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Abstract
We develop a family of cut finite element methods of different orders based on the discontin-
uous Galerkin framework, for hyperbolic conservation laws with stationary interfaces in both
one and two space dimensions, and for moving interfaces in one space dimension. Interface
conditions are imposed weakly and so that both conservation and stability are ensured. A
CutFEM with discontinuous elements in space is developed and coupled to standard explicit
time stepping schemes for linear advection problems and the acoustic wave problemwith sta-
tionary interfaces. In the case of moving interfaces, we propose a space-time CutFEM based
on discontinuous elements both in space and time for linear advection problems. We show
that the proposed CutFEM are conservative and energy stable. For the stationary interface
case an a priori error estimate is proven. Numerical computations in both one and two space
dimensions support the analysis, and in addition demonstrate that the proposed methods have
the expected accuracy.
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1 Introduction

A finite element method (FEM) that uses discontinuous piecewise polynomial spaces as trial
and test spaces is commonly called a discontinuous Galerkin (DG) method. Already in 1973
a DG method was introduced for the neutron transport equation [26]. Later for nonlinear
time dependent hyperbolic conservation laws DG discretizations in space were coupled to
Runge–Kutta time discretizations and limiters see e.g. [5–7]. The approach was shown to
work well, retaining high order accuracy, conservation and other important properties, and
has become very popular. For more details on DG methods, we refer to [16,28].

Most finite element methods require the mesh to be aligned to boundaries and material
interfaces and to achieve the full potential accuracy the mesh quality needs to be high. This
type of requirements can be problematic for problems posed on complicated geometries or
with material interfaces, especially when the geometry is evolving. For time-dependent prob-
lems the time step may be severely restricted. To overcome these problems, approaches using
fixed background meshes, unfitted to boundaries and interfaces, are of great interest. How-
ever, in a naive approach small cut elements will cause problems, including ill-conditioned
linear systems and severe time-step restrictions. Various techniques have been introduced to
handle such difficulties. One approach often used in unfitted methods based on DG is cell
merging or agglomeration techniques where new elements of sufficient size are created by
merging small cut elements with their neighbours [17,18,22,23,25]. A common technique in
connection with Cut Finite Element Methods (CutFEM) is to add ghost penalty stabilization
terms in the weak form [3,4]. In CutFEM the physical domain is embedded into a computa-
tional domain equipped with a quasi-uniform mesh. Elements that have an intersection with
the domain of interest define the active mesh and associated to that is a finite dimensional
function space and a weak form that together define the numerical scheme [9,14,21,31].
Interface and boundary conditions are typically imposed weakly. For hyperbolic problems,
CutFEM based on discontinuous piecewise polynomial spaces and ghost penalty stabiliza-
tion has been developed, e.g. see [12] where a time independent linear advection-reaction
problem is considered and see [10] for time dependent nonlinear conservation laws. We also
refer to the recent work [8] where a DGmethod for time dependent linear advection problems
is developed with a stabilization of small elements that is designed to restore proper domains
of dependence.

The focus of this paper is conservation at material interfaces. We consider time dependent
linear hyperbolic conservation laws with discontinuous coefficients in the flux at a stationary
or moving interface. We assume the problem has a structure such that requiring conservation
yields sufficient conditions at the interface for well-posedness. Typically the interface condi-
tion requires the solution to be discontinuous at the interface. Such problems can model for
example wave propagation in materials where the wave speed changes abruptly at a material
interface.

The first main result is an extension of the family of high order CutFEM with ghost
penalty stabilization in [10] to problems with stationary interfaces. In the new method the
solution is built from separate solutions on the two sides of the interface, and coupled through
the interface condition, which is imposed weakly through penalties in the weak form. We
show how to choose these penalties such that both conservation and stability is ensured,
independently of how the interface cuts the elements. Numerical results demonstrate that
conservation can indeed be lost with other choices. We note that our proposed CutFEM
scheme is locally conservative in elements away from the interface and in the patch of
elements involving the interface. The stability result is based on a semi-discrete energy
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analysis, which generalises the stability result in [19], where a high order finite difference
methodology with a grid aligned with the interface is analyzed. We apply our method to the
scalar advection equation in one and two space dimensions, and to an acoustic system in one
space dimension, but the proposed method can be applied to other hyperbolic systems with
similar structure.

A second result is a space-time CutFEM for the case of a moving interface. We use a
framework similar to that proposed in [9,15,32], but here we use discontinuous elements
both in space and time. The interface condition is imposed weakly as above, with the same
restriction on penalties imposed by conservation. Our analysis aswell as our numerical results
show that the choice of weak form is important for achieving conservation in the discrete
setting. Since the space-time formulation corresponds to an implicit time discretization, the
method is computationally more demanding than the proposed method for the case of a
stationary interface. However, we also demonstrate a strategy where the space-time CutFEM
is restricted to the interface region, and coupled to a standard DG method with explicit time
discretization in other parts of the domain.

The paper is organized as follows. In Sect. 2, the model problem is given. In Sect. 3, we
consider a stationary interface, propose a discontinuous cut finite element discretization in
space and perform a stability analysis, and an a priori error estimate is given for the scalar
problems. Numerical examples show that the proposedmethod has the expected convergence
rate, is conservative, and allows for similar time steps as a corresponding standardDGmethod.
In Sect. 4 we consider a moving interface and propose a space-time CutFEM. The stability of
the semi-discrete scheme is analyzed and we present some examples to show that the method
can simulate the moving interface problem with expected accuracy and with conservation.
In Sect. 4.6, we formulate a locally implicit CutFEM. In Sect. 5, we extend our scheme to
the advection equation in two space dimensions with a material interface. Finally, in Sect. 6
we conclude.

2 Model Problem

Let x�(t) be an interface that separates the domain � = [xL , xR] into two subdomains
�1 = [xL , x�(t)] and �2 = [x�(t), xR]. Consider the hyperbolic conservation law

ut + F(u)x = 0, x ∈ �1 ∪ �2, t > 0, (2.1)

u(x, 0) = f (x), x ∈ �1 ∪ �2, (2.2)

[F(u)]� − x ′
�(t)[u]� = 0, t ≥ 0, (2.3)

with suitable boundary conditions at xL and xR . Here the unknown conservative variable is

u =
{
u1, x ∈ �1(t),
u2, x ∈ �2(t),

(2.4)

which may be discontinuous across the interface x�(t) with jump

[u]� = u2(x�, t) − u1(x�, t). (2.5)

We assume that ui , i = 1, 2 are continuous functions with sufficiently many continuous
derivatives, and that a discontinuity in u may exist only at the interface. The flux function is

F(u) =
{
F1(u1) ≡ A1u1, x ∈ �1(t),
F2(u2) ≡ A2u2, x ∈ �2(t),

(2.6)
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with A1 and A2 being either constant scalars or matrices. We will only consider problems
where the interface condition (2.3) ensures that the problem is well-posed. For the scalar case
this means that A1 − x ′

�(t) and A2 − x ′
�(t) have the same sign. For systems the number of

positive and negative eigenvalues of Ai − x ′
�(t)I , i = 1, 2 with I being the identity matrix,

must be the same on both sides of the interface, and the eigenstructure of the matrices must
be such that the interface condition determines entering characteristic variables in terms of
exiting characteristic variables.

Also, note that

d

dt

∫ xR

xL
udx = d

dt

∫ x�(t)

xL
u1dx + d

dt

∫ xR

x�(t)
u2dx

=
∫ x�(t)

xL
∂t u1dx +

∫ xR

x�(t)
∂t u2dx + u1(x�, t)x ′

�(t) − u2(x�, t)x ′
�(t)

= −
∫ x�(t)

xL
(F1(u1))xdx −

∫ xR

x�(t)
(F2(u2))xdx − x ′

�(t)[u]�
= F1(u1(xL , t)) − F1(u1(x�, t)) + F2(u2(x�, t)) − F2(u2(xR, t)) − x ′

�(t)[u]�.

When the interface condition (2.3) is satisfied, i.e.

F2(u2(x�, t)) − F1(u1(x�, t)) − x ′
�(u2(x�, t) − u1(x�, t)) = 0,

we have

d

dt

∫ xR

xL
u(x, t)dx = F1(u1(xL , t)) − F2(u2(xR, t)). (2.7)

Thus, condition (2.3) ensures conservation of u. In this paper, we will consider both a sta-
tionary interface, x ′

� = 0, and a moving interface.
Before we propose a DG scheme for the problem (2.1)–(2.3) we introduce some notations.

For square integrable scalar real valued functions on a given domain K , the standard notation
is used for the inner product and the L2-norm, namely,

(v,w)K :=
∫
K

vw dx, ‖v‖K := √
(v, v)K , ∀v,w ∈ L2(K ), (2.8)

and for square integrable vector real valued functions v,w with m components, each com-
ponent in L2, we will use the same notation, but now vw means the standard dot product,
i.e.

(v,w)K :=
∫
K

vTwdx, ‖v‖K := √
(v, v)K , ∀v,w ∈ [L2(K )]m . (2.9)

Furthermore

(v,w)�1∪�2 :=
2∑

i=1

(v,w)�i . (2.10)

3 Stationary Interface

Consider (2.1)–(2.3) in the case of a stationary interface, that is with x ′
� = 0 and interface

condition [F(u)]� = 0. In the following we define the mesh, the space, and the weak
formulation for a cut finite element method based on the DG framework.
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Fig. 1 A uniform partition of � with mesh size h = (xR − xL )/N . In this case, the interface splits the cell I j
into two cells of length α1h and α2h

3.1 Mesh and Spaces

Let Th be a quasi-uniform partition of the domain � generated independently of the position
of the interface and let Eh denote the set containing the edges in this mesh. The mesh consists
of intervals I j = [x j− 1

2
, x j+ 1

2
], j = 1, . . . , N with length �x j = x j+ 1

2
− x j− 1

2
, and

xL = x 1
2

< x 3
2

< · · · < x� < · · · < xN+ 1
2

= xR . The mesh size is h = max1≤ j≤N �x j .
See Fig. 1 for an illustration.

Define the following active meshes

Th,i = {
I j ∈ Th : I j ∩ �i �= ∅} , i = 1, 2, (3.1)

and the set of edges
Eh,i = {e ∈ Eh : e ∩ �i �= ∅}. (3.2)

Denote by Fh,i the interior edge in Eh,i that belongs to a cut element, i.e.,

Fh,i = {e = I j ∩ Ik : I j , Ik ∈ Th,i and x� ∈ I j or Ik, j �= k}. (3.3)

Define the piecewise polynomial space

Ṽr
h = {v : v|I j ∈ Pr (I j ), ∀I j ∈ Th}, (3.4)

where Pr (I j ) is the space of polynomials with degree at most r on I j . We note that if v ∈ Ṽr
h

is a vector, it means each of its component belongs to Pr (I j ). Define the active finite element
spaces

Vr
h,i = Ṽr

h |Th,i , i = 1, 2, (3.5)

and let Vr
h = Vr

h,1 × Vr
h,2. Hence, with v ∈ Vr

h we mean v = (v1, v2) with vi ∈ Vr
h,i .

For any v(·, t) ∈ Vr
h,i at a fixed time t ∈ [0, T ], let v+ and v− denote the limit values of

v at x from right and left, i.e.,

v−(x, t) = lim
ε→0+ v(x − ε, t), v+(x, t) = lim

ε→0+ v(x + ε, t). (3.6)

Define the average and the jump of the function v at an edge e ∈ Eh,i by

{v}e = 1

2
(v+ + v−), [v]e = v+ − v−. (3.7)

On the interface the average and jump of v(·, t) = (v1(·, t), v2(·, t)) ∈ Vr
h are defined by

{v}� = 1

2
(v1(x�, t) + v2(x�, t)), [v]� = v2(x�, t) − v1(x�, t). (3.8)
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3.2 Weak Formulation

We now state a semi-discrete weak formulation. For t ∈ [0, T ], find uh(·, t) ∈ Vr
h such that

((uh(·, t))t , vh)�1∪�2
+ γM J1((uh(·, t))t , vh) + Ah(uh(·, t), vh) = 0, t > 0, (3.9)

(uh(·, 0), vh)�1∪�2 + γM J1(uh(·, 0), vh) = ( f (x), vh)�1∪�2 , (3.10)

for all vh ∈ Vr
h . Here

Ah(uh, vh) = ah(uh, vh) + γA J0(uh, vh), (3.11)

with

ah(uh, vh) = −(F(uh), (vh)x )�1∪�2 −
2∑

i=1

∑
e∈Eh,i

F̂e(uh)[vh]e

− ([F(uh)vh]� + [F(uh)]�[λvh]�) , (3.12)

and

Js(uh, vh) =
2∑

i=1

∑
e∈Fh,i

r∑
k=0

ωkh
2k+s

[
∂kuh,i

]
e

[
∂kvh,i

]
e
. (3.13)

The stabilization terms Js(u, v), s = 0, 1, are added in order to have a stable scheme inde-
pendently of how the interface cuts the background mesh. Otherwise, the mass matrix may
be nearly singular, which can cause very severe time step restriction or ill-conditioning. The
parameters in front of the stabilization terms, γM , γA and ωk are positive constants. The
choice is not unique and we choose ωk = 1

(k!)2(2k+1)
as in [27]. The penalty parameters at

the interface in (3.12) is

λ =
{

λ1, x ∈ �1(t),
λ2, x ∈ �2(t).

(3.14)

The choice of values will be discussed below. We note that interfaces between elements and
boundary edges are handled with the usual DG methodology, where we choose a single-
valued function F̂e to approximate F(u) on edge e. In this paper, the flux F̂e is chosen
as

F̂e(uh) = {F(uh)}e − λe

2
[uh]e, e ∈ Eh,i . (3.15)

Here, {F(uh)}e = 1
2

(
F(u−

h ) + F(u+
h )
)
, [uh]e = u+

h − u−
h , and λe is an estimate of the

largest absolute eigenvalue of the Jacobian ∂F(uh)
∂uh

in the neighbourhood of edge e. This flux
is known as the Lax-Friedrichs flux. In this paper we only consider the Lax-Friedrichs flux,
but other monotone fluxes are also possible. At the boundaries of the domain, xL and xR , we
define the average and jump of a test functions vh as

{vh}L = v+
h , {vh}R = v−

h , [vh]L = v+
h , [vh]R = −v−

h . (3.16)

For scalar problems, we use the inflow boundary condition u(x, t) = g(t), x = xL or xR . To
specify the corresponding values uh on xL and xR , we set

u−
h (xL , ·) =

{
gh(·), if ai > 0,
u+
h (xL , ·), if ai < 0,

u+
h (xR, ·) =

{
gh(·), if ai < 0,
u−
h (xR, ·), if ai > 0.

(3.17)

Here gh is the approximation of the given boundary data g at the inflow boundary. For the
approximation of boundary conditions in systems see [5].
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Fig. 2 Illustration of intervals where the proposed scheme is locally conservative

To derive the weak formulation above we multiply Eq. (2.1) by a test function v ∈ Vr
h ,

integrate by parts, and enforce the interface condition (2.3). Since v ∈ Vr
h is discontinuous

across interior edges, integration by parts results in jump terms [F(u)v]e across interior
edges. Since [u]e = 0 these terms can be rewritten as

[F(u)v]e = {F(u)}e[v]e − λe

2
[u]e[v]e = F̂e(u)[v]e. (3.18)

Since the stabilization terms Js(u, v) vanish when u is a sufficiently smooth exact solution,
the proposed formulation is consistent.

Taking test function vh = 1 in the scheme (3.9), we have∫
�

(uh)t dt = F̂L(uh(xL , t)) − F̂R(uh(xR, t)) + (λ2 − λ1 + 1) [F(uh)]�. (3.19)

Clearly, the proposed scheme is conservative only if

λ2 − λ1 + 1 = 0. (3.20)

If this condition is satisfied it follows that

d

dt

∫
�

uhdx = F̂L − F̂R . (3.21)

We note that our scheme is locally conservative on the elements that along with their neigh-
bors do not involve the interface, like {I j }J−2

j=1 and {I j }Nj=J+2 in Fig. 2. The method is also
locally conservative in subintervals containing elements which need to be stabilized, like the
subinterval K1 = (IJ−1∪ IJ )∩�1 and K2 = (IJ ∪ IJ+1)∩�2 in Fig. 2. For the scheme to be
stable the penalty parameters need to satisfy additional requirements. See Theorem 1 for the
scalar problem and Theorem 3 for the acoustic system, for choices that yield a conservative
and energy stable interface treatment.

3.3 Stability Analysis

Here we will use the energy method to investigate how requiring stability of the proposed
semi-discrete scheme will restrict the choice of the penalty parameters λ1 and λ2 beyond
(3.20).

3.3.1 The Scalar Problem

We consider the linear scalar problem, i.e.

F(u) = au =
{
F1(u) ≡ a1u1, x ∈ �1,

F2(u) ≡ a2u2, x ∈ �2,
(3.22)

where a1, a2 are non-zero constants with the same sign. In the proposed scheme we use
λe = |ai | in Eq. (3.15).
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Let vh = (uh,1, 0) and vh = (0, uh,2) in (3.9), integrate (aiuh,i , (uh,i )x )�i , and take into
account discontinuities of uh,i across the edges to get

1

2

d

dt

(∫
�1

|uh,1|2dx + γM J1(uh,1, uh,1)

)
+
∑
e∈Eh,1

(a1
2

[u2h,1]e − F̂e(uh,1)[uh,1]e
)

+ (
a1
2

− a1λ1)|uh,1(x�, t)|2 + λ1a2uh,2(x�, t)uh,1(x�, t) + γA J0(uh,1, uh,1) = 0,

1

2

d

dt

(∫
�2

|uh,2|2dx + γM J1(uh,1, uh,1)

)
+
∑
e∈Eh,2

(a2
2

[u2h,2]e − F̂e(uh,2)[uh,2]e
)

− (a2λ2 + a2
2

)|uh,2(x�, t)|2 + λ2a1uh,2(x�, t)uh,1(x�, t) + γA J0(uh,2, uh,2) = 0.

(3.23)

By a
2 [u2h]e = a{uh}e[uh]e and the definition of the flux, Eq. (3.15), we have

ai
2

[u2h,i ]e − F̂e(uh,i )[uh,i ]e = λe

2
[uh,i ]2e , i = 1, 2. (3.24)

Introducing a weighted energy Eη, where η is a positive constant,

Eη(t) = 1

2

(∫
�1

|uh,1|2dx + γM J1(uh,1, uh,1)

)

+ η

2

(∫
�2

|uh,2|2dx + γM J1(uh,2, uh,2)

)
, (3.25)

we have from (3.23), (3.24) with λe = |ai | for e ∈ Eh,i that

d

dt
Eη = −uTh Suh −

∑
e∈Eh,1

|a1|
2

[uh,1]2e −
∑
e∈Eh,2

|a2|η
2

[uh,2]2e

− γA J0(uh,1, uh,1) − ηγA J0(uh,2, uh,2). (3.26)

Here

S =
(

( 12 − λ1)a1
a2λ1+a1ηλ2

2
a2λ1+a1ηλ2

2 −(λ2 + 1
2 )ηa2

)
, uh =

(
uh,1(x�, t)
uh,2(x�, t)

)
. (3.27)

If S is positive semi-definite, then the energy is non-increasing with time. In “Appendix A”,
Lemma 1 states conditions for S to be positive semi-definite. We summarize the results for
scalar problems in the following theorem.

Theorem 1 Consider the discontinuous cut finite element method (3.9) for the scalar problem
(2.1)–(2.3)with F(u) as in (3.22)with x ′

�(t) = 0 and stabilization parameters γA ≥ 0, γM ≥
0. For penalty parameters λ1 and λ2, that satisfy (3.20) and{

λ1 ≤ 1
2 , λ2 ≤ − 1

2 , if a1 > 0, a2 > 0,

λ1 ≥ 1
2 , λ2 ≥ − 1

2 , if a1 < 0, a2 < 0,
(3.28)

the method is conservative and there exists a positive η such that the energy defined in (3.25)
does not grow with time.

Remark 1 The stability results in Theorem 1 are derived assuming a conservative interface
treatment with λ1 and λ2 satisfying (3.20). Without the conservation condition (3.20), less
restrictive stability results are possible. See Lemma 2 in Appendix A. In the right panel
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of Figs. 4 and 16, we show that when the penalty parameters satisfy a stability condition
but don’t satisfy the conservation condition (3.20), the scheme produces large conservation
errors.
Based on the stability result we can derive an a priori estimate for the scalar problems, if it
has a sufficiently smooth solution.

Theorem 2 Let u(x, t) = ui (x, t) for x ∈ �i , be the solution to problem (2.1)–(2.3)
with F(u) as in (3.22) and x ′

�(t) = 0. Assume ui is sufficiently smooth: ui , (ui )t ∈
L∞ ([0, T ]; Hr+1(�i )

)
. Let uh = (uh,1, uh,2) with uh,i (·, t) ∈ Vr

h,i be the solution to the
discontinuous cut finite element scheme (3.9). Then the following a priori error estimate hold

||u1(·, t) − uh,1(·, t)||2�1
+ ||u2(·, t) − uh,2(·, t)||2�2

≤ Ch2r , t ∈ [0, T ],
where C is a constant which is independent of the mesh parameter h and how the interface
cuts the mesh.

The proof of this theorem is given in “Appendix B”.

3.3.2 The Acoustic System

We consider the acoustic system [24]

ρut + px = 0, x ∈ �1 ∪ �2, t > 0,

pt + ρc2ux = 0, x ∈ �1 ∪ �2, t > 0, (3.29)

[u]� = 0, [p]� = 0, x = x�(t), t ≥ 0,

with a stationary interface at x = x� , i.e., x ′
�(t) = 0. Here, u(x, t) is the velocity, p(x, t)

is the pressure, ρ(x) is the density, and c(x) is the sound speed. The density and the sound
speed are piecewise constant

(ρ, c) =
{

(ρ1, c1) if x ∈ �1,

(ρ2, c2) if x ∈ �2.

By introducing q = p
ρc2

andm = ρu, denoting strain and momentum, we can write problem
(3.29) in the conservative form as in Eqs. (2.1)–(2.3),

Ut + F(U )x = 0, x ∈ �1 ∪ �2, t > 0, (3.30)

U (x, 0) = f (x), x ∈ �1 ∪ �2, (3.31)

[F(U )]� = 0, x = x�, t ≥ 0, (3.32)

with

F(U ) =
{
A1U1, x ∈ �1,

A2U2, x ∈ �2,
(3.33)

where

Ui =
(
mi

qi

)
and Ai =

(
0 ρi c2i
1
ρi

0

)
, i = 1, 2. (3.34)

The components of U , m and q , are the conserved quantities, and are referred to as the
conservative variables, while u and p are called the primitive variables.
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We begin with showing an energy estimate in the continuous setting for the physically
motivated energy

E(t) = 1

2

∫
�1∪�2

UT BUdx, B =
{
B1, x ∈ �1,

B2, x ∈ �2,
, Bi =

( 1
ρi

0
0 ρi c2i

)
, i = 1, 2.

(3.35)
Since B is symmetric

d

dt
E =

∫
�1

UT
1 B1

dU1

dt
dx +

∫
�2

UT
2 B2

dU2

dt
dx . (3.36)

Introduce Ut = −(AU )x and integrate by parts to get

d

dt
E = −1

2

∫
�1∪�2

UT (AT BT − BA)Uxdx + 1

2

(
UT
1 AT

1 B
T
1 U1|x�

xL +UT
2 AT

2 B
T
2 U2|xRx�

)

≡ −ET + I T . (3.37)

Note that Bi Ai is symmetric and therefore the bulk terms vanish, and only terms at the
physical boundary, collected in ET , and terms at the interface, collected in I T , remain. We
can write the contributions at the interface as

I T = 1

2

(
UT
1 AT

1 B
T
1 U1 −UT

2 AT
2 B

T
2 U2

)
|� = 1

2

(
UT
1

(
(AT

2 B1)
T − AT

1 B2

)
U2

)
|�.

The last equality follows using again that Bi Ai is symmetric and the interface condition
(3.32), i.e., UT

1 AT
1 = UT

2 AT
2 . Note that

AT
2 B1 =

⎛
⎝ 0

ρ1c21
ρ2

ρ2c22
ρ1

0

⎞
⎠ , AT

1 B2 =
⎛
⎝ 0

ρ2c22
ρ1

ρ1c21
ρ2

0

⎞
⎠ .

Thus,
(AT

2 B1)
T = AT

1 B2, (3.38)

and therefore the interface term vanishes, I T = 0. We conclude that the interface term gives
no contribution to energy growth or decay.

Next we study the stability of the proposed discontinuous CutFEM (3.9) for the system
(3.30)–(3.34). Guided by the energy result for the continuous system we define

Eh(t) = 1

2

(∫
�1∪�2

UT
h BUhdx + γM J1(Uh, BUh)

)
, (3.39)

and take vh = BUh in (3.9) and get

d

dt
Eh = ((Uh)t , BUh)�1∪�2 + γM J1((Uh)t , BUh)

=
∫

�1∪�2

UT
h BA(Uh)x dx +

2∑
i=1

∑
e∈Eh,i

F̂e(Uh)
T [BUh]e

+ ([F(Uh)
T BUh]� + [F(Uh)

T ]�[λBUh]�) − γA J0(Uh, BUh). (3.40)

The bulk term can be integrated by parts and therefore only interface and edge terms remain
in the right hand side of (3.40). Contribution from element edges when the Lax-Friedrichs
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flux is used are well-known, and therefore we only analyze the terms from the interface at
x� ,

I T = −(F1(Uh,1) + λ1[F(Uh)]�)T B1Uh,1 + (F2(Uh,2) + λ2[F(Uh)]�)T B2Uh,2

+ 1

2
UT
h,1A

T
1 B1Uh,1 − 1

2
UT
h,2A

T
2 B2Uh,2

= −(
1

2
− λ1)UT

h,1A
T
1 B1Uh,1 + (

1

2
+ λ2)UT

h,2A
T
2 B2Uh,2

− UT
h,2(λ1A

T
2 B1 + λ2(A

T
1 B2)

T )Uh,1. (3.41)

Here Uh,1,Uh,2 denote the numerical solution values at the interface x� . We can write

I T = −
(
Uh,1

Uh,2

)T

S
(
Uh,1

Uh,2

)
, with S =

(
( 12 − λ1)AT

1 B1
λ1+λ2

2 AT
1 B2

λ1+λ2
2 AT

2 B1 −( 12 + λ2)AT
2 B2

)
.

Note that by (3.38) the matrix S is symmetric. To ensure that the interface terms do not cause
energy growth, S needs to be positive semi-definite. The only possible choice for the penalty
parameters that also satisfies the conservation condition (3.20) is

λ1 = 1

2
, λ2 = −1

2
,

which implies S = 0 and correspondingly I T = 0. This proves the following theorem.

Theorem 3 Consider the semi-discrete discontinuous cut finite element method (3.9) for the
acoustic system (3.30) in conservative form, with penalty parameters

λ1 = 1

2
, λ2 = −1

2
.

The interface treatment is conservative, and does not contribute to temporal growth or decay
of the energy (3.39).

3.4 Numerical Results

We use the proposed discontinuous CutFEM (3.9) to solve the scalar advection Eq. (3.22)
and the acoustic system (3.30). The background mesh on the domain� is uniform with mesh
size h = |�|/N , where N is the number of elements. In the numerical simulations, we use
γM = 0.25 and γA = 0.75.

To discretize in time we use the explicit third order TVD Runge–Kutta method [11] when
the polynomial degree in space r ≤ 2 (see (3.4)), i.e.,

un,1 = un + �t L
(
un, gnh , t

n) , (3.42)

un,2 = 3

4
un + 1

4
un,1 + 1

4
�t L

(
un,1, gn,1

h , tn + �t
)

, (3.43)

un+1 = 1

3
un + 2

3
un,2 + 2

3
�t L

(
un,2, gn,2

h , tn + 1

2
�t

)
. (3.44)

Here ut = L(u, g, t) is the semi-discrete problem, �t = tn+1 − tn is the time step and
gnh , g

n,1
h , gn,2

h denote the approximations of the boundary condition g(t) at different time
stages. The inflow information g is imposed via Taylor expansion of g(t) to avoid order
reduction with gnh = g(tn), gn,1

h = g(tn) + �tg′(tn) and gn,2
h = g(tn) + �t

2 g′(tn) +
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(�t)2

4 g′′(tn), for details see [33]. For the approximation of boundary conditions in systems
see [5].When r = 3we instead use the fourth order five stagesRunge–Kuttamethod [11]. The
time step is taken to be�t = Ch

max�{|F ′(uh)|} with given Courant numberC = 0.3, 0.2, 0.1, for
r = 1, 2, 3, respectively. Here, max�{|F ′(uh)|} represents the largest absolute value of the
eigenvalues of the Jacobian ∂F(uh)

∂uh
on the domain �. Next, we will demonstrate the accuracy

and conservation of the proposedmethod by solving test problems.Wewill measure the error
in the following norms

||u − uh ||p� =
2∑

i=1

||ui − uh,i ||p�i
, p = 1, 2,

||u − uh ||L∞(�1∪�2) = max{max
x∈�1

{|u1(x, t) − uh(x, t)|}, max
x∈�2

{|u2(x, t) − uh(x, t)|}}.

Here || · ||p�i
= ∫

�i
| · |pdx denotes the usual L p-norms in domain �i . The error in the

L∞-norm is measured as the maximum value of |u − uh | on the quadrature points of each
element, the end points of each elements and the interface point. We note that the quadrature
points of the integration in the cut element in each domain �i are taken over the part of the
background element, which is in the domain �i .

3.4.1 Scalar Problem: Accuracy

We consider problem (3.22) with xL = −1, xR = 1, a stationary interface at x� = 10−4,
parameters a1 = 2, a2 = 1, initial condition

f (x) =
{
sin(2πx), x ∈ [−1, x�],
2 sin(4π(x − x�/2)), x ∈ [x�, 1], (3.45)

and inflow boundary condition u(xL , t) = g(t) = sin(2π(−1− 2t)). Note that u2(x�, 0) =
2u1(x�, 0) so the initial condition satisfies the interface condition (2.3). The exact solution
to this problem is

u(x, t) =
{
sin(2π(x − 2t)), x ∈ [−1, x�],
2 sin(4π(x − t − x�/2)), x ∈ [x�, 1]. (3.46)

We solve up to time t = 1 with different mesh sizes and polynomial spaces r = 1, 2, 3
(i.e., P1, P2, P3). We choose the penalty parameters to be λ1 = 0.1 and λ2 = λ1 −1. Errors
in the L2- and L∞-norm and the corresponding convergence orders using the proposed
method are shown in the left part of Table 1. For comparison, we also show results using
the standard DG method in the right part of Table 1. For the standard DG method we use
the same numerical fluxes but generate the mesh so that the interface x� is located on an
element edge. We do this by using uniform meshes with N = N1 + N2 elements and mesh
size h1 = |�1|/N1, h2 = |�2|/N2 for�1 and�2, respectively. Here N1, N2 are chosen such
that h1, h2 are close to the mesh size h = |�|/N we use in the CutFEM. From the numerical
results in Table 1, we observe that the proposed method and the standard DG method have
optimal order of accuracy and that the magnitude of the errors in both L2- and L∞-norm are
similar for the two methods. We have also tested other choices for the parameters a1 and a2
and observed similar results as shown here.
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Table 1 Errors and orders of accuracy at t = 1 for the problem in Sect. 3.4.1 solved by the proposed method
on a uniform background mesh and by a standard DG method on a quasi-uniform mesh fitted to the interface.
Polynomial degrees 1, 2, 3 and N elements are used

Discontinuous CutFEM method Standard DG method

N L2 error Order L∞ error Order L2 error Order L∞ error Order

20 2.64E−01 – 5.60E−01 – 2.64E−01 – 5.61E−01 –

40 4.92E−02 2.42 1.13E−01 2.31 4.92E−02 2.42 1.13E−01 2.32

80 9.74E−03 2.34 3.07E−02 1.88 9.75E−03 2.34 3.07E−02 1.87

160 2.22E−03 2.13 7.96E−03 1.95 2.22E−03 2.13 7.96E−03 1.95

320 5.40E−04 2.04 2.02E−03 1.98 5.40E−04 2.04 2.02E−03 1.98

20 1.21E−02 – 6.07E−02 – 1.21E−02 – 6.07E−02 –

40 1.35E−03 3.16 7.78E−03 2.97 1.35E−03 3.16 7.78E−03 2.96

80 1.66E−04 3.03 1.01E−03 2.94 1.66E−04 3.03 1.01E−03 2.94

160 2.06E−05 3.01 1.29E−04 2.98 2.06E−05 3.01 1.29E−04 2.98

320 2.58E−06 3.00 1.61E−05 2.99 2.58E−06 3.00 1.61E−05 2.99

20 7.14E−04 – 5.65E−03 – 7.14E−04 – 5.65E−03 –

40 4.41E−05 4.02 3.68E−04 3.94 4.41E−05 4.02 3.68E−04 3.94

80 2.75E−06 4.00 2.29E−05 4.00 2.75E−06 4.00 2.29E−05 4.00

160 1.72E−07 4.00 1.45E−06 3.99 1.72E−07 4.00 1.44E−06 3.99

320 1.07E−08 4.00 9.05E−08 4.00 1.07E−08 4.00 9.05E−08 4.00

3.4.2 Scalar Problem: Conservation

With this examplewe test howwell quantities are conserved, and how errors and the condition
number of the mass matrix depend on the cut size. This example is used in [19] and is similar
to Example 1.1, but with less smooth initial data. The initial condition and inflow boundary
conditions are f (x) = 0 and u(xL , t) = g(t) = sin(4π(−1 + 3t)), respectively. The inflow
condition is weakly imposed by the upwind flux information at the inflow boundary. The
exact solution is

u(x, t) =
⎧⎨
⎩
g(t − (x − xL)/2), t ≥ x−xL

2 , x ∈ [−1, x�],
2g(t − x + (x� + xL)/2), t ≥ x − x�+xL

2 , x ∈ [x�, 1],
0, else.

(3.47)

We use the proposed method with r = 2, i.e. quadratic polynomials and a uniform
background mesh. The interface is at x� = 10−4. In Fig. 3, we show the numerical solution
on the background mesh consisting of 400 elements and the exact solution at time t = 0.5
and t = 1. Our results compare well with those in [19].

In Fig. 4, we show the conservation error

e(t) =
Nt−1∑
n=0

�t

6

(
a1g

n
h − a2u

n
h(xR) + 4

(
a1g

n,2
h − a2u

n,2
h (xR)

)

+ a1g
n,1
h − a2u

n,1
h (xR)

)
−
∫

�

(uNt
h (x) − u0h(x))dx . (3.48)

Here, Nt is the number of time steps from time 0 to t . unh, u
n,1
h , un,2

h are the approximations of
the solution at time tn, tn+�t, tn+�t/2, respectively. The inflow information introduced in
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Fig. 3 Solutions to the problem in Sect. 3.4.2 with zero initial data using discontinuous quadratic polynomials
in space on a uniform mesh with 400 elements. Left: t = 0.5. Right: t = 1. Star: numerical solution. Solid
line: exact solution. The dashed line indicates the interface’s position

Fig. 4 Conservation errors for the example in Sect. 3.4.2. A uniform mesh with 40 elements and piecewise
quadratic polynomials are used. Left: λ1 = 0.1, λ2 = 1 − λ1. Right: λ1 = 0.25, λ2 = −0.25

each time step is equal to �t
6

(
gnh + 4gn,2

h + gn,1
h

)
, which is an approximation of the integral∫ tn+1

tn g(t)dt . The error e(t) takes into account the approximation of the inflow boundary
condition. If instead the exact integral at the inflow boundary is used there would be a
contribution to the conserved quantity of the order �t4 corresponding to the integration
error. The conservation error e (Fig. 4, left panel) with λ1, λ2 satisfying condition (3.20),
is of the order of machine epsilon and remains on the same level also for other refinements
and for other polynomial degrees than r = 2. This shows that the interface treatment of the
proposed method is conservative. We also show the conservation error when the parameters
λ1 = 0.25, λ2 = −0.25, which do not satisfy the conservation condition (3.20), see the right
panel of Fig. 4. We observe that the scheme in this case is not conservative and has a large
error, which decrease with mesh refinement but still is large compared to machine error.

Next we investigate how the error depends on the position of the interface relative the
background mesh. We use linear polynomials in space, h = 1/200 and x� = αh, with α

varying between 0 and 1. Note that there is a mesh node at x = 0 so that α is the relative cut
size. In Fig. 5, we plot the L1-, L2- and L∞-errors at t=1 as a function of α. We have scaled
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Fig. 5 Errors in the numerical
solution of the problem in Sect.
3.4.2 at t=1 as a function of the
relative cut size. A uniform mesh
with 400 elements and piecewise
linear polynomials are used. The
interface is at x� = αh, and we
use 400 equally distributed α’s in
[0, 1]

(a) (b) (c)

Fig. 6 The condition number of the mass matrix as a function of the relative cut size for the problem in Sect.
3.4.2 at t = 1. A uniform mesh with 400 elements and P1, P2, P3 polynomials are used. The interface is at
x� = αh, and we have considered 400 equally distributed α’s in [0, 1]

the L∞-error, by dividing the error with 10, to show all errors in one figure. We observe that
the L1− and L2−errors are independent of how the interface cuts the background mesh and
the L∞-error does not change much either.

We have also checked the conditioning of the mass matrix in the same setting as above,
for several element types. The condition numbers as a function of the relative cut size for
piecewise linear, quadratic and cubic polynomials are shown in Fig. 6. We see that the
stabilization controls the condition number so that it stays bounded and on the same level,
independently of how the interface cuts the background mesh.

3.4.3 The Acoustic System

We now use the proposed CutFEM method (3.9) with penalty parameters λ1 = 0.5 and
λ2 = −0.5 to solve the acoustic system in conservation form (3.30). We consider the same
example as in [24]. The domain is � = [0, 300], a long fluid medium with an interface at
x� = 96.3, and with physical parameters

(ρ(x), c(x)) =
{

ρ1 = 1000 kg/m3, c1 = 1500m/s, if x ≤ x�,

ρ2 = 1200 kg/m3, c2 = 2800m/s, if x ≥ x�.

The initial condition is

U (x, 0) = f(x) = − f0(ξ)

( 1
c0
ρ0

)
.

123



84 Page 16 of 39 Journal of Scientific Computing (2022) 90 :84

(a)

(c)

(b)

(d)

Fig. 7 Initial data and solution at t = 39ms for the acoustic problem in Sect. 3.4.3. A uniform background
mesh with 400 elements and piecewise quadratic polynomials are used. Solid line: exact solution. Symbols:
numerical solution

Here, f0(ξ) is a spatially bounded sinusoidal function

f0(ξ) =
{
sin (ωcξ) − 21

32 sin (2ωcξ) + 63
768 sin (4ωcξ) − 1

512 sin (8ωcξ) , if 0 < ξ < 1
fc

,

0 else, with ξ = t0 − x
c ,

where the central frequency fc = 50Hz, ωc = 2π fc, and t0 = 51ms. The initial values of
the conservative variables m and q are shown to the left in Fig. 7. When the wave reaches
the interface, the acoustic wave is transmitted and reflected.

We simulate this problem up to time t = 39ms using different mesh sizes and polynomial
spaces. We note that the waves do not reach the boundaries up to time t = 39ms thus the
zero boundary condition is used in our implementation. In the computation the conservative
variables are used, but in Table 2, we give the L2-and L∞-errors and the corresponding order
of accuracy for the primitive variables. We observe that the proposed method has optimal
order of accuracy also for the acoustic problem. In Fig. 7, we show the initial values and
the numerical solution at time t = 39ms. We see that our scheme can simulate this problem
very well and capture the reflected wave and the transmitted wave. In Fig. 8, we plot the
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Table 2 Errors and orders of accuracy at t = 39ms for the acoustic problem inSect. 3.4.3.Uniformbackground
meshes with N elements and piecewise polynomials of orders 1,2,3 (top, middle, bottom) are used

ph uh

N L2 error Order L∞ error Order L2 error Order L∞ error Order

200 2.57E+01 1.99 1.26E+02 1.90 8.68E−06 1.98 3.76E−05 1.90

400 4.33E+00 2.57 2.20E+01 2.52 1.49E−06 2.54 6.55E−06 2.52

800 6.00E−01 2.85 3.40E+00 2.69 2.13E−07 2.81 1.06E−06 2.62

1600 8.71E−02 2.78 5.08E−01 2.74 3.38E−08 2.66 1.96E−07 2.44

3200 1.59E−02 2.46 9.03E−02 2.49 6.83E−09 2.31 6.02E−08 1.70

6400 3.60E−03 2.14 2.48E−02 1.87 1.63E−09 2.07 1.65E−08 1.87

200 8.29E−01 3.74 4.11E+00 3.52 2.91E−07 3.70 1.35E−06 3.38

400 5.73E−02 3.86 2.60E−01 3.99 2.21E−08 3.72 1.61E−07 3.06

800 5.00E−03 3.52 2.94E−02 3.14 2.16E−09 3.35 1.96E−08 3.04

1600 5.80E−04 3.11 3.67E−03 3.00 2.60E−10 3.06 2.45E−09 3.00

3200 7.12E−05 3.02 4.60E−04 3.00 3.22E−11 3.01 3.07E−10 3.00

6400 8.87E−06 3.01 5.75E−05 3.00 4.02E−12 3.00 3.84E−11 3.00

200 2.61E−02 5.11 1.58E−01 4.68 1.14E−08 4.82 1.05E−07 3.68

400 8.49E−04 4.94 9.82E−03 4.01 5.15E−10 4.47 6.55E−09 4.01

800 5.03E−05 4.08 6.07E−04 4.02 3.16E−11 4.03 4.05E−10 4.02

1600 3.14E−06 4.00 3.80E−05 4.00 1.97E−12 4.00 2.53E−11 4.00

3200 1.97E−07 4.00 2.37E−06 4.00 1.23E−13 4.00 1.58E−12 4.00

Fig. 8 Conservation errors for the acoustic example in Sect. 3.4.3. A uniform background mesh with 400
elements and piecewise quadratic polynomials are used

conservation errors of mh and qh with respect to time t . The conservation errors have small
oscillations after the wave arrives at the interface. But all errors are of the order of machine
epsilon which demonstrates that the proposed method is conservative also for the acoustic
problem.
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4 Moving Interface

We now consider the scalar hyperbolic problem (2.1)–(2.3) for t ∈ [0, T ], with flux

F(u) = au =
{
F1(u1) ≡ a1u1, x ∈ �1(t),
F2(u2) ≡ a2u2, x ∈ �2(t),

(4.1)

and a moving interface with x ′
� �= 0. We assume a1 − x ′

�(t), a2 − x ′
�(t) are non-zero, and

have the same sign at any fixed time t . In the following we define a space-time CutFEMwith
discontinuous elements in both space and time following [9,15,32]. We emphasise that we do
not explicitly construct a space-time domain in Rd+1 as is done in for example [29]. Here d is
the space dimension. The method we propose here is based on approximating the space-time
integrals in the weak form by using first a quadrature rule in time. The implementation of the
space-time unfitted finite element method we propose is straightforward and simple starting
from an implementation of CutFEM for a stationary interface.

4.1 Mesh and Spaces

As before, let Th be a quasi-uniform partition of the domain� generated independently of the
position of the interface and let Eh denote the set containing the edges in this mesh. On this
time independent mesh, that we refer to as the background mesh, we define the polynomial
space Ṽrs

h as in (3.4). For time t ∈ [0, T ] define Th,i (t) as in (3.1) and Eh,i (t) as in (3.2).
These sets are now time dependent since the interface is moving and �i changes with time.
We also define the set

Th,�(t) = {
I j ∈ Th : I j ∩ �(t) �= ∅} . (4.2)

We discrete the interval [0, T ] with 0 = t0 < t1 < t2 < · · · < tN = T . During the time
interval I n = [tn−1, tn], the active meshes T n

h,1 and T n
h,2, contain those elements in the

background mesh that create the following subdomains N n
h,1 and N n

h,2, respectively

N n
h,1 =

⋃
t∈I n

⋃
I j∈Th,1(t)

I j , N n
h,2 =

⋃
t∈I n

⋃
I j∈Th,2(t)

I j . (4.3)

We let En
h,i denote the set of interior edges in the active mesh T n

h,i , for i = 1, 2. We also
define the set of elements in the background mesh that are cut by the interface during the
interval I n

T n
h,� = {

I j ∈ Th,�(t) : t ∈ I n
}
. (4.4)

Let Fn
h,i contain those edges in the mesh T n

h,� that also belong to En
h,i . Note that the set F

n
h,i

does not change in the time interval I n . For an illustration see Fig. 9.
In the proposed space-time method, we use piecewise polynomial spaces both in time and

space. On the space-time slab I n × N n
h,i , i = 1, 2 we define the space

V n,r
h,i = Prt (I n) ⊗ Ṽrs

h |T n
h,i

.

Here r = (rs, rt ), where rs and rt are the degree of the polynomials used in space and time,
respectively. Define the function space Vn,r

h as

Vn,r
h =

{
vh = (vh,1, vh,2) : vh,i ∈ V n,r

h,i , i = 1, 2
}

. (4.5)
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Fig. 9 Illustration of the active
meshes and a function uh ∈ Vn,1

h
at some time t ∈ I n

For example, for piecewise linear elements in time and space, r = (1, 1), a function vh ∈ Vn,r
h

can be expressed as vh = (vh,1, vh,2) with

vh,i = vi00 + vi01
x − xk
h/2

+ vi10
t − tn−1

�tn
+ vi11

x − xk
h/2

t − tn−1

�tn
. (4.6)

Here, vik j are the coefficients of the basis functions: 1,
x−xk
h/2 , t−tn−1

�tn , t−tn−1

�tn
x−xk
h/2 and �tn =

tn − tn−1 denotes the time step of interval I n . Functions in Vn,r
h are discontinuous both in

space and time. We define the jump and average of a function v at x as in (3.6) and (3.7) and
the jump at a time tn as

[v]n = vn,+ − vn,−, with vn,− = lim
ε→0+ v(x, tn − ε), vn,+ = lim

ε→0+ v(x, tn + ε).

When a function is single valued at tn we will use the notation vn(·) = v(·, tn).

4.2 Weak Formulation

We now present a weak formulation where space and time are treated similarly. For each
time interval I n , given un−1,−

h , find uh ∈ Vn,r
h such that for ∀vh ∈ Vn,r

h

(un,−
h , vnh )�1(tn)∪�2(tn) − (un−1,−

h , vn−1
h )�1(tn−1)∪�2(tn−1)

−
∫
I n

(uh, (vh)t )�1(t)∪�2(t) dt +
∫
I n
ah(uh, vh) dt + γA

∫
I n

J0(uh, vh) dt = 0. (4.7)

Here un−1,−
h is the solution from the previous space-time slab (with u0,−h given by the initial

condition) and

ah(uh, vh) = −(F(uh), (vh)x )�1(t)∪�2(t) −
2∑

i=1

∑
e∈Eh,i (t)

F̂e(uh)[vh]e

− ([(F(uh) − x ′
�uh)vh]�(t) + [F(uh) − x ′

�uh]�[λvh]�(t)
)
. (4.8)

The flux F̂e(uh) is defined as in (3.15) with λe = |ai | for e ∈ Eh,i , and the penalty parameter
λ is piecewise constant, see (3.14), and will be chosen such that the scheme is stable and
conservative (see Theorem 4). The stabilization term J0(uh, vh) is defined as in (3.13), but
with the set Fn

h,i instead of Fh,i (t). Since the set Fn
h,i does not change in the time interval

I n , and uh and vh are polynomials in time, the integral
∫
I n J0(uh, vh) dt , can be computed
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analytically. The stabilization term is introduced to control the condition number of the
resulting system matrix independently of how the geometry cuts through the background
mesh, and defines an extension of uh to the entire active mesh which is needed when the
space-time integrals in the weak form are approximated by quadratures rules, see Sect. 4.4.

To see that the weak formulation above is consistent, we multiply Eq. (2.1) by a test
function v ∈ V n,r

h , integrate in both space and time and impose the interface condition (2.3)
weakly. Integration by parts in space and using (3.18), together with integration by parts in
time, yields∫

I n

∫
�1(t)∪�2(t)

(uv)t dxdt =
∫
I n

d

dt

∫
�1(t)∪�2(t)

uv dxdt +
∫
I n

[x ′
�(t)uv]� dt

= (un, vn)�1(tn)∪�2(tn) − (un−1, vn−1)�1(tn−1)∪�2(tn−1) +
∫
I n

[x ′
�(t)uv]� dt . (4.9)

By adding ([u]n−1, vn−1)�1(tn−1)∪�2(tn−1), using [u]n = 0 at all time t = tn , and using the
identity utv = (uv)t − uvt we get the proposed weak formulation.

Choosing the test function vh = 1 in (4.7) we have∫
�(tn)

un,−
h dx −

∫
�(tn−1)

un−1,−
h dx

=
∫
I n

(
F̂(uh(xL , t)) − F̂(uh(xR, t))

)
dt

+
∫
I n

([F(uh) − x ′
�uh]� + (λ2 − λ1)[F(uh) − x ′

�uh]�) dt . (4.10)

With λ2 − λ1 + 1 = 0, as in (3.20), the proposed space-time CutFEM is conservative.

Remark 2 Note that we can also consider the space-time formulation without integration by
parts in time. Thus, given un−1,−

h , find uh ∈ Vn,r
h such that∫

I n
((uh)t , vh)�1(t)∪�2(t)dt + ([uh]n−1, vn−1

h )�1(tn−1)∪�2(tn−1)

−
∫
I n

(F(uh), (vh)x )�1(t)∪�2(t) dt −
∫
I n

2∑
i=1

∑
e∈Eh,i

F̂e(uh)[vh]e dt

−
∫
I n

([F(uh)vh]� + [F(uh) − x ′
�uh]�[λvh]�

)
dt + γA

∫
I n

J0(uh, vh)dt = 0, (4.11)

for all vh ∈ Vn,r
h . This weak formulation is also consistent. With vh = 1 we get∫

I n

∫
�1(t)∪�2(t)

(uh)t dxdt −
∫
I n

(F̂(u(xL , t)) − F̂(u(xR, t))) dt

−
∫
I n

([F(uh)]� + [F(uh) − x ′
�uh]�(λ2 − λ1)

)
dt +

∫
�(tn−1)

[uh]n−1 dx = 0.

(4.12)

If (4.9) (with v = 1) holds for the discrete function uh , that is if∫
I n

∫
�1(t)∪�2(t)

(uh)t dxdt −
∫
I n

[x ′
�uh]� dt +

∫
�(tn−1)

[uh]n−1 dx

=
∫

�(tn)
un,−
h dx −

∫
�(tn−1)

un−1,−
h dx, (4.13)
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it follows that the scheme (4.11) is conservative when (3.20) holds, i.e. λ2 − λ1 = −1.
However, in the fully discrete scheme we use a quadrature rule to approximate the time
integral. Since the domain is time-dependent, (4.13) can not hold exactly. Therefore a method
based on the weak formulation (4.11) may not be exactly conservative with a conservation
error depending on the accuracy of the quadrature rule. This is demonstrated in the numerical
examples.

4.3 Stability Analysis of the Semi-discrete Scheme

We now consider the energy stability of the proposed semi-discrete space-time CutFEM
(4.7). Similar to the scalar advection problem (3.22) with a stationary interface, we consider
the weighted energy with η > 0, i.e.,

Eη(t, uh) = 1

2

∫
�1(t)

(uh,1(x, t))
2 dx + η

2

∫
�2(t)

(uh,2(x, t))
2 dx . (4.14)

For convenience, we will use the notation�n
1,�

n
2 for�1(tn),�2(tn), respectively. Choosing

vh = (uh,1, ηuh,2) in (4.7) we have

∫
�n
1

(un,−
h,1 )2 dx −

∫
�n−1
1

un−1,−
h,1 un−1,+

h,1 dx −
∫
In

∫
�1(t)

uh,1(uh,1)t dxdt

+ η

∫
�n
2

(un,−
h,2 )2 dx − η

∫
�n−1
2

un−1,−
h,2 un−1,+

h,2 dx − η

∫
In

∫
�2(t)

uh,2(uh,2)t dxdt

= −
∫
In
ah(uh, vh) dt − γA

∫
In
J0(uh, vh) dt . (4.15)

Integrating the last two terms in the left hand side of Eq. (4.15) we get

Lhs = −1

2

(∫
�n
1

(un,−
h,1 )2dx −

∫
�n−1
1

(un−1,+
h,1 )2dx −

∫
In
x ′
�(uh,1(x�, t))2 dt

)

− η

2

(∫
�n
2

(un,−
h,2 )2dx −

∫
�n−1
2

(un−1,+
h,2 )2dx +

∫
In
x ′
�(uh,2(x�, t))2 dt

)

+
∫

�n
1

(un,−
h,1 )2dx −

∫
�n−1
1

un−1,+
h,1 un−1,−

h,1 dx

+ η

(∫
�n
2

(un,−
h,2 )2dx −

∫
�n−1
2

un−1,+
h,2 un−1,−

h,2 dx

)

= Eη(t
n, un,−

h ) − Eη(t
n−1, un−1,−

h ) + 1

2

(
‖[uh,1]n−1‖2

�n−1
1

+ η‖[uh,2]n−1‖2
�n−1
2

)

− 1

2

∫
In

(
ηx ′

�(uh,2(x�, t))2 − x ′
�(uh,1(x�, t))2

)
dt . (4.16)

As in the analysis in Sect. 3.3, using the definition of ah(·, ·), and integrating the term
(auh,i , (uh,i )x )�i (t), taking into account that uh,i is discontinuous across the edges, using
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that a
2 [u2h]e = a{uh}e[uh]e, and the definition of F̂e (3.15), we have

−
∫
In
ah(uh, vh) dt − γA

∫
In
J0(uh, vh) dt

+ 1

2

∫
In
x ′
�

(
η(uh,2(x�, t))2 − (uh,1(x�, t))2

)
dt = −ET − I T , (4.17)

where vh = (uh,1, ηuh,2) and

ET =
∫
In

⎛
⎝a1

2

∑
e∈Eh,1

([uh,1]e)2 + η
a2
2

∑
e∈Eh,2

([uh,2]e)2
⎞
⎠ dt,

+
∫
In

γA

⎛
⎝ ∑

e∈Fn
h,1

J0(uh,1, uh,1) +
∑

e∈Fn
h,2

ηJ0(uh,2, uh,2)

⎞
⎠ dt, (4.18)

I T =
∫
In

(
1

2
(a1 − x ′

�)uh,1 + λ1[(a − x ′
�)uh]�

)
uh,1 dt

− η

∫
In

(
1

2
(a2 − x ′

�)uh,2 + λ2[(a − x ′
�)uh]�

)
uh,2 dt . (4.19)

Collecting the results in (4.15)–(4.19) and letting ã1 = a1 − x ′
� and ã2 = a2 − x ′

� yields

Eη(t
n, un,−

h ) − Eη(t
n−1, un−1,−

h ) + 1

2

(
‖[uh,1]n−1‖2

�n−1
1

+ η‖[uh,2]n−1‖2
�n−1
2

)

= −ET −
∫
In
uTh Suh dt, (4.20)

with

S =
(

( 12 − λ1)ã1
1
2 (ã2λ1 + ã1ηλ2)

1
2 (ã2λ1 + ã1ηλ2) −( 12 + λ2)ηã2

)
, uh =

(
uh,1(x�, t)
uh,2(x�, t)

)
. (4.21)

In (4.18) ET ≥ 0 and will not contribute to energy growth. Hence, if the matrix S is positive
semi-definite, we obtain energy stability. Note that the matrix S in (4.21) is of the same form
as in the case of a stationary interface, see (3.27), but with ãi instead of ai . Thus, by Lemma 1
we have the following theorem.

Theorem 4 Consider the problem (2.1)–(2.3) with the flux function (4.1), and a moving
interface at x�(t) such that a1 − x ′

�(t) and a2 − x ′
�(t) have equal, non-zero and constant

sign for all time t. With penalty parameters λ1 and λ2 satisfying (3.20) and{
λ1 ≤ 1

2 , λ2 ≤ − 1
2 , if a1 − x ′

� < 0, a2 − x ′
� > 0,

λ1 ≥ 1
2 , λ2 ≥ − 1

2 , if a1 − x ′
� < 0, a2 − x ′

� > 0,
(4.22)

the space-time CutFEM (4.7) is conservative and there exists a positive η such that the energy
defined in (4.14) does not grow with time.

4.4 Quadrature in Time

As in [9,15,32], we approximate the space-time integrals in the variational formulation using
quadrature rules, first in time and then in space. Note that using a quadrature rule in time we
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have
∫
I n

∫
�i (t)

f (x, t)dxdt ≈
nq∑
q=1

ωn
q

∫
�i (tnq )

f (x, tnq )dx . (4.23)

Here, ωn
q are the quadrature weights, tnq , q = 1, . . . , nq are quadrature points in the interval

I n , and nq is the number of quadrature points.
In the numerical examples, both the trapezoidal rule and Simpson’s rule are used. In

the time interval I n = [tn−1, tn], the trapezoidal rule is given by two quadrature points,
tn1 = tn−1 and tn2 = tn, and weights ωn

1 = ωn
2 = �tn

2 . In Simpson’s quadrature rule, the

three quadrature points are tn1 = tn−1, tn2 = tn−1+tn
2 , and tn3 = tn , and the weights are

ωn
1 = ωn

3 = �tn
6 and ωn

2 = 4�tn
6 .

4.5 Numerical Examples with Moving Interfaces

We use the proposed space-time cut finite element method (4.7) to solve problem (2.1)–(2.3)
with flux (4.1) and an moving interface x�(t).

4.5.1 Scalar Problemwith a Moving Interface: Accuracy

We use a1 = 2, a2 = 1, x�(0) = 10−4, x ′
� = 0.111, and the initial value

u(x, 0) = f (x) =
{
sin(2πx), x ∈ [−1, x�(0)],
β sin(2πβx + 2πx�(0)(1 − β)), x ∈ [x�(0), 1]. (4.24)

Here β = a1−x ′
�

a2−x ′
�

. This initial condition satisfies the interface condition (2.3). The inflow

boundary condition g(t) = u(xL , t) = sin(2π(xL − 2t)) is used. The outflow boundary
condition is used on the right boundary. The exact solution is

u(x, t) =
{
sin(2π(x − 2t)), x ∈ [−1, x�(t)],
β sin(2πβ(x − t) + 2πx�(0)(1 − β)), x ∈ [x�(t), 1]. (4.25)

We use the space-time CutFEM (4.7) with discontinuous piecewise linear polynomials in
time and discontinuous piecewise linear and quadratic polynomials in space. For the time
integration we use Simpson’s rule. The time step is �t = h/12 when linear elements are
used in space, that is r = (1, 1), and �t = 0.005h when quadratic polynomials are used
in space, that is r = (2, 1). In the latter case the time step is small enough so that the error
is not dominated by the error in the time discretization. We use γA = 0.75, λ1 = 0, and
λ2 = λ1 − 1. We solve the problem up to time t = 0.1. In Table 3, we show the L2-and
L∞-errors for different mesh sizes h = 2/N and we observe that the space-time CutFEM
(4.7) has the optimal order of accuracy for this moving interface problem. Note that we use
a uniform background mesh with mesh size h and the interface cuts the mesh arbitrarily as
it evolves in time.

4.5.2 Scalar Problemwith a Moving Interface: Conservation

We consider the same example as in [19] but with a moving interface

x�(t) = x�(0) + 0.4 sin(t)(x�(0) − xL)(xR − x�(0)), (4.26)
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Table 3 Errors and orders of accuracy at t = 0.1 for the problem in Sect. 4.5.1 with a moving interface. The
approximation uses space-time polynomials of orders (1,1) and (2,1), respectively, and a uniform background
mesh with N elements in space

P1 in space P2 in space

N L2 error Order L∞ error Order L2 error Order L∞ error Order

20 1.46E−01 – 4.50E−01 – 1.25E−02 – 7.70E−02 –

40 3.91E−02 1.90 1.40E−01 1.69 1.63E−03 2.94 1.03E−02 2.90

80 1.00E−02 1.96 3.76E−02 1.89 2.07E−04 2.98 1.31E−03 2.98

160 2.56E−03 1.97 9.65E−03 1.96 2.62E−05 2.98 1.94E−04 2.76

320 6.41E−04 1.99 2.71E−03 1.83 3.27E−06 3.00 2.38E−05 3.03

Fig. 10 Results for the problem in Sect. 4.5.2, solved by the proposed space-time method (4.7) with r=(1,1)
on a uniform background mesh with 400 elements in space. Left: uh at t = 1, with initial and present interface
positions indicated by dashed lines. Right: Conservation error e(t) (see Sect. 3.4.2)

where x�(0) = −0.499. Let a1 = 2, a2 = 1, f (x) = 0 on the domain � = [−1, 1].
The inflow boundary condition g(t) = sin(4π(−1 + 3t)) is used on the left boundary. We
solve the problem up to time t = 1 when the outflow information is still zero. The space-
time CutFEM is used to solve the problem with parameters λ1 = 0 and λ2 = λ1 − 1, a
uniform background mesh with 400 elements, and linear elements both in time and space,
r = (1, 1). Simpson’s rule is used for the time integration with Courant number C = 1/6.
We measure the conservation error as in (3.48), but replacing unh by un,−

h and noting that
� = �1(t) ∪ �2(t).

In the left panel of Fig. 10, the numerical solution uh is shown and we can observe that the
proposed space-time CutFEM can simulate the problem with a moving interface well. We
note that the solution has a weak discontinuity and it is not surprising that small oscillations
appear. In the right side of Fig. 10, we show the conservation error e(t) for the numerical
solution uh . We see that the proposed space-time method is conservative. In Fig. 11, we
also show the numerical solution uh and the conservation error e(t) using the variational
formulation (4.11). We observe that this scheme also simulates this problem well, but the
conservation error is significantly larger when the weak formulation (4.11) is used.
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Fig. 11 Results for the problem in Sect. 4.5.2, solved by the space-time method (4.11) with r=(1,1) on a
uniform background mesh with 400 elements in space. Left: uh at t = 1, with initial and present interface
positions indicated by dashed lines. Right: Conservation errors, (see Sect. 3.4.2)

Fig. 12 The domains in the
locally implicit scheme

4.6 A Locally Implicit Method

We now combine the proposed space-time CutFEM with an explicit CutFEM. The space-
time method is active in a neighbourhood of the interface and the explicit CutFEM method
is applied away from the interface. For simplicity, we only consider the case a1 − x ′

� > 0,
a2 − x ′

� > 0, and piecewise linear polynomials both in space and time.
Recall the sets Fn

h,i , i = 1, 2 from Sect. 4.1. We now let �l be the subdomain containing
the set of elements that have an edge in ∪iFn

h,i and denote by �i,E the remaining part of
�i , i.e, the elements in �i that are not in �l . Note that �i,E ⊂ �i (t) for all t ∈ I n and
that no elements in �i,E are cut by the interface during the time interval I n . In Fig. 12 we
illustrate how the space-time domain I n ×� can be partitioned into the three parts, I n ×�l ,
I n × �1,E , and I n × �2,E .

In regions away from the interface we want to apply a standard explicit DG method.
Recall the mesh Th and the piecewise polynomial space Ṽ1

h defined in Sect. 3.1. We define
the following meshes and spaces restricted to �i,E ,

T E
h,i = {

I j ∈ Th : I j ∩ �i,E �= ∅} , (4.27)
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and
Vh,i = Ṽ1

h |T E
h,i

, i = 1, 2. (4.28)

Wenow formulate a standardDGmethodwith a two stage second orderRunge–Kuttamethod:
given ûn−1

h,i ∈ Vh,i find û
(1)
h,i ∈ Vh,i and ûnh,i ∈ Vh,i such that

(
û(1)
h,i − ûn−1

h,i , v̂h

)
�i,E

+ �tn Ah(û
n−1
h,i , v̂h) = 0, ∀v̂h ∈ Vh,i , (4.29)

(
ûnh − 1

2
(ûn−1

h + û(1)
h ), v̂h

)
�i,E

+ �tn

2
Ah(û

(1)
h , v̂h) = 0, ∀v̂h ∈ Vh,i , (4.30)

with

Ah(ûh,i , v̂h) = −(F(ûh,i ), (v̂h)x )�i,E −
2∑

i=1

∑
e∈Eh,i∩�i,E

F̂e(ûh,i )[v̂h]e, (4.31)

and F̂e(ûh,i ) as in (3.15) at interior edges with λe = |ai | for e ∈ Eh,i , i = 1, 2.
In the space-time slab I n ×�l we use the proposed space-timemethod. The active meshes

and the spaces are defined exactly as in Sect. 4.1, but with Th,i (t), i = 1, 2 restricted to �l .
Thus, given un−1,−

h , the solution from the previous space-time slab, find uh ∈ Vn,r
h such that

2∑
1

(
((un,−

h , vnh )�l∩�i (tn) − (un−1,−
h , vn−1

h )�l∩�i (tn−1) −
∫
I n

(uh, (vh)t )�l∩�i (t) dt

)

+
∫
I n
ah(uh, vh) dt + γA

∫
I n

J0(uh, vh) dt = 0, ∀vh ∈ Vn,r
h , (4.32)

with

ah(uh, vh) = −
2∑

i=1

⎛
⎝(F(uh), (vh)x )�l∩�i (t) +

∑
e∈Eh,i (t)∩�l

F̂e(uh)[vh]e
⎞
⎠

− ([(F(uh) − x ′
�uh)vh]� + [F(uh) − x ′

�uh]�[λvh]�
)
, (4.33)

and λ as in Theorem 4. We choose r = (1, 1).
Taking the test functions to be one in both schemes, i.e., v̂h = 1, and vh = 1 and assuming

for simplicity that the contributions at the physical boundary x = xL and x = xR vanish we
have

2∑
i=1

(
(ûnh,i , 1)�i,E − (ûn−1

h,i , 1)�i,E − �tn

2

(
F̂ei (û

n−1
h,i ) + F̂ei (û

(1)
h,i )
))

= 0, (4.34)

2∑
i=1

(
(unh, 1)�l∩�i (tn) − (un−1,−

h , 1)�l∩�i (tn−1) −
∫
I n

F̂ei (uh) dt

)
= 0, (4.35)

where (4.34) is obtained by multiplying (4.29) with 1/2 and adding to Eq. (4.30). Thus, for
the locally implicit scheme to be conservative, we need the numerical fluxes at the edges ei ,
between �i,E and �l (see Fig. 12), to satisfy

∫
I n

F̂ei (uh)dt = �tn

2

(
F̂ei (û

n−1
h,i ) + F̂ei (û

(1)
h,i )
)

, i = 1, 2. (4.36)
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Table 4 Errors and orders of accuracy at t = 0.1 for the problem in Sect. 4.5.1 with a moving interface when
using the locally implicit method. The uniform background mesh has N elements in space

N L1 error Order L2 error Order L∞ error Order

20 1.29E−01 – 1.46E-01 – 4.47E-01 –

40 3.43E−02 1.91 3.91−02 1.90 1.39E−01 1.68

80 8.63E−03 1.99 1.00E−02 1.96 3.75E−02 1.89

160 2.17E−03 1.99 2.56E−03 1.97 9.65E−03 1.96

320 5.40E−04 2.01 6.43E−04 1.99 3.30E−03 1.55

Taking into account boundary conditions, the flux’s direction, as well as condition (4.36),
we choose the fluxes at the boundaries and edges e1, e2 as

F̂L(ûn−1
h,1 ) = F(g(tn−1)), F̂L(û(1)

h,1) = F(g(tn−1 + �tn)),

F̂R(ûn−1
h,2 ) = F(ûn−1

h,i (xR, tn−1)), F̂R(û(1)
h,2) = F(û(1)

h,i (xR, tn−1)),

F̂e1(û
n−1
h,1 ) = F(ûnh,1(xe1 , t

n−1)), F̂e1(û
(1)
h,1) = F(û(1)

h,1(xe1 , t
n)),

F̂e2(û
n−1
h,2 ) = Fe2(u

n−1,+
h ), F̂e2(û

(1)
h,2) = Fe2(u

n,−
h ),∫

I n
F̂e1(uh)dt = �tn

2

(
F̂e1(û

n−1
h,1 ) + F̂e1(û

(1)
h,1)
)

,

∫
I n

F̂e2(uh)dt = �tn

2

(
Fe2(u

n−1,+
h ) + Fe2(u

n,−
h )

)
.

The method can straightforwardly be used in a computation by time-stepping first in �1,E ,
then in �l , and finally in �2,E . The first and last steps are explicit, while the middle step is
implicit.

4.6.1 Numerical Examples

We now test the accuracy and conservation of the locally implicit method. Consider first the
same example as in Sect. 4.5.1 with a time step size �tn = �t = h/12. Table 4 shows
the expected second order accuracy in the L2-norm. In L∞-norm convergence is slower. We
have also solved this problem on finer meshes, N = 1280, 2560, 5120, and we observe that
the convergence is slower than the optimal second order convergence. When a smaller time
step is used the degradation of convergence rate occurs at a finer grid, indicating that the
problem is related to the discretization of time. Since both the fully implicit and the standard
method work well, we conclude that the problem comes from the coupling.

Next we solve the example in Sect. 4.5.2 and simulate this problem up to time t = 1
with N = 400 uniform elements in the background mesh, and time step �tn = h/12. We
show the numerical solution in the left of Fig. 13. We see that the locally implicit scheme can
simulate this problem well and captures the discontinuity at the interface. We measure the
conservation error by e(t) using the inflow information based on the numerical integration
used in the scheme. We show the conservation error in the right of Fig. 13. The conservation
error is of the order of machine epsilon.
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Fig. 13 Results for the problemwith amoving interface in Sect. 4.5.2, discretized by the locally implicitmethod
on a uniform background mesh with 400 elements in space. Left: solution uh at t = 1. right: conservation
error e(t)

5 Extension to Two Space Dimensions

Let� be a bounded convex domain inR2, with polygonal boundary ∂� and let� be a smooth
internal boundary that separates the domain � into two subdomains �1 and �2 such that
�̄ = �̄1 ∪ �̄2. Consider the hyperbolic conservation law

ut (x, y, t) + ∇ · F(u(x, y, t)) = 0, (x, y) ∈ �1 ∪ �2, t ∈ (0, T ] (5.1)

u(x, y, 0) = f (x, y), (x, y) ∈ �1 ∪ �2, (5.2)

[F(u(x, y, t)) · n]� = 0, (x, y) ∈ �, (5.3)

together with suitable boundary conditions. Here n is the unit normal vector of�, F(u) = au,
a = a1 in �1 and a = a2 in �2. Only a stationary interface is considered.

5.1 The Finite Element Method

Let Th be a quasi-uniform simplicial mesh of the domain � generated independently of the
position of the interface� and let Ṽr

h be the finite element space on Th consisting of piecewise
polynomials of degree at most r. We define the active meshes Th,i , the set of edges in each
active mesh Eh,i , and the set Fh,i where the stabilization is applied, i = 1, 2, as in Sect. 3.1
but now I j denotes a triangle in Th . The active finite element spaces are

Vr
h,i = Ṽr

h |Th,i , i = 1, 2. (5.4)

and we let Vr
h = Vr

h,1 ×Vr
h,2. Given the initial condition we find uh(0) = uh(·, 0) ∈ Vr

h such
that

(uh(x, y, 0), vh)�1∪�2 + γM J1(uh(x, y, 0), vh) = ( f (x, y), vh)�1∪�2 , ∀vh ∈ Vr
h . (5.5)

We propose the following weak formulation: Find uh(·, t) ∈ Vr
h such that for almost all

t ∈ (0, T ]
((uh)t , vh)�1∪�2

+ γM J1((uh)t , vh) + ah(uh, vh) + γA J0(uh, vh) = 0, (5.6)
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for ∀vh ∈ Vr
h . Here

ah(uh, vh) = −(F(uh),∇vh)�1∪�2 −
2∑

i=1

∑
e∈Eh,i

({F(uh) · n}e, [vh]e)e − (
λe

2
[uh]e, [vh]e)e

−
∫

�

([F(uh) · nvh]� + [F(uh)]�[λvh]�) ds, (5.7)

and

Js(uh, vh) =
2∑

i=1

∑
e∈Fh,i

r∑
k=0

ωkh
2k+s

([
∂kuh,i

]
e
,
[
∂kvh,i

]
e

)
e
. (5.8)

5.2 Numerical Example

Let � = [xmin, xmax] × [ymin, ymax] and the interface � be the line x + y = c0 where c0 is a
constant. The subdomain �1 = {(x, y) ∈ � : x + y ≤ c0}, �2 = {(x, y) ∈ � : x + y ≥ c0}.
We choose xmin = ymin = −1, xmax = ymax = 1, and c0 > xmax + ymin. The unit normal
to � is n = 1√

2
(1, 1) and the time step is chosen as �t = 0.5h

(2r+1)max�(|a|) . The boundary
conditions are

u(xmin, y, t) = g(xmin, y, t), (5.9)

u(x, ymin, t) = g(x, ymin, t), (5.10)

outflow BC on the remaining boundaries. (5.11)

5.2.1 Convergence Study

Let a1 = (3, 1) and a2 = (2, 1) and set c0 = 0.5. A solution to Eq. (5.1) is

u1(x, y, t) = sin(π(x + y − 4t)), (x, y) ∈ �1, (5.12)

u2(x, y, t) = 4

3
sin(4/3π(x + y − 3t − c0/4)), (x, y) ∈ �2, (5.13)

and with g = u1 it satisfies the boundary conditions. Note that on the interface, x + y = c0,
we have u1 = sin(π(c0 − 4t)) and u2 = 4

3 sin(4/3π(3/4c0 − 3t)). Thus, the solution given
by Eqs. (5.12)–(5.13) satisfies the interface condition (5.3).

We solve the problem on a uniform mesh until t = 1 with a time step �t = 0.5h/((2r +
1)

√
10) for r = 1, 2, (i.e. P1, P2 elements) and h = 2/Nx , with Nx = 20, 40, 80, 160, 300.

In Fig. 14 we show the L2-error versus mesh size h. The convergence order of the method
follows the optimal order r + 1.

5.2.2 Conservation Study

Let a1 = (3, 1) and a2 = (1, 2) and set c0 = 0.25 and denote C the circle with center
(−0.3,−0.3) and radius 0.3. We consider the initial condition

f (x, y) =
{
1 if (x, y) ∈ C,

0 else,

and boundary data g = 0. We solve this problem using the proposed scheme with r = 1
on a uniform mesh where Nx = Ny = 200 and a time step defined as above. We use two
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Fig. 14 The L2-error at t = 1
versus mesh size h for the
problem in Sect. 5.2.1 in two
space dimensions. Polynomials
of degree r=1, 2 are used and
convergence order r+1 is
obtained

(a) t = 0 (b) t = 0.2 (c) t = 0.4

Fig. 15 Solution obtained at different time instances for r = 1. Here we have chosen λ1 = 0 and λ2 = −1.
The white line is the interface �. Blue corresponds to u = 0, orange to u = 1 and red to u = 4/3

Fig. 16 Comparison of the
conservation error for different
choices of λi
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different sets of penalty parameters λ1 and λ2 where the first set satisfies the conservation
condition (3.20) while the second set does not. In Fig. 15 we show the numerical solution
at different time instances with λi , i = 1, 2 satisfying the conservation condition. The mass
concentrated in the circle C is away from the interface initially, but evolves and passes through
the interface. In Fig. 16 we show that when penalty parameters satisfy (3.20), the method
is conservative. In contrast, if the conservation condition is not satisfied, the conservation
error can be large and increases significantly when the part with a mass reaches and passes
through the interface. Note that the exact solution is not smooth, but with condition (3.20)
the method is still conservative.
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6 Conclusion

Wehave presented two high order CutFEMbased on theDG framework, applicable to conser-
vation lawswith discontinuous coefficients in theflux across stationary andmoving interfaces,
respectively. Our methods use standard DG-elements, but do not require the elements to be
aligned with interfaces where coefficients are discontinuous. Ghost penalty stabilization is
included in the weak forms to allow for similar time-step restrictions as in the standard DG
approach. We have established discrete conservation, accuracy and stability for the methods.
The proposed methods are described and analyzed in one-dimensional settings, but we also
present computations in two dimensions for a stationary interface case, which demonstrates
that the methodology can directly be extended to higher dimension.

The first method is based on a method of lines approach, and is an extension of the
method in [10] to handle stationary material interfaces. The mass matrix appearing in the
semi-discrete system is block-diagonal with most blocks as in the standard DG approach,
but with one larger diagonal block, which couples the degrees of freedom associated with
elements in the vicinity of the interface. The non-diagonal entries are caused partly by the
contributions from integrals in the cut region, and partly by the ghost penalty stabilization,
which couples elements cut by the interface with their neighbours. In one space dimension
this coupling is not a big issue. However, one can produce a block-diagonal matrix with less
coupling, in particular in higher dimension, by applying stabilization restrictively as proposed
in [20]. Our focus in this work has been on the interface treatment and we developed CutFEM
that are globally conservative.By changing the stabilization to themacro element stabilization
in [20] our method would also preserve the local conservation property of the discontinuous
Galerkin formulation on macro elements.

The second method is for moving interfaces. It is a space-time CutFEM based on discon-
tinuous elements in both space and time. The method is stable and conservative, but implicit.
In particular we have shown, numerically and analytically, that using a weak form based on
integration by parts in time is essential for discrete conservation. Since we are using standard
DG techniques as building blocks we believe that the extension of this method to multiple
space dimensions is also straightforward. The implicit character of our space-time CutFEM
is however a drawback. We demonstrate in a scalar case how a more efficient method can be
achieved by using the space-time elements only locally in the vicinity of interfaces. This idea
moves the difficulty from the non-aligned moving interface to a stationary aligned interface,
where the space-time elements need to be coupled to standard method of lines DG methods
while maintaining stability, accuracy and conservation.

In computations we have observed that the temporal accuracy is sometimes degraded
in the coupled case, and more work is required to understand and avoid this degrada-
tion. We also believe that a more difficult extension is to generalize the coupling between
space-time elements and the standard method-of lines DG methods to systems and to multi-
dimensions, while maintaining stability, accuracy and conservation, and allowing for explicit
time-stepping in large parts of the domain.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
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A Positivity of the S-Matrix

In this appendix, we show that under the conditions in Theorem 1 the matrix S in (3.27) is
positive semi-definite.

Lemma 1 Consider

S =
(

( 12 − λ1)a1
a2λ1+a1ηλ2

2
a2λ1+a1ηλ2

2 −(λ2 + 1
2 )ηa2

)
, (A.1)

where λ1 = λ2 + 1 and a1, a2 are either strictly positive or strictly negative. There exists
positive η such that the matrix S is positive semi-definite under the condition{

λ1 ≤ 1
2 , λ2 ≤ − 1

2 , if a1 > 0, a2 > 0,
λ1 ≥ 1

2 , λ2 ≥ − 1
2 , if a1 < 0, a2 < 0.

(A.2)

Proof To reduce the number of parameters we rewrite the conservation condition (3.20) as

λ2 + 1

2
= λ1 − 1

2
, (A.3)

and introduce

σ ≡ −λ2 − 1

2
= −λ1 + 1

2
. (A.4)

In terms of σ we have

S =
(

a1σ − a2+ηa1
2 σ + a2−ηa1

4− a2+ηa1
2 σ + a2−ηa1

4 a2ησ

)
. (A.5)

To investigate if S is positive semi-definite we study the eigenvalues of S. The eigenvalues,
θ , satisfy

|S − θ I | = θ2 − tr(S)θ + det(S) = 0, (A.6)

where tr(S) = a2σ(β + η) with β = a1
a2
, and

det(S) = a22
4

(1 − βη)

(
(1 + βη)σ − (1 − βη)

(
σ 2 + 1

4

))
. (A.7)

By assumption β, η > 0. We have

θ1,2 = a2
2

σ(β + η) ±
√
a22σ

2(β + η)2

4
− det(S). (A.8)

Both eigenvalues are nonnegative precisely if equivalently

a2σ ≥ 0 and det(S) ≥ 0. (A.9)

When σ > 0 we have from (A.9) that a2 > 0, and

0 ≤ 1 − ηβ ≤ 2σ

(σ + 1/2)2
, (A.10)
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or equivalently 1 − 2σ
(σ+1/2)2

≤ ηβ ≤ 1. Hence, given a1 > 0, a2 > 0, β = a1/a2 > 0 and
parameters λ1 < 1/2, λ2 < −1/2 with λ2 − λ1 + 1 = 0, matrix S is positive semi-definite
under the condition

(λ2 + 1)2

λ22
≤ ηβ ≤ 1. (A.11)

When σ < 0 we have from (A.9) that a2 < 0 and

0 ≥ 1 − ηβ ≥ 2σ

(σ + 1/2)2
, (A.12)

or equivalently 1 − 2σ
(σ+1/2)2

≥ ηβ ≥ 1. This means, given a1 < 0, a2 < 0, β = a1/a2 > 0,
and parameters λ1 > 1/2, λ2 > −1/2with λ2−λ1+1 = 0,matrix S is positive semi-definite
when

(λ2 + 1)2

λ22
≥ ηβ ≥ 1. (A.13)

When σ = 0, that is λ1 = 1/2 and λ2 = −1/2, we need to have det(S) = 0 in order for
(A.9) to be satisfied. We have that det(S) = 0 if ηβ = 1 for both ai > 0 and ai < 0. Thus,
there always exist positive η under the condition (A.15) such that S is positive semi-definite
and the energy Eη is non-increasing. ��

Next, we will show a stability condition of λi in the scheme (3.9) without the conservation
condition (3.20).

Lemma 2 Consider

S =
(

( 12 − λ1)a1
a2λ1+a1ηλ2

2
a2λ1+a1ηλ2

2 −(λ2 + 1
2 )ηa2

)
, (A.14)

where a1, a2 are either strictly positive or strictly negative. There exists positive η such that
the matrix S is positive semi-definite under the condition λ1 − λ2 ≥ 1

2 and
{

λ1 ≤ 1
2 , λ2 ≤ − 1

2 , if a1 > 0, a2 > 0,
λ1 ≥ 1

2 , λ2 ≥ − 1
2 , if a1 < 0, a2 < 0.

(A.15)

Proof We will investigate when S is a positive semi-definite matrix by studying the eigen-
values of S. Without the condition λ2 − λ1 + 1 = 0, similarly as the above proof, we have
tr(S) = ( 1

2 − λ1
)
a1 − (λ2 + 1

2

)
a2η and

det(S) =
(

λ1 − 1

2

)(
λ2 + 1

2

)
a1a2η − (a2λ1 + a1ηλ2)

2

4
. (A.16)

The eigenvalues are nonnegative if we have tr(S) ≥ 0, det(S) ≥ 0. By assumption β =
a1
a2

> 0, if a2 > 0, tr(S) ≥ 0, det(S) ≥ 0 are equal to
(
1

2
− λ1

)
β ≥

(
λ2 + 1

2

)
η, (A.17)

and

2

(
λ1 − λ2 − 1

2

)
βη ≥ (λ1 − βηλ2)

2 ⇐⇒ λ22β
2η2 − 2βη

(
λ1 − λ2 − 1

2
+ λ1λ2

)
+ λ21 ≤ 0.

(A.18)
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With λ1 ≤ 1
2 , λ2 ≤ − 1

2 , the inequality (A.17) holds for any η > 0. Therefore, to ensure that
there exists η > 0 such that (A.18) is satisfied, we need

� :=
(

λ1 − λ2 − 1

2

)(
λ1 − λ2 − 1

2
+ 2λ1λ2

)
=
(

λ1 − λ2 − 1

2

)
(2λ1 − 1)

(
λ2 + 1

2

)
≥ 0,

(A.19)

With λ1 ≤ 1
2 , λ2 ≤ 1

2 and λ1 − λ2 ≥ 1
2 , it follows that � ≥ 0. Then there exits an η > 0

with

max

{
0,

(
λ1 − λ2 − 1

2 + λ1λ2
)− √

�

λ22

}
≤ βη ≤

(
λ1 − λ2 − 1

2 + λ1λ2
)+ √

�

λ22
. (A.20)

This shows that when a1, a2 > 0 a sufficient condition for the scheme to be stable are λ1 ≤ 1
2 ,

λ2 ≤ − 1
2 , and λ1 − λ2 ≥ 1

2 .
If a1, a2 < 0, we first need tr(S) ≤ 0, that is

(
1

2
− λ1

)
β ≤

(
λ2 + 1

2

)
η. (A.21)

Then, we need det(S) ≥ 0 as in (A.18). Thus, we need
(

λ1 − λ2 − 1

2

)
(2λ1 − 1)

(
λ2 + 1

2

)
≥ 0. (A.22)

If λ1 ≥ 1
2 , λ2 ≥ − 1

2 and λ1 − λ2 − 1
2 ≥ 0, there always exists η > 0 such that

max

{
0,

(
λ1 − λ2 − 1

2 + λ1λ2
)− √

�

λ22

}
≤ βη ≤

(
λ1 − λ2 − 1

2 + λ1λ2
)+ √

�

λ22
, (A.23)

and the scheme is stable. ��

B Proof of Theorem 2

In this appendix, we give the proof of the error estimate in Theorem 2 but first we briefly
recall some useful inequalities. For s ≥ 0, let ‖ · ‖s,ω and | · |s,ω denote the usual norm and
semi-norm of Sobolev space Hs(ω), respectively and ‖ · ‖2s,Th

= ∑
T∈Th

‖ · ‖2s,T . For s = 0,

the norm ‖ · ‖0,ω and | · |0,ω is the standard L2-norm and we often use the notation ‖ · ‖ω.
We will use the notation a � b ⇔ a ≤ Cb with C being some constant that is independent
of the mesh parameter h and how the interface cuts the mesh Th .

Let T ∈ Th , the following trace inequalities hold

‖v‖∂T � h−1/2‖v‖T + h1/2|v|1,T , ∀v ∈ H1(T ), (B.1)

‖v‖�∩T � h−1/2‖v‖T + h1/2|v|1,T , ∀v ∈ H1(T ), (B.2)

where the first is a standard trace inequality and the second is proven in [13]. We also have
the following inverse inequality [1],

|vh | j,T � hs− j |vh |s,T , ∀vh ∈ Vr
h , 0 ≤ s ≤ j, T ∈ Th . (B.3)
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Following [2] we use the L2-projection. For i = 1, 2, let πh,i : L2
(
Th,i

) → Vr
h,i denote the

L2-projection onto Vr
h,i . For all vi ∈ Hr+1

(
Th,i

)
we recall the following standard estimate

∥∥vi − πh,ivi
∥∥
k,T � hr+1−k‖vi‖r+1,T , T ∈ Th,i , (B.4)

where k = 0, 1, . . . , r + 1. We also need extension operators that can extend functions
defined in�i to Th,i . The extension theorem in [30] provides continuous extension operators
Ei : Hs(�i ) → Hs

(
R
d
)
such that for all vi ∈ Hs(�i ), Eivi |�i = vi and

‖Eivi‖s,Rd � ‖vi‖s,�i , i = 1, 2, s ≥ 0. (B.5)

We now define an extension operator E such that for all v ∈ ⊕2
i=1H

s(�i ), Ev =
(E1v1, E2v2) and we denote Ev by ve. Using the L2-projection πh,i and the extension
operators we define the following projection operator

πh : ⊕2
i=1L

2(Th,i ) � (v1, v2) �→ (πh,1E1v1, πh,2E2v2) ∈ Vr
h . (B.6)

We are now ready to prove Theorem 2.

Proof Note that u = ui for x ∈ �i , is the solution to problem (2.1)–(2.3) with F(u) as in
(3.22) and x ′

�(t) = 0, and is sufficiently smooth: ui ∈ L∞ ([0, T ]; Hr+1(�i )
)
and (ui )t ∈

L∞([0, T ]; Hr+1(�i )). For t ∈ (0, T ] we have from consistency that ue(t) = ue(·, t), the
extension of exact solution u, satisfies

(
uet , vh

)
�1∪�2

+ γM J1(u
e
t , vh) + Ah(u

e, vh) = 0, ∀vh ∈ Vr
h . (B.7)

Further, uh(t) = uh(·, t) ∈ Vr
h , is the solution to (3.9). Subtracting (B.7) from (3.9), we get

the error equation

(
(ue − uh)t , vh

)
�1∪�2

+ γM J1((u
e − uh)t , vh) + Ah(u

e − uh, vh) = 0, ∀vh ∈ Vr
h . (B.8)

Wewrite the error as a sum of two terms ue−uh = ξ +ζ , where ξ = (ξ1, ξ2), with ξi (x, t) =
uei (x, t)−πh,i Ei ui (x, t) and ζ = (ζ1, ζ2)with ζi (x, t) = (πh,i Ei ui (x, t)−uh,i (x, t))∈ Vr

h,i ,
i = 1, 2. Rewriting the error Eq. (B.8) in terms of ξ and ζ we get

((ξ + ζ )t , vh)�1∪�2
+ γM J1((ξ + ζ )t , vh) + Ah(ξ + ζ, vh) = 0, ∀vh ∈ Vr

h . (B.9)

Let vh = (ζ1, ηζ2) in (B.9). Defining a weighted energy similar to (3.25), i.e.,

Eζ
η (t) = 1

2

(||ζ1||2�1
+ γM J1(ζ1, ζ1)

)+ η

2

(||ζ2||2�2
+ γM J1(ζ2, ζ2)

)
,
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and following the stability analysis in Sect. 3.3 we get

d

dt
Eζ

η (t)

= −ζ T
� Sζ� −

∑
e∈Eh,1

|a1|
2

[ζ1]2e −
∑
e∈Eh,2

|a2|η
2

[ζ2]2e − γA J0(ζ1, ζ1) − ηγA J0(ζ2, ζ2)

−
(∫

�1

(ξ1)tζ1dx + γM J1((ξ1)t , ζ1)

)
− η

(∫
�2

(ξ2)tζ2dx + γM J1((ξ2)t , ζ2)

)

− γA J0(ξ1, ζ1) − ηγA J0(ξ2, ζ2)

+
∫

�1

a1ξ1(ζ1)xdx +
∑
e∈Eh,1

a1ξ
−
1,e[ζ1]e − (1 − λ1)a1ξ1,�ζ1,� − λ1a2ξ2,�ζ1,�

+ η

⎛
⎝∫

�2

a2ξ2(ζ2)xdx +
∑
e∈Eh,2

a2ξ
−
2,e[ζ2]e + (1 + λ2)a2ξ2,�ζ2,� − λ2a1ξ1,�ζ2,�

⎞
⎠ .

(B.10)

Here, the matrix S is as in (3.27), ξi,� = ξi (x�, t), ζi,� = ζi (x�, t), and ζ� =
(

ζ1(x�, t)
ζ2(x�, t)

)
.

Using the Cauchy–Schwartz inequality and Young’s inequality, we have

− J0(ξi , ζi ) ≤ (J0(ξi , ξi ))
1/2(J0(ζi , ζi ))

1/2 ≤ J0(ζi , ζi ) + 1

4
J0(ξi , ξi )

−
(∫

�i

(ξi )tζi dx + γM J1((ξi )t , ζi )

)
≤ 1

2

(||(ξi )t ||2�i
+ γM J1((ξi )t , (ξi )t )

)+ Eζ
η (t)

∑
e∈Eh,1

a1ξ
−
1,e[ζ1]e + η

∑
e∈Eh,2

a2ξ
−
2,e[ζ2]e ≤ 1

2

⎛
⎝ ∑

e∈Eh,1

|a1|[ζ1]2e + η
∑
e∈Eh,2

|a2|[ζ2]2e
⎞
⎠

+ 1

2

⎛
⎝ ∑

e∈Eh,1

|a1|‖ξ1‖2e + η
∑
e∈Eh,2

|a2|‖ξ2‖2e
⎞
⎠ . (B.11)

Using the above three inequalities, we get

d

dt
Eζ

η (t) ≤ −ζ T
� Sζ� + Eζ

η (t) + 1

2

(
||(ξ1)t ||2�1

+ γM J1((ξ1)t , (ξ1)t ) + γA

2
J0(ξ1, ξ1)

)

+ η

2

(
||(ξ2)t ||2�2

+ γM J1((ξ2)t , (ξ2)t ) + γA

2
J0(ξ2, ξ2)

)

+ 1

2

⎛
⎝ ∑

e∈Eh,1

|a1|‖ξ1‖2e + η
∑
e∈Eh,2

|a2|‖ξ2‖2e
⎞
⎠

+ |a1|‖ξ1‖�1‖(ζ1)x‖�1 + |1 − λ1||a1|‖ξ1‖�‖ζ1‖� + |λ1||a2|‖ξ2‖�‖ζ1‖�

+ η|a2|‖ξ2‖�2‖(ζ2)x‖�2 + η|1 + λ2||a2|‖ξ2‖�‖ζ2‖� + η|λ2||a1|‖ξ1‖�‖ζ2‖�.

(B.12)
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Note that the approximation properties of πh,i (equation (B.4) with k = 0, 1), together with
the trace inequalities (B.1)–(B.2), and the stability of the extension operator (B.5) yields

‖ξi‖2�i
� h2r+2‖ui‖2r+1,�i

, (B.13)∑
e∈Eh,i

‖ξi‖2e � h2r+1‖ui‖2r+1,�i
, ‖ξi‖2� � h2r+1‖ui‖2r+1,�i

, (B.14)

Js(ξi , ξi ) � h2r+1+s ||ui ||2r+1,�i
, i = 1, 2. (B.15)

Using (B.13), Young’s inequality, and the inverse inequality (B.3) we have

‖ξi‖�i ‖(ζi )x‖�i � h−2||ξi ||2�i
+ h2||(ζi )x ||2�i

� h2r ||ui ||2r+1,�i
+ ||ζi ||2�i

, i = 1, 2.
(B.16)

Using the trace inequality (B.2), the inverse inequality (B.3), Young’s inequality, and (B.14)
we have for i, j = 1, 2,

‖ξi‖�‖ζ j‖� � ‖ξi‖�h
− 1

2 ‖ζ j‖�i � h−1||ξi ||2� + ||ζ j ||2� j
� h2r ||ui ||2r+1,�i

+ ||ζ j ||2� j
.

(B.17)

Furthermore, since by assumption (ui )t ∈ Hr+1(�i ), we have similar estimates as (B.13)
and (B.15) for (ξi )t and hence

||(ξi )t ||2�i
+ γM J1((ξi )t , (ξi )t ) � h2r+2||(ui )t ||2r+1,�i

. (B.18)

Therefore, combining the inequality (B.12) with the inequalities (B.15)–(B.18), and using
that S is positive semi-definite, we have

d

dt
Eζ

η (t) � Eζ
η (t) + h2r . (B.19)

Similar to the analysis in [10] we also have that the initial error Eζ
η (0) � h2r . Then, using

Grönwall’s inequality we have Eζ
η (t) � Cth2r , where Ct denotes a constant depending on

time t . Using the definition of Eζ
η (t) we have

min{1, η}
2∑

i=1

(‖ζi‖2�i
+ γM J1(ζi , ζi )

)
� Eζ

η (t) � Cth
2r .

Finally, applying the triangle inequality, using the estimate (B.13) and the bound above for
||ζi ||2�i

, we have the error estimate

||u − uh ||2�1∪�2
=

2∑
i=1

||ξi + ζi ||2�i
�

2∑
i=1

(||ξi ||2�i
+ ||ζi ||2�i

)
� h2r . (B.20)

Note that the error estimate depends on the parameter η, which is used in the stability
analysis to ensure that the matrix S is positive semi-definite and the scheme is stable. We
point out that the estimate we have shown is suboptimal, but in the numerical computations
we get optimal accuracy. ��
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