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Abstract
Weextend theAdaptiveAntoulas-Anderson (AAA) algorithm to develop a data-drivenmodel-
ing framework for linear systemswith quadratic output (LQO). Such systems are characterized
by two transfer functions: one corresponding to the linear part of the output and another one
to the quadratic part. We first establish the joint barycentric representations and the inter-
polation theory for the two transfer functions of LQO systems. This analysis leads to the
proposed AAA-LQO algorithm. We show that by interpolating the transfer function values
on a subset of samples together with imposing a least-squares minimization on the rest, we
construct reliable data-driven LQOmodels. Two numerical test cases illustrate the efficiency
of the proposed method.

Keywords Data-driven modeling · Model reduction · Nonlinear dynamics · Interpolation ·
Least-squares fit · Barycentric form

1 Introduction

Model order reduction (MOR) is used to approximate large-scale dynamical systems with
smaller ones that ideally have similar response characteristics to the original. This has been
an active research area andmany approaches toMOR have been proposed.We refer the reader
to [1, 3, 6, 9, 37, 39] and the references therein for an overview of MOR methods for both
linear and nonlinear dynamical systems.

MOR, as the name implies, assumes access to a full order model to be reduced; in most
cases, in the form of a state-space formulation obtained via, e.g., a spatial discretization of the
underlying partial differential equations. Then, the reduced order quantities are computed
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via an explicit projection of the full-order quantities. However, in some cases, access to
the original (full order) dynamics is not available. Instead, one has access to an abundant
amount of data, such as input/output measurements, snapshots of the state variable in the
time domain, or evaluations of the transfer function(s) in the frequency domain. In this
case, the goal is to construct an approximant (surrogate model) directly from data, which
we refer to as data-driven modeling. This is the framework we consider in this paper. Such
scenarios arise frequently in many applications such as circuit modeling where the modeling
of distributed/integrated circuits characterized bymany components is done by the frequency-
domain data using, e.g., the S-parameters [27]. Structural dynamics is another example.
Even when a mathematical model of a highly complex physical structure is not available, the
structural (displacement and velocity) time and frequency domain responses can bemeasured
accurately at specific locations on the structures, thanks to the advances in testing capabilities
and the near ubiquitous deployment of high bandwidth sensing [30]. We refer the reader to
[3, 5, 8, 12, 16, 26, 36] and the references therein for more details on data-driven modeling.

Specifically, we focus on data-drivenmodeling of linear dynamical systemswith quadratic
output (LQO). In our formulation, data correspond to frequency domain samples of the
input/output mapping of the underlying LQO system, in the form of samples of its two
transfer functions: the first transfer function being a single-variable one and the second a
bivariate one. For this data set, the proposed framework first develops the barycentric ratio-
nal interpolation theory for LQO systems to interpolate a subset of the data and then extends
the AAA algorithm [32] to this setting by minimizing a least-square measure in the remaining
data.

We note that system identification of general nonlinear systems has been a popular topic. In
particular,wementionhere the special case of identifying linear systemswith nonlinear output
or input functions, e.g., the so-called Wiener [43] and Hammerstein models, respectively.
Significant effort has been allocated for identification of such models; see, for example, [17,
23], and the references therein. Nevertheless, the methods previously mentioned are based in
the time domain, while in this paper we focus on frequency domain data.We point out that the
frequency-data based Loewner frameworkwas recently extended to identifyingHammerstein
models in [24].

The rest of the paper is organized as follows: We discuss LQO systems and their transfer
functions in Sect. 2, followed by a review of barycentric rational approximation for linear
systems and the AAA algorithm in Sect. 3. Next, we develop the theory for barycentric repre-
sentation and multivariate interpolation for LQO systems in Sect. 4. Based on this analysis,
in Sect. 5, we present the proposed algorithm, AAA-LQO, for data-driven modeling of LQO
systems. The numerical experiments are given in Sect. 6 followed by the conclusions in
Sect. 7.

2 Linear Systems with Quadratic Output

In state-space form, linear dynamical systems with quadratic output (LQO systems) are
described as

�LQO :
{
ẋ(t) = Ax(t) + bu(t),

y(t) = cT x(t) + K
[
x(t) ⊗ x(t)

]
,

(2.1)

where A ∈ R
N×N , b, c ∈ R

N , K ∈ R
1×N 2

, and the symbol ⊗ denotes the Kronecker
product, i.e., for the vector x = [x1 x2 · · · xN ]T ∈ R

N , we have
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x ⊗ x = [x21 x1x2 x1x3 · · · x1xN · · · x2N ]T ∈ R
N 2

.

In (2.1), x(t) ∈ R
N , u(t) ∈ R, and y(t) ∈ R, are, respectively, the states, input, and output

of �LQO. The quadratic part of the output in (2.1), K
[
x(t) ⊗ x(t)

]
, can be rewritten as

xT (t)Mx(t) with M ∈ R
N×N with K = vec(M)) where vec(·) denotes the vectorization

operation. In some cases, c = 0 in (2.1), and thus the output has only the quadratic term.
The class of dynamical systems (2.1) considered in this paper is particularly useful when

the observed quantity of interest is given by the variance or deviation of the state variables
from a reference point [7]. Particular examples are random vibrations analysis [29] and
applications in which the observed output is expressed as an energy or power quantity [7].

Several projection-based MOR methodologies have been already proposed for LQO sys-
tems.More precisely, balanced truncation-typemethods were considered in [7, 35, 41], while
interpolation-based methods were used in [19, 42]. All these methods explicitly work with
the state-space matrices A,b, c and K in (2.1). The main goal of this work is to develop a
data-driven modeling framework for LQO systems where only input-output measurements,
in the form of transfer function evaluations, are needed as opposed to a state-space repre-
sentation. Therefore, we first discuss the transfer functions of this special class of dynamical
systems.

2.1 Transfer Functions of LQO Systems

Many classes of nonlinear systems can be represented in the time domain by generalized
kernels as presented in the classical Wiener or Volterra series representations. Generically,
infinite number of kernels appear in such series, corresponding to each homogeneous sub-
system. For more details we refer the reader to [38, 43].

For the LQO system (2.1), the nonlinearity is present in the state-to-output equation only
and one can write the input-output mapping of the system in the frequency domain using two
transfer functions: (i) one corresponding to the linear part of the output, i.e., y1(t) = cT x(t)
and (ii) one corresponding to the quadratic part of the output, i.e., y2(t) = K(x(t) ⊗ x(t)).
These transfer functions were recently derived in [19] using their time-domain representa-
tions. In the next result, we introduce and re-derive them for the completeness of the paper
and to illustrate to the reader how they naturally appear.

Lemma 2.1 Consider the LQO system in (2.1) with x(0) = 0. Let the input u(t) be a sum of
the J harmonic terms, i.e.,

u(t) =
J∑

j=1

eiω j t , where ω j > 0 for j = 1, 2, . . . , J , (2.2)

and i2 = −1. Then, the output in steady-state is given by

yss(t) =
J∑

j=1

H1(iω j )e
iω j t +

J∑
j=1

J∑
�=1

H2(iω j , iω�)e
i(ω j+ω�)t , (2.3)

where

H1(s) = cT (sIN − A)−1b (2.4)

is the single-variable rational transfer function corresponding to y1(t) and

H2(s, z) = K
[
(sIN − A)−1b ⊗ (zIN − A)−1b

]
(2.5)
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is the two-variable rational transfer function corresponding to y2(t) with IN denoting the
identity matrix of size N × N .

Proof For the input u(t) in (2.2) and with x(0) = 0, the solution of the linear state-equation
in (2.1) in steady-state can be written as a sum of scaled complex exponential functions as

xss(t) =
J∑

j=1

G1(iω j )e
iω j t , (2.6)

whereG1(s) = (sIN −A)−1b. Substituting (2.6) into the output equation of (2.1), we obtain

yss(t) = cT
J∑

j=1

G1(iω j )e
iω j t + K

[ J∑
j=1

G1(iω j )e
iω j t

]⊗ [ J∑
�=1

G1(iω�)e
iω�t

]

=
J∑

j=1

cTG1(iω j )e
jω j t +

J∑
j=1

J∑
�=1

K
[
G1(iω j ) ⊗ G1(iω�)

]
ei(ω j+ω�)t .

(2.7)

Substituting G1(s) = (sIN − A)−1b back into the last equation yields the desired result
(2.3) with H1(s) and H2(s, z) as defined in (2.4) and (2.5). ��

Lemma 2.1 shows that the LQO system (2.1) is characterized by two transfer functions,
namely H1(s) (corresponding to the linear component y1(t) in the output) and H2(s, z)
(corresponding to the quadratic component y2(t) in the output). As in the classical linear
case, H1(s) is a rational function of a single variable. On the other hand, H2(s, z) is also
a rational function, but of two variables. These two transfer functions that fully describe
the LQO system (2.1) will play the fundamental role in our analysis to extend barycentric
interpolation and AAA to the LQO setting. Before we establish the theory for LQO systems,
we will briefly review the AAA algorithm for linear systems in Sect. 3.

Remark 2.1 In the proposed framework, we will require sampling the two transfer functions
H1(s) and H2(s, z). This could be achieved by exciting the system (as a black box) with
purely oscillatory signals (sines and cosines) as control inputs. Then, as shown in Lemma 2.1,
measuring the steady-state part of the observed outputs corresponding to these inputs yields a
linear combination between the required samples and complex exponentials. The two transfer
function evaluations are, then, inferred from the harmonics of the output spectrum (in the
frequency domain), by performing spectral (Fourier) transformations on the measured time-
domain signals. For more details on such procedures in a similar setting, e.g., for inferring
measurements of generalized transfer functions of bilinear systems, we refer the reader to
[25].We also note that [40] examines systems described by two time-domain kernels together
with their Fourier transformations (deemed as transfer functions) and their measurements.
Even though no explicit representation of these functions are considered in terms of a state-
space realization, those ideas also equally apply to sample H1(s) and H2(s, z) as well.

Remark 2.2 For the special case ofK = α(cT ⊗ cT ), we obtain y2(t) = αy21 (t) where α is a
scalar. Thus, in this case the output y(t) is a quadratic polynomial in the linear output y1(t)
and the LQO model can be interpreted as a Wiener model [43]. However, our focus here is
on general LQO systems without this special case.

123



Journal of Scientific Computing (2022) 91 :16 Page 5 of 28 16

3 Barycentric Rational Approximation for Linear Systems and the AAA
Algorithm

For an underlying function H(·) : C → C, e.g., transfer function of a single-input/single-
output (SISO) linear dynamical system, assume the following set of measurements:

{H(si )} ∈ C where si ∈ C for i = 1, 2, . . . , Ns . (3.1)

Partition the sampling points into two disjoint sets:

{s1, . . . , sNs } = { ξ1, . . . , ξn }︸ ︷︷ ︸∪ { ξ̂1, . . . , ξ̂Ns−n }︸ ︷︷ ︸
def��� ξ ∪ ξ̂

(3.2)

Wewill clarify later how this partitioning is chosen. Based on (3.2), define the sampled values

hi
def��� H(ξi ) for i = 1, 2, . . . , n, and ĥ j

def��� H (̂ξ j ) for j = 1, 2, . . . , Ns − n,

and the corresponding data sets

h def��� {h1, . . . , hn} and ĥ def��� {̂h1, . . . , ĥNs−n}. (3.3)

Define the rational function r(s) in the barycentric form [11], a numerically stable represen-
tation of rational functions1:

r(s) = p(s)

q(s)
=

n∑
k=1

wkhk
s − ξk

1 +
n∑

k=1

wk

s − ξk

, (3.4)

where ξk ∈ C are the sampling (support) points and theweightswk ∈ C are to be determined.
By construction, the degree-n rational function r(s) in (3.4) is a rational interpolant at the
support point set ξ , i.e.,

r(ξk) = hk for k = 1, 2, . . . , n, (3.5)

assuming wk 	= 0. Then, the freedom in choosing the weights {wk} can be used to match the
remaining the data ĥ in an appropriate measure.

Assuming enough degrees of freedom, [2] chooses the weights {wk} to enforce interpo-
lation of ĥ as well, by computing the null space of the corresponding divided difference
matrix, thus obtaining a degree-n rational function interpolating the full data (3.1). We skip
the details for the conditions to guarantee the existence and uniqueness of such a rational
interpolant and refer the reader to [2, 3] for details.

The Adaptive Antoulas-Anderson (AAA) algorithm [32], on the other hand, elegantly
combines interpolation and least-squares (LS) fitting. In the barycentric form (3.4), which
interpolates the data h by construction, AAA chooses the weights {wk} to minimize a LS
error over the data ĥ. Note that the LS problem over ĥ is nonlinear in the weights {wk} since

1 With the addition of 1 to the denominator, we guarantee that r(s) is a strictly proper rational function with
a numerator degree n − 1 and the denominator degree n. This is done in the anticipation of the dynamical
system in (2.1) we aim to approximate where there will be no direct input-to-output mapping. This is not a
restriction, and the numerator and denominator degrees can be chosen in a different way [11, 32].
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these weights appear in the denominator of r(s) as well. AAA solves a relaxed linearized LS
problem instead. For a sampling point ξ̂i in the set ξ , AAA uses the linearization

ĥi − r (̂ξi ) = 1

q(̂ξi )

(̂
hiq(̂ξi ) − p(̂ξi )

)
� ĥiq(̂ξi ) − p(̂ξi ), (3.6)

leading to the linearized LS problem

min
w1,...,wk

Ns−n∑
i=1

| ĥiq(̂ξi ) − p(̂ξi ) |2 . (3.7)

AAA is an iterative algorithm and builds the partitioning (3.2) using a greedy search.
Assume in step n, AAA has the rational approximant r(s) as in (3.4) corresponding to the
partitioning (3.2) where the weights {wk} are selected by solving (3.7). AAA updates (3.2)
via a greedy search by finding ξ̂i ∈ ξ̂ for which the error | r (̂ξi ) − ĥi | is the largest. This
sampling point is then added to the interpolation set ξ , the barycentric rational approximant
r(s) in (3.4) is updated accordingly (it has one higher degree now), and the new weights are
computed, as before, by solving a linearized LS problem. The procedure is repeated until
either a desired order or an error tolerance is obtained. For further details, we refer the reader
to the original source [32]. TheAAA algorithmproved very flexible and effective, and has been
employed in various applications such as rational approximation over disconnected domains
[32], solving nonlinear eigenvalue problems [28], modeling of parametrized dynamics [13],
and approximation of matrix-valued functions [20].

4 Barycentric Representations for LQO Systems

To develop interpolating barycentric forms for H1(s) and H2(s, z), we first need to specify
the data corresponding to the underlying LQO system�LQO. The first transfer function H1(s)
of �LQO is a single-variable rational function and, as in Sect. 3, we sample H1(s) at distinct
points {s1, . . . , sNs } to obtain the data set

{H1(si )} ∈ C where si ∈ C for i = 1, 2, . . . , Ns . (4.1)

The second transfer function H2(s, z), on the other hand, is a function of two-variables.
Therefore, in agreement with the data (4.1), we will sample H2(s, z) at the corresponding
rectangular grid: for i, j = 1, 2, . . . , Ns ,

{H2(si , s j )} ∈ C where si , s j ∈ C. (4.2)

Partition the full set of sampling points into two disjoint sets

{s1, . . . , sNs } = { ξ1, . . . , ξn } ∪ { ξ̂1, . . . , ξ̂Ns−n } = ξ ∪ ξ̂ (4.3)

and define the sampled values (measurements):

hi
def��� H1(ξi ) for i = 1, 2, . . . , n (4.4)

and

hi, j
def��� H2(ξi , ξ j ) for i, j = 1, 2, . . . , n. (4.5)

Then, the goal is to a construct a data-driven LQO system directly from these samples without
access to the internal dynamics of �LQO. The partition (4.3) and the error measure used in
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approximating the data will be clarified later. First we will show how the data in (4.1) and
(4.2) can be used to develop barycentric-like representations corresponding to an LQO system.
We will use the notation r1(s) to denote the rational approximation to H1(s) and r2(s, z) to
H2(s, z).

Proposition 4.1 Given the H1(s) samples in (4.1), pick the nonzero barycentric weights
{w1, w2, . . . , wn}. Then, the barycentric rational function

r1(s) = p1(s)

q1(s)
=

n∑
k=1

wkhk
s − ξk

/(
1 +

n∑
k=1

wk

s − ξk

)
(4.6)

interpolates the data in (4.4). Let e ∈ C
n denote the vector of ones. Define

b̂ = [
w1 w2 . . . wn

]T ∈ C
n, � = diag(ξ1, . . . , ξn) ∈ C

n×n,

Â = � − b̂eT ∈ C
n×n, and ĉT = [

h1 h2 . . . hn
] ∈ C

n .
(4.7)

Then, r1(s) has the state-space form

r1(s) = ĉT (s În − Â)−1b̂, (4.8)

where În is the identity matrix of dimension n × n.

Proof The fact that r1(s) is an interpolating rational function for the data (4.4) is just a
restatement of (3.5) for completeness. To prove (4.8), we will use the Sherman-Morrison
formula [18]: Let M ∈ C

n×n be invertible and u, v ∈ C
n be such that 1 + v∗M−1u 	= 0

where (·)∗ denotes the conjugate transpose. Then,

(M + uv∗)−1 = M−1 − M−1uv∗M−1

1 + v∗M−1u
. (4.9)

From (4.7) and (4.8), we have

r1(s) = ĉT (s În − Â)−1b̂ = ĉT [(s În − �) + b̂eT ]−1b̂. (4.10)

To simplify the notation, let �̂s = s În − Â. Then, applying the Sherman-Morrison formula
to the middle term in (4.10) with M = �̂s , u = b̂, and v = e, we obtain

r1(s) = ĉT
(
�̂s + b̂eT

)−1
b̂

= ĉT
(

�̂
−1
s − �̂

−1
s b̂eT �̂

−1
s

1 + eT �̂
−1
s b̂

)
b̂

= ĉT
(

�̂
−1
s b̂ − �̂

−1
s b̂ · eT �̂

−1
s b̂

1 + eT �̂
−1
s b̂

)
= ĉT

�̂
−1
s b̂

1 + eT �̂
−1
s b̂

. (4.11)

Since � is diagonal,

�̂
−1
s = (s În − �)−1 = diag(

[
(s − ξ1)

−1 . . . (s − ξn)
−1
]
).

Then, using the definitions of b̂ and ĉ in (4.7), we obtain

ĉT �̂
−1
s b̂ =

n∑
k=1

wkhk
s − ξk

and eT �̂
−1
s b̂ =

n∑
k=1

wk

s − ξk
. (4.12)

Substituting these last two equalities into (4.11) yields (4.8). ��
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We note that state-space realizations for rational functions are unique up to a similarity
transformation. For other equivalent state-space representations of a barycentric form, we
refer the reader to, e.g., [5, 28].

Given the samples of H1(s) (data in (4.4)) of the LQO system (2.1), Proposition 4.1
constructs the linear part of the data-driven LQO model, directly from these samples. What
we need to achieve next is to use the H2(s, z) samples (data in (4.5)) to construct a two-
variable rational function r2(s, z) in a barycentric-like form corresponding to the quadratic
part of the data-driven LQO model. However, r2(s, z) cannot be constructed independently
from r1(s). Once r2(s, z) is constructed, we should be able to interpret r1(s) and r2(s, z)
together as the linear and quadratic transfer functions of a single LQO system. This is the
precise reason why we cannot simply view r2(s, z) as an independent two-variable rational
function and use the classical multivariate barycentric form [3, 4]. Therefore, r2(s, z) needs
to have the form

r2(s, z) = K̂
[
(s Î − Â)−1b̂ ⊗ (zÎ − Â)̂b

]
,

where Â and b̂ are the same matrices from (4.7) used in modeling r1(s) and K̂ ∈ C
1×n2 is

the (quadratic) free variable that will incorporate to model the new data (4.5). The next result
achieves this goal.

Theorem 4.1 Assume the set-up in Proposition 4.1 and that the samples of H2(s, z) in (4.2)
are given. Define the two-variable function r2(s, z) in a barycentric-like form:

r2(s, z) =

n∑
k=1

n∑
�=1

hk,�wkw�

(s − ξk)(z − ξ�)

1 +
n∑

k=1

wk

s − ξk
+

n∑
�=1

w�

z − ξ�

+
n∑

k=1

n∑
�=1

wkw�

(s − ξk)(z − ξ�)

. (4.13)

Then, r2(s, z) interpolates the data (4.5), i.e.,

r2(ξi , ξ j ) = H2(ξi , ξ j ) for i, j = 1, . . . , n. (4.14)

Define M̂ ∈ C
n×n and K̂ ∈ C

1×n2 using

[M̂]i, j = hi, j for i, j = 1, 2, . . . , n and K̂ = [vec(M̂)]T . (4.15)

Then, r2(s, z) has the state-space form

r2(s, z) = K̂
[
(s Î − Â)−1b̂ ⊗ (zÎ − Â)−1b̂

]
. (4.16)

Proof To prove the interpolation property (4.14) of the barycentric representation (4.13), we
start by introducing various polynomials in one or two variables:

m(s) =
n∏

k=1

(s − ξk), M(s, z) =
n∏

k=1

n∏
�=1

(s − ξk)(z − ξ�),

mi (s) =
n∏

k=1,k 	=i

(s − ξk), and Mi, j (s, z) =
n∏

k=1,k 	=i

n∏
�=1,�	= j

(s − ξk)(z − ξ�),

(4.17)

for i, j = 1, . . . , n. Multiply both the numerator and denominator of r2(s, z) in (4.13) with
M(s, z) to obtain
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r2(s, z) = p2(s, z)

q2(s, z)
, (4.18)

with

p2(s, z) =
n∑

k=1

n∑
�=1

hk,�wkw�Mk,�(s, z), and

q2(s, z) = M(s, z) +
n∑

k=1

wkmk(s)m(z) +
n∑

�=1

w�m�(z)m(s) +
n∑

k=1

n∑
�=1

wkw�Mk,�(s, z).

(4.19)

Then, evaluate r2(s, z) at s = ξi and z = ξ j to obtain

r2(ξi , ξ j ) = p2(ξi , ξ j )

q2(ξi , ξ j )
= hi, jwiw jMi, j (ξi , ξ j )

wiw jMi, j (ξi , ξ j )
= hi, j .

To prove (4.16), we first note that

r2(s, z) = K̂
[
(s În − Â)−1b̂ ⊗ (zÎn − Â)−1b̂

]
= K̂

[
�̂

−1
s b̂

1 + eT �̂
−1
s b̂

⊗ �̂
−1
z b̂

1 + eT �̂
−1
z b̂

]
,

where we used the fact

(s În − Â)−1b̂ =
(
�̂s + b̂eT

)−1
b̂ = �̂

−1
s b̂

1 + eT �̂
−1
s b̂

,

as shown in deriving (4.11). Since �̂s diagonal, we have

r2(s, z) = K̂

(1 + eT �̂s b̂)(1 + eT �̂z b̂)

⎡
⎢⎣

w1
s−ξ1

...
wn
s−ξn

⎤
⎥⎦⊗

⎡
⎢⎣

w1
z−ξ1
...

wn
z−ξn

⎤
⎥⎦ . (4.20)

Then, substituting into (4.20) the definition of K̂ from (4.15) and the second formula in
(4.12), we obtain

r2(s, z) =
∑n

k=1
∑n

�=1
hk,�wkw�

(s−ξk )(z−ξ�)(
1 +

n∑
k=1

wk

s − ξk

)(
1 +

n∑
�=1

w�

z − ξ�

)

=

n∑
k=1

n∑
�=1

hk,�wkw�

(s − ξk )(z − ξ�)

1 +
n∑

k=1

wk

s − ξk
+

n∑
�=1

w�

z − ξ�
+

n∑
k=1

n∑
�=1

wkw�

(s − ξk )(z − ξ�)

, (4.21)

which concludes the proof. ��
The next result directly follows from Proposition 4.1 and Theorem 4.1.

Corollary 4.1 Assume the set-ups in Proposition 4.1 and Theorem 4.1. Then, interpolating
rational functions r1(s) and r2(s, z) jointly correspond to an interpolatory LQO model

�̂LQO :
{ ˙̂x(t) = Âx(t) + b̂u(t),

ŷ(t) = ĉT x̂(t) + K̂
[
x̂(t) ⊗ x̂(t)

]
.

(4.22)
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In others words, the first (linear) transfer function of �̂LQO is r1(s) and its second transfer
function is r2(s, z).

Recall the partitioning of sampling points in (4.3). Theorem 4.1 has shown that r2(s, z)
interpolates H2(s, z) over the sampling set ξ × ξ . What is the value of r2(s, z) over themixed
sampling sets ξ × ξ̂ and ξ̂ × ξ? Even though we do not enforce interpolation over these sets,
in Sect. 5 we will need a closed-form expression for the value of r2(s, z) over ξ × ξ̂ and
ξ̂ × ξ . The next lemma establishes these results.

Lemma 4.1 Let r2(s, z) be as defined in (4.13) corresponding to the sampling points in (4.3)
and the data in (4.2). Then,

r2(ξi , ξ̂ j ) =

n∑
�=1

w�hi,�
ξ̂ j − ξ�

1 +
n∑

�=1

w�

ξ̂ j − ξ�

and r2 (̂ξ j , ξi ) =

n∑
k=1

wkhk,i
ξ̂ j − ξk

1 +
n∑

k=1

wk

ξ̂ j − ξk

(4.23)

for i = 1, . . . , n and j = 1, . . . , Ns − n.

Proof Proof is given in at the end of the paper. ��
It is important to note that the numerators and denominators of r2(ξi , ξ̂ j ) and r2 (̂ξ j , ξi ) in
(4.23) are linear in the weightsw�. This is in contrast to the general form of r2(s, z) in (4.21)
where both the numerator and denominator are quadratic in w� when evaluated over ξ̂ × ξ̂ .

5 Proposed Framework for Data-DrivenModeling of LQO Systems

Section 4 established the necessary ingredients to extend AAA to LQO systems. Given the
measurements (4.1) and (4.2), Proposition 4.1 and Theorem 4.1 show how to construct the
barycentric forms r1(s) and r2(s, z) interpolating this data in accordance with the partition-
ing (4.3). Furthermore, Corollary 4.1 states that r1(s) and r2(s, z) together correspond to
an interpolatory LQO system. Based on these results, we will now fully develop the AAA
framework for LQO systems. The resulting algorithm will be denoted by AAA-LQO.

AAA-LQOwill be an iterative algorithm, adding one degree of freedom to the current data-
driven LQOmodel in every iteration step. To emphasize the iterative nature of the algorithm,
in the nth step of AAA-LQO, we will use the notation r (n)

1 (s) and r (n)
2 (s, z) to represent a data-

driven order-n LQO model for the partitioning in (4.3). First, for this current partitioning,
in Sect. 5.1, we introduce a LS error measure to determine the barycentric weights {wk}
appearing in the definitions of r (n)

1 (s) and r (n)
2 (s, z) in (4.6) and (4.13). Then, in Sect. 5.2 we

establish a greedy search procedure for updating the partitioning (4.3). The algorithm will
then continue with the LS minimization for the updated partitioning at the (n + 1)th step to
construct r (n+1)

1 (s) and r (n+1)
2 (s, z). AAA-LQO will terminate after a desired error criterion

is met or a maximum allowed order is achieved as explained in Sect. 5.3.

5.1 A Combined LSMeasure for Computing the BarycentricWeights for the Current
Partition

Even though this section introduces and investigates the LS problem in the nth step of AAA-
LQO, to simplify the notation for the complicated expressions appearing in the analysis, we
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will drop the superscript n and use r1(s) and r2(s, z) instead (as we did in Sect. 4). However,
they should be understood as the approximants in the nth step. We will reintroduce the
superscripts in Sect. 5.2.

For the full LQO data (4.1) and (4.2), we recall (and repeat) the partitioning of the sampling
points as in (4.3):

{s1, . . . , sNs } = { ξ1, . . . , ξn } ∪ { ξ̂1, . . . , ξ̂Ns−n } = ξ ∪ ξ̂ . (5.1)

Then, r1(s) interpolates H1(s) over ξ (i.e., it interpolates the data (4.4)) and r2(s, z) interpo-
lates H2(s, z) over ξ × ξ (i.e., it interpolates the data (4.5)). Also together, r1(s) and r2(s, z)
correspond to an LQO system. The only remaining degrees of freedom in defining r1(s) and
r2(s, z), and thus the corresponding LQO system, are the barycentric weights {w1, . . . , wn}.
We will choose those weights to minimize an appropriate error measure in the uninterpo-
lated data corresponding to the sampling points ξ̂ . We first introduce the notation for these
uninterpolated values:2

ĥi
def��� H1(̂ξi ) for i = 1, 2, . . . , Ns − n, (5.2)

ĥ(2,2)
i, j

def��� H2 (̂ξi , ξ̂ j ) for i, j = 1, 2, . . . , Ns − n, (5.3)

ĥ(1,2)
i, j

def��� H2(ξi , ξ̂ j ) for i = 1, . . . , n, j = 1, . . . , Ns − n, (5.4)

ĥ(2,1)
j,i

def��� H2 (̂ξ j , ξi ) for j = 1, . . . , Ns − n, i = 1, . . . , n. (5.5)

Let w ∈ C
n denote the vector of weights to be determined:

w =

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ .

A reasonable error measure to minimize is the LS distance in the uninterpolated data,
leading to the minimization problem

min
w 	=0

(J1 + J2 + J3 + J4) , (5.6)

where

J1 = 1

Ns − n

Ns−n∑
i=1

(r1(̂ξi ) − ĥi )
2, (5.7)

J2 = 1

n(Ns − n)

n∑
i=1

Ns−n∑
j=1

(r2(ξi , ξ̂ j ) − ĥ(1,2)
i, j )2, (5.8)

J3 = 1

(Ns − n)n

Ns−n∑
i=1

n∑
j=1

(r2 (̂ξi , ξ j ) − ĥ(2,1)
j,i )2, and (5.9)

J4 = 1

(Ns − n)2

Ns−n∑
i=1

Ns−n∑
j=1

(r2 (̂ξi , ξ̂ j ) − ĥ(2,2)
i, j )2. (5.10)

2 Since the evaluation of the uninterpolated H2(s, z) values occur over three different sets, namely ξ × ξ̂ ,
ξ̂ ×ξ , and ξ̂ × ξ̂ , we use a superscript to distinguish them. Recall that the interpolated values hi, j = H2(ξi , ξ j )
are over ξ × ξ only and thus the superscript notation is avoided for hi, j .
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As in the originalAAA for linear dynamical systems, the LS problem (5.6) is nonlinear inw for
LQO systems. The formulation is more complicated here due to the additional r2(s, z) term.
To resolve this numerical difficulty, we will employ a strategy, similar to the lineraziation
step in (3.6), and solve a relaxed optimization problem. However, the resulting LS problem in
our case will still be nonlinear, yet much easier to solve than (5.6). In the end, we will tackle
the original nonlinear LS problem (5.6) by solving a sequence of quadratic LS problems. We
note that in (5.7)–(5.10), we scale every error term Ji with the number of data points in it.

5.1.1 Quadraticized LS Problem in Step n

We show how to relax each Ji term in the nonlinear LS problem (5.6). The resulting problem
will play a crucial role in the proposed iterative algorithm (Sect. 5.3).

Linearizing J1 The i th term of J1 in (5.7), namely r1(̂ξi ) − ĥi , is the same as in (3.6). This
is natural since r1(s) corresponds to the linear part of the LQO system. Thus, we linearize J1

similar to (3.6). Write r1(s) as r1(s) = p1(s)/q1(s), as defined in (4.6). Then, the i th term in
(5.7) is linearized as

r1(̂ξi ) − ĥi = 1

q1(̂ξi )

(
p1(̂ξi ) − ĥiq1(̂ξi )

)
� p1(̂ξi ) − ĥiq1(̂ξi ). (5.11)

Substituting p1(s) and q1(s) from the definition of r1(s) in (4.6) into (5.11), one obtains

p1(̂ξi ) − ĥiq1(̂ξi ) =
n∑

k=1

wkhk
ξ̂i − ξk

− ĥi

(
1 +

n∑
k=1

wk

ξ̂i − ξk

)
=

n∑
k=1

wk(hk − ĥi )

ξ̂i − ξk
− ĥi .

(5.12)

For a matrix X, let (X)i j denote its (i j)th entry. Similarly, for a vector x, let (x)i denote its
i th entry. Define the Loewner matrix L ∈ C

(Ns−n)×n with

(L)ik = ĥi − hk
ξ̂i − ξk

, for i = 1, . . . , Ns, k = 1, . . . , n, (5.13)

and the vector ĥ ∈ C
Ns−n with

(̂
h
)
i = ĥi . Then,

Ns−n∑
i=1

(
p1(̂ξi ) − ĥiq1(̂ξi )

)2 = ‖Lw + ĥ‖22.

Therefore, the J1 term in (5.7) will be relaxed to

J1 � 1

Ns − n
‖Lw + ĥ‖22. (5.14)

Linearizing J2 and J3 Now we extend the linearization strategy used in J1, which only
involved the single-variable function r1(s), to the error terms J2 and J3, which involve
r2(s, z). The closed-form expressions for r2(ξi , ξ̂ j ) and r2 (̂ξ j , ξi ) we derived in Lemma4.1
will prove fundamental in achieving these goals.

We start with J2. Write r2(s, z) = p2(s, z)/q2(s, z) as in (4.18). Then, linearizing the
(i j)th term in (5.8) means

r2(ξi , ξ̂ j ) − ĥ(1,2)
i, j = 1

q2(ξi , ξ̂ j )

(
p2(ξi , ξ̂ j ) − ĥ(1,2)

i, j q1(ξi , ξ̂ j )
)
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� p2(ξi , ξ̂ j ) − ĥ(1,2)
i, j q2(ξi , ξ̂ j ). (5.15)

We substitute p2(ξi , ξ̂ j ) and q2(ξi , ξ̂ j ) from (4.23) into (5.15) to obtain

p2(ξi , ξ̂ j ) − ĥ(1,2)
i, j q2(ξi , ξ̂ j ) =

n∑
�=1

w�hi,�
ξ̂ j − ξ�

− ĥ(1,2)
i, j

(
1 +

n∑
�=1

w�

ξ̂ j − ξ�

)

= −
(

n∑
�=1

w�(̂h
(1,2)
i, j − hi,�)

ξ̂ j − ξ�

+ ĥ(1,2)
i, j

)
. (5.16)

Define the indexing variable αi j = (i − 1)(Ns − n) + j and let ĥ(1,2) ∈ C
n(Ns−n) be the

vector defined as (̂
h(1,2)

)
αi j

= ĥ(1,2)
i, j for 1 ≤ i ≤ n and 1 ≤ j ≤ Ns − n. (5.17)

Define the Loewner matrix L(1,2) ∈ C
n(Ns−n)×n with entries

(
L
(1,2)

)
αi j �

= ĥ(1,2)
i, j − hi,�

ξ̂ j − ξ�

, (5.18)

for 1 ≤ i ≤ n, 1 ≤ j ≤ Ns − n, and 1 ≤ � ≤ n. Then, using (5.18) and (5.17) in (5.16), we
obtain

n∑
i=1

Ns−n∑
j=1

(
p2(ξi , ξ̂ j ) − ĥ(1,2)

i, j q2(ξi , ξ̂ j )
)2 = ‖L(1,2)w + ĥ(1,2)‖22,

yielding the linearization of J2:

J2 � 1

(Ns − n)n

∥∥∥L(1,2)w + ĥ(1,2)
∥∥∥2
2
. (5.19)

Using similar arguments and the explicit formula for r2 (̂ξ j , ξi ) from (4.23), the J3 term in
(5.9) is linearized to

J3 � 1

(Ns − n)n

∥∥∥L(2,1)w + ĥ(2,1)
∥∥∥2
2
, (5.20)

where the Loewner matrix L(2,1) ∈ C
n(Ns−n)×n and the vector ĥ(2,1) ∈ C

n(Ns−n) are defined
as

(
L
(2,1)

)
γ j i k

= ĥ(2,1)
j,i − hk,i

ξ̂ j − ξk
and (̂h(2,1))γ j i = ĥ(2,1)

j,i ,

with 1 ≤ j ≤ Ns − n, 1 ≤ i ≤ n, 1 ≤ k ≤ n, and γ j i = ( j − 1)n + i .
Quadraticizing the J4 term In this section we show how to relax the remaining term, J4, in
the minimization problem (5.6). Note that this term includes r2 (̂ξi , ξ̂ j ); i.e., r2(s, z) evaluated
over ξ̂×ξ̂ . Aswe stated earlier, unlike r2(ξi , ξ̂ j ) (r2(s, z) over ξ×ξ̂ ) or r2 (̂ξi , ξ j ) (r2(s, z) over
ξ × ξ̂ ), the numerator and denominator of the quantity r2 (̂ξi , ξ̂ j ) is quadratic in the weights
w�. Therefore, relaxing the (i j)th term in J4 via multiplying it out with its denominator,
will not yield a linear term, but rather a quadratic one. Therefore, even the relaxed problem
cannot be solved as a linear LS problem. This is what we establish next.
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Similar to (5.15), relax the (i j)th term in (5.10) using

r2 (̂ξi , ξ̂ j ) − ĥ(2,2)
i, j = 1

q2 (̂ξi , ξ̂ j )

(
p2 (̂ξi , ξ̂ j ) − ĥ(2,2)

i, j q2 (̂ξi , ξ̂ j )
)

� p2 (̂ξi , ξ̂ j ) − ĥ(2,2)
i, j q2 (̂ξi , ξ̂ j ). (5.21)

Using (4.21), we obtain

r2 (̂ξi , ξ̂ j ) == p2 (̂ξi , ξ̂ j )

q2 (̂ξi , ξ̂ j )
=

∑n
k=1

∑n
�=1

wkw�hk,�
(̂ξi−ξk )(̂ξ j−ξ�)

(1 +∑n
k=1

wk
ξ̂i−ξk

)(1 +∑n
�=1

w�

ξ̂ j−ξ�
)
. (5.22)

Inserting p2 (̂ξi , ξ̂ j ) and q2 (̂ξi , ξ̂ j ) from (5.22) into (5.21) and re-arranging the terms yield

p2 (̂ξi , ξ̂ j ) − ĥ(1,2)
i, j q2(ξi , ξ̂ j )

= −
(

n∑
k=1

n∑
�=1

wkw�(̂h
(2,2)
i, j − hk,�)

(̂ξi − ξk)(̂ξ j − ξ�)
+

n∑
k=1

wk ĥ
(2,2)
i, j

ξ̂i − ξk
+

n∑
�=1

w�ĥ
(2,2)
i, j

ξ̂ j − ξ�

− ĥ(2,2)
i, j

)
. (5.23)

Note that the expression in (5.23) is quadratic in wk , as anticipated.
As we did forJ1,J2 andJ3, to express the resulting expression more compactly in matrix

form, we introduce the (2D) Loewner matrix L(2,2) ∈ C
(Ns−n)2×n2 as

(L(2,2))αi jβk� = ĥ(2,2)
i, j − hk,�

(̂ξi − ξk)(̂ξ j − ξ�)
, (5.24)

where αi j = (i − 1)(Ns − n) + j and βk� = (k − 1)n + � with i, j ∈ {1, 2, . . . , Ns − n}
and k, � ∈ {1, 2, . . . , n}. Then, the αi j th entry of the vector L(2,2)(w ⊗ w) ∈ C

(Ns−n)2 is

(
L
(2,2)(w ⊗ w)

)
αi j

= −
n∑

k=1

n∑
�=1

wkw�(hk,� − ĥ(2,2)
i, j )

(̂ξi − ξk)(̂ξ j − ξ�)
, (5.25)

thus recovering the first sum in (5.23). Next, introduce the matrices U1,U2 ∈ C
(Ns−n)2×n

such that for 1 ≤ k, � ≤ n,

(U1)αi j k = ĥ(2,2)
i, j

ξ̂i − ξk
and (U2)αi j � = ĥ(2,2)

i, j

ξ̂ j − ξ�

. (5.26)

Using U1 and U2 in (5.26), the last two sums in (5.23) are compactly written as

n∑
k=1

wk ĥ
(2,2)
i, j

ξ̂i − ξk
= U1w and

n∑
�=1

w�ĥ
(2,2)
i, j

ξ̂ j − ξ�

= U2w. (5.27)

Define U = U1 + U2. Then using (5.26), we write

(U)αi j k = (U1)αi j k + (U2)αi j k = ĥ(2,2)
i, j (̂ξi + ξ̂ j − 2ξk)

(̂ξi − ξk)(̂ξ j − ξk)
. (5.28)

Insert (5.24) and (5.28) into (5.22) to obtain

Ns−n∑
i=1

Ns−n∑
j=1

(p2 (̂ξi , ξ̂ j ) − ĥ(2,2)
i, j q2(ξi , ξ̂ j ))

2 =
∥∥∥L(2,2)(w ⊗ w) + Uw + ĥ(2,2)

∥∥∥2
2
, (5.29)
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where ĥ(2,2) ∈ C
(Ns−n)2 is the vector defined as

(̂h(2,2))αi j = ĥ(2,2)
i, j , (5.30)

with αi j = (i − 1)(Ns − n) + j as before and 1 ≤ i, j ≤ Ns − n. The expression (5.29)
yields the final relaxation of J4:

J4 � 1

(Ns − n)2

∥∥∥L(2,2)(w ⊗ w) + Uw + ĥ(2,2)
∥∥∥2
2
. (5.31)

5.1.2 Solving the LS Problem in Step n

Now we are ready to describe the resulting LS problem to solve in Step n of AAA-LQO.
Combining the relaxations J1, J2, J3, and J4 as given in (5.14), (5.19), (5.20), and (5.31),
in the nth step of the algorithm, we need to solve the quadraticized minimization problem

min
w

{
ρ1
∥∥Lw + ĥ

∥∥2
2 + ρ2

(∥∥∥L(1,2)w + ĥ(1,2)
∥∥∥2
2
+
∥∥∥L(2,1)w + ĥ(2,1)

∥∥∥2
2

)

+ ρ3

∥∥∥L(2,2)(w ⊗ w) + Uw + ĥ(2,2)
∥∥∥2
2

}
, (5.32)

where

ρ1 = 1

Ns − n
, ρ2 = 1

(Ns − n)n
, and ρ3 = 1

(Ns − n)2
. (5.33)

Note that due to the last term, the optimization problem (5.32) is no longer a linear LS
problem, nevertheless can be solved efficiently. One can explicitly compute the gradient (and
Hessian) of the cost function and can apply a well-established (quasi)-Newton formulation
[33]. If we were to have a one-step algorithm whose solution were determined by (5.32), we
would employ these techniques. However, solving (5.32) is only one step of our proposed
iterative algorithm. As the iteration proceeds (and as n increases), the vector w (and the
data-partition) will be updated and the new optimization problem with a larger-dimension
needs to be solved. Therefore, we will approximately solve (5.32) in every step.

One can obtain an approximate solution to (5.32) in various ways. In our formulation, we
will first solve part of the problem (5.32) that can be written as a linear least-squares problem
in w, namely

min
w

{
ρ1
∥∥Lw + ĥ

∥∥2
2 + ρ2

(∥∥∥L(1,2)w + ĥ(1,2)
∥∥∥2
2
+
∥∥∥L(2,1)w + ĥ(2,1)

∥∥∥2
2

)}
. (5.34)

The optimization problem (5.34) is a classical linear least-squares problem:

w̃ = argmin
w

∥∥∥∥∥∥
⎡
⎣ρ1L

ρ2L
(1,2)

ρ2L
(2,1)

⎤
⎦w +

⎡
⎣ ĥ
ĥ(1,2)

ĥ(2,1)

⎤
⎦
∥∥∥∥∥∥
2

. (5.35)

With w̃, we further relax the last term in (5.32) as

ρ3‖L(2,2)(w ⊗ w) + Uw + ĥ(2,2)‖22 � ρ3‖L(2,2)(w̃ ⊗ w) + Uw + ĥ(2,2)‖22. (5.36)

Using the equality L
(2,2)(w̃ ⊗ w) = L

(2,2)(w̃ ⊗ În)w, we rewrite (5.36) as

ρ3‖L(2,2)(w̃ ⊗ w) + Uw + ĥ(2,2)‖22 = ρ3‖Tw + ĥ(2,2)‖22, (5.37)
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where the matrix T ∈ C
(Ns−n)2×n is given by

T = L
(2,2)(w̃ ⊗ I) + U. (5.38)

Then, finally using (5.37) in place of the last term in (5.32), we obtain aminimization problem
that is now a linear LS problem. Thus, the solution to our final approximation to (5.32) is
given by

w
 = argmin
w

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

ρ1L

ρ2L
(1,2)

ρ2L
(2,1)

ρ3T

⎤
⎥⎥⎦w +

⎡
⎢⎢⎣
ĥ
ĥ(1,2)

ĥ(2,1)

ĥ(2,2)

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥
2

. (5.39)

Therefore, in the nth step of AAA-LQO, the optimization problem (5.6) is relaxed and the
solution of this relaxed problem (the weights) is given by (5.39). The algorithms proceeds
with the updatedweights as we discuss next.We also note that the second relaxation approach
in (5.31) can be replaced by a few steps of a (quasi)-Newton method.

5.2 Partition Update via the Greedy Selection

Given the partition (5.1) in the Step n of the algorithm, Sect. 5.1 showed how to choose the
barycentric weights w to minimize a joint LS measure over the uninterpolated data set. The
only remaining component of the proposed approach is, then, to choose the next support
point ξn+1 and to update the data partition (5.1) (so that we repeat Sect. 5.1 for the updated
partition until a desired tolerance achieved.) In other words, we will move one sampling point
from the LS set ξ̂ to the interpolation set ξ . Which point to move from ξ̂ to ξ will be done in
a greedy manner. To re-emphasize the iterative nature of the overall algorithm, at this Step
n of the algorithm, we will denote by r (n)

1 (s) and r (n)
2 (s, z) the two transfer functions of the

current LQO approximant. (Note that we dropped the superscripts in Sect. 5.1 to simplify the
notation there.)

We start by defining two constants based on the data:

M1 = max
s∈�

|H1(s)|, M2 = max
s∈�,z∈�

|H2(s, z)|, (5.40)

where � denotes the full sampling set � = {s1, s2, . . . , sNs }. For the current approximant
in Step n, introduce the two absolute error measures, namely deviations in the linear and
quadratic parts:

ε
(n)
1 = max

s∈�
|H1(s) − r (n)

1 (s)| and ε
(n)
2 = max

s,z∈�
|H2(s, z) − r (n)

2 (s, z)|. (5.41)

The next support point ξn+1 is chosen bymeans of a greedy search over the set�\{ξ1, . . . , ξn}
using the error measures ε

(n)
1 and ε

(n)
2 . More precisely, if ε

(n)
1 /N > ε

(n)
2 /N 2, then ξn+1 =

argmax
s∈�

|H1(s) − r (n)
1 (s)|. On the other hand, if ε

(n)
1 /N < ε

(n)
2 /N 2, define s(n+1) and z(n+1)

using

(s(n+1), z(n+1)) = argmax
s,z∈�

|H2(s, z) − r2(s, z)|.

Now the question is whether to choose either s(n+1) or z(n+1) as ξn+1. If only one of them
was already a support point, then we choose the other one as ξn+1. If neither s(n+1) nor z(n+1)

was previously chosen as a support point, then we compare |H1(s(n+1)) − r (n)
1 (s(n+1))| and
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|H1(z(n+1))−r (n)
1 (z(n+1))|, and choose ξn+1 as the one that yields the higher deviation in the

first transfer function. Clearly, both cannot be already a support point due to the interpolation
property.

Remark 5.1 Instead of considering the full grid of pairs of sampling points (s, z) and the
associated measurements, we could consider a sparser grid for H2(s, z) samples. More pre-
cisely, instead of using the full grid in (4.2) that contains N 2

s pairs, we could use the sample
set {H2(si , s j )} ∈ C where si , s j ∈ C with i ∈ I, j ∈ J , I,J ⊂ Z+ with cardinalities

satisfying |I| = N (I)
s < Ns , and |J | = N (J )

s < Ns . This can be viewed as a sub-sampling
approach for reducing the complexity of the LS problem by reducing the number of mea-
surements from N 2

s to N (I)
s N (J )

s for the second transfer function. This sparse sampling will

reduce the dimension of the Loewner matrix L(2,2) ∈ C
(Ns−n)2×n2 in Sect. 5.1.1 by reducing

the number of rows from (Ns − n)2 to (N (I)
s − n)(N (J )

s − n). However, this modification
would require changing the greedy selection scheme accordingly to make sure that all pos-
sible combinations of selected points appear in the sparser grid. We skip this aspect in our
examples and work with the full data set.

5.3 The Proposed Algorithm:AAA-LQO

Now, we have all the pieces to describe the algorithmic framework for the proposed method
AAA-LQO, the AAA algorithm for LQO systems.

Given the full LQO data (4.1) and (4.2), we initiate the approximant (n = 0) by choosing
r (0)
1 (s) as the average of H1(s) samples and r (0)

2 (s, z) as the average of H2(s, z) samples.
Then, using the greedy selection strategy of Sect. 5.2 we update the partition (5.1) and solve
for the barycentric weights as in Sect. 5.1, more specifically by solving (5.39). Let nmax

denote the largest dimension permitted for the data-driven LQO system �̂LQO and and let ε

denote the relative error tolerance. Then, AAA-LQO terminates either when the prescribed
dimension nmax is reached, or when the prescribed error tolerance is achieved, namely

max(ε(n)
1 /M1, ε

(n)
2 /M2) < τ. (5.42)

A sketch of AAA-LQO is given in Algorithm 1.

Algorithm 1 AAA-LQO: AAA algorithm for LQO systems
Require:

Sampling points {s1, . . . , sNs }, and samples {H1(si )} and {H2(si , s j )} of an LQO system;
Maximum dimension allowed nmax;
Stopping tolerance τ .

Ensure:
data-driven LQO system �̂LQO as in (4.22).

0: n = 0, r (0)
1 = avg{H1(si )}, and r (0)

2 = avg{H2(si , s j )}.
while max(ε(n)

1 /M1, ε
(n)
2 /M2) > τ and n < nmax

1: Employ the greedy selection scheme to choose the next support point(s) and update the partitioning as
described in Section 5.2.

2: Compute the vector of weights w
 as in (5.39).

3: Update r (n)
1 (s) and r (n)

2 (s, z), and compute the errors ε
(n)
1 and ε

(n)
2 as in (5.41).

4: n = n + 1.
end
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Remark 5.2 Note that, by choosing complex-conjugate sampling points and sampled values,
one can enforce the fitted models to be real-valued. This means that if a particular point ξi is
selected, its conjugate is also automatically selected (ξi+1 = ξ̄i ), hence increasing the degree
of the fitted functions. This is performed in both examples presented in Sect. 6.

6 Numerical Examples

We test AAA-LQO, as given in Algorithm 1, on two LQO systems. We also apply the original
AAA algorithm (from the linear case) to the data corresponding to the first (linear) transfer
function only. Therefore,we construct two approximants: (1)Adata-driven LQO approximant
using AAA-LQO and (2) A data-driven linear approximant using AAA. Both approximants
are real-valued, enforced by using a data set that is closed under complex conjugation.

6.1 Example 1

First, we use a single-input/single-output version of the ISS 1R Model from the SLICOT
MOR benchmark collection [14]. We construct an LQO system from this linear model by
adding a quadratic output with the choice ofM = 0.6I270 +0.3I(−1)

270 +0.3I(+1)
270 ∈ R

270×270,

which scales the product of the state variable with itself in the output equation. Here, I(k)270
denotes a quasi-diagonal matrix for which the entries of ones are shifted from the main
diagonal based on the integer k (k > 0 stands for shifting upward, while k < 0 is used for
shifting downward - also, note that I(0)270 = I270).

We collect the following data: pick 60 logarithmically-spaced points in the interval
[10−1, 102]i and add its conjugate pairs in [−102,−101)]i to have Ns = 120 sampling
points {si } and the samples {H1(si )} for i = 1, 2, . . . , Ns as in (4.1). Then, as in (4.2), we
sample the second-transfer function at H2(si , s j ) for i, j = 1, 2, . . . , Ns . The sampled data
are depicted in Fig. 1, where we display the measurements evaluated only on the “positive
side” of the imaginary axis and skip plotting the conjugate data.

We apply Algorithm 1 with nmax = 30 and τ = 10−2 (relative tolerance value corre-
sponding to 99% approximation error on the data). With these variables, AAA-LQO yields a
data-driven LQO model of order n = 18.

Using only the {H1(si )} samples (corresponding to the linear observation map), we apply
AAA and obtain a data-driven linear approximant of order n = 18. The AAA approximant is
constructed to simply illustrate that a linear dynamical system approximation is not sufficient
to accurately represent the underlying LQO system.

In the top plot of Fig. 2, we show the magnitude of the first transfer function H1(s) of
the original system together with that of the linear AAA model and the first transfer function
(r (n)
1 (s)) of the AAA-LQO model. As expected, AAA model does a good job in matching the

linear part of the output. Similarly, the AAA-LQO model also matches H1(s) accurately. To
better illustrate this, in the bottomplot of Fig. 2, we depict themagnitude of the approximation
errors in H1(s). The plot reveals that for this specific choice of τ , the AAA-LQOmodel has a
smaller error for most of the frequency values, even in approximating H1(s). This happens
despite the fact that it focuses on both H1(s) and H2(s, z) unlike the AAAmodel, which only
tries to approximate H1(s). However, we do not claim this to be the general case. We have
observed that for some lower values of τ , e.g., τ = 10−4, AAA model has outperformed
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Fig. 1 Measurements of the two transfer functions; H1(s) (top) and H2(s, z) (bottom)

10-1 100 101 102

10-5

Original
AAA-linear
AAA-LQO

10-1 100 101 102

10-5

AAA-linear
AAA-LQO

Fig. 2 First transfer function approximation

AAA-LQO model in approximating H1(s) (as one would expect) even though the AAA-LQO
model has still provided a high-fidelity approximation to H1(s).

In Fig. 3 we depict the selected support points (interpolation points) for both AAA and
AAA-LQO algorithms (without the complex conjugate pairs), aswell as the poles of the learned
models (i.e., the eigenvalues of Â in both cases). Note that there are 9 complex conjugate
pairs of support points for each method. Even though some of the support points of AAA and
AAA-LQO overlap, two of the pairs are different. This difference causes a big deviation in
the the pole pattern as shown in the bottom plot, illustrating that even the linear part of the
AAA-LQO approximant, i.e., r (n)

1 (s), is fundamentally different than the linear AAA model.
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AAA-LQO
AAA-linear

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

-20

0

20

AAA-LQO
AAA-linear

Fig. 3 Support points (top) and poles (bottom) for the two AAA reduced-order models

This is expected since AAA-LQO constructs r (n)
1 (s) and r (n)

2 (s, z) together by minimizing a
joint LS measure in both H1(s) and H2(s, z).

To show the overall performance of AAA-LQO in accurately approximating not only H1(s)
but also H2(s, z) (the full LQO behavior),we performa time-domain simulation of the original
LQO system�LQO, the data-drivenAAA-LQOmodel �̂LQO, and the linear AAAmodel by using
u(t) = 0.5 cos(4π t) as the control input. During the simulation of the original system �LQO,
we also compute only the linear part of the output, which the AAAmodel should approximate
well. The results are given in the top plot of Fig. 4. The first observation is that the output of
�̂LQO from AAA-LQO accurately replicates the output of �LQO. On the other hand, the linear
AAAmodel completely misses the quadratic output and is only able to approximate the linear
component in the output, as expected. The approximation error in the output corresponding
to �̂LQO is depicted in the bottom plot of Fig. 4.

In Fig. 5 we show the convergence behavior of AAA-LQO by plotting the evolution of
the relative approximation errors (ε(n)

1 /M1 and ε
(n)
2 /M2) for all even values of n. The figure

illustrates that after n = 18, both relative errors fall below the given tolerance of 10−2 and
the algorithm terminates. For reference, we also depict the convergence behavior of AAA on
the same figure. The stagnancy of the ε

(n)
1 /M1 error curve from n = 2 to n = 12 results from

the fact that during those steps the greedy selection was based on the ε
(n)
2 term, which was

the dominant absolute value error term. One can observe that during these steps, ε
(n)
2 /M2

continues to decay slightly. A more detailed illustration is given in Fig. 6, where the n is
varied from 2 to 62.

To investigate how the order of theAAA-LQOmodel varies based on the stopping tolerance,
we set nmax = 100 and run AAA-LQO for four tolerance values τ = 10−2, τ = 10−3,
τ = 10−4, and τ = 10−5. The results are displayed in Table 1. For the case of τ = 10−5,
in Fig. 6 we depict the convergence behavior of AAA-LQO by plotting ε

(n)
1 /M1 and ε

(n)
2 /M2

during the iteration.
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Fig. 4 Time-domain simulations: output of the original and data-driven models (top) and approximation error
(bottom)

2 4 6 8 10 12 14 16 18
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1
(n)/M1

2
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Fig. 5 Relative approximation errors in each step

6.2 Example 2

This model taken from [35] corresponds to an LQO systemwhose output measures a variance
in the state-variable. A linear mass-spring-damper SISO dynamical system was modified in
[34] by means of stochastic modeling, by replacing the physical parameters by independent
random variables, yielding a linear dynamical system with multiple outputs. Based on this
multiple output system, a SISO LQO system was derived in [35] where the output corre-
sponds to the variance of the original output (and thus is quadratic in nature). We refer the
reader to [35] for further details. We obtain the measurements from a version of this model
corresponding to an underlying LQO system of order N = 960.
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10 20 30 40 50 60
10-8

10-6

10-4

10-2

1
(n)/M1

2
(n)/M2

Fig. 6 Relative approximation errors in each step

Table 1 Tolerance values τ

versus the order n τ 10−2 10−3 10−4 10−5

n 18 28 56 62

Fig. 7 Measurements of the second transfer function

The main difference from the previous example is that, in this model the observed output
does not have a linear component and depends on the state variable solely quadratically, i.e.,
c = 0 in (2.1). This means that H1(s) = 0.

As the sampling points {si }, we choose 60 logarithmically spaced points over the interval
[10−1, 101]i togetherwith its conjugate pairs, leading to Ns = 120 samples. Since H1(s) = 0,
we only need to sample H2(si , s j ) for i, j = 1, 2, . . . , Ns . The corresponding data for the
second transfer function are depicted in Fig. 7.

We apply AAA-LQOwith nmax = 50 and τ = 10−3 (relative stopping criterion), obtaining
an LQOmodel of order n = 30. To show the accuracy of the approximant, we perform time-
domain simulations of the fullmodel and the approximantwith the input u(t) = sin(0.2t).We
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Fig. 8 Time-domain simulations; output of the original and the reduced system (up) + approximation error
(down)
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10-1
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(n)/M2

Fig. 9 Maximum relative approximation error at each step

depict the observed outputs in the top plot of Fig. 8, illustrating an accurate approximation.
The corresponding output error is plotted in the bottom plot of Fig. 8.

Finally, in Fig. 9 we show the convergence behavior of AAA-LQO by plotting the evolution
of relative approximation error ε

(n)
2 /M2.

Remark 6.1 Since AAA-LQO uses a greedy selection scheme and is not a descent algorithm,
there is no theoretical guarantee that the maximum approximation error will decrease mono-
tonically. This can be seen in Figs. 5, 6 and 9. This behavior was also observed in the original
AAA algorithm; see, e.g, Application 6.3 in [32]. However, numerically the error indeed
decreases monotonically with n in most cases.
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Table 2 Noise level ζ versus the order n

ζ 0 2 · 10−4M2 5 · 10−4M2 10−3M2 3 · 10−3M2 4 · 10−3M2

n 24 24 30 34 40 40

0
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10

15

Original
AAA-LQO

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Original
AAA-LQO

Fig. 10 Time-domain simulations for the noisy data case for ζ = 3 · 10−3M2 (top plot) and ζ = 4 · 10−3M2
(bottom plot)

6.2.1 The Case of Noisy Data

In practice, the frequency-domain data to be used in rational approximation algorithms are
often corrupted by noise. The recent works [15, 20, 21] have studied the effects of noisy
data on some of the frequency-domain based rational approximation for linear dynamics
with linear output, such as the AAA [32], Loewner [31], and RKFIT [10], and Vector Fitting
(VF) [22] frameworks. It was illustrated in [20, 21] that the methods such as RKFIT, VF and
AAAwith a (partial) least-squares formulation are more robust to noise in the measurements
compared to the purely interpolatory Loewner framework.

In what follows, using the model in Example 2 we present a simple numerical test-case to
study the effect of noise on AAA-LQO. We will artificially corrupt the measurements of the
second transfer function with uniformly distributed numbers in the interval (0, ζ ), where ζ is
the “noise level”. We will be using moderate noise levels, i.e., ζ < 10−3M2, with M2 defined
as in (5.40). We will only perturb H2(s, z) in this example since H1(s) is zero everywhere.
We use the same data as in Sect. 6.2, to which we add uniformly distributed noise.

We applyAAA-LQOwith nmax = 40 and τ = 10−2 for various noise levels, and thus obtain
LQO models of various orders n as depicted in Table 2. For this experiment, increasing the
noise level also increases the order of the fitted LQO system by means of AAA-LQO, which
is to be expected. It is to be noted that for the higher level of noise considered here, namely
ζ = 3 · 10−3M2 and ζ = 4 · 10−3M2, the target tolerance value τ = 10−2 is not reached.

In the top plot in Fig. 10, we show the time-domain response of the full model and
AAA-LQO model for the noise level of ζ = 3 · 10−3, illustrating that the data-driven model
accurately recovers the original model response. We repeat the same experiment with the
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noise level ζ = 4 · 10−3 and depict the result in the bottom plot in Fig. 10, illustrating that
the data-driven model starts to visibly deviate from the true model response. As expected,
the approximation quality decays as the noise level increases.

Even though in this simple experiment AAA-LQO performs well for low to moderate noise
levels, a more in-depth theoretical analysis on the robustness of AAA-LQO to noisy data
together with algorithmic considerations (stopping criterion based on noise level, regulariza-
tion etc.) is necessary and will be considered in future work.

7 Conclusions

We have proposed a novel data-driven modeling method, called AAA-LQO, for linear systems
with quadratic outputs (LQO). AAA-LQO extends the AAA algorithm to this new setting by
first developing the barycentric representation theory for the two transfer functions arising in
the analysis of LQO systems and then formulating a LSminimization framework to efficiently
solve for the barycentric coefficients. The two numerical examples illustrate that AAA-LQO
provides high-fidelity data-driven approximants to the original model.

The barycentric form we developed here for LQO systems offers promising research
directions for modelling systems with general polynomial observation maps, as well as for
nonlinearities appearing in the dynamical equation such as bilinear or quadratic-bilinear
systems. These topics are the focus of on-going research.
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Proof of Lemma 4.1

Substitute s = ξi and z = ξ̂ j into (4.19) to obtain

p2(ξi , ξ̂ j ) =
n∑

k=1

n∑
�=1

hk,�wkw�Mk,�(ξi , ξ̂ j ) =
n∑

�=1

hi,�wiw�Mi,�(ξi , ξ̂ j ),
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and

q2(ξi , ξ̂ j ) = M(ξi , ξ̂ j ) +
n∑

k=1

wkmk(ξi )m(̂ξ j ) +
n∑

�=1

w�m�(̂ξ j )m(ξi )

+
n∑

k=1

n∑
�=1

wkw�Mk,�(ξi , ξ̂ j )

= wimi (ξi )m(̂ξ j ) +
n∑

�=1

wiw�Mi,�(ξi , ξ̂ j ),

where M,m,mk , and Mk,l are as defined in (4.17). Write r2(ξi , ξ̂ j ) = p2(ξi ,̂ξ j )

q2(ξi ,̂ξ j )
as

r2(ξi , ξ̂ j ) =

n∑
�=1

hi,�wiw�Mi,�(ξi , ξ̂ j )

wimi (ξi )m(̂ξ j ) +
n∑

�=1

wiw�Mi,�(ξi , ξ̂ j )

. (A.1)

Introduce the notation

ML
i (ξi , z) =

n∏
k=1,k 	=i

n∏
�=1

(ξi − ξk)(z − ξ�) = mi (ξi )m(z). (A.2)

SinceML
i (ξi , ξ̂ j ) = Mi,�(ξi , ξ̂ j )(̂ξ j − ξ�) holds, we can write

r2(ξi , ξ̂ j ) =

n∑
�=1

hi,�wiw�

ML
i (ξi , ξ̂ j )

ξ̂ j − ξ�

wiM
L
i (ξi , ξ̂ j ) +

n∑
�=1

wiw�

ML
i (ξi , ξ̂ j )

ξ̂ j − ξ�

. (A.3)

By simplifying wiM
L
i (ξi , ξ̂ j ) from both the numerator and the denominator in the above

expression proves the first desired result in (4.23). The proof for r2 (̂ξ j , ξi ) follows similarly.
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15. Drmač, Z., Peherstorfer, B.: Learning low-dimensional dynamical-system models from noisy frequency-
response data with Loewner rational interpolation. In: Beattie, C., Benner, P., Embree, M., Gugercin,
S., Lefteriu, S. (eds.) Realization and Model Reduction of Dynamical Systems—A Festschrift in Honor
of the 70th Birthday of Thanos Antoulas. Springer Nature Switzerland AG (2021). Accepted to appear.
arXiv preprint arXiv:1910.00110

16. Ghattas, O., Willcox, K.: Learning physics-based models from data: perspectives from inverse problems
and model reduction. Acta Numer. 30, 445–554 (2021)

17. Giri, F., Bai, E.-W. (eds.): Block-Oriented Nonlinear System Identification. Lecture Notes in Control and
Information Sciences. Springer, London (2010)

18. Golub, G.H., VanLoan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Balti-
more (2013)

19. Gosea, I.V., Antoulas, A.C.: A two-sided iterative framework for model reduction of linear systems with
quadratic output. In: Proceedings of the 58th Conference on Decision and Control (CDC), December
11–13, Nice, France, pp. 7812–7817 (2019)

20. Gosea, I.V., Güttel, S.: Algorithms for the rational approximation of matrix-valued functions. SIAM J.
Sci. Comput. 43(5), A3033–A3054 (2021)

21. Gosea, I.V., Zhang, Q., Antoulas, A.C.: Data-driven modeling from noisy measurements. In: Special
Issue: 7th GAMM Juniors’ Summer School on Applied Mathematics and Mechanics (SAMM) (2021).
https://doi.org/10.1002/pamm.202000901

22. Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting.
IEEE Trans. Power Deliv. 14(3), 1052–1061 (1999)

23. Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., Sjöberg, J., Zhang, Q.: Nonlinear
black-box models in system identification: mathematical foundations. Automatica 31(12), 1725–1750
(1995)

24. Karachalios, D.S., Gosea, I.V., Antoulas, A.C.: The Loewner framework for nonlinear identification and
reduction of Hammerstein cascaded dynamical systems. In: Special Issue: 91st Annual Meeting of the
International Association of Applied Mathematics and Mechanics (GAMM). Wiley (2021)

25. Karachalios, D.S., Gosea, I.V., Antoulas, A.C.: On bilinear time-domain identification and reduction in the
Loewner framework. In: Model Reduction of Complex Dynamical Systems. Volume 171 of International
Series of Numerical Mathematics, pp. 3–30. Birkhäuser Cham (2021)

26. Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic Mode Decomposition: Data-Driven
Modeling of Complex Systems. SIAM, Philadelphia (2016)

27. Lefteriu, S., Antoulas, A.C.: A new approach tomodelingmultiport systems from frequency-domain data.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(1), 14–27 (2010)

28. Lietaert, P., Pérez, J., Vandereycken, B.,Meerbergen, K.: Automatic rational approximation and lineariza-
tion of nonlinear eigenvalue problems. Technical report (2018). arXiv preprint arXiv:1801.08622

29. Lutes, L.D., Sarkani, S.: Random Vibrations: Analysis of Structural and Mechanical Systems.
Butterworth-Heinemann, Oxford (2004)

30. Malladi, V.V.N.S., Albakri, M.I., Krishnan, M., Gugercin, S., Tarazaga, P.A.: Estimating experimental
dispersion curves from steady-state frequency response measurements. Mech. Syst. Signal Process. 164,
108218 (2022)

31. Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear
Algebra Appl. 425(2–3), 634–662 (2007)

32. Nakatsukasa, Y., Sete, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci.
Comput. 40(3), A1494–A1522 (2018)

33. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

123

http://arxiv.org/abs/2003.06536
http://www.slicot.org
http://arxiv.org/abs/1910.00110
https://doi.org/10.1002/pamm.202000901
http://arxiv.org/abs/1801.08622


16 Page 28 of 28 Journal of Scientific Computing (2022) 91 :16

34. Pulch, R.: Model order reduction and low-dimensional representations for random linear dynamical
systems. Math. Comput. Simul. 144, 1–20 (2018)

35. Pulch, R., Narayan, A.: Balanced truncation for model order reduction of linear dynamical systems with
quadratic outputs. SIAM J. Sci. Comput. 41(4), A2270–A2295 (2019)

36. Qian, E., Kramer, B., Peherstorfer, B., Willcox, K.: Lift & learn: physics-informed machine learning for
large-scale nonlinear dynamical systems. Physica D 406, 132401 (2020)

37. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An
Introduction, vol. 92. Springer, Berlin (2015)

38. Rugh, W.J.: Nonlinear System Theory—The Volterra/Wiener Approach. University Press, Baltimore
(1981)

39. Scarciotti, G., Astolfi, A.: Data-driven model reduction by moment matching for linear and nonlinear
systems. Automatica 79, 340–351 (2017)

40. Tick, L.J.: The estimation of “transfer functions” of quadratic systems. Technometrics 3(4), 563–567
(1961)

41. Van Beeumen, R., Meerbergen, K.: Model reduction by balanced truncation of linear systems with a
quadratic output. In: Simons, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) International Conference on
Numerical Analysis andAppliedMathematics (ICNAAM), pp. 2033–2036. American Institute of Physics
(2010)

42. Van Beeumen, R., Van Nimmen, K., Lombaert, G., Meerbergen, K.: Model reduction for dynamical
systems with quadratic output. Int. J. Numer. Methods. Eng. 91, 229–248 (2012)

43. Wiener, N.: Nonlinear Problems in Random Theory. Wiley, New York (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Data-Driven Modeling of Linear Dynamical Systems with Quadratic Output in the AAA Framework
	Abstract
	1 Introduction
	2 Linear Systems with Quadratic Output
	2.1 Transfer Functions of LQO Systems

	3 Barycentric Rational Approximation for Linear Systems and the AAA Algorithm
	4 Barycentric Representations for LQO Systems
	5 Proposed Framework for Data-Driven Modeling of LQO Systems
	5.1 A Combined LS Measure for Computing the Barycentric Weights for the Current Partition
	5.1.1 Quadraticized LS Problem in Step n
	5.1.2 Solving the LS Problem in Step n

	5.2 Partition Update via the Greedy Selection
	5.3 The Proposed Algorithm: AAA-LQO

	6 Numerical Examples
	6.1 Example 1
	6.2 Example 2
	6.2.1 The Case of Noisy Data


	7 Conclusions
	Acknowledgements
	Proof of Lemma 4.1 
	References




