a meaningful effect
to enter the accuracy of the approximate solution. In what follows, we will discuss the
properties dealing with the solution smoothness of the problem (1.1). Since the Caputo
fractional derivative is a weakly singular integral operator, we cannot typically expect the
solutions of FDEs to be smooth, even for smooth input functions. Clearly, this can lead to
a challenge of constructing the numerical methods with reasonable orders of convergence.
Hence, recognizing the singularity behavior of the solutions under imposing some conditions
on the given functions g j is crucial to design high-order numerical methods. In this regard,
in the next theorem, the regularity of solutions of (1.1) is explored by obtaining their series
representations in a neighborhood of the origin.

Theorem 2.4 (Smoothness of the solutions)Under the assumptions of Theorem 2.1, suppose
that

g j (x, z(x)) = ḡ j (x
1/λ, z(x)), j ∈ ℵn,

where λ is the least commonmultiple of λ j , and ḡ j is an analytic function in the neighborhood

of (0, z(0)1,0, . . . , z
(0)
n,0). Then the solution z j (x) has the following series representation around

the origin

z j (x) = ψ j (x) +
∞∑

ρ=γ jλ

z̄ j,ρ x
ρ
λ , j ∈ ℵn, (2.8)

where ψ j (x) =
�γ j �−1∑
k=0

z(k)j,0
k! x

k , and z̄ j,ρ are known coefficients.

Proof Let us assume the following representation of z j (x)

z j (x) =
∞∑

ρ=0

z̄ j,ρ x
ρ
λ , j ∈ ℵn . (2.9)

We find the unknown coefficients {z̄ j,ρ}nj=1 such that the representation (2.9) converges and

satisfies (1.1). Using the series expansion of ḡ j around the point (0, z
(0)
1,0, . . . , z

(0)
n,0), we obtain

g j (x, z(x)) = ḡ j (x
1/λ, z(x)) =

∞∑
ρ=0

{θk }nk=1=0

g j,ρ,{θk }nk=1
x

ρ
λ

n∏
k=1

(
zk(x) − z(0)k,0

)θk

. (2.10)

By rearranging, it can be concluded that(
zk(x) − z(0)k,0

)θk

=
( ∞∑

ρ=1

z̄k,ρx
ρ
λ

)θk

=
∞∑

σk=0

Cθk
σk
x

σk
λ , (2.11)

123
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where

Cθk
σk

=

⎧⎪⎪⎨
⎪⎪⎩
1, θk = 0, σk = 0,

0, θk = 0, σk ≥ 1,∑
ρ1+...+ρθk =σk

z̄k,ρ1 . . . z̄k,ρθk
, θk �= 0, σk ≥ 1.

(2.12)

The case σk = 0 in the sum on the right-hand side only occurs for θk = 0. Meanwhile, the
equation (1.1) can be considered as the following system involvingVolterra integral equations
of the second kind

z j (x) = ψ j (x) + I γ j g j (x, z(x)), j ∈ ℵn . (2.13)

Therefore, substituting the relation (2.11) into (2.10), we find

∞∑
ρ=0

z̄ j,ρ x
ρ
λ = ψ j (x) + I γ j

⎛
⎜⎜⎜⎝

∞∑
ρ=0

{θk }nk=1=0

g j,ρ,{θk }nk=1
x

ρ
λ

n∏
k=1

⎛
⎝ ∞∑

σk=0

Cθk
σk

x
σk
λ

⎞
⎠
⎞
⎟⎟⎟⎠ .

Assuming uniform convergence, the coefficients z̄ j,ρ satisfy the following equality

∞∑
ρ=0

z̄ j,ρ x
ρ
λ = ψ j (x) + ζ j

⎛
⎜⎜⎜⎝

∞∑
ρ=0

{θk ,σk }nk=1=0

g j,ρ,{θk }nk=1

(
n∏

k=1

Cθk
σk

)
xγ j+

ρ+
n∑

k=1
σk

λ

⎞
⎟⎟⎟⎠ , (2.14)

where ζ j = Γ (

ρ+
n∑

k=1
σk

λ
+1)

Γ (γ j+
ρ+

n∑
k=1

σk

λ
+1)

. Inserting ρ = ρ − γ jλ −
n∑

k=1
σk in the series of the right-hand

side of (2.14), we obtain

∞∑
ρ=0

z̄ j,ρ x
ρ
λ = ψ j (x) + ζ̄ j

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
ρ=γ jλ+

n∑
k=1

σk

{θk ,σk }nk=1=0

g
j,ρ−γ jλ−

n∑
k=1

σk ,{θk }nk=1

(
n∏

k=1

Cθk
σk

)
x

ρ
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.15)

in which ζ̄ j = Γ (
ρ
λ
−γ j+1)

Γ (
ρ
λ
+1)

. Now, by comparing the coefficients of x
ρ
λ on both sides of (2.15),

the unknown coefficients z̄ j,ρ can be derived. Clearly for ρ < γ jλ, we have

z̄ j,ρ =
⎧⎨
⎩

z
(
ρ
λ

)

j,0

(
ρ
λ
)! , ρ = 0, λ, . . . , (�γ j� − 1)λ,

0, else,

and for ρ ≥ γ jλ, the following recursive formula is inferred

z̄ j,ρ = ζ̄ j

⎛
⎝ ∞∑

{θk ,σk }nk=1=0

g
j,ρ−γ jλ−

n∑
k=1

σk ,{θk }nk=1

(
n∏

k=1

Cθk
σk

)⎞
⎠ ,
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such that the coefficients g
j,ρ−γ jλ−

n∑
k=1

σk ,{θk }nk=1

with negative indices are considered as zero,

and in the case ρ − γ jλ −
n∑

k=1
σk ≥ 0, we have

ρ ≥ γ jλ −
n∑

k=1

σk > σl = ρ1 + . . . + ρθl ≥ ρi , l ∈ ℵn, i = 1, 2, . . . , θl .

In other words, z̄ j,ρ can be expressed in terms of coefficients with lower indices. This means,
the solution of the problem (1.1) can be described by the series representation (2.8).

Now, we verify that the series converges uniformly and absolutely in the neighborhood
of origin. To this, we apply a suitable modification of Lindelof’s majorant method [6]. Let
us consider the following system involving Volterra integral equations of the second kind

Z j (x) = ψ̄ j (x) + I γ j G j (x,Z(x)), j ∈ ℵn,

where ψ̄ j (x) =
�γ j �−1∑
k=0

xk
k! |z(k)j,0|, and

G j (x,Z(x)) = Ḡ j (x
1/λ,Z(x)) =

∞∑
ρ=0

{θk }nk=1=0

|g j,ρ,{θk }nk=1
| x ρ

λ

n∏
k=1

(
Zk(x) − |z(0)k,0|

)θk

.

Clearly, {Z j (x)}nj=1 is a majorant for {z j (x)}nj=1, and that all coefficients of {Z j (x)}nj=1 are
positive. The formal solution {Z j (x)}nj=1 may be computed in exactly the same way as the
previous step. Thus, we now need to prove that the series Z j (x) converges absolutely over
[0, η j ], with some η j > 0. For this purpose, it suffices to show that the finite partial sum of
Z j (x) is uniformly bounded on [0, η j ]. Considering

S j,L +1(x) = ψ̄ j (x) +
L +1∑
ρ=γ jλ

Z̄ j,ρ x
ρ
λ ,

as the finite partial sum of Z j (x), we have

S j,L +1(x) ≤ ψ̄ j (x) + I γ j G j (x, S j,L (x)), j ∈ ℵn,

that follows from the recursive computation of the coefficients. Indeed, if we expand the right-
hand side of the above inequality, all coefficients Z̄ j,ρ with indices satisfying the inequality
ρ
γ

≤ (L +1)
γ

are omitted from both sides, while there will in general be additional positive
terms of higher-order in the right-hand side. Assuming

B1, j =
�γ j �−1∑
k=0

Xk

k! |z(k)j,0|,

B2, j = max
(x,W )∈χ×[0,2B1,1]×...×[0,2B1,n ]

∣∣G j (x,W )
∣∣

Γ (γ j + 1)
, j ∈ ℵn,

we define

η j = min

{
X ,

[
B1, j

B2, j

] 1
γ j

}
, j ∈ ℵn .
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Now, we show that |S j,L (x)| ≤ 2B1, j for j ∈ ℵn, x ∈ [0, η j ]. The proof is done using
mathematical induction on L . The statement for L = 0 is evident since

S j,0(x) = |z(0)j,0| ≤ B1, j , j ∈ ℵn .

We assume that it holds for L and transit to L + 1 as

|S j,L +1(x)| = S j,L +1(x) ≤ ψ̄ j (x) + I γ j G j (x, S j,L (x))

≤
�γ j �−1∑
k=0

ηkj

k! |z(k)j,0| + max
t∈[0,x]

∣∣G j (t, S j,L (t))
∣∣ xγ j

Γ (γ j + 1)

≤ B1, j + max
(t,W )∈[0,η j ]×[0,2B1,1]×...×[0,2B1,n ]

∣∣G j (t,W )
∣∣ η

γ j
j

Γ (γ j + 1)

≤ B1, j + η
γ j
j B2, j ≤ 2B1, j , j ∈ ℵn,

which proves that S j,L +1(x) is uniformly bounded over interval [0, η j ]. Since all its coeffi-
cients are positive, it is also monotone. Hence, in view of the power series structure of Z j (x),
it is absolutely and uniformly convergent on [0, η j ] and the compact subsets of [0, η j ),
respectively. Thanks to Lindelof’s theorem, it ultimately concludes the same properties for
series representation z j (x). Thus, it allows us to interchange integration and series. 
�

Indeed, Theorem 2.4 shows that the �γ j�-th derivative of z j (x) may have a discontinuity at
the initial point. This would have a great impact on accuracy in implementing the classical
spectral methods to approximate the solutions. In this sense, we are going to introduce a
new spectral method to calculate better approximate solutions for the problem (1.1) having
non-smooth behavior. In what follows, we will construct our numerical approach under the
conditions of Theorems 2.1–2.4.

3 Numerical Approach

This section is going to develop an effective and applicable numerical scheme based on
the operational fractional Jacobi Galerkin method to estimate the solution of problem (1.1).
In order to do so, we first discuss some imperative theoretical consequences dealt with the
classical Jacobi polynomials and fractional Jacobi functions.

3.1 Jacobi Polynomials

The Jacobi polynomials J (μ,ν)
n (s) with the parameters μ, ν > −1, and s ∈ I = [−1, 1] are

orthogonal associated with the weight function w(μ,ν)(s) = (1 − s)μ(1 + s)ν , i.e., [17]∫
I
J (μ,ν)
m (s)J (μ,ν)

n (s)w(μ,ν)(s)ds = λ(μ,ν)
n δmn, m, n ≥ 0, (3.1)

where

λ(μ,ν)
n = ‖J (μ,ν)

n ‖2
w(μ,ν) = 2μ+ν+1Γ (n + μ + 1)Γ (n + ν + 1)

(2n + μ + ν + 1)n!Γ (n + μ + ν + 1)
,
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and δmn is known as the Kronecker delta function. These polynomials are explicitly signified
as follows

J (μ,ν)
n (s) =

n∑
j=0

Υ
(μ,ν,n)
j

(
s + 1

2

) j

, (3.2)

where

Υ
(μ,ν,n)
j = (−1)n− jΓ (n + ν + 1)Γ (n + μ + ν + j + 1)

Γ (ν + j + 1) j !Γ (n + μ + ν + 1)(n − j)! .

Since {J (μ,ν)
n }n≥0 forms a complete L2

w(μ,ν) (I )-orthogonal system, defining

U(μ,ν)
N = Span{J (μ,ν)

n : n = 0, 1, . . . , N },

along with the related orthogonal projection π
(μ,ν)
N : L2

w(μ,ν) (I ) → U(μ,ν)
N given by(

F − π
(μ,ν)
N F, Φ

)
w(μ,ν)

= 0, ∀Φ ∈ U(μ,ν)
N ,

concludes

π
(μ,ν)
N F =

N∑
n=0

Fn J
(μ,ν)
n (s), Fn = 1

λ
(μ,ν)
n

(F, J (μ,ν)
n )w(μ,ν) .

Considering the Sobolev space

Hm
w(μ,ν) (I ) = {F : ‖F‖m,w(μ,ν) < ∞, m ∈ N},

associated with the norm and semi-norm

‖F‖2m,w(μ,ν) =
m∑
l=0

‖∂ ls F‖2
w(μ+l,ν+l) , |F |m,w(μ,ν) = ‖∂ms F‖w(μ+m,ν+m) ,

a suitable bound of the truncation error π
(μ,ν)
N F − F can be established as follows.

Theorem 3.1 [17] For each F ∈ Hm
w(μ,ν) (I ), 0 ≤ m ≤ N + 1, and m ∈ N, the following

inequality is satisfied

‖π(μ,ν)
N F − F‖w(μ,ν) ≤ CN−m |F |m,w(μ,ν) ,

where C is a positive constant independent of N .

In order to find more properties of the Jacobi polynomials, one can refer to [17].

3.2 Fractional Jacobi Functions

The essence of the fractional Jacobi functions (FJFs) J (μ,ν,τ )
n (x) with τ ∈ (0, 1] and x ∈ χ

comes from the Jacobi polynomials with coordinate transformation s = 2( x
X )τ − 1 as [3,

21]

J (μ,ν,τ )
n (x) = J (μ,ν)

n

(
2
( x

X

)τ − 1
)

. (3.3)
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From (3.1), one can check that these functions are mutually orthogonal with respect to the
weight function w(μ,ν,τ )(x) = xτν+τ−1(X τ − xτ )μ, i.e.,∫

χ

J (μ,ν,τ )
m (x)J (μ,ν,τ )

n (x)w(μ,ν,τ )(x)dx = λ(μ,ν,τ )
n δmn, m, n ≥ 0, (3.4)

where λ
(μ,ν,τ )
n = Xτ(μ+ν+1)

τ2μ+ν+1 λ
(μ,ν)
n . Regarding (3.2), the FJFs satisfy the following explicit

formula

J (μ,ν,τ )
n (x) =

n∑
j=0

1

X τ j
Υ

(μ,ν,n)
j xτ j = Span{1, xτ , . . . , xnτ }.

Due to the completeness of the FJFs in L2
w(μ,ν,τ ) (χ), we state

U(μ,ν,τ )
N = Span{J (μ,ν,τ )

n : n = 0, 1, . . . , N },
and define the corresponding orthogonal projection π

(μ,ν,τ )
N : L2

w(μ,ν,τ ) (χ) → U(μ,ν,τ )
N as(

f − π
(μ,ν,τ )
N f , φ

)
w(μ,ν,τ )

= 0, ∀φ ∈ U(μ,ν,τ )
N . (3.5)

Trivially, by the relations (3.4) and (3.5), we have

π
(μ,ν,τ )
N f =

N∑
n=0

fn J
(μ,ν,τ )
n (x), fn = 1

λ
(μ,ν,τ )
n

( f , J (μ,ν,τ )
n )w(μ,ν,τ ) .

Now, we try to find an appropriate error bound of the truncation error f − π
(μ,ν,τ )
N f . To this

end, we suppose that the functions f (x) and F(s) are related by coordinate transformation
s = 2( x

X )τ − 1. Their derivatives are related in the following sense

Dx f := ∂s F(s) = ∂s x ∂x f ,

D2
x f := ∂2s F(s) = ∂s x ∂x (Dx f ) ,

...

Dn
x f := ∂ns F(s) = ∂s x ∂x (∂s x ∂x (· · · (∂s x ∂x f ) · · · )),

in which ∂s x = X
2τ

( x
X

)1−τ . Moreover, it can be readily inferred that

‖F(s)‖2
w(μ,ν) =

∫
I
|F(s)|2w(μ,ν)(s)ds

= d(μ,ν)

∫
χ

| f (x)|2w(μ,ν,τ )(x)dx = d(μ,ν)‖ f (x)‖2
w(μ,ν,τ ) ,

‖∂ms F(s)‖2
w(μ,ν) =

∫
I
|∂ms F(s)|2w(μ,ν)(s)ds = d(μ,ν)

∫
χ

|Dm
x f (x)|2w(μ,ν,τ )(x)dx

= d(μ,ν)‖Dm
x f (x)‖2

w(μ,ν,τ ) , (3.6)

where d(μ,ν) = τ2μ+ν+1

Xτ(μ+ν+1) .

To obtain the upper bound for truncation error π
(μ,ν,τ )
N f − f , we define the transformed

space

Hm
w(μ,ν,τ ) (χ) = { f : ‖ f ‖m,w(μ,ν,τ ) < ∞},
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equipped with the following norm and semi-norm

‖ f ‖2m,w(μ,ν,τ ) =
m∑
l=0

d(μ+l,ν+l)‖Dl
x f ‖2w(μ+l,ν+l,τ ) ,

| f |m,w(μ,ν,τ ) =
√
d(μ+m,ν+m)‖Dm

x f ‖w(μ+m,ν+m,τ ) ,

and give the following theorem.

Theorem 3.2 For f ∈ Hm
w(μ,ν,τ ) (χ), 0 ≤ m ≤ N + 1, and m ∈ N, the following inequality

holds

‖π(μ,ν,τ )
N f − f ‖w(μ,ν,τ ) ≤ CN−m | f |m,w(μ,ν,τ ) ,

where C is a positive constant independent of N .

Proof Applying coordinate transformation s = 2( x
X )τ − 1 and also relation (3.6), one has

‖π(μ,ν,τ )
N f − f ‖w(μ,ν,τ ) = 1√

d(μ,ν)
‖π(μ,ν)

N F − F‖w(μ,ν) .

The desired consequence can be derived by Theorem 3.1 and the relation (3.6). 
�

3.3 Operational Fractional Jacobi Galerkin Method

The aim of this section is to establish the operational fractional Jacobi Galerkin method to
approximate the solutions of (1.1). In this scheme, the Galerkin approximate solutions are
presented as a linear combination of fractional Jacobi functions, and the corresponding non-
linear algebraic representation of the problem is constructed utilizing a sequence of matrix
operations. Due to the equivalence of the equation (1.1) and (2.13), we implement our strategy
on the equivalent equation (2.13). Inserting τ = 1

λ
into (3.3), the fractional Jacobi Galerkin

approximation z j,N (x) of the exact solution z j (x) is defined in the following sense

z j,N (x) =
∞∑
i=0

v j,i J
(μ,ν,τ )
i (x) = v j J = v j J X x , j ∈ ℵn, (3.7)

where v j = [v j,0, v j,1, . . . , v j,N , 0, . . .], and

J = [J (μ,ν,τ )
0 (x), J (μ,ν,τ )

1 (x), . . . , J (μ,ν,τ )
N (x), . . .]T ,

indicating the vector of fractional Jacobi basis functions with degree (J (μ,ν,τ )
i (x)) ≤ iτ , J

is an infinite order lower-triangular matrix and Xx = [1, xτ , x2τ , . . . , xNτ , . . .]T . Assume
that

ψ j (x) =
∞∑
i=0

ψ j,i x
iτ = ψ

j
X x , ψ

j
= [ψ j,0, ψ j,1, . . . , ψ j,N , 0, . . .]. (3.8)

123



35 Page 14 of 30 Journal of Scientific Computing (2022) 91 :35

Moreover, the relation (2.10) can be rewritten as

g j (x, z(x)) =
∞∑

ρ=0
{θk }nk=1=0

g j,ρ,{θk }nk=1
xρτ

( n∏
k=1

zθkk (x)

)

=
∞∑

ρ=0
{θk }nk=1=0

g j,ρ,{θk }nk=1
xρτ

( r∏
k=1

z
θlk
lk

(x)

)
, (3.9)

where {l1, l2, . . . , lr } ⊆ ℵn , and for r ∈ ℵn , we have θl1 , θl2 , . . . , θlr �= 0.
Inserting the relations (3.7), (3.8) into (2.13) and using (3.9), we obtain

z j,N (x) = ψ
j
X x +

∞∑
ρ=0

{θk }nk=1=0

g j,ρ,{θk }nk=1
I γ j

(
xρτ

r∏
k=1

z
θlk
lk ,N

(x)

)
. (3.10)

Now, we intend to derive a matrix representation for the right-hand side of (3.10). To this

end, we first give the following lemma which transforms z
θlk
lk ,N

(x), k = 1, 2, . . . , r into a
suitable matrix form.

Lemma 3.1 The following relation holds

z
θlk
lk ,N

(x) = vlk JM
θlk −1
lk

X x , k = 1, 2, . . . , r ,

where Mlk is the following infinite upper-triangular matrix

Mlk =

⎡
⎢⎢⎢⎣

vlk J0 vlk J1 vlk J2 . . .

0 vlk J0 vlk J1 . . .

0 0 vlk J0 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦ ,

with Js = {Jm,s}∞m=0, s = 0, 1, . . . .

Proof We proceed using mathematical induction on θlk . For θlk = 1, the lemma is valid. We
assume that it holds for θlk , and transit to θlk + 1 as follows

z
θlk +1
lk ,N

(x) = z
θlk
lk ,N

(x) × zlk ,N (x) = (
vlk JM

θlk −1
lk

X x

) × (vlk J X x )

= vlk JM
θlk −1
lk

(Xx × (vlk J X x )). (3.11)

Next, it is enough to show that

Xx × (vlk J X x ) = Mlk X x . (3.12)

For this purpose, it can be written

Xx × (vlk J X x ) = Xx ×
( ∞∑
h=0

∞∑
i=0

vlk ,i Ji,h xhτ

)
=

[ ∞∑
h=0

∞∑
i=0

vlk ,i Ji,h x (h+m)τ

]∞

m=0

=
[ ∞∑
s=m

( ∞∑
i=0

vlk ,i Ji,s−m xsτ
)]∞

m=0

, (3.13)

which deduces (3.12). Clearly, substituting (3.12) into (3.11) concludes the desired result. 
�
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Now, we can construct the matrix representation of
r∏

k=1
z
θlk
lk ,N

(x). To this end, let us consider

the following lemma.

Lemma 3.2 We have
r∏

k=1

z
θlk
lk ,N

(x) = vl1 JM
θl1−1
l1

( r∏
k=2

M ∗
θlk

)
Xx ,

in which matrix {M ∗
θlk

}rk=2 has the following upper-triangular structure

M ∗
θlk

=

⎡
⎢⎢⎢⎢⎢⎣

vlk (JM
θlk −1
lk

)0 vlk (JM
θlk −1
lk

)1 vlk (JM
θlk −1
lk

)2 . . .

0 vlk (JM
θlk −1
lk

)0 vlk (JM
θlk −1
lk

)1 . . .

0 0 vlk (JM
θlk −1
lk

)0 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where (JM
θlk −1
lk

)s, s = 0, 1, . . . denotes the s-th column of the matrix JM
θlk −1
lk

.

Proof We apply the principle of mathematical induction on r . In view of Lemma 3.1, the
induction basis r = 1 is evident. We will show that if the statement is hold up for r , then it
is also hold up for r + 1. We have

r+1∏
k=1

z
θlk
lk ,N

(x) =
(

vl1 JM
θl1−1
l1

( r∏
k=2

M ∗
θlk

)
Xx

)
×

(
vlr+1

JM
θlr+1−1
lr+1

Xx

)

= vl1 JM
θl1−1
l1

( r∏
k=2

M ∗
θlk

)(
Xx × (

vlr+1
JM

θlr+1−1
lr+1

Xx

))
. (3.14)

Proceeding the same way as (3.13), we derive

Xx × (
vlr+1

JM
θlr+1−1
lr+1

Xx

) = M ∗
θlr+1

Xx , (3.15)

which completes the proof by employing (3.15) into (3.14). 
�
In this stage, we apply Lemmas 3.1 and 3.2 to the second term of the right-hand side of (3.10)
which yields

∞∑
ρ=0

{θk }nk=1=0

g j,ρ,{θk }nk=1
I γ j

(
xρτ

r∏
k=1

z
θlk
lk ,N

(x)

)

=
∞∑

ρ=0
{θk }nk=1=0

g j,ρ,{θk }nk=1
I γ j

(
xρτ vl1 JM

θl1−1
l1

(
r∏

k=2

M ∗
θlk

)
Xx

)

=
∞∑

{θk }nk=1=0

vl1 JM
θl1−1
l1

(
r∏

k=2

M ∗
θlk

)⎛
⎝ ∞∑

ρ=0

g j,ρ,{θk }nk=1

[
I γ j x (ρ+m)τ

]∞
m=0

⎞
⎠. (3.16)

Evidently, we have [6][
I γ j x (ρ+m)τ

]∞
m=0

=
[
Am
j,ρ x (ρ+m)τ+γ j

]∞
m=0

, j ∈ ℵn,
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in which Am
j,ρ = Γ ((ρ+m)τ+1)

Γ ((ρ+m)τ+γ j+1) . Therefore, the equality (3.16) can be rewritten as

∞∑
ρ=0

{θk }nk=1=0

g j,ρ,{θk }nk=1
I γ j

(
xρτ

r∏
k=1

z
θlk
lk ,N

(x)

)

=
∞∑

{θk }nk=1=0

vl1 JM
θl1−1
l1

(
r∏

k=2

M ∗
θlk

)⎛
⎝ ∞∑

ρ=0

g j,ρ,{θk }nk=1

[
Am
j,ρ x (ρ+m)τ+γ j

]∞
m=0

⎞
⎠

=
⎛
⎝ ∞∑

{θk }nk=1=0

vl1 JM
θl1−1
l1

(
r∏

k=2

M ∗
θlk

)
Q j,{θk }nk=1

⎞
⎠ Xx , j ∈ ℵn, (3.17)

where Q j,{θk }nk=1
is an infinite upper-triangular matrix with the following entries

[
Q j,{θk }nk=1

]∞
α,β=0 =

{
0, α ≥ β − γ jλ + 1,

g j,β−α−γ jλ,{θk }nk=1
Aα
j,β−α−γ jλ

, α < β − γ jλ + 1.

In this step, to derive the algebraic form of the fractional Jacobi Galerkin discretization of
(2.13), it suffices to insert the relations (3.7) and (3.17) into (3.10). Thus, we have

v j J X x = ψ
j
X x +

⎛
⎝ ∞∑

{θk }nk=1=0

vl1 JM
θl1−1
l1

(
r∏

k=2

M ∗
θlk

)
Q j,{θk }nk=1

⎞
⎠ Xx ,

which can be rewritten as

v j J =
⎛
⎝ψ

j
+

⎛
⎝ ∞∑

{θk }nk=1=0

vl1 JM
θl1−1
l1

(
r∏

k=2

M ∗
θlk

)
Q j,{θk }nk=1

⎞
⎠
⎞
⎠ J−1 J . (3.18)

Projecting (3.18) onto 〈J (μ,ν,τ )
0 (x), J (μ,ν,τ )

1 (x), . . . , J (μ,ν,τ )
N (x)〉 concludes

vN
j =

⎛
⎝ψN

j
+

⎛
⎝ ∞∑

{θk }nk=1=0

vN
l1 J

N (
M

θl1−1
l1

)N (
r∏

k=2

M ∗N
θlk

)
QN

j,{θk }nk=1

⎞
⎠
⎞
⎠ (J N )−1, (3.19)

where the index N at the top of the vectors and matrices dictates the principle sub-vectors
and sub-matrices of order N + 1 respectively. Here, we point out that the unknown vectors
can be found by solving a system of n(N + 1) non-linear algebraic equations (3.19). In
the next section, we present more details regarding the numerical solvability and practical
implementation of this system.

3.4 Numerical Solvability and Practical Implementation

Trivially, the non-linear algebraic system (3.19) is complex, and its solution requires high
computational costs, especially for large values ofn and N , and therebypossibly lowaccuracy.
In this subsection, to overcome this weakness, we proceed with a well-conditioned and
practical implementation that finds the unknowns of (3.19) using some recurrence formulas
without the need to solve any non-linear algebraic system. In this regard, multiplying both
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sides of (3.19) by J N and defining

v
j
= vN

j J
N = [v

j,0
, v

j,1
, . . . , v

j,N
], j ∈ ℵn, (3.20)

yields

v
j
= ψN

j
+

⎛
⎝ ∞∑

{θk }nk=1=0

v
l1

(
M

θl1−1
l1

)N (
r∏

k=2

M ∗N
θlk

)
QN

j,{θk }nk=1

⎞
⎠ . (3.21)

In view of Lemma 3.1, we can write

Mlk =

⎡
⎢⎢⎢⎣

vlk J0 vlk J1 vlk J2 . . .

0 vlk J0 vlk J1 . . .

0 0 vlk J0 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v
lk ,0

v
lk ,1

v
lk ,2

. . .

0 v
lk ,0

v
lk ,1

. . .

0 0 v
lk ,0

. . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ .

From [11], we observe that {(M θlk −1
lk

)N }rk=1 has the following upper-triangular Toeplitz
structure(

M
θlk −1
lk

)N

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
v
lk ,0

)θlk −1
(θlk − 1)

(
v
lk ,0

)θlk −2
v
lk ,1

. . . . . .

0
(
v
lk ,0

)θlk −1
(θlk − 1)

(
v
lk ,0

)θlk −2
v
lk ,1

. . .

0 0
(
v
lk ,0

)θlk −1
. . .

...
...

...
...

0 . . . 0
(
v
lk ,0

)θlk −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

M
θlk −1
lk ,0,0

M
θlk −1
lk ,0,1

. . . M
θlk −1
lk ,0,N

0 M
θlk −1
lk ,0,0

. . . M
θlk −1
lk ,0,N−1

...
... . . .

...

0 0 . . . M
θlk −1
lk ,0,0

⎤
⎥⎥⎥⎥⎥⎦ , (3.22)

where {M θlk −1
lk ,0,s

}Ns=0 are non-linear functions of the elements v
lk ,0

, v
lk ,1

, . . . , v
lk ,s

.

In addition, from (3.20) and (3.22), the matrices {M ∗N
θlk

}rk=2 can be rewritten as the fol-

lowing upper-triangular Toeplitz structure

M ∗N
θlk

=

⎡
⎢⎢⎢⎢⎣
M ∗

θlk ,0,0
M ∗

θlk ,0,1
. . . M ∗

θlk ,0,N

0 M ∗
θlk ,0,0

. . . M ∗
θlk ,0,N−1

...
... . . .

...

0 0 . . . M ∗
θlk ,0,0

⎤
⎥⎥⎥⎥⎦ ,

in which

M ∗
θlk ,0,s

=
s∑

i=0

v
lk ,i

M
θlk −1
lk ,0,s−i , s = 0, 1, . . . , N ,
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are non-linear functions of the components v
lk ,0

, v
lk ,1

, . . . , v
lk ,s

.

Consequently, the matrix Ω{lk }rk=1 defined by

Ω{lk }rk=1 = (
M

θl1−1
l1

)N
M ∗N

θl2
. . . . .M ∗N

θlr
=

⎡
⎢⎢⎢⎢⎢⎣

Ω
{lk }rk=1
0,0 Ω

{lk }rk=1
0,1 . . . Ω

{lk }rk=1
0,N

0 Ω
{lk }rk=1
0,0 . . . Ω

{lk }rk=1
0,N−1

...
... . . .

...

0 0 . . . Ω
{lk }rk=1
0,0

⎤
⎥⎥⎥⎥⎥⎦ ,

has an upper-triangular Toeplitz structure, in which {Ω{lk }rk=1
0,s }Ns=0 are non-linear functions of

the elements

v
l1,0

, v
l2,0

, . . . , v
lr ,0

,

v
l1,1

, v
l2,1

, . . . , v
lr ,1

,

...

v
l1,s

, v
l2,s

, . . . , v
lr ,s

,

and obtained by

Ω
{lk }rk=1
0,s =

s∑
i1=0

i1∑
i2=0

. . .

ir−2∑
ir−1=0

M
θl1−1
l1,0,s−i1

.M ∗
θl2,0,i1−i2

. . . . .M ∗
θlr ,0,ir−1

.

Finally, defining Λ
{θk }nk=1
j = Ω{lk }rk=1QN

j,{θk }nk=1
, j ∈ ℵn , it can be derived

[
Λ

{θk }nk=1
j

]N
α,β=0 =

⎧⎪⎨
⎪⎩
0, α ≥ β − γ jλ + 1,
β−α−γ jλ∑

s=0
Ω

{lk }rk=1
0,s

[
QN

j,{θk }nk=1

]
α+s,β , α < β − γ jλ + 1.

Next, in accordance with the structure of the upper-triangular matrix Λ
{θk }nk=1
j , we have

v
l1
Λ

{θk }nk=1
j

= v
l1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ jλ︷ ︸︸ ︷
0 . . . 0

[
Λ

{θk }nk=1
j

]
0,γ jλ

[
Λ

{θk }nk=1
j

]
0,γ jλ+1 . . .

[
Λ

{θk }nk=1
j

]
0,N

... 0
[
Λ

{θk }nk=1
j

]
1,γ jλ+1 · · · [

Λ
{θk }nk=1
j

]
1,N

...
...

...
. . .

. . .

0 0
. . . 0

[
Λ

{θk }nk=1
j

]
N−γ jλ,N

...
...

...
. . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Now, considering the above relation, for j ∈ ℵn we can write

[
v
l1
Λ

{θk }nk=1
j

]N

β=0
=

⎧⎪⎨
⎪⎩
0, β < γ jλ,
β−γ jλ∑
α=0

v
l1,α

[
Λ

{θk }nk=1
j

]
α,β

, β ≥ γ jλ,

= [
γ jλ︷ ︸︸ ︷

0 . . . 0,G
{θk }nk=1
γ jλ

,G
{θk }nk=1
γ jλ+1 , . . . ,G

{θk }nk=1
N ], (3.23)

where {G{θk }nk=1
γ jλ+s }N−γ jλ

s=0 are non-linear functions of the elements

v
l1,0

, v
l2,0

, . . . , v
lr ,0

,

v
l1,1

, v
l2,1

, . . . , v
lr ,1

,

...

v
l1,s

, v
l2,s

, . . . , v
lr ,s

.

Substituting (3.23) into (3.21), the unknown components of the unknown vectors {v
j
}nj=1

can be evaluated by the following recurrence relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
j,0

= ψ j,0,

...

v
j,γ jλ−1

= ψ j,γ jλ−1,

v
j,γ jλ

=
∞∑

{θk }nk=1=0
G

{θk }nk=1
γ jλ

+ ψ j,γ jλ,

...

v
j,N

=
∞∑

{θk }nk=1=0
G

{θk }nk=1
N + ψ j,N , j ∈ ℵn .

Finally, the unknowns {vN
j }nj=1 are achieved by solving the lower-triangular system (3.20),

and thereby the fractional Jacobi Galerkin solutions (3.7) can be computed.

4 Convergence Analysis

The aim of this section is to provide convergence properties for the presented method via
establishing a suitable error bound in a weighted L2- norm.

Theorem 4.1 Suppose that z j,N (x) given by (3.7) are the approximate solutions of (1.1). If
we have

I γ j g j ∈ H
ε j

w(μ,ν,τ ) (χ), D
ε j+1
x (I γ j g j ) ∈ C(χ), ε j ≥ 0,

then for sufficiently large values of N the following inequality holds

‖e j,N (x)‖w(μ,ν,τ ) ≤ CN−ε j |I γ j g j |ε j ,w
(μ,ν,τ ) , j ∈ ℵn,

where e j,N (x) = z j (x) − z j,N (x) denotes the error function, and C > 0 is a constant
independent of N .
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Proof In according to the proposed numerical scheme in Sect. 3, we first consider (3.10) and
substitute the approximate solutions (3.7) into the equation (2.13) and obtain

z j,N (x) − ψ j (x) − I γ j g j (x, zN (x)) = 0, (4.1)

where zN (x) = [z1,N (x), z2,N (x), . . . , zn,N (x)]T . Then, from (3.19), wemultiply both sides

of (4.1) by J (μ,ν,τ )
k (x)w(μ,ν,τ )(x) and integrate on χ , which concludes

(z j,N (x) − ψ j (x) − I γ j g j (x, zN (x)), J (μ,ν,τ )
k )w(μ,ν,τ ) = 0, k = 0, 1, . . . , N . (4.2)

Now, multiplying both sides of (4.2) by
J (μ,ν,τ )
k (x)

λ
(μ,ν,τ )
k

and summing up from k = 0 to k = N

deduces

π
(μ,ν,τ )
N

(
z j,N (x) − ψ j (x) − I γ j g j (x, zN (x))

) = 0,

and equivalently we have

z j,N (x) = ψ j (x) + π
(μ,ν,τ )
N

(
I γ j g j (x, zN (x))

)
, (4.3)

since we have z j,N (x), ψ j (x) ∈ Span{J (μ,ν,τ )
0 , J (μ,ν,τ )

1 , . . . , J (μ,ν,τ )
N }. Subtracting (4.3)

from (2.13) yields

e j,N (x) = I γ j g j (x, z(x)) − π
(μ,ν,τ )
N

(
I γ j g j (x, zN (x))

)
,

which can be rewritten in the following sense

e j,N (x) = I γ j (g j − ḡ j ) + e
π

(μ,ν,τ )
N

(I γ j ḡ j ),

where e
π

(μ,ν,τ )
N

( f ) = f −π
(μ,ν,τ )
N ( f ) and ḡ j = g j (x, zN (x)). Similar to (2.3), we infer that

|e j,N (x)| ≤ L
n∑

i=1

(
1

Γ (γ j )

∫ x

0
(x − t)γ j−1|ei,N (t)|dt

)
+ |Bj |, (4.4)

where Bj = e
π

(μ,ν,τ )
N

(I γ j ḡ j ). Defining the vectors

E(x) = [|e1,N (x)|, |e2,N (x)|, . . . , |en,N (x)|]T , B = [|B1|, |B2|, . . . , |Bn |
]T

,

and proceeding in exactly the same way as the proof of Theorem 2.2, we can rewrite the
equation (4.4) as the following matrix formulation

E(x) ≤ nL̃
∫ x

0
(x − t)

min
1≤s≤n

{γs }−1
E(t)dt + B.

Applying Gronwall’s inequality [7] concludes

‖E‖w(μ,ν,τ ) ≤ C
∥∥B∥∥

w(μ,ν,τ ) ,

and consequently

‖e j,N (x)‖w(μ,ν,τ ) ≤ C‖Bj‖w(μ,ν,τ ) ≤ C‖e
π

(μ,ν,τ )
N

(I γ j ḡ j )‖w(μ,ν,τ ) . (4.5)
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Using Theorem 3.2, we deduce

‖e
π

(μ,ν,τ )
N

(I γ j ḡ j )‖w(μ,ν,τ ) ≤ CN−ε j |I γ j ḡ j |ε j ,w
(μ,ν,τ )

≤ CN−ε j
(
|I γ j g j |ε j ,w

(μ,ν,τ ) + ‖Dx (D
ε j
x I γ j g j )‖∞‖g j − ḡ j‖w(μ,ν,τ )

)

≤ CN−ε j
(
|I γ j g j |ε j ,w

(μ,ν,τ ) +
n∑

i=1

‖ei,N‖w(μ,ν,τ )

)
, (4.6)

in view of employing the first order Taylor formula. Inserting (4.6) into (4.5) gives

‖e j,N (x)‖w(μ,ν,τ ) − CN−ε j

n∑
i=1

‖ei,N (x)‖w(μ,ν,τ ) ≤ CHj , (4.7)

in which Hj = N−ε j |I γ j g j |ε j ,w
(μ,ν,τ ) .

Trivially, the relation (4.7) can be rewritten as the following vector-matrix form

Pe ≤ CH , (4.8)

where

e = [‖e1,N‖w(μ,ν,τ ) , ‖e2,N‖w(μ,ν,τ ) , . . . , ‖en,N‖w(μ,ν,τ ) ]T ,

H = [H1, H2, . . . , Hn]T ,

and P is a diagonal matrix of order n with the entries

[
P
]n
i, j=1 =

{
1 − CN−ε j , i = j,

0, i �= j .

Evidently, for sufficiently large values of N , the matrix P tends to the identity matrix.
Therefore, the inequality (4.8) yields

‖e j,N‖w(μ,ν,τ ) ≤ CHj ,

which is the desired result. 
�

5 Illustrative Examples

In this section, to confirm the accuracy and efficiency of the strategy, the numerical results
obtained from the implementation of the proposed scheme are illustrated for some non-linear
systems of FDEs. For this purpose, we organize this section as follows

• Some crucial items such as numerical errors (E(N )) and CPU-time used are reported to
monitor the computational performance of the suggested method. In all of the examples,
the numerical errors are calculated through L2

w(μ,ν,τ ) (χ) -norm by

E(N ) = max
j∈ℵn

‖e j,N‖w(μ,ν,τ ) ,

and in the lack of access to the exact solutions, the numerical errors are estimated by
means of

E(N ) = max
j∈ℵn

‖z j,2N (x) − z j,N (x)‖w(μ,ν,τ ) .
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• To approve the superiority of the proposed method over other existed methods, we com-
pare our results with those obtained by the spectral collocation method introduced in
[20].

• To demonstrate the applicability of the method, some examples are selected from real-
world problems.

• To confirm the stability of the approach, the performance of this strategy is investigated
for problems with the long integration domain χ and large degrees of approximation N .

The process of calculations is done via Mathematica v11.2, running in a computer system
with an Intel (R) Core (TM) i5-4210U CPU @ 2.40 GHz.

Example 5.1 Consider the following non-linear SMFDEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ1
C z1(x) = z31(x) + x

5
2 z1(x)z2(x) + q1(x),

Dγ2
C z2(x) = z42(x)z3(x) + 1

2 J0(x
7
4 ) sin (z2(x)) + q2(x),

Dγ3
C z3(x) = xz1(x)z23(x) − 2F2

({ 1
4 ,

3
4

} ; { 1
5 ,

2
5

} ;− x
3
4

2

)
z2(x)z3(x) + q3(x),

z1(0) = z2(0) = 0, z3(0) = 1
2 ,

z(1)2 (0) = z(1)3 (0) = 0, x ∈ [0, 1],

(5.1)

where γ1 = 3
4 , γ2 = 5

4 , γ3 = 3
2 and the source functions q j (x) with j = 1, 2, 3 are chosen

in a way that the exact solutions are as follows

z1(x) = sin x
3
4 , z2(x) = x

7
4 + x

10
4 , z3(x) = 1

2
E 3

2
(x

3
2 ).

Trivially, we have

z1(x) = O(x
3
4 ), z2(x) = O(x

7
4 ), z3(x) = 1

2
+ O(x

3
2 ),

which confirms Theorem 2.4. Eδ(x) is known for Mittag-Leffler function, Jc(x) denotes the
Bessel function for integer number c, and ξ Fξ ({a1, . . . , aξ }; {b1, . . . , bξ }; x) is generalized
hypergeometric function.

This problem is solved by our method, and the obtained results are presented in Table 1
and Fig. 1. From Table 1, one can deduce that the proposed strategy provides approximate
solutions with high accuracy, mainly because the numerical errors are considerably reduced
in short elapsed CPU-time corresponding to the large values of N . Moreover, the semi-log
representation of the numerical errors with μ = ν = − 1

2 depicted in Fig. 1, justifies the
familiar spectral accuracy which predicted in Theorem 4.1 because the numerical errors in
the semi-log report linearly varied versus N (note thatwe have {ε j }3j=1 = ∞ in Theorem4.1).

To solve a more challenging problem, we set γ1 = 1
3 , γ2 = 5

4 , γ3 = 13
5 in (5.1), and the

forcing functions q j (x) with j = 1, 2, 3 are chosen such that the exact solutions are

z1(x) = sin x
3
4 , z2(x) = x

7
4 + x

10
4 , z3(x) = 1

2
E 13

5
(x

13
5 ).

The numerical errors and the approximate solutions obtained by applying the introduced
method are presented in Tables 2 and 3, respectively. Notably, in this case, we have τ =
1/λ = 1/60 and we can’t expect the numerical errors to decay very fast. However, From
Table 2, it can be seen that the effective computational performance of our method lets us
give reasonable errors even for a large degree of approximation N = 320.

In the next example, we will compare our method with the proposed method in [20].

123



Journal of Scientific Computing (2022) 91 :35 Page 23 of 30 35

Table 1 The numerical results of Example 5.1 for various values of μ, ν and N

μ = ν = − 1
2 μ = 0, ν = 1

2

N E(N ) CPU-time (s) E(N ) CPU-time (s)

8 7.61 × 10−2 1.40 4.66 × 10−1 1.26

16 6.76 × 10−4 3.11 3.74 × 10−3 3.00

32 7.91 × 10−8 15.12 3.82 × 10−7 15.84

64 2.86 × 10−16 693.26 1.20 × 10−15 689.56

Fig. 1 Illustration for semi-log errors of Example 5.1 in the case of fixed μ = ν = − 1
2

Table 2 The numerical errors of
Example 5.1 for
γ1 = 1

3 , γ2 = 5
4 , γ3 = 13

5 and
various values of μ, ν and N

μ = ν = − 1
2 μ = 0, ν = 1

2

N E(N ) E(N )

40 1.81 × 10−1 9.96 × 10−1

80 1.58 × 10−1 7.03 × 10−1

160 5.63 × 10−4 3.24 × 10−3

320 1.10 × 10−6 5.47 × 10−6

Example 5.2 [20] Consider the following non-linear SSFDEs

⎧⎪⎨
⎪⎩
Dγ

C z1(x) = −2z21(x) + x3Eγ (−xγ )z22(x) + q1(x),

Dγ

C z2(x) = x3Eγ (−xγ )z21(x) − z22(x) + q2(x),

z1(0) = z2(0) = 0, γ ∈ (0, 1), x ∈ [0, 1],
(5.2)
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Table 3 Approximate solutions
of Example 5.1 for
γ1 = 1

3 , γ2 = 5
4 , γ3 = 13

5 and
various values of N

N = 40

z1,N (x) = 0

z2,N (x) = 0

z3,N (x) = 0.5

N = 80

z1,N (x) = x
3
4

z2,N (x) = 0

z3,N (x) = 0.5

N = 160

z1,N (x) = x
3
4 − 0.16̄x

9
4

z2,N (x) = x
7
4 + x

5
2

z3,N (x) = 0.5 + 0.134516x
13
5

N = 320

z1,N (x) = x
3
4 − 0.16̄x

9
4 + 0.0083̄x

15
4 − 0.000198413x

21
4

z2,N (x) = x
7
4 + x

5
2

z3,N (x) = 0.5 + 0.134516x
13
5 + 0.00295149x

26
5

Table 4 The maximum of the
errors of Example 5.2 for various
values of N and γ using the
method mentioned in [20]

γ = 1
5 γ = 1

2 γ = 3
4

N Error Error Error

4 3.00 × 10−5 2.74 × 10−9 6.59 × 10−3

6 7.23 × 10−9 2.09 × 10−12 8.48 × 10−10

8 2.40 × 10−10 1.23 × 10−15 7.88 × 10−13

10 1.27 × 10−12 2.87 × 10−15 3.18 × 10−15

12 1.24 × 10−14 2.63 × 10−16 8.08 × 10−16

where the functions q j (x), j = 1, 2 are chosen in a way that the true solutions are

z1(x) = xγ , z2(x) = xγ + x2γ .

The equation (5.2) is solved via the implemented scheme for the values γ = 1
5 ,

1
2 ,

3
4 , and

the parameters μ = ν = − 1
2 and μ = 0, ν = 1

2 . Implementing the proposed scheme, the
exact solutions are obtained with the degree of approximations 2, 2, 6, respectively. Also,
in [20], the approximate solutions of (5.2) are computed by applying a spectral collocation
method, and the numerical errors are obtained in L∞-norm. The maximum of the errors
presented inRef. [20] for different values of N and γ are listed in Table 4. Clearly, comparison
results confirm the superiority of our proposed scheme over the method presented in [20].
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Table 5 Description of the parameters of model (5.3)

Parameter Description Value (day−1) [5]

s̄ Rateofproduction target cells 10

d̄ Death rateof target cells 0.5

ᾱ Infectionofnewtarget cells 0.00122

ρ̄ Rateof cure 0.1

δ̄′ Rateof infectedcells 0.3

p̄ Production ofvirus 0.8

c̄ Free virus clearance 0.7

η̄ Efficacy blocking new infection 0.01

ε̄ Drug efficacy 0.41

τ̄ Fractional time constant 0.02

Example 5.3 (Hepatitis B [5]) The fractional-order model for hepatitis B with drug therapy
can be written as the following non-linear SSFDEs⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
τ̄ 1−γ D

γ

CT (t) = s̄ − d̄T (t) − (1 − η̄)ᾱV (t)T (t) + ρ̄ I (t),
1

τ̄ 1−γ D
γ

C I (t) = (1 − η̄)ᾱV (t)T (t) − δ̄′ I (t) − ρ̄ I (t),
1

τ̄ 1−γ D
γ

CV (t) = (1 − ε̄) p̄ I (t) − c̄V (t),

T (0) = T0, I (0) = I0, V (0) = V0, γ ∈ (0, 1], t ∈ χ,

(5.3)

considering three state variables at time t : target cells T (t), infected cells I (t), and free virus
V (t).

Following [5], the description of parameters and their values are given in Table 5. We note
that the units of all the parameters are (day−1).

We set T0 = 14, I0 = 13, V0 = 10 and γ = 7
10 , and solve the problem via the proposed

approach. Table 6 and Fig. 2 report the attained numerical results. Undeniably, the reported
results indicate the high accuracy of the presented scheme in solving real-world problems
due to the absence of unwanted oscillation in errors, in particular for long integration domain
χ and large values of N . Obviously, obtaining the regular error reduction in a complex non-
linear problem, despite the large integration domain, especially in a short CPU time and
large degrees of approximation, is a very powerful feature that has been presented in fewer
numerical approaches so far.

Example 5.4 (COVID-19 [16]) Consider the following non-linear dynamical model of
COVID-19 disease⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dγ

C S(t) = ā − K̄ I (t)S(t)(1 + α̂ I (t)) − d̄0S(t),

Dγ

C E(t) = K̄ I (t)S(t)(1 + α̂ I (t)) − (d̄0 + κ̄)E(t),

Dγ

C I (t) = b̄ + α̂E(t) − (β̄ + d̄0 + δ̄)I (t),

Dγ

C R(t) = δ̄ I (t) − d̄0R(t),

S(0) = S0, E(0) = E0, I (0) = I0, R(0) = R0, γ ∈ (0, 1], t ∈ [0, 15],
(5.4)
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Table 6 The numerical results of Example 5.3 for various values of μ, ν, χ and N

N

μ = ν = − 1
2 μ = 0, ν = 1

2

E(N ) CPU-time E(N ) CPU-time

χ = [0, 10]
60 3.20 × 10−3 1.86 1.67 × 10−2 1.73

120 8.47 × 10−7 8.79 3.81 × 10−6 8.95

240 5.91 × 10−14 46.73 2.28 × 10−13 46.75

χ = [0, 20]
120 6.46 × 10−3 8.91 2.91 × 10−2 9.07

240 1.55 × 10−6 46.98 6.00 × 10−6 46.73

480 5.43 × 10−13 728.53 1.78 × 10−12 736.48

Fig. 2 Illustration for semi-log errors of Example 5.3 for χ = [0, 10] (the left one) and χ = [0, 20] (the right
one) in the case of fixed μ = ν = − 1

2

Table 7 Description of the parameters of model (5.4)

Parameter Description Value [16]

ā The population whose test is negative 0.00250281 millions

d̄0 Natural death rate 0.0000004/million

b̄ The population whose test is positive 0.006656 millions

β̄ Death due to Corona 0.0109

κ̄ The rate constant characterizing the infection 0.000024

α̂ Rate at which recovered individuals lose immunity 0.00009/million

δ̄ Recovered rete 0.75
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Table 8 The numerical results of Example 5.4 for various values of μ, ν, γ and N

N

μ = ν = − 1
2 μ = 0, ν = 1

2

E(N ) CPU-time E(N ) CPU-time

γ = 1
2

40 4.01 × 10−6 2.27 1.61 × 10−5 2.23

80 8.95 × 10−9 25.53 3.06 × 10−8 25.72

160 5.57 × 10−14 312.39 1.61 × 10−13 313.95

γ = 2
3

70 2.72 × 10−5 14.63 1.05 × 10−4 15.56

140 2.37 × 10−7 167.20 7.80 × 10−7 167.27

280 1.59 × 10−11 3319.73 4.41 × 10−11 3296.53

Fig. 3 Illustration for semi-log errors of Example 5.4 for γ = 1
2 (the left one) and γ = 2

3 (the right one) for

μ = ν = − 1
2

where K̄ = R0d̄0(d̄0+κ̄)(β̄+d̄0+δ̄)

α̂ā is proportionality constant. This model contains four com-
partments at time t (day): healthy or susceptible population S(t), the exposed class E(t), the
infected population I (t) and the removed class R(t).

The details of the parameters written in the model (5.4) and their values are given in
Table 7.

Applying the proposed method, we evaluate this example by setting the initial conditions
S(0) = 0.323, E(0) = 0.21, I (0) = 0.22 and R(0) = 0.21 scaled in million. The numerical
results are illustrated in Table 8 and Fig. 3. From these results, one is thus led to conclude that
the numerical errors are decreased as N is increased. Furthermore, the decay of the errors in
short elapsed CPU-time corresponding to the large values of N reveals that the introduced
strategy is well-conditioned.
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Table 9 Description of the parameters of model (5.5)

Parameter Description Value [12]

ν̂ Probability of disease transmission per contact by an infective in stage I 0.0005

k̂1 Transfer rates from stage I to stage J 0.01

k̂2 Transfer rates from stage J to AIDS stage 0.02

β̂ The natural death rate 0.02

d̂ The death rate for AIDS 0.075

ĉ The average number of contacts that an individual has per unit time 3

δ̂ The treatment rate from stage J to stage I 0.01

Table 10 The numerical results
of Example 5.5 for various values
of μ, ν and N

N μ = ν = − 1
2 μ = 0, ν = 1

2

E(N ) CPU-time E(N ) CPU-time

120 5.12 × 10−3 15.56 1.97 × 10−2 15.80

240 2.94 × 10−6 94.91 9.57 × 10−6 95.25

480 1.06 × 10−12 1717.14 2.93 × 10−12 1717.27

Example 5.5 (HIV/AIDS [12]) Let us consider the HIV/AIDS epidemic model with treatment
as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dγ

C S(t) = β̂ k̂ − ĉν̂(I (t) + â J (t))S(t) − β̂S(t),

Dγ

C I (t) = ĉν̂(I (t) + â J (t))S(t) − (β̂ + k̂1)I (t) + δ̂ J (t),

Dγ

C J (t) = k̂1 I (t) − (β̂ + k̂2 + δ̂)J (t),

Dγ

C A(t) = k̂2 J (t) − (β̂ + d̂)A(t),

S(0) = S0, I (0) = I0, J (0) = J0, A(0) = A0, γ ∈ (0, 1], t ∈ [0, 5].

(5.5)

The total population is divided into a susceptible class of size S, an infectious class before
the onset of AIDS, and a full-blown AIDS group of size A, which is removed from the active
population. The infection population is classified into two groups, the asymptomatic stage
of size I and the symptomatic stage of size J . β̂ k̂ represents the recruitment rate of the
population, and the parameter â > 1 captures the fact that the individuals in the symptomatic
stage J are more infectious than the asymptomatic stage I . The description and values of the
other parameters are depicted in Table 9. It is noticed that the unit of time is the year. For
more explanations about the model, we also refer to [12].

Inserting S(0) = 300, I (0) = 60, J (0) = 30, A(0) = 5, k̂ = 120, â = 0.3 and γ = 4
5 ,

we compute the approximate solutions of (5.5), and the numerical results are illustrated in
Table 10 and Fig. 4.

6 Conclusion

In this paper, the well-posedness and smoothness properties of the solutions of (1.1) were
presented. Furthermore, a suitable operational Galerkin approach based on the fractional
Jacobi functionswas presented, and a practical implementation processwas introducedwhich
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Fig. 4 Illustration for semi-log errors of Example 5.5 in the case of fixed μ = ν = − 1
2

finds the unknowns via some recurrence relations without solving any non-linear algebraic
system. Convergence analysis of the presented method was justified that confirmed the high
accuracy of the schemewithout enforcing the problematic regularity assumptions on the given
data. Finally, through the numerical solution of various examples, the well-conditioning and
high-order accuracy of the presented method was emphasized.
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