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Abstract
In this work, we present a novel hybrid Discontinuous Galerkin scheme with hp-adaptivity
capabilities for the compressible Euler equations. In smooth regions, an efficient and accurate
discretization is achieved via local p-adaptation. At strong discontinuities and shocks, a finite
volume scheme on an h-refined element-local subgrid gives robustness. Thus, we obtain a
hp-adaptive scheme that exploits both the high convergence rate and efficiency of a p-adaptive
high order scheme as well as the stable and accurate shock capturing abilities of a low order
finite volume scheme, but avoids the inherent resolution loss through h-refinement. A single a
priori indicator, based on the modal decay of the local polynomial solution representation, is
used to distinguish between discontinuous and smooth regions and control the p-refinement.
Our method is implemented as an extension to the open source software FLEXI. Hence, the
efficient implementation of the method for high performance computers was an important
criterion during the development. The efficiency of our adaptive scheme is demonstrated
for a variety of test cases, where results are compared against non adaptive simulations.
Our findings suggest that the proposed adaptive method produces comparable or even better
results with significantly less computational costs.

Keywords Discontinuous Galerkin · High order schemes · p-Adaptivity · Shock capturing ·
h-Refinement

1 Introduction

The stable and accurate simulation of transsonic and supersonic flow phenomena, that are
encountered at high speed flight conditions, is a demanding task for the computational fluid
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dynamics community. The challenge, posed by the described flow conditions, is due to
the presence of both regions with smooth and discontinuous solutions. Hence, a numerical
approximation has to be able to capture shock waves, strong velocity gradients and shear
layers, where fluid properties change sharply, as well as smooth laminar or turbulent flow.
Due to their low approximation errors and favorable scale resolving capabilities, high order
methods are currently objects of research and development. In particular, the discontinuous
Galerkin (DG) method is well suited for practical applications since it features an element
local polynomial solution representation that is only coupled by numerical fluxes. Thismakes
it highly parallelizable and efficient for high-performance computing. The discretization error
e of a polynomial approximation of degree p− 1 can be roughly estimated as e ≈ kh p , with
the constant k depending on the solution regularity and the element size h. In regions of
smooth flow, the high order discretization can profit from an exponential convergence rate
with the exponent p. However, in regions with strong gradients or under-resolved regions,
these schemes suffer from spurious oscillations, called the Gibb’s instability, that causes
stability issues and a loss of accuracy.
There exist different strategies to capture shocks and discontinuities. One approach is to
smooth out shocks and strong gradients in the solution with artificial viscosity by locally
applying an additional dissipation term, originally proposed by von Neumann and Richtmyer
in [31]. Persson and Peraire [20] adapted this to high order discontinuousGalerkinmethods to
eliminate the high frequencies without widening the shock over a couple of cells. In a recent
article, Zeifang et al. [33] used a smoothness indicator, based on artificial neural networks [2],
to control the amount of artificial viscosity. Another approach is the application of limiting
techniques such as those applied to the finite volume (FV) approach, adapted to the DG
formulation. Qiu and Shu [22] combined the DG method with a weighted essentially non-
oscillatory (WENO) limiting in [22] and more recently by Zhu et al. in [34]. A third approach
is to change the discretization operator around a shock wave to a finite volume scheme and
apply it on a refined sub-cell grid. This is done in the work of Dumbser et al. [7,8], where
an ADER-DG scheme is limited by finite volume sub-cells with a WENO reconstruction
for increased accuracy. A similar approach is used by Vilar [30] where a flux reconstruction
scheme based on the the DG solution is used to increase the accuracy of the finite volume
sub-cells. A variant is to decrease locally the order of accuracy while the loss of accuracy is
remedied by local mesh refinement (h-refinement). This was applied in the work of Huerta
et al. [11] and Persson et al. [21] by introducing piecewise constant ansatz functions and
subdividing the DG element into sub-cells. A similar strategy, presented in [16], is called
rp-refinement, where the mesh refinement is achieved by deforming the mesh and clustering
DOFs around shocks, rather than refining themesh though subdivision of elements. Both, hp-
and rp-refinement have the common strategy of locally reducing the polynomial degree and
increasing the mesh resolution to resolve shocks and discontinuities accurately. In this paper
we employ a concept based on the work of Sonntag and Munz [26] that follows the same
idea. A DG element containing shocks or strong gradients is subdivided into FV sub-cells
that represent the solution with a stable second order FV-scheme. Low order FV schemes are
well suited for shock capturing but suffer from a high discretization error. Therefore a finer
sub-cell grid is used to compensate for the loss of accuracy. The combination of a high order
DG method with a FV sub-cell scheme provides a stable numerical framework to resolve
both smooth and discontinuous regions encountered in the transsonic and supersonic flow
phenomena considered in this paper.
The goal of this paper is to extend the hybrid DG and FV sub-cell approach towards
an hp-adaptive scheme to improve the accuracy and reduce the computational cost. Both
p-adaptation and adaptive mesh refinement, called h-refinement, are common refinement
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strategies and have been investigated in the past. In [9,12,23], h-refinement techniques were
successfully applied to high order DG methods to solve the compressible Euler equations.
P-adaptive DG methods, where adaptivity is achieved through a variable ansatz degree, have
been investigated in [1,3,19]. Since Li and Jameson showed in [15], that h-refinement pro-
duces better results at flow discontinuities while p-refinement is more efficient in smooth
regions we decide to use both techniques for our hybrid DG/FV scheme. In smooth regions,
where the DG scheme is stable, adaptive p-refinement is applied by locally increasing and
decreasing the polynomial degree. In the vicinity of shocks and discontinuities, the second
order FV discretization is applied to a sub-grid of FV cells and allows for a better localization
of discontinuities.
Thus, we propose to combine a FV sub-cell scheme with a p-adaptive DG scheme to obtain a
novel, efficient hp-adaptive strategy that comes without the need for mesh adaptation during
the run time. To allow for an increased local number of DOFs per element at shocks, we
extended the efficient a priori FV sub-cell limiting of Sonntag andMunz [26] to allow for FV
resolutions that can be chosen independently of the DGmethod. We use a sub-cell resolution
of 2N +1 cells per direction that Dumbser et al. proposed in the context of an a posteriori FV
sub-cell limiting [8]. The resulting scheme combines the advantages of high order schemes
and p-adaptivity in smooth regions, with the robustness and accuracy of FV schemes with
h-refinement for shock capturing. To switch between the two schemes, an indicator, based
on the modal decay of the polynomial solution representation, proposed by Mavriplis [18],
is used. Based on the modal decay rate, oscillations of the local solution polynomials within
an element can be detected. Additionally, the modal decay rate inside an element provides
an error estimate to chose the local polynomial degree of the DG elements.
This paper is organized as follows. In Sect. 2, the governing equations are introduced. In
Sect. 3, we outline the DG discretization and the p-refinement technique, used in smooth
regions. The FV sub-cell scheme, used for shock capturing, is introduced in Sect. 4. In
Sect. 5 we briefly discuss the chosen indicator for FV sub-cell limiting and p-refinement.
In Sect. 6, we propose an efficient implementation for the hybrid, adaptive scheme and in
Sect. 7, the hp-adaptive method is assembled from the building blocks. Finally, in Sect. 8 we
present and discuss numerical examples to validate the method and demonstrated its superior
computational efficiency when compared to uniformly refined computations.

2 Governing Equations

In this work, we consider the Euler equations as the model for an inviscid compressible fluid
flow in a computational domain Ω with the boundary Γ = ∂Ω on a finite time interval
(0, T ]. They can be written in the conservation form:

∂u
∂t

+ ∇x · F(u) = 0 in Ω × (0, T ]. (1)

Here, [ρ, ρv, E] denotes the transposed vector of conserved variables u with density ρ,
velocity vector v, and total energy E per unit volume. The vector F is the convective flux
and is written in components as F = [ρv, ρv × v + p I, v(E + p)]. To compute the pressure
p and to close the system, the equation of state of a perfect gas is assumed, given by

p(ρ, ρv, E):=(γ − 1)

(
E − 1

2
ρ‖v‖22

)
(2)
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with the isentropic expansion coefficient γ = 1.4. The equation system is subjected to initial
conditions, defined as u(x, 0) = u0(x), and appropriate boundary conditions, defined as
u(xΓ , t) = uΓ (xΓ , t) for the spatial coordinate vector xΓ ∈ Γ . The boundary conditions
are specified for the presented test cases in Sect. 8.

3 P-Adaptive Discontinuous Galerkin Discretization

In this section, a p-adaptive high order approximation for the Euler equations, based on the
Discontinuous Galerkin Spectral Element Method (DGSEM), is outlined. The DGSEM is
a computationally efficient DG variant that exhibits the basis functions in a tensor basis
structure, described in detail in [13] and our version in [14].

3.1 Spatial Discretization on CurvedMeshes

Equation (1) is approximated by the DGSEM for an arbitrary approximation order N on a
computational domain Ω ∈ R

3 that is subdivided into K ∈ N non overlapping hexahedral
elements Ωe, so that Ω = ⋃K

e=1 Ωe and
⋂K

e=1 Ωe = ∅ are valid. We apply transformations
from physical space x = (x1, x2, x3)T to reference space ξ = (ξ1, ξ2, ξ3)

T and vise versa to
map a physical element Ωe to a reference element E := [−1, 1]3 with the mappings

x(ξ) and ξ(x). (3)

For the transformation of Eq. (1) to reference space, the inverse of the Jacobian J of the
mapping x(ξ) is required. With the covariant and contravariant basis vectors

ai = ∂x
∂ξi

, ai = ∂ξ

∂xi
(4)

and the determinant Jgeo of the Jacobian matrix J, the inverse of J is obtained as:

J−1 = 1

Jgeo

⎛
⎜⎝

(a2 × a3)T

(a3 × a1)T

(a1 × a2)T

⎞
⎟⎠ =

⎛
⎜⎝
a1

a2

a3

⎞
⎟⎠ (5)

It follows, that the divergence of a Flux F can be written in reference space as

∇x · F = 1

Jgeo

3∑
i=1

∂ Jgeoai · F
∂ξi

= 1

Jgeo
∇ξ · F (6)

with F denoting the flux in reference space, called contravariant flux.

F =
⎛
⎜⎝
F1

F2

F3

⎞
⎟⎠ =

⎛
⎝Jgeoa1 · F
Jgeoa2 · F
Jgeoa2 · F

⎞
⎠ (7)

Finally, Eq. (1) in reference space is obtained as

Jgeo
∂u
∂t

+ ∇ξ · F(u) = 0. (8)
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3.2 The Discontinious Galerkin Spectral Element Method

Next, the DGSEM formulation is derived for the transformed euqation system (8). First, the
weak form is obtained by projection onto the test space spanned by φ ∈ P:∫

E

(
Jgeo

∂u
∂t

)
φdΩ +

∫
E
(∇ξ · F)φdΩ = 0 (9)

Integration by parts yields∫
E

(
Jgeo

∂u
∂t

)
φdΩ +

∮
∂E

(F · nξ )φdSξ −
∫
E
(F · ∇ξ )φdΩ = 0 (10)

with the unit normal vector nξ and the surface of the reference element Sξ . Since discontinu-
ities are allowed across element interfaces, the termF ·nξ is not unique at the interface and is
approximated by a numerical flux (F ·nξ )

∗. The element local solution and the contravariant
flux are both approximated as

u(ξ , t) ≈
N∑

i, j,k=0

ûi jk(t)ψi jk(ξ), (11)

F(ξ , t) ≈
N∑

i, j,k=0

F i jk(ûi jk)ψi jk(ξ) (12)

in the space spanned by tensor products of one-dimensional Lagrange polynomials of degree
N :

ψi jk(ξ) = 
i (ξ
1)
 j (ξ

2)
k(ξ
3) (13)

and with the degrees of freedom (DOFs) ûi jk . Following Galerkin’s idea, we use the same
polynomials for the basis functions ψ and the test functions φ. The node distribution for
the one-dimensional Lagrange polynomials is defined by the Legendre–Gauss nodes of the
reference element in every direction. If these points are also used for the numerical quadrature,
we obtain a semi discrete DG operator with a tensor product structure and a reduced number
of required operations per degree of freedom. Due to the tensor product structure, the DG
operator can be split into one-dimensional operations that are applied for every direction of
the reference element separately. The total number of degrees of freedom per variable for an
element of order N in d space dimensions corresponds to (N + 1)d . The node distribution
is illustrated in Fig. 1 for the two-dimensional case and two elements with different local
polynomial degrees. For a more detailed derivation of the DGSEM operator, which is used
in the code framework, the reader is referred to [14].

3.3 Coupling of DG Elements with Variable Order

To construct a p-adaptiveDGSEMscheme, interfaces between elementswith varying polyno-
mial degrees have to be considered. Since coupling is achieved trough the numerical flux, the
flux computation has to be adapted to allow for different degrees among adjacent elements.
Furthermore, switching of the element local degree requires a transformation of the elements
solution representation between different polynomial degrees. Without loss of generality, the
transformation formula can be derived for the one-dimensional case, due to the tensor basis
structure.
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Fig. 1 Node distribution inside two-dimensional reference elements with degrees N = 3 (left) and M = 4
(right) indicated by dots and surface node distributions u−

N and u+
M indicated by squares for the computation

of the numerical fluxF∗
M between adjacent elements. For the flux computation, the surface node distribution

u−
N is transformed to the representation of the higher order element u−

M

A transformation of the element local volume or surface solution from a degree N to a
degree M with N < M can be achieved by interpolating the solution polynomial at the new
node positions of degree M . In the case of N > M , a conservative transformation is obtained
by projecting the given polynomial of degree N to a polynomial of degree M . We achieve
this projection through a modal cut-off filtering and subsequent interpolation. Therefore
the solution representation uN of degree N is first transformed to a modal Legendre basis
representation uN

Leg with the Vandermonde matrix V N
Leg:

V N
Legu

N = uN
Leg, uN , uN

Leg ∈ R
N+1. (14)

Next, a modal cutoff is performed to reduce the number of modes to M :

uM
Leg =

⎛
⎜⎜⎜⎝

uN
Leg(0)

...

uN
Leg(M)

⎞
⎟⎟⎟⎠ , uM

Leg ∈ R
M+1. (15)

The transformation is completed by transforming the modal solution back to the initial nodal
Lagrange basis:

(VM
Leg)

−1uM
Leg = uM , uM ∈ R

M+1. (16)

The transformation can be expressed as one matrix vector operation:

uM = (VM
Leg)

−1

⎡
⎢⎣
1 . . . 0 . . . 0
...

. . .
...

...

0 . . . 1 . . . 0

⎤
⎥⎦

MxN

V N
Legu

N ,

written in short as

uM = VM2NuN . (17)

The numerical flux between two elements that share a common side is evaluated using a
polynomial solution representation of the surface data of both elements. Since the the flux
is computed for every node of the polynomial surface data, the number and position of the
nodes has to match between neighboring sides. In case adjacent elements do not share a
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common polynomial degree, depicted in Fig. 1, the node distribution of the element with
the higher degree M is used. To that purpose, the surface data with the lower degree u+

N is
transformed to degree M of the neighboring side, using the aforementioned transformation
rule. The numerical flux is then evaluated for all M nodes u+

M and u−
M at the element side.

The resulting fluxF∗
M can be applied to the element of degree M directly. For the element of

degree N , the flux has to be transformed to a representation of degree N , using the introduced
projection. In pseudo code, the flux computation reads as follows

N �= M, N < M (Adjacent elements have different degrees)

u+
N 	→ u+

M (Transform side data of degree N to degreeM)

F∗
M := Riemann solver(u+

M , u−
M , n) (Calculate numerical flux forM nodes)

F∗
M 	→ F∗

N (Transform flux representation of degreeM to degree N ).

Altogether, the formula, presented in this section, provide all basic ingredients for a p-adaptive
discontinuous Galerkin discretization. Coupling of elements with different degrees through a
numerical flux computation on a common polynomial representation was also addressed. For
a more detailed derivation of the treatment of non conforming interfaces, so called mortars
[17], the reader is referred to [6]. It should be noted, that the presented scheme does not impose
any restrictions to the degree of neighboring elements, so that every arbitrary distribution of
polynomial degrees among the elements, imposed by an indicator is possible.
In this work, we use an explicit 4 stage Runge–Kutta scheme for numerical integration in
time to obtain a fully discrete scheme. The resulting time step restriction is obtained from
the CFL condition by Courant, Friedrichs and Lewy [5] with an additional factor 1

2N+1 that
takes into account the polynomial degree N [4] and a scaling factor for the Runge–Kutta
scheme αRK (N ) > 1.

Δt = CFL · αRK (N ) · ΔxDG

(2N + 1) |λc| (18)

The remaining variables are the physical element sizeΔxDG and the maximal signal velocity
|λc| given by the eigenvalues of the Euler equations.

4 An h-Adaptive Finite Volume Sub-cell Discretization

In Sect. 3, a p-adaptive DGSEM discretization for the compressible Euler equations was
outlined. This adaptive high order scheme provides good stability and accuracy in smooth
regions.However, in the presence of shocks or strong gradientswithin an element, the solution
generates oscillations due to the Gibbs phenomenon. To circumvent this issue, we employ a
shock capturingwith finite volume sub-cells.Here, a d-dimensionalDGelement is subdivided
into (NFV )d sub-cells to apply the time evolution by a stable second order FV scheme. A
typical choice for the sub-cell resolution is NFV = 2N+1, since this is the highest resolution
that does not impose a stricter time step restriction as the corresponding DG element of
degree N . Thus we obtain a local reduction in approximation order, but combined with an
increased spatial localization of strong gradients. In the following, we use a FV sub-cell
shock capturing scheme on a predefined sub-cell mesh to achieve the favorable local mesh
refinement properties of the hp- and rp-refinement strategies, without the need to perform
remeshing or changing the number of elements in the mesh. For a detailed derivation of the
FV sub-cell scheme and its implementation in FLEXI for NFV = N +1 the reader is referred
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to the work of Sonntag and Munz in [26,27] and Krais et al. in [14]. In the following, we
derive the spatial FV sub-cell discretization and its coupling to adjacent DG elements for
arbitrary combinations of N and NFV .

4.1 Spatial Discretization on CurvedMeshes

We derive the spatial finite volume sub-cell discretization for the reference element E , fol-
lowing the mapping x 	→ ξ introduced in Sect. 3. The reference element of a local DG
solution, in which shock capturing becomes necessary, is subdivided into NFV equidistant
pieces in every space dimension d . This results in a subdivision of the reference element and
is then called FV element in this paper. Thus, the FV representation of such a troubled DG
element contains (NFV )d sub-cells e. The metric terms J FV

geo and J FV
geo a

i,FV , required for the

mapping to reference space, are obtained as the integral mean of Jgeo and Jgeoai for each
FV sub-cell e:

J FV
geo =

∫
e Jgeo(ξ)dξ∫

e dξ
(19)

J FV
geo a

i,FV =
∫
e Jgeo(ξ)ai (ξ)dξ∫

e dξ
for i = 1, 2, 3 (20)

This is equivalent tomultiplyingwith the transformationmatrixV DG2FV defined in Sect. 4.3:

J FV
geo = V DG2FV Jgeo(ξ) , J FV

geo a
i,FV = V DG2FV Jgeo(ξ)ai (ξ) (21)

With the definition of the FV metric terms, we obtain the contravariant flux.

F FV =
⎛
⎜⎝
F FV
1

F FV
2

F FV
3

⎞
⎟⎠ =

⎛
⎜⎜⎝
J FV
geo a

1 · F
J FV
geo a

2 · F
J FV
geo a

2 · F

⎞
⎟⎟⎠ (22)

Consequently, Eq. (1) can be written in reference space for a sub-cell element e as:

J FV
geo

∂uFV

∂t
+ ∇ξ · F FV (uFV ) = 0. (23)

4.2 Finite Volume Discretization

Following the transformation to reference space, the FV sub-cell discretization for a reference
sub-cell e is obtained from the weak form of (23) as∫

e
(J FV

geo ∂tuFV )φdΩe +
∮

∂e
(F FV · nFV )φdSe = 0. (24)

The term F FV · nFV represents the flux at the sub-cell boundaries and is approximated by
a numerical flux F∗:

(F FV · nFV ) ≈ F∗(uFV
L , uFV

R , nFV ). (25)

It depends on the normal vector nFV at the sub-cell interface and the sub-cell data right
and left of the interface. A piecewise linear reconstruction with limiting is applied to get a
second order total variation diminishing finite volume scheme on the sub-cell data. In all our
simulations later we used simply the MinMod limiter [24].
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4.3 Coupling of DG and FV Sub-cell Elements

Switching between DG and FV sub-cells as well as the flux computation at mixed DG/FV
element interfaces requires a transformation between the polynomial solution representation
of a DG element and a piecewise constant FV sub-cell representation. Therefore, we seek a
transformation V DG2FV between a DG solution representation uDG of a degree N and a FV
sub-cell solution representation uFV with NFV sub-cells:

V DG2FV uDG = uFV . (26)

A FV sub-cell representation uFV can be obtained from the polynomial DG solution rep-
resentation uDG by piecewise projection of uDG on the NFV sub-cells. With the piecewise
constant FV sub-cell solution representation the projection can be written as the computation
of the integral mean of uDG inside each sub-cell:

∫
E
udξ =

NFV∑
k=1

∫ −1+kw

−1+(k−1)w
uDGdξ =

NFV∑
k=1

∫ −1+kw

−1+(k−1)w

N∑
l=0

ûDG
l ψl(ξ)dξ

!=
NFV∑
k=1

wûFV
k .

(27)

For NFV sub-cells, the width of a cell in reference space is given here as w = 2
NFV

. Replacing
the integral in Eq. (27) by a numerical quadrature with quadrature weightsωm and quadrature
nodes ξ km inside the sub-interval k yields

NFV∑
k=1

N∑
m=0

N∑
l=0

ûDG
l ψl(ξ

k
m)ωm

!=
NFV∑
k=1

wûFV
k .

(28)

For the numerical quadrature, the same nodes and weights are used as for the spatial DGSEM
discretization. Equation (28) can be rewritten in matrix vector notation with the matrix
V DG2FV defined as

V DG2FV := 1

2

N∑
m=0

ψl(ξ
k
m)ωm ∀l = 0, .., N , ∀k = 1, .., NFV . (29)

To recover the polynomial DG representation uDG from piecewise constant sub-cell data
uFV , an inverse transformation V FV 2DG is required. For NFV +1 > N , this leads to an over
determined system. This can be solved with a constrained least square approach as proposed
by Dumbser and Zanotti in [8]. Integral conservation over the DG element serves herein as
the constraint. The least square approach is equivalent to a discrete projection and is solved by
finding the pseudo inverse of V DG2FV . Therefore both transformations fulfill the property

V FV 2DG ◦ V DG2FV = I . (30)

For two adjacent FV elements, the flux computation is straight forward and is performed
on the piecewise constant sub-cell representation. If a mixed DG/FV interface is present,
like in Fig. 2, we evaluate the flux on the sub-cell representation. Therefore, the solution on
the surface of the DG element is transformed to a FV sub-cell representation via the matrix
V DG2FV . Subsequently, the numerical flux is computed. Finally, the flux is transformed
back to the DG representation using the inverse transformation matrix V FV 2DG . As already
discussed in Sect. 3.3, we advance our scheme in time with an explicit Runge–Kutta method
and therefore need to fulfill a CFL time step condition. For a FV sub-cell with a physical
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Fig. 2 DG reference element with degree N = 3 (left) and an adjacent DG element that is splitted into N2
FV

FV sub-cells (right). DG volume nodes respectively FV sub-cell centers are indicated by dots. Surface nodes
for the flux computation are indicated by squares. For the flux computation, the surface node distribution u−

DG
is transformed to u−

FV to match the equidistant distribution of the FV sub-cells

element size ΔxFV and a piecewise constant solution representation of degree N = 0, the
time step restriction (18) can be rewritten as

Δt = CFL · αRK (0) · ΔxFV
|λc| (31)

As discussed in the work of Dumbser et al. [8], a comparison of both time step restrictions
(18) and (31) yields that a FV sub-cell scheme does not suffer from a smaller time step than
a corresponding DG discretization up to a sub-cell resolution of NFV = 2N + 1. Therefore,
an increased sub-cell resolution of NFV = 2N +1 compared to the resolution NFV = N +1
used in the open source FLEXI should not increase the total number of time steps of a
simulation. This assumption is validated in Sect. 8, where the total number of time steps is
compared for multiple test cases with different sub-cell resolutions.

5 Modal Decay Indicator for Shock Detection and Error Estimation

An essential building block for the proposed p-adaptive DG/h-refined FV sub-cell scheme
is a suitable smoothness indicator and an error estimator. In the current framework, we use
an a priori indicator based on the decay rate of the modal polynomial solution representation
inside an element, as proposed by Mavriplis in [18]. In the following, the indicator is derived
for an element e of degree N . A sufficiently regular function u(ξ) can be represented in terms
of an infinite series with the polynomial basis functions ζi (ξ) and the coefficients ûi :

u(ξ) =
∞∑
i=0

ûiζi (ξ) =
N∑
i=0

ûiζi (ξ) +
∞∑

i=N+1

ûiζi (ξ). (32)

If we approximate u(ξ) with a finite series expansion up to a polynomial degree of N , we
introduce a truncation error that corresponds to the rightmost term in Eq. (32). If a modal
polynomial basis is used, the coefficients can be interpreted as the amplitude of the solution
modes. For a sufficiently smooth solution, this amplitude decays exponentially. In case of a
non smooth solution, a slower decay occurs. That way, the decay rate can be regarded as both
a measure of the truncation error as well as the smoothness of the solution. To determine
the modal decay, the nodal polynomial approximation unod is first transformed to a modal
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representation umod via the Vandermonde matrix V Leg:

ûmod = V Leg ûnod . (33)

The polynomial approximation in terms of the modal coefficients ûmod,i jk and the product
of the one-dimensional Legendre basis functions ζ(ξ)i, j,k can we written as

u(ξ) ≈
N∑

i, j,k=0

ûmod,i jkζi jk(ξ), ζi jk(ξ) = λi (ξ
1)λ j (ξ

2)λk(ξ
3). (34)

We now determine the relative contribution wm of the m-th mode in ξ1 direction to the
solution as follows

wm =
⎡
⎢⎣

(∑N
j,k=0 û

2
mod,i jk

)i=m

∑N
i, j,k=0 û

2
mod,i jk

⎤
⎥⎦ . (35)

As a final step, the relative modal contributions wm are fitted to the exponential function
wm = ae−σm . This yields the modal decay rate σ 1 in the ξ1 direction. The decay rate is
evaluated for every direction and the final indicator is given as the minimum of the absolute
values

ind = min(|σ 1|, |σ 2|, |σ 3|) (36)

Since the indicator is based on the assumption that the magnitude of the modes, representing
a smooth solution, decays exponentially, the decay rate in smooth regions correlates to the
approximation error. A large decay rate indicates that the error due to the truncation of the
higher modes is small and the polynomial degree could be decreased. A small decay rate
indicates a high approximation error due to the truncation of the higher modes and motivates
to increase the local polynomial degree. In the presence of shocks or sharp gradients, the
solution tends to develop oscillations that cause a large magnitude of the highest modest,
which manifests as a very low decay rate. To distinguish between the described scenarios,
thresholds are required that are discussed in Sect. 7.3. The indicator can also be evaluated
for FV elements, following a transformation of the FV sub-cell solution representation to a
DG polynomial.

6 Efficient Implementation of the Adaptive Scheme

The presented adaptive DG scheme with FV sub-cell shock capturing is implemented as
an extension to the FLEXI framework. FLEXIs DGSEM implementation is based on static
arrays, which store the polynomial solution representation for elements, faces and fluxes.
An array based implementation allows for efficient tensor operations and is well suited for a
non-adaptive scheme, with a constant global polynomial degree N and a FV sub-cell shock
capturing with NFV = N + 1 sub-cells, as suggested in [27]. Such a scheme profits from
a constant number of DOFs for both DG and FV elements. Therefore both the polynomial
DG solutions representation and the FV sub-cell representation can be stored in a common
array. On the other hand, a p-adaptive DG scheme with an arbitrary FV sub-cell resolution,
requires a data structure that allows for a variable number ofDOFs per element.With elements
switching between a DG or FV representation and changing their polynomial degree, the
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storage requirement per element changes over time. A DG element with a local polynomial
degree N requires (N + 1)d DOFs, a FV element with NFV sub-cells requires NFV

d DOFs.
Data of changing size is usually stored in dynamic data structures like linked lists. However,
to maintain FLEXIs static data structure, we chose an array based approach. For every
polynomial degree of a predefined range N ∈ [Nmin, Nmax ], arrays are allocated to store
the polynomial solution representation at the start of the computation. Following a domain
decomposition, every proc is assigned a subset of nElems elements with nSides sides. For
an equation system with nVar components, volume data, like the element local solution,
is stored in arrays of size nVar × nElems × (N + 1)d . Surface data, like the solution at
element faces and the fluxes are stored in arrays of size nVar × nSides × (N + 1)d−1. The
FV sub-cell solution representation is stored in a separate array of size nVar × nElems ×
Nd
FV for volume data and nVar × nSides × Nd−1

FV for surface data respectively. Therefore,
solution arrays for every possible setup are allocated at the start of the computation for
the whole computational domain. By providing storage space for all possible degrees and
the FV discretization simultaneously for every element, the memory demand for the solution
representation is increased. On the other hand, this trade off in memory efficiency facilitates a
straightforward extension of FLEXI towards an adaptive extension with no need to reallocate
memory during the run time.
Independent of the chosen data structure for the solution, a significant increase in memory
is caused by the metric terms that have to be precomputed and stored at the start of the
computation for the range of allowed degrees and the FV sub-cell discretization. Since the
metric computation is not trivial in case of curved meshes, a metric computation during run
time would have a severe influence on the performance. Therefore, we decide to precompute
the metrics and store them for the whole mesh at the start of the computation. Thus, the
increased memory demand due to the proposed static data structure for the solution data is
largely shadowed by the memory requirement of the metric terms. In practical applications,
an increased memory demand might lead to limitations. Since the original memory footprint
of the DGSEM is quite small, this limitation is not too severe on the current architectures. In
Sect. 8, the memory requirement of the adaptive scheme is compared for different setups. An
advantage of the chosen data structure is the good single core performance, when compared
to the non-adaptive open source FLEXI, which is analyzed in more detail in Sect. 8.3.

7 The hp-Adaptive DGSEM Scheme

For simplicity we abbreviate the scheme, which consists of a p-adaptive DG scheme in
smooth parts of the solution and a shock-capturing by a h-refined FV scheme on sub-cells,
as hp-adaptive. In this section, we explain how the presented building blocks are assembled
and discuss the free parameter of the algorithm and how they may be chosen.

7.1 Setup of the Adaptive Spatial Approximation

For the adaptive spatial approximation, a range of possible polynomial degrees N ∈
[Nmin, Nmax ], the degree at the start of the computation Nini and the FV sub-cell reso-
lution NFV are to be chosen for a simulation. Depending on the minimum and maximum
allowed polynomial degrees Nmin and Nmax , arrays for the volume and surface solution are
allocated. The volume and surface solution of the FV sub-cell discretization are stored in
separate arrays, allocated for the resolution NFV . This static data structure allows for an
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Fig. 3 For aDG element, four scenarios can be distinguished depending on the indicator value that corresponds
to the modal decay rate: switch to FV for ind < FV N

lower , increase N for FV N
lower < ind < DGN

re f ine ,

maintain N for DGN
re f ine < ind < DGN

coarse and decrease N for ind > DGN
coarse

efficient implementation without the need to reallocate memory during runtime. A drawback
is the increased memory consumption compared to dynamic data structures, where only the
memory needed for the element local polynomial degree is allocated. At the start of the
simulation, precomputable building blocks like metric terms, node distributions, transforma-
tion matrices and interpolation matrices are precomputed and stored for polynomial degrees
inside the allowed range. Thus, the overhead due to switching of the element local polynomial
degree is reduced.

7.2 Interaction of Adaption and Time Stepping

Switching between the DG and FV sub-cell schemes and the adaption of the local polynomial
degree is integrated in the explicit Runge–Kutta time integration. At the beginning of a time
step, the indicator is computed for each element. The resulting indicator values are used to set
the local polynomial degree for every DG element. After the p-adaption, the indicator has to
be recomputed, since the computation of the indicator value depends on the local polynomial
degree. Subsequently, the updated indicator value is used to switch elements between a DG
and FV sub-cell discretization. DG elements containing shocks or discontinuities are detected
and switched to a FV sub-cell representation. FV elements, where the indicator determines
that the solution has sufficiently smoothed out are switched back to a DG representation.
After each Runge–Kutta stage, the indicator is evaluated again to switch DG elements to FV
elements to ensure a stable solution. The p-adaption is only performed at the beginning of a
time step to reduce the overhead. Switching of FV elements to a DG representation is also
omitted during the Runge–Kutta stages, since this could violate the time step restriction.

7.3 Parameter for the Shock and Refinement Indicator

The modal decay indicator has to fulfill two purposes. First, it has to determined which
elements contain a smooth solution and which elements contain sharp gradients or shocks
and flag them accordingly as DG or FV elements. Secondly, the polynomial degree is to be
adjusted for each element based on an error estimate provided by the indicator in smooth
regions. To choose the appropriate action depending on the indicator value, thresholds have
to be defined. In the proposed framework, four thresholds exist for every allowed polynomial
degree N ∈ [Nmin, Nmax ], FV N

lower , FV
N
upper , DGN

ref ine and DGN
coasre. For a DG element

of degree N , four scenarios can be distinguished as illustrated in the following Fig. 3:

– ind > DGN
coarse: An indicator value above this threshold corresponds to a fast decay

of the modes so that the highest modes have only a small contribution to the solution.
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Fig. 4 For a FV element with an indicator value below FV N
upper , the FV representation is maintained. An

indicator value above FV N
upper causes the element to switch back to a DG representation

In this case, given that the local polynomial degree is larger than the minimal allowed
degree N > Nmin , the local degree is reduced by one.

– DGN
ref ine < ind < DGN

coarse: For an indicator value between these thresholds the cur-
rent polynomial degree is maintained.

– FVN
lower < ind < DGN

ref ine: An indicator value below DGN
ref ine represents a large

magnitude of the highest solution modes. This indicates an underresolved but smooth
solution, since the indicator value is still above FV N

lower . In case the element local degree
is smaller than the maximum allowed degree N < Nmax , the polynomial degree is
increased by one.

– ind < FVN
lower : In case of an oscillating solution polynomial, the highest modes have a

large contribution to the solution and thus themodal decay rate is very small. An indicator
value below the threshold FV N

lower indicates an oscillating solution. This represents a non-
smooth or severely underresolved underlying solution and therefore the DG element is
switched to a FV sub-cell representation.

For elements already discretized with the FV sub-cell scheme, two actions are possible,
depending on the indicator value as shown in Fig. 4:

– ind < FVN
upper : An indicator value below this threshold indicates that the FV sub-cell

solution should not be switched back to a DG representation since the corresponding
solution polynomials exhibit oscillations.

– ind > FVN
lower : An indicator value above this threshold indicates that the DG polyno-

mial that corresponds to the current FV sub-cell solution is sufficiently smooth and the
element can be switched back to a DG representation.

We use an upper and lower threshold with a margin for the DG/FV switch to avoid excessive
switching that could occur for indicator values near the switching point. Since the indicator
value depends on the current polynomial degree of the solution, thresholds for FV sub-cell
limiting and p-refinement have to be defined for each degree. To reduce the number of free
parameters, we assumed a linear dependency between the thresholds and the polynomial
degree N . That way, only thresholds for the minimum and maximum allowed polynomial
degrees Nmin and Nmax have to be defined. All remaining thresholds are then obtained by
the following relation, here formulated for the FV thresholds:

FV N
lower = FV Nmin

lower + N
FV Nmax

lower − FV Nmin
lower

Nmax − Nmin
. (37)

A linear dependency is also assumed between the upper and lower thresholds. That way, the
upper thresholds can be obtained by

FV N
upper = FV Nmin

lower + (N + 1)
FV Nmax

lower − FV Nmin
lower

Nmax − Nmin
. (38)
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Through these practical relations, the number of free parameters is reduced to four: FV Nmin
lower ,

FV Nmax
lower , DGNmin

re f ine and DGNmax
re f ine. These parameters were tuned empirically for the compu-

tations presented in Sect. 8.

8 Numerical Results and Discussion

In this section, we apply our hp-adaptive hybrid DG/FV sub-cell scheme to a succession of
1D, 2D, and 3D test cases to show its applicability and efficiency. Our investigation is focused
on supersonic and transsonic flows that exhibit discontinuous flow features, like shocks as
well as smooth areas and regions with intricate flow features, like shear layers with vortical
structures. Computations are performed with three different setups that can be distinguished
as follows:

– Flexi-static: A non-adaptive computation with a polynomial degree N and a FV sub-cell
resolution of NFV = N + 1, leading to a constant number of DOFs per element. This
corresponds to the baseline FLEXI code without the improvements discussed herein.

– Flexi-p-adaptive: A p-adaptive computation with variable polynomial degree N ∈
[Nmin, Nmax ] and a FV sub-cell resolution of NFV = NMax + 1.

– Flexi-hp-adaptive: A p-adaptive computation with variable polynomial degree N ∈
[Nmin, Nmax ] and a refined FV sub-cell resolution of NFV = 2NMax + 1.

A central aspect of this section is to compare and discuss the quality of the results, the
employed number of DOFs and the computation time for the listed setups. Additionally,
free-stream preservation and a convergence test are performed to validate the coupling of
DG cells with variable polynomial degree and the single core performance is analyzed. All
computations were performed on a single core of a Xeon Gold 6140 processor if not stated
otherwise. For all multidimensional examples, the visualisation is done with Paraview.

8.1 Free-Stream Preservation

To validate the proposed hp-adaptive hybrid DG/FV scheme, free-stream preservation is
demonstrated in this subsection. This can be shown by imposing an initial solution u =
(1, 1, 1, 1, 1)T on a computational domain Ω with periodic boundaries. The computational
domain Ω is defined as a cube, that is distorted by the mapping

x 	→ x + 0.1 · sin(x1) · sin(x2) · sin(x3) (39)

and the curved geometry of the elements are approximated with a polynomial degree of
Ngeo = 2. To prove free-stream preservation for the key features of the hybrid scheme, the
domainΩ is divided along the x-axis in two parts. In one half, the solution is discretized with
a p-adaptive DG scheme, where elements with a degree of N = 2 and N = 7 are placed in a
checkerboard like pattern. The second half is discretized with a FV sub-cell scheme with a
sub-cell resolution of NFV = 2Nmax + 1 = 15. The resulting domain is visualized in Fig. 5.
The computation is run until the final time t = 0.5 is reached, which amounts to 165 time
steps. Subsequently, the L2 and L∞ error norms are evaluated and listed in Table 1. Since the
error norms lie in the order of machine precision, we can conclude that our proposed scheme
satisfies free-stream preservation on curved meshes.
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Fig. 5 Distorted cubic domain
used for the free-stream
preservation test. The left half is
discretized with DG elements of
degree N = 2 and N = 7 and in
the left half, a FV sub-cell
discretization is used with
NFV = 15 sub-cells per direction

Table 1 L2 and L∞ error of a free-stream computation on a curved mesh with a hybrid DG/FV discretization
and a variable polynomial degree N = [2, 7] after 165 time steps

u1 u2 u3 u4 u5

L2 7.79e−16 1.34e−15 1.09e−15 1.08e−15 3.37e−15

L∞ 9.10e−14 1.17e−13 6.35e−14 9.16e−14 2.89e−13

8.2 Experimenal Order of Convergence

In this subsection, we validate our p-adaptive DGSEM implementation by investigating the
error convergence experimentally. For the non-adaptive case, the order of convergence of the
applied DGSEM and FV sub-cell scheme was already studied in [27]. Therefore, we restrict
our analysis to the p-adaptive case. The convergencemeasurement is performedwith a simple
test case of a periodic diagonal density sinewave, which is advected in the direction (1, 1, 1)T

through a Cartesian box Ω = [−1, 1]3. Since the problem is perfectly smooth, no FV sub-
cells are necessary and we can compare the results against the expected order of convergence
p = N +1, given by the truncation error e ≈ kh p . All tests are performed with two different
element local polynomial degrees that are distributed inside the cube in a checkerboard like
pattern. The higher of the two employed degrees is chosen to be NMax = 6, the lower one
varied between NMin = [2, 5]. To avoid overwhelming of the spatial discretization error by
the error of the time integration, a small CFL number of 0.05 is used. The resulting L2 and
L∞ errors of the density and the order of L2 and L∞ convergence are listed in Table 2. As
expected, the theoretical order of convergence of the lowest present polynomial degree is
matched perfectly.

8.3 Single Core Performance

The motivation for a hp-adaptive approach is to reduce the overall number of DOFs and thus
the cost of a given computation. Therefore, it is imperative to keep the overhead, caused by
the more complex algorithm and data structure, to a minimum. Since our adaptive code is
based on the non-adaptive fast open source code FLEXI, the goal is to retain its original
performance as closely as possible. The variable number of DOFs per element causes a sig-
nificant load imbalance, in case of parallel computations. The implementation of an effective
load balancing is a challenging task, and is work in progress. Therefore, we restrict ourselves
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Table 2 Errors and convergence rates of the density for a diagonally advected sinus for a p-adaptive DG
method

Poly. deg. Cells L2 error L2 order L∞ error L∞ order Theor. order

N=2 4 6.41e−03 2.04e−02 3

8 7.43e−04 3.11 8.24e−03 1.31

16 9.46e−05 2.97 1.19e−03 2.79

32 1.18e−05 3.00 1.49e−04 2.99

64 1.48e−06 3.00 1.84e−05 3.02

N=3 4 5.34e−04 4.23e−03 4

8 3.51e−05 3.93 6.22e−04 2.76

16 2.25e−06 3.96 4.51e−05 3.78

32 1.42e−07 3.98 2.88e−06 3.97

64 8.95e−09 3.99 1.83e−07 3.98

N=4 4 4.35e−05 4.04e−04 5

8 1.21e−06 5.17 1.74e−05 4.54

16 3.84e−08 4.97 5.59e−07 4.96

32 1.21e−09 4.99 1.74e−08 5.01

64 3.81e−11 4.99 5.31e−10 5.03

N=5 4 3.27e−06 3.23e−05 6

8 5.29e−08 5.95 5.83e−07 5.79

16 8.28e−10 6.00 9.73e−09 5.90

32 1.29e−11 5.99 1.54e−10 5.98

64 2.06e−13 5.98 2.67e−12 5.96

Polynomial degrees are tested in pairs for the following combinations (N = [2, 5], N = 6)

in this paper to analyzing singe core performance. For all measurements, the code was com-
piled with the GNU compiler version 8.3.0 and the optimization flag O3. To quantify the
performance of the adaptive code compared to the static open source code, we measure the
performance index (PID) of both codes for different setups. The PID is defined as the mean
compute time required to update one DOF for one time step, including the Runge–Kutta
stages, and computed as follows:

PID = wall-clock-time · cores
DOF · time steps

We perform the PID measurements on a curved, three-dimensional periodic computational
domain Ω that is defined as a distorted cube with the mapping (39) from Sect. 8.1. As an
initial condition, a sine shaped density distribution is imposed. The density distribution is
then convected diagonally along the direction (1, 1, 1)T . PID measurements are performed
for three different setups, illustrated in Fig. 6. In a first step, we measure the PID of the
adaptive (hp-FLEXI) and non-adaptive (os-FLEXI) code for the same constant polynomial
degrees in a range between N = 2, 7. We want to emphasize that even for the test with
constant polynomial degree, the hp-FLEXI is initialized with a data structure that allows for
computations up to a polynomial degree NMax = 7. From the measured results, visualized
in Fig. 7, we conclude that the PID of the adaptive code is only slightly larger than the PID
of the original, non-adaptive implementation. Particularly for degrees above 4, almost the
same performance is observed. The largest difference is present for degree N = 2, where
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Fig. 6 Curved periodic domain with an initial density distribution given as a diagonal sine shaped wave
(right). Three different discretizations are used for the PID measurement: a uniform polynomial degree N
(left), one half with degree N and the other half with NMax (middle) and a checkerboard like distribution of
the polynomial degrees N and NMax

the adaptive code is about 15% slower. In case of a varying local polynomial degree among
adjacent elements, transformation operations, described in Sect. 3.3, are necessary to compute
the fluxes. This introduces additional operations per DOF and an increased PID has to be
expected. Tomeasure the influence of the transformations, computationswere performedwith
two different distributions of polynomial degrees. First the domain is split into two halves
and for a second test a checkerboard like pattern was used. In both cases, computations were
performed with two different polynomial degrees. The larger one was fixed to N = 7 and the
smaller varied between N = [2, 7]. The influence of the transformations is clearly visible in
Fig. 7. For a half-half distribution, an almost constant PID can be observed that is at most
15% slower than the PID of the open source code. In contrast, the checkerboard distribution
causes a significant increase of the PID up to 80%. The data point at N = 7 matches the open
source code since here all elements are of degree 7. We can conclude from the measured data
that the overhead of the adaptive code is minor, as long as the number of interfaces between
cells of different ansatz degree is small. We note that for this comparison, the checkerboard
distribution constitutes theworst case scenario, as each element has neighborswith a different
operator, while the half and half distribution is the least severe case. In practise, we thus expect
the true performance to lie between these two extremes. It is also clear that this single metric
is not sufficient to judge the overall performance of the hp-adaptive version, as we will show
later on. In the following, we employ our framework to a range of test cases of increasing
complexity and compare it against the os-Flexi in terms of accuracy and efficiency.

8.4 Sod’s Shock Tube Problem

The initial conditions of the well known shock tube problem of Sod consist of two constant
states, separated by a discontinuity in the middle of the domain. The initial conditions are
ρ = 1, u = 0, p = 1 on the left side and ρ = 0.125, u = 0, p = 0.1 on the right side.
The one-dimensional computational domain Ω = [0, 1] is discretized with 10 elements.
At the boundaries, Dirichlet boundary conditions are applied. For both shock detection and
p-refinement, the modal decay indicator from Sect. 5 is applied to the density and tuned with
thresholds set to [DGNmin

re f ine, DGNmax
re f ine] = [3.5, 5.0] and [FV Nmin

lower , FV
Nmax
lower ] = [2.4, 3.3].

As a Riemann solver, the approximate Roe solver with an entropy fix is used [10]. Two com-
putations with different setups are performed and compared against the exact solution, which
is e.g. given in [29]. First a global polynomial degree N = 5 and a FV sub-cell resolution
of NFV = N + 1 = 6 are applied. A second, p-adaptive computation is performed with
a polynomial degree N ∈ [2, 5] and a FV sub-cell resolution of NFV = 2N + 1 = 11.
The resulting density distributions are visualized in Figs. 8 and 9. Both computations show
good agreement with the exact solution and only apply FV sub-cells at the shock, which is
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Fig. 7 Performance index for computations with polynomial degrees between N = 2 and N = 7 with the
open source FLEXI and our p-adaptive FLEXI extension. Different distributions of the element local degree
are applied for p-adaptive computations

successfully detected. The p-adaptive computation resolves the shock more sharply, due to
the higher sub-cell resolution, which can be observed in Fig. 8. A slightly increased polyno-
mial degree is applied at the rarefaction wave and the maximal degree is only applied at the
contact discontinuity. This is clearly a desired feature, and shows the usefulness of our indi-
cator strategy discussed in Sect. 7.3. A good agreement between the p-adaptive and globally
refined computations can be observed, apart from the shock, which is better resolved in case
of the adaptive computation. With an average of 151.6 DOFs per element, the adaptive com-
putation required about 25% less DOFs per element when compared to the globally refined
computation with 216.0 DOFs per element. Therefore the adaptive computation achieved a
better result with less DOFs.

8.5 Shu-Osher Density Fluctuations ShockWave Interaction Problem

With the density fluctuation shock wave interaction problem proposed by Shu and Osher in
[25], we investigate the shock capturing and p-refinement abilities of the adaptive code for
a more demanding one-dimensional test case. The setup features a domain Ω ∈ [−5, 5],
discretized with 100 elements that contains a shock at x = −4. States left and right of the
shock are given as initial conditions

(ρ, u, p) =
{

(3.857143, 2.629369, 10.33333) x ≤ −4

(1.0 + 0.2 · sin(5x), 0.0, 1.0) x ≥ −4

and the boundary values are defined through Dirichlet boundary conditions. The resulting
flow phenomena can be described as a Mach 3 shock front, traveling into a density field
with a sinusoidal distribution. As a reference solution we performed a second order FV
computation on a very fine mesh. The results for a final time of t = 1.8 are visualized in
Fig. 10. In the wake of the shock, high frequency density fluctuations are present, as well as
weak secondary shocks further downstream. We compare a computation with a uniformly
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Fig. 8 Density distribution of the Sod shock tube problem at t=0.2, computed on a mesh with 10 grid cells
with a variable polynomial degree N ∈ [2, 5] and a FV sub-cell resolution of NFV = 11. When compared
to the non-adaptive computation with N + 1 sub-cells, the adaptive computation with an increased sub-cell
resolution of 2N + 1 provides a less dissipative solution at the shock

Fig. 9 Density distribution of the Sod shock tube problem at t=0.2, computed on a mesh with 10 grid cells
with a constant polynomial degree N = 5 and a FV sub-cell resolution of NFV = 6

high polynomial degree N = 5 and a FV sub-cell resolution of NFV = N + 1 = 6 with
a p-refined computation with N ∈ [2, 5] and a refined FV sub-cell resolution of NFV =
2N +1 = 11. The approximate Roe solver is used as a Riemann solver for all setups. Again,
themodal decay indicator fromSect. 5 is applied on the density for both shock capturing andp-
refinement. To tune the indicator,wedefine the thresholds [DGNmin

re f ine, DGNmax
re f ine] = [4.5, 6.0]

and [FV Nmin
lower , FV

Nmax
lower ] = [3.6, 4.5]. The shock indicator behaves equivalently for both

computations and successfully detects the primary shock, as well as the weak shocks that
form downstream.A perfect behavior of the p-refinement can be observed, since only the high
frequency waves and the first of the weak shocks are computed with the maximal polynomial
degree. In regions with constant density or with low frequency sinus waves the minimal
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Fig. 10 Shu-Osher problem at t=1.8, computed on a mesh of 100 grid cells. A p-adaptive computation with a
refined sub-cell mesh is compared to a non-adaptive computation with a constant number of DOFs per element

Fig. 11 Close up view of the high frequency density fluctuation and the primary shock of the Shu-Osher
problem at t=1.8. A close agreement of the adaptive computation with the reference solution can be observed
due to the fine FV sub-cell resolution of NFV = 2N + 1

polynomial degree is chosen. As a result of the well distributed element local polynomial
degree of the adaptive computation, a good agreement with the uniform computation is
achieved. Through the high FV sub-cell resolution, the primary and secondary shocks are
resolvedmore sharply andwith less dissipation. Therefore, the adaptive computationmatches
the exact solution better, especially at the high frequency waves immediately after the shock,
visible in Fig. 11. The more accurate result, provided by the adaptive computation, was
achieved with a mean of 70.8 DOFs per element, whereas the non-adaptive computation
used 216 DOFs per element.
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8.6 Double Mach Reflection

The double Mach reflection (DMR) problem was proposed byWoodward and Colella in [32]
and has become a standard benchmark. It can be interpreted as a horizontally traveling Mach
10 shock wave that encounters a ramp with an inclination of 30◦. By the Rankine–Hugoniot
conditions the initial conditions are obtained as

(ρ, v1, v2, v3, p) =
⎧⎨
⎩

(8.0, 8.25 · cos(30◦),−8.25 · sin(30), 0.0, 116.5) x ≤ x0 +
√

1
3 y

(1.4, 0.0, 0.0, 0.0, 1.0) x ≥ x0 +
√

1
3 y

with x0 = 1
6 and the heat capacity ratio γ = 1.4. The computational domain Ω =

[0, 4] × [0, 1] is discretized with 240 × 60 × 1 elements corresponding to a characteristic
mesh size of h= 1

60 . In x-direction, inflow and outflow conditions are imposed. In y-direction,
the bottom boundary is modelled as a reflecting wall and the upper boundary is given by
the exact solution of an oblique shock traveling at Mach 10. Since we compute the 2D
problem with a 3D code, the z-direction is discretized with one element layer and peri-
odic boundary conditions are imposed. The problem is advanced in time until the final time
t = 0.28 is reached. As a Riemann solver, we used a HLLE solver and perform shock
capturing with the modal decay indicator from Sect. 5 that is applied on the pressure. The
same indicator is also used to determine the polynomial degree for p-adaptive computa-
tions. The indicator is tuned with thresholds defined as [DGNmin

re f ine, DGNmax
re f ine] = [5.6, 6.5]

and [FV Nmin
lower , FV

Nmax
lower ] = [3.2, 4.1]. Three computations with the numerical setups, listed

in Table 3, are performed. First the non-adaptive setup Flexi-static is applied, to obtain
a reference solution. It is compared against results, obtained by the p-adaptive setups
Flexi-p-adaptive and Flexi-hp-adaptive. The comparison between Flexi-p-adaptive and
Flexi-hp-adaptive demonstrates the effect of an increased FV sub-cell resolution on the
solution. In Fig. 12, the density distribution with equidistant contour lines is visualized for
the three cases at the final time. The underlying DG and FV sub-cell mesh is included in
the plots, to illustrate the coarse DG mesh and the different FV sub-cell grids. To highlight
shocks, strong gradients and shear layers, schlieren images are provided in Fig. 13. The dis-
tribution of FV elements and the local polynomial degree can be seen in Fig. 14. Our code
successfully detects the shock fronts and resolves them with FV sub-cells. Equal behavior
of the indicator can be observed for all three cases. As expected, shocks are resolved more
sharply for a higher FV sub-cell resolution, best visible in Fig. 13. To resolve the vortical
structures at the primary slip line, a high resolution is necessary. This is successfully detected
by the modal decay indicator, and the local polynomial degree is increased along the primary
slip line. In a narrow band around the shocks, p-refinement is performed as well. For the
remaining domain, a local polynomial degree of N = 2 is used. This is in line with our
indicator strategy in Sect. 7.3. Since the areas where a high polynomial degree is necessary
are detected well, the results of the p-adaptive computation matches the non-adaptive, glob-
ally refined simulation well. The vortical structures at the slip line are very similar and only
slightly better resolved for the non-adaptive case. As already discussed, the third computation
resolves shocks more sharply, due to the higher sub-cell resolution. This results in a minor
deviation of the position of shocks and triple points. Vortical structures on the primary slip
stream, near the primary triple point are resolved even better for this setup, when compared
to the non-adaptive result. We note that an FV/DG interface can trigger acoustic waves. This
is a result of the different resolution capabilities and numerical transfer functions of the DG
and FV operator and is most pronounced for the cases with NFV = N + 1, as the difference

123



Journal of Scientific Computing (2022) 91 :4 Page 23 of 36 4

Table 3 Comparison of wall time, average number of DOFs per element, total number of time steps and
memory requirement between the non-adaptive and p-adaptive computations

Flexi-static Flexi-p-adaptive Flexi-hp-adaptive

Resolution N = 5, NFV = 6 N ∈ [2, 5], NFV = 6 N ∈ [2, 5], NFV = 11

DOFs per element 216 35 54

Time steps 4695 4726 4765

Wall time [s] 15,578 3856 6569

Memory [GB] 4.9 5.9 19.0

in resolution between FV and DG is largest. The thus generated disturbances are damped by
the reduction in polynomial degree away from the shock in the p-adaptive FLEXI version. In
regions with the maximal polynomial degree, acoustics are damped far less, which is a result
of the low dissipation error of the high order DG scheme. This is best observed “inside” the
DMR region in Fig. 13. Increasing the FV resolution to NFV = 2N + 1 almost completely
avoids the generation of these artefacts, since the jump of the resolution between a DG and
FV element is decreased. Therefore the third setup, provides the solution with the least noise.
The primary advantage of the adaptive computations is the reduced computational effort.
Table 3 lists the mean number of DOFs per element, the computation time, number of time
steps and thememory requirement for the different setups. The computationFlexi-p-adaptive
achieved a speedup of a factor 4 and the computation Flexi-hp-adaptive with an increased
FV sub-cell resolution still achieved a speedup of almost a factor 2.5. We note that although
the reduction in DOF alone might suggest a larger reduction in computing time, the loss
in operator efficiency, investigated in Sect. 8.3, balances this to some degree. However, in
all practical applications investigated by us, a significant overall gain in wall time remained.
When comparing thememory footprint of the different setups, the following can be observed:
the Flexi-p-adaptive scheme requires about 20% more memory than the Flexi-static compu-
tation and the Flexi-hp-adaptive setup increases the memory requirement by a factor of 4. A
similar behavior can be observed for all presented setups. As discussed in Sect. 6, the main
reason for the increased memory requirement lies with the storage of metric terms and the
solution for all allowed polynomial degrees and the FV sub-cell discretization at the same
time.

8.7 Forward Facing Step

With the forward facing step (FFS) we consider a second test problem by Woodward and
Colella [32] that models a Mach 3 wind tunnel with a step. The computational domain
Ω = [0, 3]× [0, 1]\[0.6, 3.0]× [0, 0.2] is initialized with free-stream conditions defined as

(ρ, v1, v2, v3, p) = (1.4, 3.0, 0.0, 0.0, 1.0)

and the heat capacity ratio γ = 1.4. Inflow and outflow conditions are imposed in x-direction
and reflective walls are used to describe the channel walls in y-direction. Since the two-
dimensional test case is again computed with a three-dimensional setup, periodic boundary
conditions are applied in z-direction.Wediscretize the domainwith 180×60×1−144×12×1
elements, corresponding to a characteristic length h = 1

60 . As an approximate Riemann
solver, the HLLE is used.

123



4 Page 24 of 36 Journal of Scientific Computing (2022) 91 :4

Fig. 12 Results for the double Mach reflection problem computed with a DG method and limited by FV
sub-cells on 240x60x1 elements. The density with equidistant contour lines is displayed for the three different
computational settings Flexi-static (top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)
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Fig. 13 Resulting schlieren images, computed as log10(|∇ρ| + 1), for the double Mach reflection problem
and three different computational setting Flexi-static (top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive
(bottom)

Fig. 14 FV sub-cell distribution (left) and element local polynomial degree (right) used for the DMR compu-
tation with the setups Flexi-static (top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)

Shock capturing, as well as p-refinement is controlled by the modal decay indica-
tor from Sect. 5, operating on the density. The corresponding thresholds are given as
[DGNmin

re f ine, DGNmax
re f ine] = [4.5, 6.0] and [FV Nmin

lower , FV
Nmax
lower ] = [3.0, 4.2]. To demonstrate

and assess the performance of our adaptive code, compared to the non-adaptive version, we
use the setups from Sect. 8.6 again. In Table 4, the polynomial degrees and FV sub-cell
resolutions for the three cases are given. The density distributions with equidistant contour
lines are visualized in Fig. 15. Shocks, sharp gradients and shear layers are highlighted in the
schlieren images in Fig. 16. FV sub-cells and the distribution of the local polynomial degree
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Table 4 Comparison of wall time, average number of DOFs per element, total number of time steps and
memory requirement between the non-adaptive and p-adaptive computations

Flexi-static Flexi-p-adaptive Flexi-hp-adaptive

Resolution N = 5, NFV = 6 N ∈ [2, 5], NFV = 6 N ∈ [2, 5], NFV = 11

DOFs per element 216 44 82

Time steps 19,969 19,136 19,993

Wall time [s] 65,782 19,774 40,217

Memory [GB] 4.8 5.8 18.7

Fig. 15 Forward facing step problem computed with a DG method and limited by FV sub-cells. The density
with equidistant contour lines is given for the three computational setups Flexi-static (top), Flexi-p-adaptive
(middle) and Flexi-hp-adaptive (bottom). In the right part of the plots, the DG mesh and the FV sub-cell grids
are visualized

are depicted in Fig. 17. The shock fronts, interacting with the channel boundaries are success-
fully detected and resolved with FV sub-cells, as can be seen in Fig. 17. Only very few FV
elements are placed at the Kelvin-Helmholtz instabilities, that develop along the shear layer
after the primary triple point. This demonstrates a very good behavior of the modal decay
indicator for shock capturing. The schlieren images in Fig. 16 showcase the influence of the
increased FV sub-cell resolution in the third computational setup. Here, shocks are resolved
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Fig. 16 Resulting schlieren images, computed as log10(|∇ρ| + 1), for the forward facing step problem and
the three computational setups Flexi-static (top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)

much sharper and the interface between FV and DG elements produced less artefacts and
less noise. For the p-refinement, the indicator has to detect areas where a high resolution is
required. The resulting distribution of element local polynomial degrees shows that a high
order is applied at the sharp edge of the step, in the direct vicinity of shocks, in the sheer
layer near the channel floor and especially at the Kelvin-Helmholtz instabilities of the upper
shear layer. The density distribution at the final computation time and the corresponding
schlieren images show, that the adaptive setup Flexi-hp-adaptive reproduces the solution
of the non-adaptive Flexi-static setup very well. Results obtained with Flexi-p-adaptive are
only slightly more dissipative and the vortical structures at the Kelvin-Helmholtz instabil-
ity are very similar. Like already observed in the DMR test case, a finer FV sub-cell grid
resolves shocks better, which in turn results in a minor deviation of the positioning of shock
fronts and triple points. Therefore, a slightly different pattern of vortices is generated at the
Kelvin-Helmholtz instability. Structures near the primary triple point appear even richer than
in the non-adaptive, globally refined case. Acoustic waves, that are generated by the vortical
structures, are present at the upper shear layer and the shear layer near the channel bottom
and are mostly ignored by the p-refinement indicator and damped. This can be seen best at
the density contour lines and in the schlieren images. While providing comparable and in
parts even better results, the adaptive computations required in average far less DOFs per
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Fig. 17 FV sub-cell distribution (left) and element local polynomial degree (right) used for the forward facing
step computation with the setups Flexi-static (top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)

element and therefore less computation time. From Table 4, we can deduce a speed up of
almost a factor 3 for the setup Flexi-p-adaptive and still a factor of about 1.6 for the setup
Flexi-hp-adaptive, where an increased FV sub-cell resolution was applied additionally.

8.8 Airfoil at Transsonic Conditions

In this subsection, we simulate the flow around an airfoil at transsonic conditions to validate
our framework against a more realistic setup. The airfoil is placed in the computational
domain Ω , that is discretized with 8156 hexahedral elements. The simulation is initialized
with Mach 0.73 freestream conditions, defined as

(ρ, v1, v2, v3, p) = (1.0, 0.998, 0.061, 0.0, 1.340)

and the heat capacity ratio γ = 1.4. The airfoils surface ismodeled as a reflectingwall bound-
ary and inflow and outflow conditions are imposed. Again, we perform a 3D computation for
a 2D problem and apply periodic boundary conditions in the z-direction. Shock capturing
and p-refinement is performed with the modal decay indicator applied on the pressure with
the thresholds [DGNmin

re f ine, DGNmax
re f ine] = [5.5, 6.05] and [FV Nmin

lower , FV
Nmax
lower ] = [3.0, 4.0].

As a Riemann solver, the approximate Roe solver is used. We compute the test case with
the three different numerical setups Flexi-static, Flexi-p-adaptive and Flexi-hp-adaptive and
compare the results. The exact setups are provided in Table 5. Results at the final time t = 10
are provided in Fig. 18. Both the density distribution with equidistant contour lines and cor-
responding schlieren images are on display. A region with supersonic flow conditions and a
shock are visible above the airfoil. Vortex shedding can be observed at the trailing edge and
in the wake. The underlying distribution of FV sub-cells and the element local polynomial
degree is visualized in Fig. 19. For all three setups, FV sub-cells are positioned exclusively
at the shock and directly at the trailing edge. The influence of the increased FV sub-cell
resolution in the case of the third computational setup is highlighted in the schlieren image.
The shock is resolved significantly sharper and vortical structures in the wake are richer and
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Table 5 Comparison of wall time, average number of DOFs per element, total number of time steps and
memory requirement between the non-adaptive and p-adaptive computations

Flexi-static Flexi-p-adaptive Flexi-hp-adaptive

Resolution N = 4, NFV = 5 N ∈ [2, 4], NFV = 5 N ∈ [2, 4], NFV = 9

DOFs per element 125 30.5 32.5

Time steps 176,737 61,589 61,410

Wall time [s] 10,160 24,692 27,149

Memory [GB] 20.2 25.5 66.7

less damped. We want to empathize that only about 3 elements are limited with FV sub-
cells in the wake. Nonetheless, the refined sub-cell resolution has a substantial impact on
the quality of the computation. As visible in Fig. 19, the p-refinement indicator successfully
detects the nose area, the vicinity of the shock and the airfoils wake as regions, where a high
resolution is required. Here, the maximum allowed polynomial degree is applied. The rest
of the computational domain is computed with the lowest allowed polynomial degree. When
compared to the globally refined computation, the p-adaptive computations show good agree-
ment and recover intricate features like the vortex sheet in the wake of the airfoil very well.
The results of the adaptive computation with a refined sub-cell grid even surpass the globally
refined computation when considering the vortical structures in the wake. This is especially
significant, since only an average of 32.5 DOFs per element where required in this setup.
With only 30.5 DOFs per element, the p-adaptive computation without increased sub-cell
resolution was even cheaper, while reproducing the non-adaptive result very well. Since the
globally refined computation was too expensive to run on a single core, it was performed on
32 cores in parallel∗. This makes a direct comparison of the computation time difficult. On
a single core, the adaptive computations required about 3 times more time than the globally
refined computation on 32 cores. Since good parallel scaling of the FLEXI was demonstrated
in [27], we can conclude from these measurements, that the adaptive computations where
significantly cheaper and would outperform the non-adaptive code on a single core by a large
factor. A contributing factor to the decreased wall time of the adaptive computations for this
setup is the number of time steps, listed in Table 5. The adaptive computations required about
three times less time steps than the globally refined computation. This effect occures, when
elements with the most restrictive time step requirement are not discretized with the highest
possible polynomial degree. This results in an increased global time step, as observed for
both p-adaptive airfoil computations.

8.9 A Three-Dimensional Explosion Problem

Finally, to validate our adaptive scheme for three-dimensional computations, we consider a
spherically symmetric problem by extending the one-dimensional shock tube problem from
Sect. 8.4 to a three-dimensional spherical problem. The resulting setup on the computational
domain Ω = [−1, 1]3 is defined by the initial conditions

(ρ, u, p) =
{

(1, 0, 0, 0, 1) r ≤ 0.5,

(0.125, 0, 0, 0, 0.1) r ≥ 0.5,

123



4 Page 30 of 36 Journal of Scientific Computing (2022) 91 :4

Fig. 18 Density distribution with equidistant contour lines (left) and schlieren images (right), computed as
log10(|∇ρ|+1), for an airfoil at transsonic conditions. We compare the three computational setup Flexi-static
(top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)

where r denotes the radial coordinate r = √
x2 + y2 + z2. The computational domain is still

Cartesian and discretized by 50×50×50 elements with Dirichlet boundary conditions. As an
approximateRiemann solver,we use here for this focusingwave problem the robust local Lax-
Friedrichs solver. Themodal decay indicator is evaluated for the density and thresholds are set
as [DGNmin

re f ine, DGNmax
re f ine] = [4.5, 6.0] and [FV Nmin

lower , FV
Nmax
lower ] = [2.5, 4.0]. The described

setup is of particular interest since it features the propagation of waves that are not aligned to
the grid. Due to the problem being spherically symmetric, an equivalent reference solution
can be computed in one dimension using spherical coordinates and a geometric source term
[28]. Three computations with the numerical setups Flexi-static, Flexi-p-adaptive and Flexi-
hp-adaptive are performed and compared against the reference solution. Table 6 contains a
detailed definition of the setups. To evaluate the schemes ability to propagatewaves diagonally
through the Cartesian grid cells, Fig. 20 shows the density distribution over a line from the
origin to the corner (1, 1, 1) at the final time t = 0.2. It is to be noted that in this direction,
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Fig. 19 FV sub-cell distribution (left) and element local polynomial degree (right) for the setups Flexi-static
(top), Flexi-p-adaptive (middle) and Flexi-hp-adaptive (bottom)

the interval of interest [0, 1] is only discretized by 15 elements. The density is visualized for
the three computational setups. To demonstrate the spherical symmetry of the result, Fig. 21
compares the density distribution in x-direction and the distribution diagonal to the mesh
direction from the origin to the corner (1, 1, 1). For the hp-adaptive setup with NFV = 11
sub-cells, a very close agreement can be observed. In Fig. 22, the contour of the density from
the z = 0 plane is plotted together with the FV sub-cell distribution and the distribution of the
local polynomial degree for setup Flexi-hp-adaptive. The shock is successfully detected and
limited with FV sub-cells. In contrast to the one-dimensional Sod shock tube computation of
Sect. 8.4, the contact discontinuity is also limited with FV sub-cells. This is necessary due to
the significantly coarser mesh of the three-dimensional setup. A high polynomial degree is
applied in the vicinity of the shock and the contact discontinuity as well as at the rarefaction
fan. The density distributions in Fig. 20 show that the adaptive setupsmatch the non-adaptive,
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Table 6 Comparison of wall time, average number of DOFs per element, total number of time steps and
memory requirement between the non-adaptive and p-adaptive computations

Flexi-static Flexi-p-adaptive Flexi-hp-adaptive

Resolution N = 5, NFV = 6 N ∈ [2, 5], NFV = 6 N ∈ [2, 5], NFV = 11

DOFs per element 216 56 141

Time steps 235 241 248

Wall time [s] 10,839 3557 8601

Memory [GB] 39.8 48.6 157.3

Fig. 20 Density distribution of the 3D explosion problem along a line from the origin to the corner (1, 1, 1)
at the final time t = 0.2. The reference solution is compared against a non-adaptive and two adaptive setups

globally refined solution quite well. A slightly better resolution of the shock can be observed
in the case of the refined FV sub-cell resolution. In Table 6, the average number of DOFs
per element and the computation time is compared for the three setups. For the test case
at hand, computations were performed on a single core of an AMD EPYC 7302 processor.
With an average of 56 DOFs per element, the adaptive computation Flexi-p-adaptive was
three times faster than the non-adaptive computation Flexi-static. Since an average of almost
8% of all elements are limited with FV sub-cells, the number of DOFs and therefore the
computation time increased significantly for the setup Flexi-hp-adaptive, where an increased
sub-cell resolution is applied. Therefore, only a speedup of 25% was achieved. Since both
adaptive computations produce very similar results, the setup Flexi-p-adaptive is the more
efficient one for this test case.We can conclude that our adaptive framework is able to provide
comparable results for a three-dimensional test case while reducing the computational effort
significantly.
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Fig. 21 Density distribution of the 3D explosion problem along a line from the origin to the corner (1, 1, 1)
and along the x-axis at the final time t = 0.2. The reference solution is compared against the hp adaptive setup

Fig. 22 Contour of the density from the z = 0 plane of the 3D explosion problem at the final time t = 0.2,
computed with an adaptive setup with N = [2, 5] and a FV sub-cell resolution of NFV = 2N + 1 = 11. On
the left, FV elements are highlighted in red and on the right, the distribution of the local polynomial degree is
visualized

9 Conclusion

In this paper, we combined a p-adaptive discontinuous Galerkin scheme with a finite volume
shock capturing strategy with variable h-refinement. This hybrid approach profits from the
high convergence rate of p-adaptive high order methods in smooth areas as well as from the
stable and accurate shock capturing abilities by a second order total variation diminishing
finite volume scheme. In the troubled cells with oscillations, the finite volume scheme acts
on a h-refined sub-cell grid. The refinement causes a better localisation of the strong gradi-
ents within the troubled DG grid cell. Hence, the advantages of the discontinuous Galerkin
scheme and the finite volume scheme are successfully combined. An indicator based on
the modal decay of the solution polynomials managed the switching between both schemes
and controlled the adaptation of the local polynomial degree during run time. To obtain an
implementation with a minimal overhead, we introduced an efficient, static, array based data
structure that recovers the single core performance of non-adaptive reference computations.
With a variety of numerical test cases, we compared non-adaptive setups with different adap-
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tive setups and achieved significant speedups, while producing comparable or even more
accurate results.
In the future, we will extend the adaptive framework to more complex setups like a shock
boundary interaction for a transsonic airfoil. This requiresmultiple extensions of the code and
the numerical scheme. To increase the overall robustness, a split DG formulation is available
as a de-aliasing approach to deal with under resolved flow features. This application was
omitted in this paper, to highlight the stabilizing effect of the FV sub-cell shock capturing.
Furthermore, we need to adapt our indicator strategy to distinguish between under resolved
turbulence and shocks. A possible strategy could be to apply the indicator on the pressure and
on the density simultaneously to identify the shock wave. Finally, to achieve efficient scaling
of our code on massively parallel systems for large scale simulations, a load balancing is
required, since the different resolutions and operators introduce an imbalance. Within this
context we will also consider the efficiency of a higher accuracy in the finite volume sub-cells
by reconstruction, as proposed in [30] or in [8].
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