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Abstract
This paper considers the iterative solution of linear systems arising from discretization of
the anisotropic radiative transfer equation with discontinuous elements on the sphere. In
order to achieve robust convergence behavior in the discretization parameters and the physi-
cal parameters we develop preconditioned Richardson iterations in Hilbert spaces. We prove
convergence of the resulting scheme. The preconditioner is constructed in two steps. The first
step borrows ideas from matrix splittings and ensures mesh independence. The second step
uses a subspace correction technique to reduce the influence of the optical parameters. The
correction spaces are build from low-order spherical harmonics approximations generalizing
well-known diffusion approximations. We discuss in detail the efficient implementation and
application of the discrete operators. In particular, for the considered discontinuous spherical
elements, the scattering operator becomes dense and we show that H- or H2-matrix com-
pression can be applied in a black-box fashion to obtain almost linear or linear complexity
when applying the corresponding approximations. The effectiveness of the proposed method
is shown in numerical examples.
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1 Introduction

Radiative transfer models describe the streaming, absorption, and scattering of radiation
waves propagating through a turbid medium occupying a bounded convex domain R ⊂ R

d ,
and they arise in a variety of applications, e.g., neutron transport [11,35], heat transfer [39],
climate sciences [20], geosciences [38] or medical imaging and treatment [2,4,45]. The
underlying physical model can be described by the anisotropic radiative transfer equation,

s · ∇r u(s, r) + σt (r)u(s, r) = σs(r)
∫
S
k(s · s′)u(s′, r)ds′ + q(s, r). (1)

The specific intensity u = u(s, r) depends on the position r ∈ R and the direction of
propagation described by a unit vector s ∈ S, i.e., we assume a constant speed of propagation.
Themedium is characterized by the total attenuation coefficientσt = σa+σs , whereσa andσs
denote the absorption and scattering rates, respectively. The scattering phase function k relates
pre- and post-collisional directions, andwe consider exemplary theHenyey-Greenstein phase
function

k(s · s′) = 1

4π

1 − g2

[1 − 2g(s · s′) + g2]3/2 , (2)

with anisotropy factor g. For g = 0, we speak about isotropic scattering, and for g close
to one, we say that the scattering is (highly) forward peaked. For simplicity, we assume
0 ≤ g < 1 in the following. The case −1 < g ≤ 0 is similar. Internal sources of radiation
are modeled by the function q . Introducing the outer unit normal vector field n(r) on ∂R, the
boundary condition is modeled by

u(s, r) = f (s, r) for (s, r) ∈ S × ∂R such that s · n(r) < 0. (3)

In this paper we consider the iterative solution of the linear systems arising from the
discretization of the anisotropic radiative transfer equations (1)–(3) by preconditioned
Richardson iterations. We are particularly interested in robustly convergent methods for
multiple physical regimes that, at the same time, can embody ballistic regimes σs � 1 and
diffusive regimes, i.e., σs � 1 and σa > 0, and highly forward peaked scattering, as it occurs
for example in medical imaging applications [22]. Due to the size of the arising systems
of linear equations, their numerical solution is challenging, and a variety of methods were
developed as briefly summarized next.

1.1 RelatedWork

Since for realistic problems analytical solutions are not available, numerical approximations
are required. Common discretization methods can be classified into two main approaches
based on their semidiscretization in s. The spherical harmonics method [5,19,35] approxi-
mates the solution u by a truncated series of spherical harmonics, which allows for spectral
convergence for smooth solutions. For non-smooth solutions, which is the generic situation,
local approximations in s can be advantageous, which is achieved, e.g., by discrete ordinates
methods [26,35,43,44,46], continuous Galerkin methods [7], the discontinuous Galerkin
(DG) method [24,32,40], iteratively refined piecewise polynomial approximations [13], or
hybrid methods [12,30].

A common step in the solution of the linear systems resulting from local approximations
in s is to split the discrete system into a transport part and a scattering part. While the inver-
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sion of transport is usually straight-forward, scattering introduces a dense coupling in s. The
corresponding Richardson iteration resulting from this splitting is called the source itera-
tion [1,37], and it converges linearly with a rate c = ‖σs/σt‖∞. For scattering dominated
problems, such as the biomedical applications mentioned above, we have c ≈ 1 and the
convergence of the source iteration becomes too slow for such applications. Acceleration of
the source iteration can be achieved by preconditioning, which usually employs the diffusion
approximation to (1)–(3) [1], and the resulting scheme is then called diffusion synthetic accel-
erated (DSA) source iteration [1]. Although this approach is well motivated by asymptotic
analysis, it faces several issues, such as a proper generalization to multi-dimensional prob-
lems with anisotropy, strong variations in the optical parameters, or the use of unstructured
and curved meshes, see [1].

Effective DSA schemes rely on consistent discretization of the corresponding diffusion
approximation, see [40,48] for isotropic scattering, and [41] for two-dimensional problems
with anisotropic scattering. The latter employs a modified interior penalty DG discretization
for the corresponding diffusion approximation, which has also been used in [47] where it
is, however, found that their DSA scheme becomes less effective for highly heterogeneous
optical parameters. A discrete analysis of DSA schemes for high-order DG discretizations
on possibly curved meshes, which may complicate the inversion of the transport part, can be
found in [28]. In the variational framework of [40] consistency is automatically achieved by
subspace correction instead of finding a consistent discretization of the diffusion approxima-
tion. This variational treatment allowed to prove convergence of the corresponding iteration
and numerical results showed robust contraction rates, even inmulti-dimensional calculations
with heterogeneous optical parameters.

It is the purpose of this paper to generalize the approach of [40] to the anisotropic scattering
case, which requires non-trivial extensions as outlined in the next section.

1.2 Approach and Contribution

In this paper we focus on the construction of robustly and provably convergent efficient
iterative schemes for the radiative transfer equation with anisotropic scattering. To describe
our approach, let us introduce the linear system that we need to solve, which stems from a
mixed finite element discretization of (1)–(3) using discontinuous polynomials on the sphere
[17,40], i.e., [

R + M+ −AT
A M−

] [
u+
u−

]
=

[
K+

K−
] [

u+
u−

]
+

[
q+
q−

]
. (4)

Here, the superscripts in the equation refer to even (‘+’) and odd (‘−’) parts from the
underlying discretization. ThematricesK+ andK− discretize scattering,whileR incorporates
boundary conditions,M+ andM− aremassmatrices related to σt , andA discretizes s ·∇r , and
their assembly can be done with standard FEM codes. The even part solves the even-parity
equations

Eu+ = K+u+ + q, (5)

i.e., the Schur complement of (4), with symmetric positive definite matrix E = AT (M− −
K−)−1A+M+ +R and source term q = q+ + AT (M− −K−)−1q−. Once the even part u+ is
known, the odd part u− can be obtained from (4). The preconditioned Richardson iteration
considered in this article then reads

u+n+1 = (
I − P2P1(E − K+)

)
u+n + P2P1q, (6)
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with preconditioners P1 and P2. Comparing to standard DSA source iterations, P1 corre-
sponds to a transport sweep, and a typical choice that renders the convergence behavior of (6)
independent of the discretization parameters is P1 = E−1. More precisely, we show that this
choice of P1 yields a contraction rate of c = ‖σs/σt‖∞. The second preconditioner P2 aims
to improve the convergence behavior in diffusive regimes, c ≈ 1. In the spirit of [40], we
construct P2 via Galerkin projection onto suitable subspaces, which guarantees monotone
convergence of (6). The construction of suitable subspaces that give good error reduction is
motivated by the observation that error modes that are hardly damped by I − P1(E − K+)

can be approximated well by spherical harmonics of low degree, cf. Sect. 3.4. While for the
isotropic case g = 0, spherical harmonics of degree zero, i.e., constants in angle, are suffi-
cient for obtaining good convergence rates, we show that higher order spherical harmonics
should be used for anisotropic scattering. To preserve consistency, we replace higher order
spherical harmonics, which are the eigenfunctions of the integral operator in (1), by discrete
eigenfunctions of K+.

The efficiency of the proposed iterative scheme hinges on the ability to efficiently imple-
ment and apply the arising operators. While for g = 0 it holds K− = 0, K+ can be realized
via fast Fourier transformation, and E is block-diagonal with sparse blocks allowing for an
efficient application of E, the situation is more involved for g > 0. We show thatK+ andK−
can be applied efficiently by exploiting their Kronecker structure between a sparse matrix
and a dense matrix, which turns out to be efficiently applicable by using H- or H2-matrix
approximations independently of g. As we show, the practical implementation ofH- orH2-
matrices can be done by standard libraries, such as H2LIB [9] or BEMBEL [15]. This in
combination with standard FEM assembly routines for the other matrices ensures robustness
and maintainability of the code.

Since A,M+, and R are sparse and block diagonal, the main bottleneck in the application
of E is the application of (M− −K−)−1. Based on the tensor structure ofK− and its spectral
properties, we derive a preconditioner such that (M− − K−)−1 can be applied robustly in
g in only a few iterations. Thus, we can apply E in almost linear complexity. Efficiency of
(6) is further increased by realizing P1 = E−1 ≈ Pl

1 inexactly by employing a small, fixed
number of l steps of an inner iterative scheme. We show that the condition number of Pl

1E is
O((1− (cg)l)−1), which is robust in the limit c → 1. In contrast, we note that the condition
number of Pl

1(E − K+) is O((1 − c)−1), i.e., a straight-forward iterative solution of the
even-parity equations using a black-box solver, such as preconditioned conjugate gradients,
is in general not robust for c → 1.

Summarizing, each step of our iteration (6) can be performed very efficiently. The iteration
is provably convergent and numerical results show that the contraction rates are robust for
c → 1. The result is a highly efficient numerical scheme for the solution of the even parity
equations (5) and, thus, also for the overall system (4).

1.3 Outline

The structure of the paper is as follows: In Sect. 2 we recall the variational formulation
that builds the basis of our numerical scheme and establish some spectral equivalences for
the scattering operator, which are key to the construction of our preconditioners. In Sect. 3
we present iterative schemes for the even-parity equations of radiative transfer in Hilbert
spaces, which, after discretization in Sect. 4, result in the schemes described in Sect. 1.2.
Details of the implementation and its complexity are described in Sect. 5. Numerical studies
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of the performance of the proposed methods are presented in Sect. 7. The paper closes with
a discussion in Sect. 8.

2 Preliminaries

In the following we recall the relevant functional analytic framework, state the corresponding
variational formulation of the radiative transfer problem (1)–(3) and provide some analyt-
ical results about the spectrum of the scattering operator, which we will later use for the
construction of our preconditioners.

2.1 Function Spaces

By L2(M) we denote the usual Hilbert space of square integrable functions on a manifold
M , and denote (u, w)M = ∫

M uw dM the corresponding inner product and ‖u‖L2(M) the
induced norm. For M = D = S× R, we writeV = L2(D) and (u, w) = (u, w)D . Functions
w ∈ Vwithweak derivative s ·∇rw ∈ V have awell-defined trace [36].We restrict the natural
trace space [36], and consider the weighted Hilbert space L2(∂D±; |s · n|) of measurable
functions w on

∂D± = {(s, r) ∈ S × ∂R : ±s · n(r) > 0}

with |s · n|1/2w ∈ L2(∂D±). For the weak formulation of (1)–(3) we use the Hilbert space

W = {w ∈ L2(D) : s · ∇rw ∈ L2(D), w|∂D− ∈ L2(∂D−; |s · n|)},

with corresponding norm ‖w‖2
W

= ‖s · ∇rw‖2
L2(D)

+ ‖w‖2
L2(D)

+ ‖w‖2
L2(∂D−;|s·n|).

2.2 Assumptions on the Optical Parameters and Data

The data terms are assumed to satisfy q ∈ L2(D) and f ∈ L2(∂D−; |s · n|). Absorption and
scattering rates are non-negative and essentially bounded functions σa, σs ∈ L∞(R). We
assume that the medium occupied by R is absorbing, i.e., that there exists a constant γ > 0
such that σa(r) ≥ γ for a.e. r ∈ R. Thus, the ratio between the scattering rate and the total
attenuation rate σt = σa + σs is strictly less than one, c = ‖σs/σt‖∞ < 1.

2.3 Even–Odd Splitting

The spaceV = V
+⊕V

− allows for an orthogonal decomposition into even and odd functions
of the variable s ∈ S. The even part u+ and odd part u− of a function u ∈ V is defined a.e.
by

u±(s, r) = 1

2
(u(s, r) ± u(−s, r)).

Similarly, we denote by W
± the corresponding subspaces of functions u ∈ W with

u ∈ V
±.
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2.4 Operator Formulation of the Radiative Transfer Equation

The weak formulation of (1)–(3) presented in [17] can be stated concisely using suitable
operators and we refer to [17] for proofs of the corresponding mapping properties. Let
u+, w+ ∈ W

+ and u− ∈ V
−. The transport operator A : W+ → V

− is defined by

Au+ = s · ∇r u
+.

Identifying the dual V′ of V with V, the dual transport operator A′ : V− → (W+)′ is
defined by

〈A′u−, w+〉 = (Aw+, u−).

Boundary terms are handled by the operator R : W+ → (W+)′ defined by

〈Ru+, w+〉 = (|s · n|u+, w+)∂D .

Scattering is described by the operator S : L2(S) → L2(S) defined by

(Su)(s) =
∫
S
k(s · s′)u(s′)ds′,

where k is the phase function defined in (2). In slight abuse of notation, we also denote the
trivial extension of S to an operator L2(D) → L2(D) by S. We recall that S maps even to
even and odd to odd functions [17, Lemma 2.6], and so does K : V → V defined by

Ku = σsSu.

We denote byK also its restrictions toV± andW+, respectively. The spherical harmonics
{Hl

m : l ∈ N0,−l ≤ m ≤ l} form a complete orthogonal system for L2(S), and we assume
the normalization ‖Hl

m‖L2(S) = 1. Furthermore, Hl
m is an eigenfunction of S with eigenvalue

gl , i.e.,

SHl
m = gl Hl

m, (7)

and Hl
m ∈ V

+ if l is an even number and Hl
m ∈ V

− if l is an odd number. Attenuation is
described by the multiplication operator M : V → V defined by

Mu = σt u.

Introducing the functionals �+ ∈ (W+)′ and �− ∈ (V−)′ given by

�+(w+) = (q, w+) + 2(|s · n| f , w+)∂D− , w+ ∈ W
+,

�−(w−) = (q, w−), w− ∈ V
−,

the operator formulation of the radiative transfer equation (1)–(3) is [17]: Find (u+, u−) ∈
W

+ × V
− such that

Ru+ − A′u− + Mu+ = Ku+ + �+ in (W+)′, (8)

Au+ + Mu− = Ku− + �− in V
−. (9)
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2.5 Well-Posedness

In the situation of Sect. 2.2, there exists a unique solution (u+, u−) ∈ W
+ × V

− of (8) and
(9) satisfying

‖u+‖W + ‖u−‖V ≤ C
(‖q‖L2(D) + ‖ f ‖L2(∂D−;|s·n|)

)
,

with a constantC depending only on γ and ‖σt‖∞ [17]. Notice that this well-posedness result
remains true even if σa and σs are allowed to vanish [18]. As shown in [17, Theorem 4.1] it
holds that u− ∈ W

− and u+ +u− ∈ W satisfies (1) a.e. in D and (3) holds in L2(∂D−; |s ·n|).

2.6 Even-Parity Formulation

As in [17], it follows from (7) that

inf
r∈R

(σa + (1 − g)σs)‖v−‖2
V

≤ ‖v−‖2M−K ≤ ‖σt‖∞‖v−‖2
V

for v− ∈ V
−, (10)

where we write ‖w‖2Q = (Qw,w) for any positive operator Q. Thus, M − K : V− → V
−

is boundedly invertible, and, by (9),

u− = (M − K)−1(�− − Au+). (11)

Using (11) in (8) and introducing

E : W+ → (W+)′, Eu+ = Ru+ + A′(M − K)−1Au+ + Mu+,

and

�(w+) = �+(w+) + ((M − K)−1q,Aw+), w+ ∈ W
+,

the even-parity formulation of the radiative transfer equation is: Find u+ ∈ W
+ such that

(E − K)u+ = �. (12)

As shown in [17], the even-parity formulation is a coercive, symmetric problem, which is
well-posed by the Lax-Milgram lemma. Solving (12) for u+ ∈ W

+, we can retrieve u− ∈ V
−

by (11). In turn, (u+, u−) ∈ W
+ × V

− solves (8)–(9).

2.7 Preconditioning ofM−K

We generalize the inequalities (10) to obtain spectrally equivalent approximations toM−K.
Since K = σsS, we can construct approximations to K by approximating S. To do so let us
define for N ∈ N and v ∈ V

SNv =
N∑
l=0

gl
l∑

m=−l

(v, Hl
m)SH

l
m . (13)

Notice that the summation is only over even integers 0 ≤ l ≤ N if v ∈ V
+ and only over

odd ones if v ∈ V
−. The approximation of K is then defined by KN = σsSN .

Lemma 1 The operator M − KN is spectrally equivalent to M − K, that is(
1 − cgN+1)((M − KN )v, v) ≤ ((M − K)v, v) ≤ ((M − KN )v, v)

for all v ∈ V, with c = ‖σs/σt‖∞. In particular, M − KN is invertible.
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Proof We use that {Hm
l } is a complete orthonormal system of L2(S). Hence, any v ∈ V =

L2(S) ⊗ L2(R) has the expansion

v(s, r) =
∞∑
l=0

l∑
m=−l

vlm(r)Hl
m(s),

with vlm ∈ L2(R) and ‖v‖2
V

= ∑∞
l=0

∑l
m=−l ‖vlm‖2

L2(R)
< ∞, and

((M − KN )v, v) =
L∑

l=0

l∑
m=−l

∥∥∥
√

σt − glσsv
l
m

∥∥∥2
L2(R)

+
∞∑

l=N+1

l∑
m=−l

∥∥∥√
σtv

l
m

∥∥∥2
L2(R)

.

Using c = ‖σs/σt‖∞ it follows that

0 ≤ ((K − KN )v, v) =
∞∑

l=N+1

gl
l∑

m=−l

∥∥∥√
σsv

l
m

∥∥∥2
L2(R)

≤ cgN+1((M − KN )v, v). (14)

The inequalities in the statement then follow from

((M − K)v, v) = ((M − KN )v, v) − ((K − KN )v, v),

while invertibility follows from [17, Lemma 2.14].

3 Iteration for the Even-Parity Formulation

Wegeneralize theRichardson iteration of [40] for the radiative transfer equationwith isotropic
scattering to the anisotropic case and equip the iteration processwith a suitable preconditioner,
which we will investigate later. We restrict ourselves to a presentation suitable for the error
analysis and postpone the linear algebra setting and the discussion of its efficient realization
to Sect. 5.

3.1 Derivation of the Scheme

We consider the solution of (12) along the following two steps:
Step (i) Given u+n ∈ W

+ and a symmetric and positive definite operator P1 : (W+)′ →
W

+, we compute

u+
n+ 1

2
= u+n − P1((E − K)u+n − �). (15)

Step (ii) Compute a subspace correction to u+n+1/2 based on the observation that the error

e+
n+1/2 = u+ − u+n+1/2 satisfies

(E − K)e+
n+ 1

2
= ((E − K)P1 − I)((E − K)u+n − �). (16)

Solving (16) is as difficult as solving the original problem. LetW+
N ⊂ W

+ be closed, and
consider the Galerkin projection PG : W+ → W

+
N ontoW+

N defined by

〈(E − K)PGw, v〉 = 〈(E − K)w, v〉 for all v ∈ W
+
N . (17)
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Using (16), the correction u+c,n = PGe
+
n+1/2, is then characterized as the solution to

〈(E − K)u+c,n, v〉 = 〈(E − K)P1 − I)((E − K)u+n − �), v〉 for all v ∈ W
+
N , (18)

where the right-hand side involves available data only. The update is performed via

u+n+1 = u+
n+ 1

2
+ u+c,n . (19)

3.2 Error Analysis

Since PG is non-expansive in the norm induced by E − K, the error analysis for the over-
all iteration (15) and (19) relies on the spectral properties of P1. Therefore, the following
theoretical investigations consider the generalized eigenvalue problem

(E − K)w = λP−1
1 w. (20)

The following well-known lemma asserts that the half-step (15) yields a contraction if an
appropriate preconditioner P1 is chosen. We provide a proof for later reference.

Lemma 2 Let 0 < β ≤ 1 and assume that the eigenvalues λ of (20) satisfy β ≤ λ ≤ 1. Then,
for any u+n ∈ W

+, u+n+1/2 defined via (15) satisfies

‖u+ − u+
n+ 1

2
‖E−K ≤ (1 − β)‖u+ − u+n‖E−K.

Proof Assume that {(wk, λk)}k≥0 is the eigensystem of the generalized eigenvalue problem
(20). For any u+n , the error e+

n = u+ − u+n satisfies

e+
n+ 1

2
= (I − P1(E − K))e+

n . (21)

Using the expansion e+
n = ∑∞

k=0 akwk , we compute ‖e+
n ‖2E−K = ∑∞

k=0 a
2
kλk . Using

(21), we thus obtain e+
n+1/2 = ∑∞

k=0(1 − λk)akwk , and hence

‖e+
n+ 1

2
‖2E−K =

∞∑
k=0

(1 − λk)
2λka

2
k ≤ sup

0≤k<∞
(1 − λk)

2‖e+
n ‖2E−K.

Since 0 < β ≤ λk ≤ 1 by assumption, the assertion follows.

The next statement asserts that the iterative scheme defined by (19) converges linearly to
the even part of the solution of the radiative transfer equation. It is a direct consequence of
Lemma 2 and the observation that e+

n+1 = (I − PG)e+
n+1/2 satisfies

‖e+
n+1‖E−K = inf

v∈W+
N

‖e+
n+ 1

2
− v‖E−K. (22)

Lemma 3 Let W+
N ⊂ W

+ be closed, and assume that the eigenvalues λ of (20) satisfy
β ≤ λ ≤ 1 for some 0 < β ≤ 1. Then, for any u+0 ∈ W

+, the sequence {u+n } defined in (15)
and (19) converges linearly to the solution u+ of (12), i.e.,

‖u+ − u+n+1‖E−K ≤ (1 − β)‖u+ − u+n‖E−K. (23)

In view of the previous lemma fast convergence u+n → u+ can be obtained by ensuring
that β is close to one or by making the best-approximation error in (22) small. These two
possibilities are discussed in the remainder of this section in more detail.
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3.3 Generic Preconditioners

The next result builds the basis for the preconditioner we will use later.

Lemma 4 Let P1 be defined either by

(i) P−1
1 = E or

(ii) P−1
1 = E0 = (1 − cg)−1A′M−1A + M + R.

Then P1 is spectrally equivalent to E − K, i.e.,

(1 − c)(P−1
1 w+, w+) ≤ ((E − K)w+, w+) ≤ (P−1

1 w+, w+),

for all w+ ∈ W
+. It holds 1 − β = c in Lemma 3 in both cases.

Proof Since Aw+ ∈ V
−, the result is a direct consequence of Lemma 1.

Remark 1 We can further generalize the choices for P−1
1 by choosing N+ ≥ −1, N− ≥ 0,

and γN− = 1/(1 − cgN
−+1). Then

P−1
1 = P−1

N+,N− = R + γN−A′(M − KN−)−1A + M − KN+

and E − K are spectrally equivalent, i.e.,

(1 − cgmin(N−,N+)+1)(P−1
1 w+, w+) ≤ ((E − K)w+, w+) ≤ (P−1

1 w+, w+)

for all w+ ∈ W
+. In particular, 1 − β = cgmin(N−,N+)+1 in Lemma 3.

Remark 2 For isotropic scattering g = 0, we have that E = E0. Thus, both choices in Lemma
4 can be understood as generalizations of the iteration considered in [40].

The preconditioners in Remark 1 yield arbitrarily small contraction rates for sufficiently
large N+ and N−. However, the efficient implementation of such a preconditioner seems to
be rather challenging. Therefore, we focus on the preconditioners defined in Lemma 4 in the
following. Since these choices forP1 yield slow convergence for c ≈ 1, we need to construct
W

+
N properly. This construction is motivated next, see Sect. 5.4 for a precise definition.

3.4 AMotivation for Constructing Effective Subspaces

From the proof of Lemma 2, one sees that error modes associated to small eigenvalues λ

of (20) converge slowly. Hence, in order to regain fast convergence, such modes should be
approximated well by functions in W

+
N , see (22). Next, we give a heuristic motivation that

such slowly convergentmodesmight be approximatedwell by low-order spherical harmonics.
Since we use P−1

1 ≈ E below, let us fix P−1
1 = E in this subsection. Furthermore, let w

be a slowly damped mode, i.e., w satisfies (20) with λ such that λ ≈ 1 − c ≈ 0. Observe
that w also satisfies Kw = δEw with δ = 1 − λ ≈ c ≈ 1, and δ ≤ c by Lemma 4(i). Let us
expand the angular part of w into spherical harmonics, cf. Sect. 2.4,

w(s, r) =
∞∑
l=0

l∑
m=−l

wl
m(r)Hl

m(s),
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where wl
m = 0 if l is odd. As in the proof of Lemma 1, we obtain

Kw =
∞∑
l=0

gl
l∑

m=−l

σs(r)w
l
m(r)Hl

m(s).

Since σs ≤ σt , orthogonality of the spherical harmonics implies

∞∑
l=0

cgl
l∑

m=−l

‖√σtw
l
m‖2L2(R)

≥ (Kw,w) = δ

(
〈Rw,w〉 + ‖s · ∇rw‖2

(M−K)−1 +
∞∑
l=0

l∑
m=−l

‖√σtw
l
m‖2L2(R)

)
.

Neglecting the contributions from R and s · ∇r , we see that

∞∑
l=0

(cgl − δ)

l∑
m=−l

‖√σtw
l
m‖2L2(R)

≥ 0. (24)

Since δ ≈ c ≈ 1 by assumption and g < 1, (24) can hold true only if w can be approx-
imated well by spherical harmonics of degree less than or equal to N for some moderate
integer N .

To convince the reader that this is likely to be true, we consider in the following the case
g = 0 and remark that the overall behaviour does not change too much when varying g. If
c = δ, then (24) implies that wl

m = 0 for all l > 0. If δ < c, then (24) is equivalent to

‖√σtw
0
0‖2L2(R)

≥ δ

c − δ

∞∑
l=1

l∑
m=−l

‖√σtw
l
m‖2L2(R)

.

Therefore, using orthogonality of the spherical harmonics once more, we obtain

∞∑
l=1

l∑
m=−l

‖√σtw
l
m‖2L2(R)

= ‖√σtw‖2L2(D)
− ‖√σtw

0
0‖2L2(R)

≤ ‖√σtw‖2L2(D)
− δ

c − δ

∞∑
l=1

l∑
m=−l

‖√σtw
l
m‖2L2(R)

.

Rearranging terms yields the estimate

∞∑
l=1

l∑
m=−l

‖√σtw
l
m‖2L2(R)

≤ (
1 − δ/c

)‖√σtw‖2L2(D)
.

Since, by assumption, δ ≈ c, we conclude thatw can be approximatedwell byw0
0H

0
0 . Note

that this statement quantifies approximation in terms of the L2-norm. However, using recur-
rence relations of spherical harmonics to incorporate the terms 〈Rw,w〉+‖s ·∇rw‖2

(M−K)−1

into (24), suggests that a similar statement also holds for the E −K-norm. A full analysis of
this statement seems out of the scope of this paper, and we postpone it to future research. We
conclude that effective subspacesW+

N consist of linear combinations of low-order spherical
harmonics, and we employ this observation in our numerical realization.
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4 Galerkin Approximation

The iterative scheme of the previous section has been formulated for infinite-dimensional
function spacesW+ andW+

N ⊂ W
+. For the practical implementation we recall the approx-

imation spaces described in [17] and [40, Section 6.3]. Let T R
h and T S

h denote shape regular
triangulations of R and S, respectively. For simplicity we assume the triangulations to be
quasi-uniform. To properly define even and odd functions associated with the triangulations,
we further require that −KS ∈ T S

h for each spherical element KS ∈ T S
h . The latter require-

ment can be ensured by starting with a triangulation of a half-sphere and reflection. Let
X

+
h = P

c
1(T R

h ) denote the vector space of continuous, piecewise linear functions subordinate
to the triangulation T R

h with basis {ϕi } and dimension n+
R , and let X

−
h = P0(T R

h ) denote the
vector space of piecewise constant functions subordinate to T R

h with basis {χ j } and dimen-
sion n−

R . Similarly, we denote by S
+
h = P0(T S

h ) ∩ L2(S)+ and S
−
h = P1(T S

h ) ∩ L2(S)− the
vector spaces of even, piecewise constant and odd, piecewise linear functions subordinate
to the triangulation T S

h , respectively. We can construct a basis {μ+
k } for S+

h by choosing n+
S

many triangles with midpoints in a given half-sphere, and define the functions μ+
k to be the

indicator functions of these triangles. For any other point s ∈ S, we find KS ∈ T S
h with

midpoint in the given half-sphere such that −s ∈ KS and we define μ+
k (s) = μ+

k (−s). A
similar construction leads to a basis {ψ−

l } of S−
h . The conforming approximation spaces are

then defined through tensor product constructions,W+
h = S

+
h ⊗X

+
h , V

−
h = S

−
h ⊗X

−
h . Thus,

for some coefficient matrices
[
U+
i,k

] ∈ R
n+
R×n+

S and
[
U−

j,l

] ∈ R
n−
R×n−

S , any u+h ∈ W
+
h and

u−h ∈ V
−
h can be expanded as

u+h =
n+
R∑

i=1

n+
S∑

k=1

U+
i,kϕiμ

+
k , u−h =

n−
R∑

j=1

n−
S∑

l=1

U−
j,lχ jψ

−
l . (25)

The Galerkin approximation of (8)–(9) computes (u+h , u−h ) ∈ W
+
h × V

−
h such that

Ru+h − A′u−h + Mu+h = Ku+h + �+ in (W+
h )′, (26)

Au+h + Mu−h = Ku−h + �− in V
−
h . (27)

The discrete mixed system (26)–(27) can be solved uniquely [17]. Denoting u± =
vec(U±) the concatenation of the columns of the matrices U± into a vector, the mixed
system (26)–(27) can be written as the following linear system

[
R + M+ −Aᵀ

A M−
] [

u+
u−

]
=

[
K+

K−
] [

u+
u−

]
+

[
q+
q−

]
. (28)

The matrices in the system are given by

K+ = S+ ⊗ M+
s , K− = S− ⊗ M−

s , (29)

M+ = M+ ⊗ M+
t , M− = M− ⊗ M−

t , (30)

A =
d∑

i=1

Ai ⊗ Di , R = blkdiag(R1, . . . ,Rn+
S
), (31)
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where we denote by Gothic letters the matrices arising from the discretization on R and
by Sans Serif letters matrices arising from the discretization on S, i.e.,

(M−
t ) j, j ′ =

∫
R

σtχ jχ j ′dr , (S−)l,l ′ =
∫
S
Sψ−

l ψ−
l ′ ds,

(M+
t )i,i ′ =

∫
R

σtϕiϕi ′dr , (S+)k,k′ =
∫
S
Sμ+

k μ+
k′ds,

(Dn) j,i =
∫
R

∂ϕi

∂rn
χ j dr , (An)l,k =

∫
S
snψ

−
l μ+

k ds,

(Rk)i,i ′ =
∫

∂R
ϕiϕi ′ωkdr , ωk =

∫
S
|s · n|(μ+

k )2ds.

ThematricesM−
s andM+

s are defined accordingly. ByM+ andM− we denote the Gramian
matrices in L2(S). We readily remark that all of these matrices are sparse, except for S+ and
S−, which are dense.M+ andM− are diagonal and 3×3 block diagonal, respectively.Moreover,
we note thatM−

t is a diagonal matrix.
To conclude this section let us remark that taking the Schur complement of (28) finally

yields the matrix counterpart of the even-parity system (12), i.e.,

Eu+ = K+u+ + q (32)

with E = AT (M− − K−)−1A + M+ + R and q = q+ + AT (M− − K−)−1q−.

5 Discrete Preconditioned Richardson Iteration

After discretization, the iteration presented in Sect. 3 becomes

u+n+1 = u+n − P2P1((E − K+)u+n − q). (33)

The preconditioner P1 is directly related to P1 in (15). By denoting the coordinate vectors
of the basis functions of the subspace W+

h,N ⊂ W
+
h by W, the matrix representation of the

overall preconditioner is

P2P1 = P1 + W
(
WT (E − K+)W

)−1WT (I+ − (E − K+)P1). (34)

Denoting PG = W
(
WT (E − K+)W

)−1WT (E − K+) the matrix representation of the
Galerkin projection PG defined in (17), the iteration matrix admits the factorization

I+ − P2P1(E − K+) = (I+ − PG)
(
I+ − P1(E − K+)

)
.

The discrete analog of Lemma 3 implies that the sequence {u+n } generated by (33) con-
verges for any initial choice u+0 to the solution u+ of (32). More precisely, by choosing P1

according to Lemma 4, there holds

‖u+ − u+n+1‖E−K+ ≤ η‖u+ − u+n‖E−K+ , (35)

where 0 ≤ η ≤ c < 1 is defined as

η = sup ‖(I+ − PG)(I+ − P1(E − K+))v+‖E−K+ (36)

with supremum taken over all v+ ∈ R
n+
S n

+
R satisfying ‖v+‖E−K+ = 1. The realization of

(33) relies on the efficient application of E, K+, P1 and P2 discussed next.
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5.1 Application of E

In view of (30) and (31) it is clear that A,M+, andM− can be stored and applied efficiently
by using their tensor product structure, sparsity, and the characterization

(B ⊗ C) vec(X) = vec(D) ⇐⇒ CXBᵀ = D, (37)

where C ∈ R
m×n , X ∈ R

n×p , B ∈ R
q×p , D ∈ R

m×q . The boundary matrix R consists of
sparse diagonal blocks, and can thus also be applied efficiently, see Sect. 6 for details. The
remaining operation required for the application of E as given in (32) is the application of
(M− −K−)−1, which deserves some discussion. SinceM− −K− has a condition number of
(1 − cg)−1 due to Lemma 1, a straightforward implementation with the conjugate gradient
method may be inefficient for cg ≈ 1. To mitigate the influence of cg, we can use Lemma
1 once more and obtain preconditioners derived from M − KN , which lead to bounds on
the condition number by (1 − (cg)N+2)−1 for odd N . In what follows, we comment on
the practical realization of such preconditioners and their numerical construction. As we will
verify in the numerical examples, these preconditioners allow the application of (M−−K−)−1

in only a few iterations even for g close to 1.
After discretization, the continuous eigenvalue problem (7) for the scattering operator

becomes the generalized eigenvalue problem

S−W− = M−W−�−.

Since S− and M− are symmetric and positive, the eigenvalues satisfy 0 ≤ λl ≤ g, and we
assume that they are ordered non-increasingly. The eigenvectors W− form an orthonormal
basis (W−)T M−W− = I−. Truncation of the eigen decomposition at index dN = (N +1)(N +
2)/2, N odd, which is the number of odd spherical harmonics of order less than or equal to
N , yields the approximation

S− = M−W−�−(W−)T M− ≈ M−W−
N�−

N (W−
N )ᵀM− =: S−N . (38)

The discrete version ofM−KN then readsM− −K−
N , withK

−
N = S−N ⊗M−

s . An explicit
representation of its inverse is given by the following lemma. Its essential idea is to use an
orthogonal decomposition of V−

h induced by the eigendecomposition of S−, and to employ
the diagonal representation ofM− − K−

N in the angular eigenbasis.

Lemma 5 Let b ∈ R
n−
S n

−
R . Then x = (M− − K−

N )−1b is given by

x =
(
W−
N ⊗ I−)(

I− ⊗ M−
t − �−

N ⊗ M−
s

)−1(
(W−

N )ᵀ ⊗ I−)
b

+
((

(M−)−1 − W−
N (W−

N )ᵀ
)

⊗ (M−
t )−1

)
b,

(39)

where I− and I− denote the identity matrices of dimension n−
R and dN , respectively.

Proof We first decompose x as follows

x = (
W−
N (W−

N )T M− ⊗ I−)
x + (

(I− − W−
N (W−

N )ᵀM−) ⊗ I−)
x. (40)

Applying (W−
N )ᵀ ⊗ I− to (M− − K−

N )x = b, (38), and M−-orthogonality ofW−
N yield

(
I− ⊗ M−

t − �−
N ⊗ M−

s

)(
(W−

N )ᵀM− ⊗ I−)
x = (

(W−
N )ᵀ ⊗ I−)

b.
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Inverting I− ⊗ M−
t − �−

N ⊗ M−
s and applyingW−

N ⊗ I− further yields
(
W−
N (W−

N )ᵀM− ⊗ I−)
x = (

W−
N ⊗ I−)(

I− ⊗ M−
t − �−

N ⊗ M−
s

)−1(
(W−

N )ᵀ ⊗ I−)
b.

For the other part in (40), apply
(
(M−)−1 − W−

N (W−
N )ᵀ

) ⊗ (M−
t )−1 to (M− − K−

N )x = b
and obtain((

I− − W−
N (W−

N )ᵀM−) ⊗ I−)
x = ((

(M−)−1 − W−
N (W−

N )ᵀ
) ⊗ (M−

t )−1)b.

Substituting both expressions into (40) yields the assertion.

Remark 3 If σs has huge variations, a more effective approximation to K− can be obtained
from the eigendecomposition

M−
s I

− = M−
t I

−�

with diagonal matrix � with entries � j = ∫
R σsχ j dr/

∫
R σtχ j dr . The modified approxi-

mation K̃− is then computed by considering only those combinations of spatial and angular
eigenfunctions for which λl� j is above a certain tolerance.

5.2 Application of K+ and K−

Although K+ and K− provide a tensor product structure (29) involving the sparse matrices
M+

s and M−
s , the density of the scattering operators S+ and S− becomes a bottleneck for

iterative methods due to quadratic complexity in storage consumption and computational
cost for assembly and matrix–vector products.H- andH2-matrices, which can be considered
as abstract variants of the fast multipole method [21,23], where developed in the context
of the boundary element method and can realize the storage, assembly and matrix–vector
multiplication in linear or almost linear complexity, see [8,25] and the references therein. A
sufficient condition for compressibility in these formats is the following.

Definition 1 Let S̃ ⊂ R
d such that k : S̃×S̃ → R is defined and arbitrarily often differentiable

for all x̃ �= ỹ with x̃, ỹ ∈ S̃. Then k is called asymptotically smooth if

∣∣∂α
x̃ ∂

β

ỹ k(x̃, ỹ)
∣∣ ≤ C

(|α| + |β|)!
r |α|+|β| ‖x̃ − ỹ‖−|α|−|β|, x̃ �= ỹ, (41)

independently of α and β for some constants C, r > 0.

While severalmethods [14,16] can operate on theHenyey-Greenstein kernel on the sphere,
most classical methods require an extension into space which we define as

K (x̃, ỹ) = k(x · y), with x = x̃/‖x̃‖, y = ỹ/‖ỹ‖. (42)

The following result allows to use this extension in mostH- andH2-matrix libraries such
as [9,15,33] in a black-box fashion.

Lemma 6 Let g ≥ 0. Then K (x̃, ỹ) is asymptotically smooth for x̃, ỹ ∈ R
d \ {0}.

Proof We first remark that the cosinus theorem implies for x, y ∈ S with angle ϕ that
x ·y = cos(ϕ) = 1−‖x−y‖2/2.Moreover, k̃(ξ) = k(1−ξ2/2) is holomorphic for�(ξ) > 0
such that its Taylor series around ξ > 0 has convergence radius ξ and the derivatives of k̃
satisfy

∣∣∂α
ξ k̃(ξ)

∣∣ ≤ crαα!|ξ |−α , α ∈ N0, for all ξ > 0. Since x̃ �→ x = x̃/‖x̃‖ is analytic

for x̃ �= 0 and since K (x̃, ỹ) = k̃(‖x − y‖), the assertion follows in complete analogy to the
appendix of [27].
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The H- or H2-approximation of S+ and S− and the sparsity of M+
s and M−

s combined
with the tensor product identity (37) then allow for an application of K+ and K− in almost
linear or even linear complexity.

5.3 Choice and Implementation of P1

As shown in Sect. 3, choosing P1 as in Lemma 4 leads to contraction rates η ≤ c in (35), i.e.,
independent of the mesh-parameters. The choice P1 = E−1 can be realized through an inner
iterative methods, such as a preconditioned Richardson iteration resulting in an inner-outer
iteration scheme when employed in (33). An effective preconditioner for E is given by the
block-diagonal, symmetric positive definite matrix

E0 = 1

1 − cg
Aᵀ(M−)−1A + R + M+

which provides the spectral estimates

(1 − cg)xᵀE0x ≤ xᵀEx ≤ xᵀE0x, (43)

for all x ∈ R
n+
S n

+
R , cf. Lemma 1. Thus, the condition number of E−1

0 E is bounded by (1 −
cg)−1, which is uniformly bounded for c ∈ [0, 1] for fixed g < 1. For clarity of presentation,
we will use a preconditioned Richardson iteration for the inner iteration to implement P1

in the rest of the paper, but remark that a non-stationary preconditioned conjugate gradient
method will lead to even better performance. Applying P1 with high accuracy may still
involve many iterations. Instead, we use a preconditioner Pl

1 which performs l steps of an
inner iteration, i.e., we set Pl

1b = zl , where

z0 = 0, zk+1 = zk − E−1
0 (Ezk − b), k < l. (44)

Notice that, P1
1 = E−1

0 while Pl
1b → E−1b as l → ∞. In fact, with similar arguments as

in Lemma 2, it follows from (43) that

‖Pl
1b − E−1b‖E ≤ (cg)l‖E−1b‖E, (45)

where ‖x‖2E = xT Ex. The next result asserts that this inexact realization of the preconditioner
leads to a convergent scheme.

Lemma 7 Let l ≥ 1 be fixed. The iteration (32) with preconditioner P1 = Pl
1 defines a

convergent sequence, i.e., (35) holds with η ≤ c and η as in (36).

Proof Observing that Pl
1 = ∑l−1

k=0(E
−1
0 (E0 − E))kE−1

0 and that each term in the sum is
symmetric and positive semi-definite for k > 0 and positive definite for k = 0, it follows
that Pl

1 is symmetric positive definite. Using (43), we deduce that the sum converges as a
Neumann series to E−1. Hence, it follows that

xT E−1
0 x ≤ xT Pl

1x ≤ xT E−1x (46)

for all x ∈ R
n+
S n

+
R , which implies that xT Ex ≤ xT (Pl

1)
−1x ≤ xT E0x and, in turn,

(1 − c)xT (Pl
1)

−1x ≤ xT (E − K)x ≤ xT (Pl
1)

−1x, (47)

where we used Lemma 4. The assertion follows then as in Sect. 3.
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Remark 4 On the one hand, inspecting (47) we observe that the condition number of Pl
1(E−

K), and, similarly, of E−1(E−K) is (1− c)−1, which is not robust for scattering dominated
regimes c → 1; cf. also Lemma 4. On the other hand, combining the second inequality in
(46) with (45), we obtain as in Lemma 1, that

(1 − (cg)l)xT (Pl
1)

−1x ≤ xT Ex ≤ xT (Pl
1)

−1x,

which shows that the condition number of Pl
1E is bounded by (1− (cg)l)−1, which, for fixed

g < 1, is robust for c → 1.

5.4 Implementation of the Subspace Correction

The optimal subspaces for the correction (18) are constructed from the eigenfunctions associ-
ated with the largest eigenvalues of the generalized eigenproblem (20) as can be seen from the
proof of Lemma 3. The iterative computation of these eigenfunctions is, however, computa-
tionally expensive. Instead, we employ a different, computationally efficient tensor product
construction that employs discrete counterparts of low-order spherical harmonics expan-
sions motivated in (Sect. 3.4). More precisely, the subspace for the correction is defined as
W

+
h,N = P0,N (T S

h )⊗P
c
1(T R

h ), whereP0,N (T S
h ) ⊂ P0(T S

h ) is the space spanned by the eigen-
functions associated to the dN = (N + 1)(N + 2)/2 largest eigenvalues of the generalized
eigenvalue problem

S+W+ = M+W+�+

for the scattering operator, mimicking (7) after discretization. Note that dN with N even
is the number of even spherical harmonics of order less than or equal to N , and P0,N (T S

h )

approximates their span. Denote W+
N the corresponding matrix of coefficient vectors. The

subspace W+
h,N is spanned by the columns of the matrix W+ = W+

N ⊗ I+. At the discrete
level, the correction equation (18), thus, reads as

(
W+T (E − K+)W+)

uc = W+T ((E − K+)P1 − I)((E − K+)un − q). (48)

The efficient assembly of the matrix on the left-hand side relies on the tensor product
structure of K+ and the choice of W+

N as outlined in the following. A simple and direct
representation of the scattering operator onW+

h,N is obtained by

W+T K+W+ = �+
N ⊗ M+

s .

Similarly, we have that W+T M+W+ = I+ ⊗ M+
t , and the block-diagonal structure of R

allows to computeW+T RW+, i.e. the (i, j)th block-entry is given by

n+
S∑

k=1

Rk(W
+
N (k, i)W+

N (k, j))

which requires O(n+
S (n+

R )(d−1)/ddN ) many multiplications. The efficient assembly of the
remaining termW+T AT (M−−K−)−1AW+ relies on another eigenvalue decomposition,which
diagonalizes M− − K− on the column range of AW+. The arguments are similar to those in
Sect. 5.1 and we leave the details to the reader.
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6 Full Algorithm and Complexity

For the convenience of the reader we provide here the full algorithm of our numerical scheme.
To simplify presentation we start with the application of E as given in Algorithm 1 and the
application of P1 as given in Algorithm 2. The full preconditioned Richardson iteration (33)
is outlined in Algorithm 3.

Algorithm 1 Apply E, given a factorization of S−N as in (38).

1: function y =ApplyE(x)
2: Solve (M− − K−)z = Ax with PCG, preconditioned by (M− − K−

N )−1 as in (39)
3: y = AT z + M+x + Rx
4: end function

Algorithm 2 Apply P1 = Pl
1 as given in (44).

1: function z =ApplyP1(x)
2: z = 0
3: for k = 0, 1, . . . , l do
4: z = z − E−1

0 (ApplyE(z)−x)
5: end for
6: end function

Algorithm 3 Solve Eu+ = K+u+ + q according to (33)

1: Compute S+N = M+W+
N�+

N (W+
N )ᵀM+

2: Compute S−N = M−W−
N�−

N (W−
N )ᵀM−

3:
4: Compute Ec = W+T (E − K+)W+ as in Sect. 5.4
5:
6: Choose u+0
7: for n = 0, 1, 2, . . . do
8:
9: r =ApplyE(u+n )−K+u+n − q
10: s =ApplyP1(r)
11: u+n+1/2 = u+n − s � Half-step
12:
13: qc = W+T (

ApplyE(s)−K+s − q − r
)

14: Solve Ecu
+
n+1/2,c = qc

15: u+n+1 = u+n+1/2 + W+u+n+1/2,c � Subspace correction
16: end for

For the efficient implementation of these algorithms one may exploit that, except for R,
all matrices provide a tensor product structure, see (29)–(31), allowing for efficient storage
in O(n±

S + n±
R ) or O(cHn

±
S + n±

R ) complexity by using their sparsity or their H2-matrix
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representation.1 Here, cH is a constant related to the compression pattern of the H2-matrix.
The storage requirements and application of R have complexity O(n+

S (n+
R )(d−1)/d). The

relation (37) then allows for an efficient application of all matrices occurring in (28) in
O(n±

S n
±
R ) orO(cHn

±
S n

±
R ) operations. Since the solution vector itself has size n+

S n
+
R , see also

(25), and since 3n+
S = n−

S and n+
R ∼ n−

R , all matrices appearing in (28) can be stored and
applied with linear complexity.

In the following we elaborate the algorithmic complexities of Algorithm 1–Algorithm 3
in more detail.

6.1 Complexity of Applying E

The listing of Algorithm 1 directly indicates that the main effort of applying E lies in the
preconditioned conjugate gradient method for applying (M− − K−)−1. From Lemma 5,
we obtain that (M− − K−

N )−1(M− − K−) is applicable in O((dN + cH )n−
S n

−
R ) operations,

while its condition number is (1 − (cg)N+2)−1. This implies an iteration count for the
application of (M− − K−)−1 proportional to (1 − (cg)N+2)−1/2 for cg ≈ 1 when using the
preconditioned conjugate gradient method with a fixed tolerance. The overall complexity for
applying (M− −K−)−1 and, thus, also E is thenO((dN + cH )n−

S n
−
R/(1− (cg)N+2)1/2). We

note that typically dN � cH for moderate N .

6.2 Complexity of Applying the Preconditioner Pl1

Pl
1 consists of l − 1 applications of E and l applications of E−1

0 . Since E0 is block-
diagonal with n+

S sparse blocks of size n+
R × n+

R , the application of E−1
0 can be performed

in O(n+
S (n+

R )γ ) if the inversion of each block has O((n+
R )γ ) complexity. This amounts to

O(l(dN +cH )n+
S n

+
R/(1−(cg)N+2)1/2+ln+

S (n+
R )γ ) complexity for the application ofPl

1. For
moderate N , the subspace correction amounts to solving an elliptic system that is reminiscent
of an order N spherical harmonics approximation, which can be solved efficiently with a con-
jugate gradient method preconditioned by a V-cycle geometric multigrid with Gauss-Seidel
smoother, cf. [3].

Let us also remark that each diagonal block of E0 discretizes an anisotropic diffusion
problem with a diffusion tensor σ−1

t
∫
KS

s · sᵀds for KS ∈ T S
h . The results reported in

[29] indicate that such problems can be treated efficiently by multigrid methods with line
smoothing allowing for γ = 1. A full analysis in the present context is out of the scope of
this paper, but any method that gives γ = 1 allows to perform one step in the Richardson
iteration (33) in linear complexity in the dimension of the solution vector. Although γ > 1,
sparse direct solvers may work well, too, cf. Table 9.

6.3 Complexity of the Overall Iteration

We start our considerations by remarking that the truncated eigendecompositions of the
smallermatrices S+ and S− can be obtained by a few iterations of an iterative eigensolver.Once
this is achieved, the computation of the reduced matrix Ec can be achieved in O(n+

S n
+
RdN )

operations, see Sect. 5.4. Thus, the offline cost for the construction of the preconditioners are

1 The storage requirements of K+ and K− are O(cH n±
S log(n±

S ) + n±
R ) if H-matrices are used instead of

H2-matrices. In practice, cH may depend on additional implementation dependent parameters, see [8,25],
which we neglect here for sake of simplicity.
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Fig. 1 Left: geometry of the lattice problem. The optical parameters are σs = 10 and σa = 0.01 in the white
and grey regions, σs = 0 and σa = 1 in the black regions and q = 1 in the grey region and q = 0 outside the
grey region. Right: Sketch of the spherical grid

O(n+
S n

+
RdN ). The discussion on the application of E and P1 shows that a single iteration of

Algorithm 3 can be accomplished in O(l(dN + cH )n+
S n

+
R/(1 − (cg)N+2)1/2 + ln+

S (n+
R )γ )

operations.
Let us remark that in the case γ = 1 each iteration has linear complexity and it can be

implemented such that it offers a perfect parallel weak scaling in n+
S n

+
R as long as the number

of processors is bounded by n+
S and n+

R . To see this, we note that, with R being the only
exception, we are only relying on matrix–vector products of matrices having tensor-product
structure (or sums thereof). Using the identity (37), it is clear that these operations offer the
promisedweak scalingwhen thesematrix–matrix products are accelerated by a parallelization
over the rows and columns of the middle matrix. The matrixR does not directly provide such
a structure, but its block diagonal structure, cf. (31), provides possibilities for a perfectly
weakly scaling implementation as well.

In summary, each step in (33) can be executed very efficiently with straight-forward
parallelization. In the next sectionwe show numerically that the number of iterations required
to decrease the error below a given threshold is small already for small values of l and N .

7 Numerical Realization and Examples

We present the performance of the proposed iterative schemes using a lattice type problem
[10], see Fig. 1. Here, R = (0, 7) × (0, 7), the inflow boundary source f = 0, and c =
‖σs/σt‖∞ ≈ 0.999. The coarsest triangulation of the sphere consists of 128 element, i.e.,
n+
S = 64, and n+

R = 3249 vertices to discretize the spatial domain. Finer meshes are obtained
by uniform refinement; the new grid points for T S

h are projected to the sphere. To minimize
consistency errors, we use higher-order integration rules for the spherical integrals.

The timings are performed using an AMD dual EPYC 7742 with 128 cores and with
1024GB memory.

7.1 Application of (M−K)−1

We show that (M− − K−)−1 can be applied efficiently and robustly in g. To that end, we
implemented a preconditioned conjugate gradient method with preconditioner M− − K−

N ,
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Table 1 Iteration counts (timings in sec.) for the application of (M− − K−)−1 using a preconditioned CG
method with preconditionerM− − K−

N and tolerance 10−13 for n+
S = 256 and n+

R = 12,769

N dN g
0 0.1 0.3 0.5 0.7 0.9

−1 0 1 (1.6) 4 (4.2) 6 (6.1) 8 (8.0) 11 (10.7) 21 (19.9)

1 3 1 (1.6) 3 (3.3) 5 (4.9) 7 (6.7) 10 (9.5) 19 (17.4)

3 10 1 (1.7) 2 (2.6) 5 (5.0) 6 (6.1) 8 (7.8) 19 (17.6)

5 21 1 (1.8) 2 (2.7) 3 (3.6) 4 (4.5) 7 (7.1) 15 (14.2)

7 36 1 (1.8) 2 (2.8) 3 (3.6) 4 (4.6) 6 (6.4) 14 (13.4)

9 55 1 (1.9) 2 (2.8) 2 (2.8) 4 (4.7) 6 (6.4) 12 (12.1)

Table 2 Values of ρ and η of the
iteration matrix for g = 0 and
different angular grids

n+
S 16 64 256 1024 4096

η 0.385 0.429 0.445 0.450 0.451

ρ 0.212 0.261 0.280 0.286 0.288

see Sect. 5.1. Table 1 shows the required iteration counts to achieve a relative error below
10−13. For all g, the iteration counts decrease with N as predicted by the considerations in
Sect. 6. In particular, since K− = K−

N = 0, only one iteration is needed for convergence for
g = 0. Moreover, we see that, although increasing the value of N increases the workload per
iteration, the overall solution time can decrease, which is due to the fact that the scattering
operator dominates the computational cost for moderate dN , see Sect. 6. In the remainder of
the paper, we employ N = 5, which yields fast convergence for the considered values of g.

7.2 Convergence Rates

We study the norm η of the iteration matrix (I+ − PG)(I+ − Pl
1(E − K+)) defined in (36)

and its spectral radius

ρ = max{|λ| : λ is an eigenvalue of (I+ − PG)(I+ − Pl
1(E − K+))}

for different choices of preconditioners P1 = Pl
1, anisotropy factors g and dimensions dN

chosen for the subspace correction. Since PG is a projection, we have that

(I+ − PG)ᵀ(E − K+)(I+ − PG) = (E − K+)(I+ − PG).

Therefore, η2 is the largest eigenvalue of the eigenvalue problem

(I+ − Pl
1(E − K+))(I+ − PG)(I+ − Pl

1(E − K+))w = λw.

We use Matlab’s eigs function to compute ρ and η with tolerance 10−7 and maximum
iterations set to 300.

For the isotropic case g = 0, Pl
1 = E−1

0 = E−1, i.e., ρ and η do not depend on l.
For N = 0, Table 2 shows that the values of η and ρ are essentially independent of the
discretization parameters, see also [40]. We observed numerically that choosing N ∈ {2, 4}
improves the values of ρ and η only slightly.

In the next experiments, we vary g from 0.1 to 0.9 in steps of 0.2. Tables 3, 4, 5, 6 and 7
display the corresponding values of ρ and η. For these anisotropic cases, the iteration count
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Table 3 Values of ρ and η for
g = 0.1 and different values of
dN and l to realize Pl1

l d0 = 1 d2 = 6 d4 = 15
ρ η ρ η ρ η

1 0.298 0.432 0.156 0.247 0.117 0.161

2 0.264 0.429 0.101 0.237 0.048 0.141

3 0.261 0.429 0.097 0.237 0.043 0.141

4 0.261 0.429 0.097 0.237 0.042 0.141

5 0.261 0.429 0.097 0.237 0.042 0.141

6 0.261 0.429 0.097 0.237 0.042 0.141

Table 4 Values of ρ and η for
g = 0.3 and different values of
dN and l to realize Pl1

l d0 = 1 d2 = 6 d4 = 15
ρ η ρ η ρ η

1 0.392 0.473 0.311 0.332 0.300 0.302

2 0.299 0.448 0.146 0.246 0.106 0.157

3 0.284 0.447 0.111 0.242 0.060 0.146

4 0.281 0.447 0.103 0.242 0.050 0.146

5 0.280 0.447 0.101 0.242 0.047 0.146

6 0.280 0.447 0.101 0.242 0.046 0.146

Table 5 Values of ρ and η for
g = 0.5 and different values of
dN and l to realize Pl1

l d0 = 1 d2 = 6 d4 = 15
ρ η ρ η ρ η

1 0.522 0.553 0.499 0.499 0.499 0.499

2 0.386 0.489 0.265 0.301 0.250 0.255

3 0.361 0.482 0.174 0.260 0.136 0.175

4 0.358 0.480 0.147 0.254 0.089 0.159

5 0.357 0.480 0.140 0.253 0.070 0.156

6 0.357 0.480 0.137 0.253 0.062 0.156

l for the preconditioner Pl
1 as well as the number dN , defined in Sect. 5.4, play an important

role. For all combinations of dN and l, we observe a convergent behavior with η ≤ c < 1,
which is in line with Lemma 7. The values of ρ and η decrease substantially with increasing
dN which is inline with the motivation of Sect. 3.4, while, for fixed dN a saturation in l can
be observed. For dN sufficiently large, it seems that ρ = η = gl , see, e.g. Table 6 for d4 and
1 ≤ l ≤ 4. We may conclude that we can achieve very good convergence rates for moderate
values of dN and l if combined appropriately.

7.3 H2-Matrix Approximation ofS

We demonstrate theH2-compressibility of the scattering operator S. Since everyH2-matrix
can be represented as anH-matrix, this also demonstrates the compressibility of S by means
ofH-matrices. For the implementation we use a Mex interface to include the library H2Lib
[9] into our Matlab-implementation.
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Table 6 Values of ρ and η for
g = 0.7 and different values of
dN and l to realize Pl1

l d0 = 1 d2 = 6 d4 = 15
ρ η ρ η ρ η

1 – 0.699 0.699 0.699 0.699 0.699

2 0.537 0.582 0.489 0.489 0.489 0.489

3 0.515 0.567 0.349 0.366 0.342 0.342

4 0.512 0.565 0.270 0.319 0.241 0.253

5 0.511 0.564 0.248 0.309 0.178 0.212

6 0.511 0.564 0.239 0.306 0.142 0.195

The symbol − indicates that Matlab’s eigs function has not converged
to the desired tolerance

Table 7 Values of ρ and η for
g = 0.9 and different values of
dN and l to realize Pl1

l d0 = 1 d2 = 6 d4 = 15
ρ η ρ η ρ η

1 – – – – – 0.899

2 0.808 0.808 0.808 0.808 0.808 0.808

3 0.764 0.775 0.758 0.758 0.727 0.727

4 0.763 0.773 0.757 0.757 0.653 0.653

5 0.763 0.772 0.757 0.757 0.587 0.587

6 0.763 0.772 0.757 0.757 0.528 0.528

The symbol − indicates that Matlab’s eigs function has not converged
to the desired tolerance

For the numerical experiments themselves, we choose g = 0.5 and the same quadrature
formula in our Matlab implementation and in our implementation within the H2Lib. The
compression algorithm of H2Lib uses multivariate polynomial interpolation, requiring the
extension of the Henyey–Greenstein kernel as in (42). The compression parameters are set
to an admissibility parameter ηH = 1.4, p = 4 interpolation points on a single interval and a
minimal block size parameter nmin = 64, see [8,25]. We also tested an implementation
without the need for an extension within the Bembel library [15] which yields similar
results, but requires a finite element discretization on quadrilaterals, rather than triangles.
In both cases, the differences between dense and compressed scattering matrix are below the
discretization error.

Table 8 lists the memory requirements, setup time, and time for a single matrix–vector
multiplication of S+ in dense andH2-compressed form. We can clearly observe the quadratic
complexity for storage andmatrix–vectormultiplication of the densematrices and the asymp-
totically linear complexity of the H2-matrices. The scaling of the assembly times for dense
and H2-matrices seems to be worse than predicted by theory, which is possibly caused by
memory issues. Nevertheless, the scaling of theH2-matrices for the assembly times is much
better than the one for dense matrices.

7.4 Benchmark Example

The viability of the preconditioned Richardson iteration (33) is shown for some larger com-
putations.We fix g = 0.5 and solve the even-parity equations (32) for the lattice problem.We
fix l = 4 steps to realize the preconditioner Pl

1 and N = 4, i.e., we use d4 = 15 eigenfunc-

123



94 Page 24 of 28 Journal of Scientific Computing (2022) 90 :94

Table 8 Memory consumption in MB, timings in sec. for assembly and matrix–vector multiplication of S+
and corresponding H2-matrix approximation S+ for g = 0.5

n+
S Mem S+ Setup S+ Apply S+

64 0.0312 0.171 6.9 · 10−5

256 0.5 (16.0) 0.203 (1.2) 6.5 · 10−5 (0.9)

1024 8 (16.0) 0.438 (2.2) 0.000313 (4.8)

4096 128 (16.0) 4.2 (9.6) 0.00517 (16.5)

16,384 2.05 · 103 (16.0) 189 (45.0) 0.0805 (15.6)

65,536 3.28 · 104 (16.0) 1.09 · 104 (57.5) 2.67 (33.1)

262,144 – – –

1,048,576 – – –

n+
S mem S+ Setup S+ Apply S+

64 0.0313 0.00109 0.00025

256 0.502 (16.0) 0.0116 (10.7) 0.000547 (2.2)

1024 11.3 (22.5) 0.139 (11.9) 0.0086 (15.7)

4096 89.2 (7.9) 0.902 (6.5) 0.0841 (9.8)

16,384 484 (5.4) 4.75 (5.3) 0.328 (3.9)

65,536 2.27 · 103 (4.7) 24.6 (5.2) 1.46 (4.4)

262,144 9.53 · 103 (4.2) 182 (7.4) 6.92 (4.7)

1,048,576 3.82 · 104 (4.0) 1.46 · 103 (8.0) 28.5 (4.1)

Numbers in brackets indicate the ratio to the previous refinement level

tions of S+ for the subspace correction, cf. (5.4). In view of Table 5, we expect a contraction
rate η ≈ 0.16. Therefore, in order to achieve an error bound ‖u+ − u+n‖E−K+ < 10−8, we
expect to require n ≈ 10 iterations. In our implementation, we choose u+0 = 0, and we stop
the iteration at index n for which

‖u+n − u+n−1‖E−K+ < 10−8‖u+1‖E−K+ . (49)

Note that, assuming a contraction rate η = 0.16, Banach’s fixed point theorem asserts that
the error satisfies ‖u+ − u+n ‖E−K+ ≤ 0.2‖u+n − u+n−1‖E−K+ . The dimension of the problem
on the finest grid is n+

Rn
+
S = 207,360,000, i.e., storing the solution vector requires 1.5 GB of

memory. Note that the corresponding dimension of the solution vector to the mixed system
is about 1.5 × 109. Motivated by Table 8 we implement the scattering operators S+ and S−
using dense matrices in this example. The application ofE−1

0 is implemented withMatlab’s
sparse LU factorization, i.e., here, γ ≤ 1.5 in the complexity estimates of Sect. 6.

Figure 2 shows exemplary the spherical average of the computed solution for n+
S =

1024 and n+
R = 12,769. Table 9 displays the iteration counts and timings for different grid

refinements. We observe mesh-independent convergence behavior of the iteration, which
matches well the theoretical bound n ≈ 10. Furthermore, the computation time scales like
(n+

R )1.3 for fixedn+
S . Ifn

+
S increases from1024 to 4096, the superlinear growth in computation

time can be explained by using dense matrices for S+ and S−, which, as shown in Table 8,
can be remedied by using the compressed scattering operators.
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Fig. 2 log10-plot of the spherical average of the numerical solution u+ to the benchmark problem as in
Sect. 7.4 for n+

S = 1024 and n+
R = 12,769

Table 9 Iteration index n
(timings in sec.) such that (49)
holds for the benchmark example.

n+
S n+

R
3249 12,769 50,625

64 8 (50) 9 (236) 9 (1470)

256 9 (114) 9 (499) 9 (2476)

1024 9 (300) 9 (1107) 10 (6580)

4096 9 (1017) 9 (4983) 10 (34,029)

8 Conclusions

We have presented efficient preconditioned Richardson iterations for anisotropic radiative
transfer that are provably convergent and show robust convergence in the optical parameters,
which comprises forward peaked scattering and heterogeneous absorption and scattering
coefficients. This has been achieved by employing black-box matrix compression techniques
to handle the scattering operator efficiently, and by construction of appropriate precondi-
tioners. In particular, we have shown that, for anisotropic scattering, subspace corrections
constructed from low-order spherical harmonics expansions considerably improve the con-
vergence of our iteration.

On the discrete level, our preconditioners can be obtained algebraically from the matrices
of any FEM code providing the matrices from the mixed system (28). We discussed further
implementational details and their computational complexity, which, supported by several
numerical tests, showed the efficiency of our method. If a solver with linear computational
complexity for anisotropic elliptic problems is employed to realize E−1

0 , each single iteration
of our scheme has linear computational complexity in the discretization parameters. Our
numerical examples employed low-order polynomials for discretization, but the presented
methodology directly applies to high-order polynomial approximations as well.

Let us mention that the saddle-point problem (4) may also be solved using the MINRES
algorithm after appropriate multiplication of the second equation by −1. In view of the inf-
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sup theory for (8)–(9) given in [17], block-diagonal preconditioners with blocks E−K+ and
M− − K− lead to robust convergence behavior [50, Section 5.2], but the efficient inversion
of E − K+ is as difficult as solving the even-parity equations, which has been considered in
this paper.

Our subspace correction approach can also be related to multigrid schemes [51], and we
refer to [31,34,42] and the references there in the context of radiative transfer. Comparing to
non-symmetric Krylov space methods, such as GMRES or BiCGStab, see [1,6,49] and the
references there, our approach is very memory effective and monotone convergence behavior
is guaranteed.Moreover, in viewof its good convergence rates, the preconditionedRichardson
iteration presented here is competitive to these multilevel and Krylov space methods.
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