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Abstract
We propose a new monotone finite difference discretization for the variational p-Laplace
operator, �pu = div(|∇u|p−2∇u), and present a convergent numerical scheme for related
Dirichlet problems. The resulting nonlinear system is solved using two different methods:
one based on Newton-Raphson and one explicit method. Finally, we exhibit some numerical
simulations supporting our theoretical results. To the best of our knowledge, this is the first
monotone finite difference discretization of the variational p-Laplacian and also the first
time that nonhomogeneous problems for this operator can be treated numerically with a
finite difference scheme.
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1 Introduction andMain Results

In the recent paper [10], we studied a new1 mean value formula (MVF) for the variational
p-Laplace operator,

�pu = div(|∇u|p−2∇u). (1.1)

With the notation Jp(t) := |t |p−2t for all p > 1, the MVF, valid for any C2(Rd) function,
reads

1

Dd,pr p

 
Br

Jp(u(x + y) − u(x)) dy = �pu(x) + or (1) as r → 0+. (1.2)
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Here Dd,p := d
2(d+p)

ffl
∂ B1

|y1|p dσ(y), where y1 is the first coordinate, dσ the surface
measure on the sphere and Br denotes the ball of radius r > 0 centered at 0.

The aim of this paper is to propose a new monotone finite difference discretization of the
p-Laplacian based on the asymptotic expansion (1.2). As an application of our discretization
we also propose a convergent numerical scheme associated to the nonhomogeneous Dirichlet
problem

−�pu(x) = f (x), x ∈ �, (1.3)

u(x) = g(x), x ∈ ∂�. (1.4)

The scheme results in a nonlinear system. We propose two methods to solve this system:
(1) Newton-Raphson and (2) an explicit method, based on the convergence to a steady state
of an evolution problem. We comment the advantages of each one in Sect. 5. Finally, we
exhibit some numerical tests of the accuracy and convergence of the scheme.

To the best of our knowledge, this is the first monotone finite difference discretization of
the variational p-Laplacian available in the literature and therefore the first time that nonho-
mogeneous problems of the form (1.3)–(1.4) can be treated numerically via finite difference
schemes. The monotonicity property (see Lemma 4.4) is crucial for the convergence of finite
difference schemes in the context of viscosity solutions (see [4]). It is also worth mentioning
that, in contrast to the finite difference schemes for the normalized (or game theoretical) p-
Laplacian considered earlier (see Sect. 1.2), our scheme is well suited for Newton-Raphson
solvers, which is an advantage when it comes to solving a nonlinear system effectively.

1.1 Main Results

In order to describe our main results we need to introduce some notation. Given a discretiza-
tion parameter h > 0, consider the uniform grid defined by Gh := hZd = {yα := hα : α ∈
Z

d}. Let r > 0 and consider the following discrete operator

�h
pφ(x) := hd

Dd,p ωd r p+d

∑

yα∈Br

Jp(φ(x + yα) − φ(x)), (1.5)

where ωd denotes the measure of the unit ball in Rd . Throughout the paper, we will assume
the following relation between h and r :

h =

⎧
⎪⎨

⎪⎩

o(r
p

p−1 ), if p ∈ (1, 3) \ {2},
o(r), if p = 2,

o(r
3
2 ), if p ∈ [3,∞).

(H)

Our first result regards the consistency of the discretization (1.5).

Theorem 1.1 Let p ∈ (1,∞), x ∈ R
d and φ ∈ C2(BR(x)) for some R > 0. Assume (H).

Then
�h

pφ(x) = �pφ(x) + or (1) as r → 0+.

Our second result concerns the finite difference numerical scheme for (1.3)–(1.4) induced
by the discretization (1.5).More precisely, fix r0 > 0 and let ∂�r := {x ∈ �c : dist(x,�) ≤
r}, �r = � ∪ ∂�r and G be a continuous extension of g from ∂� to ∂�r for all r < r0.
Consider uh : �r → R such that

−�h
puh(x) = f (x), x ∈ �, (1.6)
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uh(x) = G(x), x ∈ ∂�r . (1.7)

We have the following result.

Theorem 1.2 Let p ∈ (1,∞), � ⊂ R
d be a bounded, open and C2 domain, f ∈ C(�) and

g ∈ C(∂�). Assume (H).

(a) Then there exists a unique pointwise solution uh ∈ L∞(�r ) of (1.6)–(1.7) when r is
small enough.

(b) If u is the unique viscosity solution of (1.3)–(1.4), then

sup
x∈�

|uh(x) − u(x)| → 0 as r → 0+.

Remark 1.3 We conjecture that the relation h = o(r3/2) is sufficient also in the range p ∈
(1, 3). See Sect. 6.5 for numerical evidence supporting this.

We note that if we restrict (1.6)–(1.7) to the uniform grid Gh we obtain a fully discrete
problem suited for numerical computations. More precisely, define the discrete sets

Bh
r := Br ∩ Gh, �h := � ∩ Gh, ∂�h := ∂� ∩ Gh and �h

r := �r ∩ Gh .

Observe that�h
p given in (1.5) can be interpreted as an operator�

h
p : 	∞(Gh) → 	∞(Gh)

since given any xβ, yα ∈ Gh we have xβ + yα = (β + α)h = xβ+α ∈ Gh and then

�h
pφβ := hd

Dd,p ωd r p+d

∑

yα∈Br

Jp(φβ+α − φβ) for xβ ∈ �h

with φ : Gh → R and φγ := φ(γ h), whenever γ h ∈ Gh . Finally note that if xβ ∈ �h and
yα ∈ Bh

r we have that xβ + yα = xβ+α ∈ �h
r , so that (1.6)–(1.7) can be interpreted as

−�h
pUβ = fβ, xβ ∈ �h (1.8)

Uβ = Gβ, xβ ∈ ∂�h
r , (1.9)

withU : �h
r → R, fβ := f (xβ) and Gβ := G(xβ). In this way we have the following trivial

consequence of Theorem 1.2.

Corollary 1.4 Assume the hypotheses of Theorem 1.2.

(a) Then there exists a unique pointwise solution U ∈ 	∞(�h
r ) of (1.8)–(1.9) when r is small

enough.
(b) If u is the unique viscosity solution of (1.3)–(1.4), then

max
xβ∈�h

∣∣Uβ − u(xβ)
∣∣ → 0 as r → 0.

1.2 Related Results

For an overview of classical and modern results for the p-Laplacian, we refer the reader to
the book [22]. For an overview of numerical methods for degenerate elliptic PDEs we refer
the reader to Section 1.1 in [34].

We want to stress that the operator of interest in this paper is the variational p-Laplacian,
i.e.,

�pu = div(|∇u|p−2∇u).
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Once we have found a monotone discretization of �p , it is straightforward to find mono-
tone finite difference schemes also for p-Laplace equations involving gradient terms, such
as

−�pu = |∇u|q1 f (x) + |∇u|q2 ,
or other Hamilton-Jacobi-type equations involving the p-Laplacian, which do not necessar-
ily allow for a variational formulation. In particular, we could recover and treat equations
involving the normalized p-Laplacian (see (1.10)).

On the other hand, finite difference methods for equations involving the p-Laplacian
have been successfully developed using the normalized (or game theoretical) version of the
p-Laplacian �N

p . The ideas are based on the identity

�pu = |∇u|p−2�u + (p − 2)|∇u|p−4�∞u.

This allows to define

�N
p u := |∇u|2−p�pu = �u + (p − 2)�N∞u, (1.10)

where �N∞ is the so-called normalized infinity Laplacian, which is given by the second
order directional derivative in the direction of the gradient. One limitation of such methods
is the fact that they are not well adapted to treat nonhomogeneous problems of the form
−�pu = f , unless p ≤ 2. Instead they allow for treating inhomogeneities of the form
−�pu = |∇u|p−2 f (this problem is equivalent to −�N

p u = f ), which our method could
handle as well, at least if p ≥ 2 (since monotone approximations of |∇u| are well known).
Of course, both problems are equivalent only if f ≡ 0.

Let us first comment on the literature related to finite difference methods for �N
p . In

[34], the author presents a monotone finite difference scheme for the normalized infinity
Laplacian and the game theoretical (or normalized) p-Laplacian for p ≥ 2. In addition, a
scheme for (1.3)–(1.4) with f ≡ 0 is presented, together with a semi-implicit solver. In
[11], a strategy to prove the convergence of dynamic programming principles (including
monotone finite difference schemes) for the normalized p-Laplacian is presented, as well as
the strong uniqueness property for the p-Laplacian, which is crucial for the application of the
convergence criteria of Barles and Souganidis in [4]. We also seize the opportunity mention
Section 6 in [7], where a finite difference method (based on the mean value properties of
the normalized p-Laplacian) is proposed for a double-obstacle problem involving the p-
Laplacian. We note that in the case 1 < p < 2 neither of the above mentioned schemes are
monotone, and as such, the numerical scheme in this paper is the first one treating this range,
even in the homogeneous case f ≡ 0.

There are many other monotone approximations of �N
p available in the literature. Strictly

speaking, they are not numerical approximations, but the proof of convergence follows similar
strategies based on monotonicity and consistency. See [11] for a discussion on this topic.
Such approximations were first presented in [29] (see also [20,30,31] for a probabilistic game
theoretical approach). The basic idea of these approximations is to combine the classicalmean
value property (MVP) for the Laplacian with a MVP for the normalized infinity Laplacian
motivated by Tug-of-War games [35]. The literature on this topic has become extensive in
the last decade. In [2,23] the equivalence between being p-harmonic and satisfying a MVP
is treated. See [16,19] for a MVP in the full range 1 < p < ∞ and [21] for the application
of such approximations in the context of obstacle problems.

Regarding monotone approximations of the variational p-Laplacian, the literature is very
recent and not so extensive. TheMVP given by (1.2) was derived in [6,10]. In [10] it is shown
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to be a monotone approximation of �p . The authors are also able to prove convergence of
the corresponding approximating problems to a viscosity solution.

It is noteworthy that the discretization presented in this paper is reminiscent of the defini-
tion of the variational p-Laplacian on graphs, see [1] and also [37]. In this direction, Corollary
1.4 can be interpreted as the convergence of the solution to a PDE defined on a graph asso-
ciated to the grid. We refer to the recent paper [36] for a study of the eigenvalues of this
operator and to [12] for its applications to image processing. Note that also the normalized
p-Laplacian has been defined on graphs, see [28].

Finally, we seize the opportunity to mention that since the p-Laplacian is of divergence
form, it is well suited for finite element based methods. We mention a few papers in this
direction: [5,13,14,17,24–27]. We want to stress that finite element methods are not well
suited for being treated with viscosity methods.

1.3 Organization of the Paper

In Sect. 2, we introduce some notation and prerequisites needed in the rest of the paper.
Section 3 is devoted to the proof of consistency of the discretization previously introduced.
In Sect. 4, we study the numerical scheme for the boundary value problems. This is followed
by a discussion around solving the nonlinear systems of equations derived fromour scheme, in
Sect. 5. Finally, in Sect. 6, we perform some numerical experiments to support our theoretical
results. We also have an appendix containing technical results and a discussion regarding the
invertibility of the Jacobian used in one of the methods in Sect. 5.

2 Notations and Prerequisites

We adopt the following definition of viscosity solutions, which is the classical definition
adjusted to the nonhomogeneous equation (see e.g. [15]).

Definition 2.1 (Solutions of the equation) Suppose that f ∈ C(�). We say that a lower
(resp. upper) semicontinuous function u in � is a viscosity supersolution (resp. subsolution)
of the equation

−�pu = f

in � if the following holds: whenever x0 ∈ � and ϕ ∈ C2(BR(x0)) for some R > 0 are such
that |∇ϕ(x)| �= 0 for x ∈ BR(x0) \ {x0},

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) (resp.ϕ(x) ≥ u(x)) for all x ∈ BR(x0) ∩ �,

then we have

lim
ρ→0

sup
Bρ(x0)\{x0}

(−�pϕ(x)
) ≥ f (x0) (resp. lim

ρ→0
inf

Bρ(x0)\{x0}
(−�pϕ(x)

) ≤ f (x0)). (2.1)

A viscosity solution is a function u ∈ C(�) being both a viscosity supersolution and a
viscosity subsolution.

Remark 2.1 We consider condition (2.1) to avoid problems with the definition of −�pϕ(x0)
when |∇ϕ(x0)| = 0 and p ∈ (1, 2). However, when either p ≥ 2 or |∇ϕ(x0)| �= 0, (2.1) can
be replaced by the standard one, i.e.,

− �pϕ(x0) ≥ f (x0) (resp. − �pϕ(x0) ≤ f (x0)). (2.2)
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A viscosity solution of the boundary value problem (1.3)–(1.4) attaining the boundary
condition in a pointwise sense is naturally defined as follows.

Definition 2.2 (Solutions of the boundary value problem) Suppose that f ∈ C(�) and g ∈
C(∂�). We say that a lower (resp. upper) semicontinuous function u in � is a viscosity
supersolution (resp. subsolution) of (1.3)–(1.4) if

(a) u is a viscosity supersolution (resp. subsolution) of −�pu = f in � (as in Definition
2.1);

(b) u(x) ≥ g(x) (resp. u(x) ≤ g(x)) for x ∈ ∂�.

A viscosity solution of (1.3)–(1.4) is a function u ∈ C(�) being both a viscosity super-
solution and a viscosity subsolution.

Remark 2.2 To prove the convergence result (Theorem 1.2(b)) we will make use of a gen-
eralized notion of viscosity solutions of a boundary value problem. We will introduce this
notion just before using it. See Sect. 4.3.

3 Consistency of the Discretization: Proof of Theorem 1.1

In this sectionwe prove the consistency of the discretization�h
p forC2-functions as presented

in Theorem 1.1.

Proof of Theorem 1.1 Throughout this proof, C will denote a constant that may depend on p,
the dimension d , but not on r or h.

The mean value property introduced in [10] involves the quantity

Mp
r [φ](x) = 1

Dd,pr p

 
Br

Jp(φ(x + y) − φ(x)) dy.

By the triangle inequality and Theorem 2.1 in [10]
∣∣∣�h

pφ(x) − �pφ(x)

∣∣∣ ≤
∣∣∣�h

pφ(x) − Mp
r [φ](x)

∣∣∣ + ∣∣Mp
r [φ](x) − �pφ(x)

∣∣

=
∣∣∣�h

pφ(x) − Mp
r [φ](x)

∣∣∣ + or (1) as r → 0+.

Therefore, it is sufficient to show that

|�h
pφ(x) − Mp

r [φ](x)| = or (1) as r → 0+.

Step 1: Approximation of Br by h-boxes. Define the following family of h-boxes centred
at yα ∈ Gh ,

Rh
α := yα + h

2
[−1, 1)d ,

and the union of boxes that approximates Br

B̃r :=
⋃

yα∈Bh
r

Rh
α.


�
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Fig. 1 The family of boxes and their union B̃r that covers Br

See Fig. 1.
Consider

Ar := 1

2

ˆ
Br

(
Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

)
dy,

and

Ãr := 1

2

ˆ
B̃r

(
Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

)
dy.

In this step we will prove that
|Ar − Ãr | = o(rd+p). (3.1)

Notice first that

∣∣∣Ar − Ãr

∣∣∣ = 1

2

∣∣∣∣
ˆ

Br \B̃r

(
Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

)
dy

−
ˆ

B̃r \Br

(
Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

)
dy

∣∣∣∣

≤ 1

2

ˆ
(Br ∪B̃r )\(Br ∩B̃r )

∣∣Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))
∣∣ dy.

It is easy to verify that Br ∪ B̃r ⊂ Br+√
dh and Br−√

dh ⊂ Br ∩ B̃r so that

(Br ∪ B̃r ) \ (Br ∩ B̃r ) ⊂ Br+√
dh \ Br−√

dh .

Observe that regardless of the value of p, we always have h = o(r). Therefore,

|(Br ∪ B̃r ) \ (Br ∩ B̃r )| ≤ |Br+√
dh \ Br−√

dh | = ωd

(
(r + √

dh)d − (r − √
dh)d

)

≤ ωdd(r + √
dh)d−12

√
dh ≤ Crd−1h

= o(rd).

On the other hand, by Taylor expansion

|φ(x + y) − φ(x) + φ(x − y) − φ(x)| = O(|y|2).
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In the case p ≥ 2, Lemma A.1 implies

|Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))|
= |Jp(φ(x + y) − φ(x)) − Jp(−φ(x − y) + φ(x))|
≤ C max(|φ(x − y) − φ(x)|, |φ(x + y) − φ(x)|)p−2|φ(x + y)

− φ(x) + φ(x − y) − φ(x)|
= O(|y|p).

We can conclude

|Ar − Ãr | ≤ C̃

2

ˆ
(Br ∪B̃r )\(Br ∩B̃r )

|y|p dy ≤ 1

2
(r + √

dh)p|(Br ∪ B̃r ) \ (Br ∩ B̃r )|

= o(r p+d).

In the case p < 2, we argue slightly different. On page 8 in [10] it is proved that 
∂ Br

|Jp(φ(x + y) − φ(x)) − Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y)|dy = o(r p).

In a similar fashion, one can proveˆ
(Br ∪B̃r )\(Br ∩B̃r )

∣∣∣Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

− Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) − Jp(−y · ∇φ(x)

+ 1

2
yT D2φ(x)y)

∣∣∣dy = o(r p+d).

To show (3.1) it is therefore sufficient to show thatˆ
(Br ∪B̃r )\(Br ∩B̃r )

∣∣∣∣Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) + Jp(−y · ∇φ(x)

+1

2
yT D2φ(x)y)

∣∣∣∣ dy = o(r p+d). (3.2)

Without loss of generality assume that ∇φ(x) = ce1 with c �= 0. Then

Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) = Jp(cy · e1 + 1

2
yT D2φ(x)y) = (c|y|)p−1 Jp(ŷ · e1

+ 1

2
c−1|y|ŷT D2φ(x)ŷ)

where ŷ = y/|y|. By Lemma A.2 with a = ŷ · e1 and b = 1
2c−1|y|ŷT D2φ(x)ŷ we get

(c|y|)p−1
∣∣∣Jp(ŷ · e1 + 1

2
c−1|y|ŷT D2φ(x)ŷ) − Jp(ŷ · e1)

∣∣∣

≤ C(c|y|)p−1
(

|ŷ · e1| + 1

2
c−1|y||ŷT D2φ(x)ŷ|

)p−2 1

2
c−1|y||ŷT D2φ(x)ŷ|

≤ C |y|p|ŷ · e1|p−2.

Hence,
∣∣∣∣Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) + Jp(−y · ∇φ(x) + 1

2
yT D2φ(x)y)

∣∣∣∣ ≤ C |y|p|ŷ · e1|p−2.
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From (6.2) in [10] it then follows that
ˆ

∂ Br

∣∣∣Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) + Jp(−y · ∇φ(x) + 1

2
yT D2φ(x)y)

∣∣∣dσ(y)

≤ Cr p
ˆ

∂ Br

|ŷ · e1|p−2 dσ(y) ≤ C̃r p+d−1.

After integration (to pass from spheres to balls) we obtain

ˆ
(Br ∪B̃r )\(Br ∩B̃r )

∣∣∣∣Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) + Jp(−y · ∇φ(x) + 1

2
yT D2φ(x)y)

∣∣∣∣ dy

≤
ˆ

Br+√
dh\Br−√

dh

∣∣∣∣Jp(y · ∇φ(x) + 1

2
yT D2φ(x)y) + Jp(−y · ∇φ(x)

+1

2
yT D2φ(x)y)

∣∣∣∣ dy

≤ Chr p+d−1 = o(rd+p).

This is (3.2).
Step 2: Discretization of Ãr . Consider

Ãh
r := hd

∑

yα∈Br

Jp(φ(x + yα) − φ(x)).

We will show that
| Ãr − Ãh

r | = o(rd+p). (3.3)

Observe that

Ãr = 1

2

∑

yα∈Br

ˆ
Rh

α

(
Jp(φ(x + y) − φ(x)) + Jp(φ(x − y) − φ(x))

)
dy

= 1

2

∑

yα∈Br

ˆ
Rh
0

(
Jp(φ(x + yα + y) − φ(x)) + Jp(φ(x + yα − y) − φ(x))

)
dy.

Since |Rh
0 | = hd we have

| Ãr − Ah
r |

= 1

2

∣∣∣∣∣∣

∑

yα∈Br

ˆ
Rh
0

(
Jp(φ(x + yα + y) − φ(x)) + Jp(φ(x + yα − y) − φ(x))

−2Jp(φ(x + yα) − φ(x))
)
dy

∣∣ .

If p ≥ 2 we use Taylor expansion of order two and obtain

φ(x + yα ± y) − φ(x) = φ(x + yα) − φ(x) ± ∇φ(x + yα) · y + O(y2).

Let ρ = φ(x + yα) − φ(x) and η = ∇φ(x + yα). Then this can be expressed as

φ(x + yα + y) − φ(x) = ρ + η · y + O(|y|2).
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Therefore, by Lemma A.1
∣∣∣Jp(φ(x + yα + y) − φ(x)) − Jp(ρ + η · y)

∣∣∣

≤ C max(|φ(x + yα + y) − φ(x)|, |ρ + η · y|)p−2|y|2
≤ Cr p−2o(r2)

= o(r p),

where we have used that y = O(h) = o(r) and that ρ = O(yα) = O(r). It follows that it
will be enough to obtain an estimate of the form

|Jp(ρ + η · y) + Jp(ρ − η · y) − 2Jp(ρ)| = o(r p). (3.4)

For p = 2, this estimate is trivial. When p > 3 we use the second order Taylor expansion
of Jp to obtain

|Jp(ρ + η · y) − Jp(ρ) − (p − 1)|ρ|p−2η · y| ≤ C max(|ρ|, |ρ + η · y|)p−3|η · y|2
≤ Cr p−3o(r3) = o(r p),

(3.5)

since ρ = O(yα) = O(r) and y = O(h) = o(r
3
2 ) when p > 3.

When p ∈ (2, 3] we use the fact that the derivative of the function t �→ Jp(t) is (p − 2)-
Hölder continuous and obtain

|Jp(ρ + η · y) − Jp(ρ) − (p − 1)|ρ|p−2η · y| ≤ C |η · y|p−1

= o(r p),
(3.6)

where we used that y = O(h) = o(r p/(p−1)) when p ∈ (2, 3]. The estimate (3.4) follows
immediately from (3.5) and (3.6), respectively.

If p < 2 we use the fact that Jp is (p − 1)-Hölder continuous. Thus,

∣∣Jp(φ(x + yα + y) − φ(x)) − Jp(φ(x + yα) − φ(x))
∣∣ ≤ C |φ(x + yα + y) − φ(x + yα)|p−1

≤ C |y|p−1 = o(r p),

(3.7)
where we used the assumption y = O(h) = o(r p/(p−1)) when p < 2. Using (3.4) and (3.7)
we get

| Ãr − Ah
r | = o(r p)

∑

yα∈Br

hd = o(r p)|B̃r | ≤ o(r p)|Br+√
dh | = o(r p+d).

Step 3: Conclusion. Combining Step 1 and Step 2, we obtain

|�h
pφ(x) − Mp

r [φ](x)| = 1

Dd,pr p|Br | |A
h
r − Ar |

≤ C

r p+d

(
|Ah

r − Ãr | + | Ãr − Ar |
)

= 1

r p+d
o(r p+d) = or (1).

4 Properties of the Numerical Scheme

In this section we will state and prove some properties of the numerical scheme (1.6)–(1.7).
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4.1 Existence and Uniqueness

We will obtain the existence and uniqueness result given in Theorem 1.2(a).
First note that we can write

�h
pφ(x) = hd

Dd,p ωd r p+d

∑

yα∈Br

Jp(φ(x + yα) − φ(x))

= 1

Dd,pr p

 
Br

Jp(φ(x + y) − φ(x)) dμ(y)

with μ being the discrete measure given by

dμ(y) := hd
∑

yα∈Br

dδyα (y),

where δz denotes the dirac delta measure at z ∈ R
d . With this simple observation, all the

results of Section 9.1 in [10] follow here word by word (replacing Mp
r by �h

p and dy by
dμ(y)). We state them for completeness. Our running assumptions in this section will be
f ∈ C(�) and G ∈ C(∂�r ) (a continuous extension of g ∈ C(∂�)).
The comparison result below implies in particular the uniqueness of solutions of (1.6)–

(1.7).

Proposition 4.1 (Comparison) Let p ∈ (1,∞), h, r > 0, and v,w ∈ L∞(�r ) be such that
{

−�h
pw(x) ≥ f (x), x ∈ �,

w(x) ≥ G(x), x ∈ ∂�r ,
and

{
−�h

pv(x) ≤ f (x), x ∈ �,

v(x) ≤ G(x), x ∈ ∂�r .

Then v ≤ w in �r .

The existence of solutions is proved by a monotonicity argument. For this purpose, we
need the following L∞-bound.

Proposition 4.2 (L∞-bound) Let p ∈ (1,∞), let R > 0 and uh be the solution (if any) of
(1.6)–(1.7) corresponding to some r ≤ R. Assume (H). Then

‖uh‖∞ ≤ A,

for r small enough, with A > 0 depending on p,�, f , g and R (but not on r and h).

Proof See the proof of Proposition 9.2 [10]. The proof is based on an explicit barrier for the
p-Laplace equation, which by Theorem 1.1 gives a barrier for (1.6)–(1.7). 
�

In order to prove the existence we also need a two step iteration process. For that purpose
we define

L[ψ, φ](x) := 1

Dd,pr p

 
Br

Jp(φ(x + y) − ψ(x)) dμ(y).

We have the following result.

Lemma 4.3 Let r > 0 and φ ∈ L∞(�r ).

(a) Then there exists a unique ψ ∈ L∞(�) such that −L[ψ, φ](x) = f (x) for all x ∈ �.
(b) Let ψ1 and ψ2 be such that −L[ψ1, φ](x) ≤ f (x) and −L[ψ2, φ](x) ≥ f (x) for all

x ∈ �, then ψ1 ≤ ψ2 in �.
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Proof The proof follows as the proof of Lemma 9.3 in [10]. 
�
We are finally ready to prove the existence.

Proof of Theorem 1.2(a) The proof follows the proof of Proposition 9.4 in [10]. We spell out
some details below.

The approach for existence is to construct a monotone increasing sequence converging to
the solution. Let B be the barrier constructed in Proposition 4.2. Define

u0
h(x) =

⎧
⎨

⎩
inf
∂�r

G − B(x) x ∈ �,

G(x) x ∈ ∂�r ,

and the sequence uk
h as the sequence of solutions of

{
−L[uk

h, uk−1
h ](x) = f (x) x ∈ �,

uk
h(x) = G(x) x ∈ ∂�r .

One can prove that uk
h exists for all k, is nondecreasing (by the monotonicity of L) and

uniformly bounded (by Proposition 4.2). We can then define the pointwise limit

uh(x) := lim
k→∞ uk

h(x).

Due to the the pointwise convergence

− f (x) = lim
k→∞ L[uk+1

h , uk
h](x) = L[ lim

k→∞ uk+1
h , lim

k→∞ uk
h](x) = L[uh, uh](x) = �h

p[uh](x).

Thus, u is a solution of (1.6). Clearly uh = G in ∂�r so it is also a solution of (1.7). The
uniqueness follows from Proposition 4.1. 
�

4.2 Monotonicity and Consistency

In order to prove convergence of the numerical scheme, we will need certain monotonicity
and consistency properties (we already obtained a uniform bound in Proposition 4.2). For a
function φ : �r → R define

S(r , h, x, φ(x), φ) :=

⎧
⎪⎨

⎪⎩

− hd

Dd,p ωd r p+d

∑

yα∈Br

Jp(φ(x + yα) − φ(x)) − f (x) x ∈ �,

φ(x) − G(x) x ∈ ∂�r .

Note that (1.6)–(1.7) can be equivalently formulated as

S(r , h, x, uh(x), uh) = 0 x ∈ �r .

We have the following result.

Lemma 4.4 Assume (H).

(a) (Monotonicity) Let t ∈ R and ψ ≥ φ. Then

S(r , h, x, t, ψ) ≤ S(r , h, x, t, φ)
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(b) (Consistency)For all x ∈ � and φ ∈ C2(BR(x)) for some R > 0 such that |∇φ(x)| �= 0
we have that

lim sup
r→0,z→x,ξ→0

S(r , h, z, φ(z) + ξ + ηr , φ + ξ)

≤
{ −�pφ(x) − f (x) if x ∈ �

max{−�pφ(x) − f (x), φ(x) − g(x)} if x ∈ ∂�,

and

lim inf
r→0,z→x,ξ→0

S(r , h, z, φ(z) + ξ − ηr , φ + ξ)

≥
{ −�pφ(x) − f (x) if x ∈ �

min{−�pφ(x) − f (x), φ(x) − g(x)} if x ∈ ∂�,

where 0 ≤ ηr = o(r p) as r → 0+.

Proof The proof follows as in Lemma 9.7 in [10]. For part (b) it is essential to use the fact
that Jp is a Hölder continuous function, the basic properties of lim sup and lim inf and the
consistency of �h

p given in Theorem 1.1. 
�

4.3 Convergence

We are now ready to prove the convergence stated in Theorem 1.2. The idea of the proof
originates from [4]. The proof is almost the same as the proof of Theorem 2.5 ii) in [10]. We
point out that it was necessary to adapt the proof in order to make it fit with the definition of
viscosity solutions in the case p ∈ (1, 2). Below, we spell out some details.

First we need another definition of viscosity solutions of the boundary value problem and
two auxiliary results that are taken from [10].

Definition 4.1 (Generalized viscosity solutions of the boundary value problem) Let f ∈
C(�) and g ∈ C(∂�). We say that a lower (resp. upper) semicontinuous function u in � is a
generalized viscosity supersolution (resp. subsolution) of (1.3)–(1.4) in� ifwhenever x0 ∈ �

and ϕ ∈ C2(BR(x0)) for some R > 0 are such that |∇ϕ(x)| �= 0 for x ∈ BR(x0) \ {x0},
ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) (resp.ϕ(x) ≥ u(x)) for all x ∈ BR(x0) ∩ �,

then we have

lim
ρ→0

sup
Bρ(x0)\{x0}

(−�pϕ(x) − f (x0)
) ≥ 0 if x0 ∈ �

(resp. lim
ρ→0

inf
Bρ(x0)\{x0}

(−�pϕ(x) − f (x0)
) ≤ 0)

max

{
lim
ρ→0

sup
Bρ(x0)\{x0}

(−�pϕ(x) − f (x0)
)
, u(x0) − g(x0)

}
≥ 0 if x0 ∈ ∂�

(
resp. min

{
lim
ρ→0

inf
Bρ(x0)\{x0}

(−�pϕ(x) − f (x0)
)
, u(x0) − g(x0)

}
≤ 0

)

Remark 4.5 As in Remark 2.1, we note that when either p ≥ 2 or |∇ϕ(x0)| �= 0, the limits
in the above definition can simply be replaced by (−�pϕ(x0) − f (x0)).

The following uniqueness result is Theorem 9.5 in [10].
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Theorem 4.6 (Strong uniqueness property) Let � be a bounded C2 domain. If u and v are
generalized viscosity subsolutions and supersolutions of (1.3)–(1.4) respectively, then u ≤ v.

We also need that a generalized viscosity solution is a (usual) viscosity solution in the
case of a bounded C2 domain. The proposition below is Proposition 9.6 in [10].

Proposition 4.7 Let � be a bounded C2 domain. Then u is a viscosity subsolution (resp.
supersolution) of (1.3)–(1.4) if and only if u is a generalized viscosity subsolution (resp.
supersolution) of (1.3)–(1.4).

Proof of Theorem 1.2(b) Define

u(x) = lim sup
r→0,y→x

uh(y), u(x) = lim inf
r→0,y→x

uh(y),

where h → 0 as in the hypotheses of Theorem 1.2. By definition u ≤ u in �. If we show
that u (resp. u) is a generalized viscosity subsolution (resp. supersolution) of (1.3), Theorem
4.6 would imply u ≤ u. Thus, u := u = u is a generalized viscosity solution of (1.3) and
uh → u uniformly in �. Proposition 4.7 then would imply that u is a viscosity solution of
(1.3).

We now sketch how to show that u is a generalized viscosity subsolution. First note that u
is an upper semicontinuous function by definition, and it is also bounded since uh is uniformly
bounded by Proposition 4.2. Take x0 ∈ � and ϕ ∈ C2(BR(x0)) such that u(x0) = ϕ(x0),
u(x) < ϕ(x0) if x �= x0. We separate the proof into different cases depending of the value
of the gradient of ϕ at x0 and the range of p.

Case 1: |∇ϕ(x0)| �= 0 or p ≥ 2. Then, for all x ∈ � ∩ BR(x0) \ {x0}, we have that
u(x) − ϕ(x) < 0 = u(x0) − ϕ(x0). (4.1)

We claim that we can find a sequence (rn, yn) → (0, x0) as n → ∞, with hn → 0 as in
the hypotheses of the theorem, such that

uhn (x) − ϕ(x) ≤ uhn (yn) − ϕ(yn) + e−1/rn for all x ∈ � ∩ BR(x0). (4.2)

This can be argued for as in the proof of Theorem 2.5 ii) in [10].
Choose now ξn := uhn (yn) − ϕ(yn). We have from (4.2) that,

uhn (x) ≤ ϕ(x) + ξn + e−1/rn for all x ∈ � ∩ BR(x0).

Using Lemma 4.4(b)we obtain

0 = S(rn, hn, yn, urn (yn), uhn )

= S(rn, hn, yn, ϕ(yn) + ξn, uhn )

≥ S(rn, hn, yn, ϕ(yn) + ξn, ϕ + ξn + e−1/rn )

= S(rn, hn, yn, ϕ(yn) + ξn − e−1/rn , ϕ + ξn).

Note that e−1/r = o(r p). By Lemma 4.4(b), we have

0 ≥ lim inf
rn→0, yn→x0, ξn→0

S(rn, hn, yn, ϕ(yn) + ξn − e−1/rn , ϕ + ξn)

≥ lim inf
r→0, y→x0, ξ→0

S(r , h, y, ϕ(y) + ξ − e−1/r , ϕ + ξ)

≥
{ −�pϕ(x0) − f (x0) if x0 ∈ �,

min{−�pϕ(x0) − f (x0), u(x0) − g(x0)} if x0 ∈ ∂�,
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which shows that u is a viscosity subsolution and finishes the proof in this case.
Case 2: Let p ∈ (1, 2) and |∇ϕ(x0)| = 0 such that u is constant in some ball Bρ(x0) for

ρ > 0 small enough. Choose φ(x) = u(x0) + |x − x0|
p

p−1+1. Then, we can argue as in Case
1 above that

0 ≥ lim inf
r→0, y→x0, ξ→0

S(r , h, y, φ(y) + ξ − e−1/r , φ + ξ),

which implies

0 ≥ lim inf
r→0, y→x0

S(r , h, y, φ(y), φ),

by the Hölder continuity of Jp . Together with Lemma A.3 this shows that

−�pu(x0) = 0 ≤ f (x0).

Hence, u is a classical subsolution at x0 and thus also a viscosity subsolution.
Case 3: Let |∇ϕ(x0)| = 0 and assume that u is not constant in any ball Bρ(x0). Then

we may argue as in the proof of Proposition 2.4 in [3] to prove that there is a sequence
yk → 0 such that the function ϕk(x) = ϕ(x + yk) touches u from above at xk = x0 + yk and
|∇ϕk(xk)| �= 0 for all k. As in Case 1, this gives

0 ≥
{ −�pϕ(xk) − f (xk) if xk ∈ �,

min{−�pϕ(xk) − f (xk), u(xk) − g(xk)} if xk ∈ ∂�,

for all k. Passing k → ∞, we obtain

0 ≥ lim sup
k→∞

{
(−�pϕ(xk) − f (xk)) if xk ∈ �,

min{−�pϕ(xk) − f (xk), u(xk) − g(xk)} if xk ∈ ∂�,

≥
⎧
⎨

⎩

lim
ρ→0

inf
Bρ(x0)\{x0}

(−�pϕ(x) − f (x)
)

if x0 ∈ �,

min{ lim
ρ→0

inf
Bρ(x0)\{x0}

(−�pϕ(x) − f (x)
)
, u(x) − g(x)} if x0 ∈ ∂�,

which is the desired inequality. This completes the proof. 
�

5 Solution of the Nonlinear System

When we discretize the Dirichlet problem (1.3)–(1.4), we need to solve the nonlinear system
(1.8)–(1.9). In contrast to the situation in [34], our system is not based on the mean value
formula for the∞-Laplacianwhich is not differentiable. Instead, it is based on an implicit and
differentiable mean value property. This system is therefore well suited for Newton-Raphson,
which is one of the methods we have employed. The Newton-Raphson method is fast (also
mentioned by Oberman in [34]) and the number of iterations required to solve the system
seems to be independent of its size, see Table 1. However, we neither have a proof of this nor a
proof of the convergence of this method. The convergence would be guaranteed for example
if this is related to find the minimum of a strongly convex function. This is not the case here,
since the related minimizer functional is merely convex. Nevertheless, we can give sufficient
conditions for the Jacobian matrix used to be invertible. We have included this discussion
in the one-dimensional setting in “Appendix 1”. Since we cannot prove convergence for
the Newton-Raphson method, we have also chosen to include an explicit method based on
the convergence to a steady state of an evolution problem, for which we can guarantee the
convergence. The convergence of this method is conditioned by the CFL-type condition
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(CFL) in Sect. 5.2. See Table 1 for a more detailed comparison between the efficiency in
terms of speed of the two methods. We describe the two methods in detail below.

5.1 Newton-Raphson

The method we have used is the standard one. Let F : Rk → R
k for some k ≥ 1. In order to

solve the system

F(z) = 0,

we use the iteration

zn+1 = zn − (JF (zn))−1F(zn).

where JF denotes the Jacobian matrix of the function F . In our particular case we have that
k = #{G̃h ∩ �r}.

Let us illustrate the form of F and JF in the one dimensional case. Let γ = min{β ∈ Z :
xβ ∈ �r }, and zi = Uγ+i−1. Consider

F(z1, . . . , zk) =

⎛

⎜⎜⎜⎝

F1(z1, . . . , zk)

F2(z1, . . . , zk)
...

Fk(z1, . . . , zk)

⎞

⎟⎟⎟⎠

where Fi : Rk → R for i = 1, . . . , k are given by

Fi (z1, . . . , zk) =

⎧
⎪⎨

⎪⎩

zi − Gγ+i−1 if xγ+i−1 ∈ ∂�r ,
hd

Dd,p ωd r p+d

∑

xα∈Br

Jp(zi+α − zi ) − fγ+i−1 if xγ+i−1 ∈ �.

Let (JF (z))i, j = (JF (z1, . . . , zk))i, j denote the component of the Jacobian matrix of F
corresponding to the i-th and j-th column. If i is such that xγ+i−1 ∈ ∂�r then

(JF (z))i, j =
{
1 if j = i

0 if j �= i

while if xγ+i−1 ∈ � then

(JF (z))i, j = (p − 1)hd

Dd,p ωd r p+d
×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|z j − zi |p−2 if j �= i and xγ+ j−1 − xγ+i−1∈ Br ,

−
∑

xα∈Br

|zi+α − zi |p−2 if j = i,

0 otherwise.

5.2 Explicit Method

We consider {U m}m∈N to be the sequence of solutions U m : �h
r → R of

U m+1
β = U m

β + τm�h
pU m

β + τm fβ, xβ ∈ �h (5.1)

where U 0 is some initial data, U m = G on ∂�h
r and {τm}m∈N > 0 are certain discretization

parameters. The idea here is that, as m → ∞, U m converges to the solution U of (1.8)–
(1.9). This convergence holds given a nonlinear counterpart to the CFL-stability condition.
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Actually, we also need to slightly modify (5.1) to ensure convergence; in words of Oberman
in [33], we need to ensure that our operator is proper.

More precisely, given ε > 0, let {(Uε)
m}∞m=1 be the solution of

(Uε)
m+1
β = (Uε)

m
β + τm�h

p(Uε)
m
β − τmε(Uε)

m
β + τ fβ, xβ ∈ �h (5.2)

subject to the same initial and boundary conditions as in (5.1). Let Uε be the solution of

− �h
p(Uε)β + ε(Uε)β = fβ, xβ ∈ �h, (5.3)

(Uε)β = Gβ, xβ ∈ ∂�h
r . (5.4)

It is standard to check, using the techniques of Sect. 4.1 thatUε exists, is unique and uniformly
bounded in r , h and ε. We have the following result.

Lemma 5.1 Let p ≥ 2 and {U m
ε }∞m=1 be the solution of (5.2) with any bounded initial

condition U 0
ε . Let also U be the solution of (1.8)–(1.9). Assume that

0 < τm ≤ min

{
1,

r p

(p − 1)2p−2L p−2
m

Dd,p

(1 + √
d)d

(1 − ε)

}
(CFL)

with Lm = max(‖U m
ε ‖	∞ , ‖Uε‖	∞).

Then

max
xα∈�

∣∣(Uε)
m
α − Uα

∣∣ = 2L0(1 − τε)m + oε(1),

where τ = infm∈N{τm}.
Proof Since Uε is uniformly bounded in a discrete finite set, there exists a convergent sub-
sequence Uε j converging to some V pointwise. It is also standard to show that V is indeed a
solution of (1.8)–(1.9). By uniqueness, V = U and the full sequence Uε converges, i.e.,

‖Uε − U‖∞ = oε(1).

On the other hand, by subtracting the equations for Uε and (Uε)
m we get

(Uε)
m+1
β − (Uε)β =((Uε)

m
β − (Uε)β)(1 − τmε) + τm K

×
∑

yα∈Br

(
Jp((Uε)

m
β+α − (Uε)

m
β ) − Jp((Uε)β+α − (Uε)β)

)

=((Uε)
m
β − (Uε)β)(1 − τmε) + τm K

×
∑

yα∈Br

J ′
p(ξα,β)

(
((Uε)

m
β+α − (Uε)

m
β ) − ((Uε)β+α − (Uε)β)

)

=((Uε)
m
β − (Uε)β)

⎛

⎝1 − τmε − τm K
∑

yα∈Br

J ′
p(ξα,β)

⎞

⎠

+ τm K
∑

yα∈Br

J ′
p(ξα,β)

(
(Uε)

m
β+α − (Uε)β+α

)

where K := hd

|Br |Dd,pr p and ξα,β lies between (Uε)
m
β+α − (Uε)

m
β and (Uε)β+α − (Uε)β , so

that |ξα,β | ≤ 2Lm and |J ′
p(ξα,β)| = (p − 1)|ξα,β |p−2 ≤ (p − 1)2p−2L p−2

m since p ≥ 2.
Therefore, when r is small enough
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τm K
∑

yα∈Br

J ′
p(ξα,β) ≤ (1 − ε)

1

|Br |
1

(1 + √
d)d

∑

yα∈Br

hd ≤ (1 − ε)
|Br+√

dh |
|Br+√

dr |
≤ (1 − ε),

where we used (CFL) and that h ≤ r (since h = o(r) with r small enough). In this way,

1 − τmε − τm K
∑

yα∈Br

J ′
p(ξα,β) ≥ ε(1 − τm) ≥ 0.

Clearly J ′
p ≥ 0, and then

‖(Uε)
m+1 − Uε‖	∞ ≤ ‖(Uε)

m − Uε‖	∞

⎛

⎝1 − τmε − τm K
∑

yα∈Br

J ′
p(ξα,β)

⎞

⎠

+ τm K
∑

yα∈Br

J ′
p(ξα,β)‖(Uε)

m − Uε‖	∞

≤ ‖(Uε)
m − Uε‖	∞ (1 − τmε)

≤ ‖(Uε)
0 − Uε‖	∞ (1 − τmε)m+1

≤ 2L0 (1 − τε)m+1 .

The results follows using the triangle inequality:
∥∥(Uε)

m − U
∥∥

	∞ ≤ ‖(Uε)
m − Uε‖	∞ + ‖Uε − U‖	∞ ≤ 2L0(1 − τε)m + oε(1).


�
Remark 5.2 The fact that Uε is uniformly bounded together with the bound ‖U m

ε − Uε‖∞ ≤
2L0 ensures that Lm is uniformly bounded fromabove so that {τm}m∈N can be taken uniformly
bounded from below.

In the case 1 < p < 2, we used a regularization of the singularity in �h
p in order to make

it a Lipschitz map. This could be done for example by modifying the nonlinearity with an
extra approximation parameter δ > 0 and replacing Jp by J δ

p given by

J δ
p(t) =

{
Jp(t + δ) − Jp(δ) if t ≥ 0,

Jp(t − δ) − Jp(−δ) if t < 0.

The drawback of this type of regularization is that the condition (CFL) becomes more and
more restrictive as δ → 0. This regularization is typically used when dealing with explicit
schemes for fast diffusion equations (see for example [8,9])

5.3 Comparison Between the Solvers

We now present a comparison of the above methods regarding the number of iterations and
computational time2.

We have solved the system (1.8)–(1.9) for p = 3, in dimension d = 1 with � = (−1, 1),
f ≡ 1 and g ≡ 0. As starting value for the iteration we have chosen u0(x) = (1 − |x |)+.
Finally, for the explicit solver we have chosen τ to satisfy (CFL). We have stopped the solver
when difference between two consecutive iterations is less that 10−16.

2 Naturally, this depends on the code and the computational power of the computer used, but we have chosen
to include it for the sake of completeness.
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Table 1 A comparison of the efficiency of our methods used to solve the nonlinear system for p = 3

r h k It-E T-E It-NR T-NR

0.2 0.019037 127 4272 0.59 8 0.03

0.1 0.006279 351 17475 9.74 8 0.1

0.05 0.002071 1014 63164 166.87 9 0.84

0.025 0.000683 3000 250901 3076.04 9 11.43

0.0125 0.000025 8984 ∼ 107 ∼ 105 9 381.28

Here k denotes the size of the system, It-E and It-NR are the number of iterations needed by the explicit and the
Newton-Raphson solver respectively, and T-E and T-NR are the times (in seconds) spent to solve the system
by the explicit and the Newton-Raphson solver respectively

In Table 1 we present the results for different values of r and its corresponding h satisfying

(H) (in this case h = r3/2+0.1

4 ).
As the table shows, the Newton-Raphson solver is fast in the sense that the number

of iterations does not seem to depend on the size of the system. This is a big advantage
compared to the explicit solver, for which smaller values of r enforces smaller choices of τ

which increase the number of iterations required substantially.

6 Numerical Experiments

To perform numerical experiments we need two ingredients.

(1) The explicit value of the constant Dd,p .
(2) Explicit solutions of (1.3)–(1.4) to test with.

It is standard to check that, in dimension d = 1, we have

D1,p = 1

2(1 + p)
.

In dimension d = 2 we have the following formula for integer numbers, that can be
obtained through integration by parts. Let p ∈ [2,∞) and d = 2.

(a) (Even) If p = 2n for some n ∈ N then

D2,p = 1

2 + p

(
n∏

i=1

2i − 1

2i

)
.

(b) (Odd) If p = 2n + 1 for some n ∈ N then

D2,p = 2

π(2 + p)

(
n∏

i=1

2i

2i + 1

)
.

For general dimension and p, one can find the following expression

Dd,p = d

2
√

π
· p − 1

d + p
· �( d

2 )�(
p−1
2 )

�(
d+p
2 )

.

As mentioned in the introduction, homogeneous problems can successfully be treated
by means of the so-called normalized p-Laplacian, for which numerical schemes are well
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Table 2 	∞-absolute error ‖(Uε)h − u‖	∞ and observed convergence rates γr in r and γh in h in dimension
d = 1 for problem (6.1)

p = 3 p = 4 p = 10

r h = r2
4 Error γr γh Error γr γh Error γr γh

2.00e-1 1.000e-2 8.46e-2 9.13e-2 1.23e-1

1.00e-1 2.500e-3 4.03e-2 1.07 0.54 4.35e-2 1.07 0.54 5.66e-2 1.12 0.56

5.00e-2 6.250e-4 2.13e-2 0.92 0.46 2.27e-2 0.94 0.47 2.80e-2 1.02 0.51

2.50e-2 1.563e-4 1.08e-2 0.97 0.49 1.17e-2 0.96 0.48 2.40e-2 1.00 0.50

1.25e-2 3.906e-5 5.52e-3 0.97 0.49 5.86e-3 1.00 0.50 6.93e-3 1.02 0.51

understood (see [32,34]). Therefore, we will focus on nonhomogeneous problems ( f �= 0).
We compare our numerically obtained solution with the explicit solution

u(x) = (1 − |x | p
p−1 )

p − 1

p

1

d
1

p−1

.

Note that u is a solution of {
−�pu(x) = 1, x ∈ B1,

u(x) = 0, x ∈ ∂ B1.
(6.1)

In dimension two we will also use that for p = 4, the smooth function u(x, y) = xy
solves {

−�pu(x, y) = −4xy, (x, y) ∈ B1,

u(x, y) = xy, (x, y) ∈ ∂ B1,
(6.2)

and that the less regular function u(x, y) = |x | 43 y solves
{

−�pu(x, y) = − 64
27 y3 − 44

9 |x |2y, (x, y) ∈ B1,

u(x, y) = |x | 43 y, (x, y) ∈ ∂ B1.
(6.3)

6.1 Error Analysis in Dimension d = 1

Here we present the results of a numerical experiment using our numerical scheme to solve
problem (6.1) in dimension d = 1 using MATLAB.

To solve the nonlinear system present in (1.8)–(1.9) we use the explicit solver given by
(5.2). The parameter τm has been chosen to satisfy the (CFL), while ε is chosen small enough
not to interfere with the error in h and r . We have also taken G(x) = 0 for all x ∈ ∂�r as
extended boundary condition.

We have stopped the explicit solver when it has reached a numerical steady state, i.e.,

max
xα∈�

|(Uε)
m+1
α − (Uε)

m
α | < 10−16.

In this case we have chosen to take h = r2/4 which clearly satisfy the condition h =
o(r3/2). The results obtained are presented in Fig. 2 and Table 2which contain the simulations
for p = 3, p = 4 and p = 10.

It can be clearly seen that the error seems to behave linearly with r . This can be seen more
clearly in Table 2, where we present the details of the results in Fig. 2.
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Fig. 2 	∞-absolute error ‖(Uε)h − u‖	∞ and an approximated convergence rate in r and h (in rose) in
dimension d = 1 for problem (6.1)

The observed convergence rate γ have been computed using

error j = k(r j )
γ , j = 0, 1, 2, 3, 4,

where r j = 0.2/2 j . In this way,

γ = log2

(
error j−1

error j

)
.

6.2 First Error Analysis in Dimension d = 2

We now perform numerical experiments in dimension d = 2 for problem (6.1). We have

almost the same setup as in Sect. 6.1, except that we now take h = r
3
2+0.1 which clearly

satisfy the condition h = o(r
3
2 ).

Again, as in the computation in dimension d = 1, the error observed in Fig. 3 seems to
decay at least linearly with r , despite the fact that we have taken the parameter h to decay
slower than before. It seems as if as long as h = o(r3/2), the choice of h does not interfere
with the order of convergence in r .

In Table 3 we observe some instabilities in the order of convergence in the simulations
for big choices of r and h. However, if we compute the order of convergence between the
simulation with r = 2.00e-1 and r = 2.50e-2 the observed rate is

γ r = log8

(
7.73e-2

7.21e-3

)
= 1.14 > 1 if p = 3.

γ r = log8

(
8.25e-2

8.61e-3

)
= 1.09 > 1 if p = 4

γ r = log8

(
1.22e-1

1.26e-2

)
= 1.09 > 1 if p = 10

which is actually slightly better than linear in all the cases.
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Fig. 3 	∞-absolute error ‖(Uε)h − u‖	∞ and an approximated convergence rate in r and h (in rose) in
dimension d = 2 for problem (6.1)

Table 3 l∞-absolute error ‖(Uε)h − u‖	∞ and observed convergence rates γr in r and γh in h in dimension
d = 2 for problem (6.1)

p = 3 p = 4 p = 10

r h = r
3
2+0.1 Error γr γh Error γr γh Error γr γh

2.00e-1 7.615e-2 7.73e-2 8.25e-2 1.22e-1

1.00e-1 2.512e-2 8.87e-2 −0.20 −0.12 9.21e-2 −0.15 −0.9 9.11e-2 0.41 0.26

5.00e-2 8.286e-3 1.64e-2 2.44 1.52 1.78e-2 2.37 1.48 2.72e-2 1.74 1.09

2.50e-2 2.733e-3 7.21e-3 1.18 0.74 8.61e-3 1.05 0.66 1.26e-2 1.11 0.69

6.3 Second Error Analysis in Dimension d = 2

Here, we perform numerical simulations for problems (6.2) and (6.3). We intend to illustrate
that the regularity of the solution should have an impact on the order of convergence of the
scheme. Note that, while the solution of (6.2) is infinitely smooth, the solution of (6.3) is

no more than C1,1/3. This time, we have chosen h = r
3
2+0.01, which satisfy the condition

h = o(r
3
2 ).

We comment now on Fig. 4. Note that for problem (6.2), where the solution is smooth,
the observed error decays again linearly in r . On the other hand, for problem (6.3), the error
decays clearly in a sublinear way.
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Fig. 4 	∞-absolute error ‖(Uε)h −u‖	∞ for problem (6.2) (red) and (6.3) (light blue) and respective approx-
imated convergence rates (pink and dark blue) in dimension d = 2

Table 4 l∞-absolute error ‖(Uε)h − u‖	∞ and observed convergence rates γr in r and γh in h in dimension
for problem (6.2) and (6.3)

Problem (6.2) Problem (6.3)

r h = r
3
2+0.01 Error γr γh Error γr γh

2.00e-1 8.802e-2 2.45e-2 8.71e-2

1.00e-1 3.090e-2 4.80e-2 −0.97 −0.64 4.80e-2 0.86 0.57

5.00e-2 1.085e-2 5.43e-3 3.14 2.08 2.79e-2 0.79 0.52

2.50e-2 3.810e-3 2.32e-3 1.22 0.81 2.25e-2 0.31 0.21

In Table 4, we observe that for the smooth solution of problem (6.2), the overall conver-
gence rates are

γ r = log8

(
2.45e − 2

2.32e − 3

)
= 1.13, γ h = γ r

3
2 + 0.01

= 0.75,

while for the non-smooth one of (6.3),

γ r = log8

(
8.71e − 2

2.25e − 2

)
= 0.65, γ h = γ r

3
2 + 0.01

= 0.43.

Everything seems to indicate that the regularity of the solution has a significant effect in the
order of convergence of the numerical scheme.

6.4 Improvement of the Error with an Adapted Boundary Condition

During the simulations presented in Sects. 6.1 and 6.2, we observed that the extension of
G ≡ 0 produced a certain instability in the solution close to the boundary. Due to this fact,
the maximal error is attained near the boundary.
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Fig. 5 Dimension d = 1 and p = 10. Top figure: Error analysis for the adapted and rough boundary extension
(G ≡ 0) and the adapted boundary extension (G given by (6.4)). Bottom figures: Representation of the
numerical and real solutions for the two boundary extensions

In order to avoid this phenomenon, we have adapted the boundary condition to make the
transition between the interior and the boundary smoother. We have taken

G(x) = p − 1

p
(1 − |x | p

p−1 ) for x ∈ ∂�r . (6.4)

In the results presented in Fig. 5, we clearly see that the maximum error of the solution
with an adapted condition comes from the middle point, which is the point where solution is
the least regular, while without adaption, the error comes from the instabilities created near
the boundary.

Thus, the correction seems to give a smoother transition between the interior and the
extended condition. It also seems to improve the error estimate (but not the order of conver-
gence).

The correction suggested in this section is clearly dependent on the fact that we know the
explicit form of the solution. This is of course not the case in general. The behaviour near the
boundary strongly depends on the boundary condition g and the problem is how to choose
an extended boundary condition G such that the transition of the solution from � to ∂�r is
as smooth as possible. Unless some additional information regarding the behaviour of the
solution near the boundary is available, we do not know how to do this in general.This seems
to be a problem that must be handled in a problem-dependent way.

6.5 Solution of a Fully Nonhomogeneous Problem

Finally, we present some numerical simulations of a problem with nonhomogeneous right
hand side and nonhomogeneous boundary conditions. We present the numerical solutions
corresponding to problem (1.3)–(1.4) in dimension d = 2, posed in � = B1(0) with f ≡
constant in � and g(x, y) = 1

2 + xy on ∂�.
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Fig. 6 Dimension d = 2.Numerical solution of the fully nonhomogeneous problem (1.3)–(1.4)with g(x, y) =
1
2 + xy and f (x, y) ≡ constant

The boundary condition has been extended to ∂�r by G(x, y) = 1
2 + xy and we have

chosen the numerical parameters r = 0.2 and h = r2 = 0.04.
In Fig. 6, we present a level set representation of the solutions for p = 1.1, p = 1.5,

p = 2, p = 4 and p = 20 (using the regularization described at the end of Sect. 5 when
p < 2). Here, h = r2 has been used, also when p < 2 (see Remark 1.3).
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Appendix 1: Pointwise Inequalities and a Special Limit

Lemma A.1 Let p ≥ 2. Then
∣∣∣|a + b|p−2(a + b) − |a|p−2a

∣∣∣ ≤ C max(|a|, |a + b|)p−2|b|,
where C = C(p).

Proof It follows from the fact that

|a + b|p−2(a + b) − |a|p−2a = (p − 1)
ˆ b

0
|a + s|p−2 ds.


�
The following inequality is Lemma 3.4 in [18].

Lemma A.2 Let p ∈ (1, 2). Then
∣∣∣|a + b|p−2(a + b) − |a|p−2a

∣∣∣ ≤ C (|a| + |b|)p−2 |b|.
Here C = C(p).

We also need the following lemma in the proof of convergence.

Lemma A.3 Assume p ∈ (1, 2), (H) and let φ(x) = |x |β with β > p/(p − 1). Then

lim
r→0,x→0

�h
pφ(x) = 0.

Proof If x = 0, we have |φ(x + yα) − φ(x)| = |y|β = o(|yα| p
p−1 ). Then

|�h
pφ(x)| ≤ Jp(o(|r | p

p−1 ))
1

|Br |r p

∑

yα∈Br

hd = or (1).

Assume now that x �= 0 so that ∇φ(x) �= 0. We can use the symmetry of Jp(yα · ∇φ(x))

for yα ∈ Br and Lemma A.2 to conclude that
∣∣∣∣∣∣

∑

yα∈Br

Jp(φ(x + yα) − φ(x)) dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

yα∈Br

Jp(yα · ∇φ(x) + 1

2
yT
α D2φ(ξα)yα)

∣∣∣∣∣∣

≤
∑

yα∈Br

∣∣∣|yα · ∇φ(x)| + |yα|2 sup
ξ∈Br (x)

|D2φ(ξ)|
∣∣∣

p−2

|yα|2 sup
ξ∈Br (x)

|D2φ(ξ)| dy.
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We may assume that x lies in the e1-direction and write ∇φ(x) = β|x |β−1e1 := ce1 for
some c > 0. We now claim that3

�h
pφ(x) � cp−2hd

|Br |
∑

yα∈Br

∣∣∣|ŷα · e1| + c−1r sup
ξ∈Br (x)

|D2φ(ξ)|
∣∣∣

p−2
sup

ξ∈Br (x)

|D2φ(ξ)|

≤ cp−2hd

|Br |
∑

yα∈Br

∣∣∣|ŷα · e1| + c−1rC(|x | + r)β−2
∣∣∣

p−2
C(|x | + r)β−2

≤ cp−2

|Br |
(ˆ

B2r

∣∣∣|ŷ · e1| + c−1rC(|x | + r)β−2
∣∣∣

p−2
C(|x | + r)β−2 dy

)
+ or+|x |(1).

(A.1)

Once this is proved, it only remains to to prove that the first term in (A.1) goes to zero.
This is the estimate obtained on page 24 in the proof of Lemma A.4 in [10], with the small
difference that we here integrate over B2r instead of Br .

We now explain how to obtain (A.1). Fix r and x and consider the function

f (y) =
∣∣∣|ŷ · e1| + c−1rC(|x | + r)β−2

∣∣∣
p−2

C(|x | + r)β−2.

The midpoint quadrature rule applied to f (y) yields
∣∣∣
ˆ

B̃r

f (ŷ)dy − hd
∑

yα∈Br

f (ŷα)

∣∣∣�‖D2 f ‖L∞(B̃r )
h2|B̃r |.

Upon multiplying with cp−2

|Br | , inserting f (y) and rearranging, we obtain

cp−2hd

|Br |
∑

yα∈Br

∣∣∣|ŷα · e1| + c−1rC(|x | + r)β−2
∣∣∣

p−2
C(|x | + r)β−2

� cp−2

|Br |
ˆ

B̃r

∣∣∣|ŷ · e1| + c−1rC(|x | + r)β−2
∣∣∣

p−2
C(|x | + r)β−2 dy + cp−2‖D2 f ‖L∞(B̃r )

h2

� cp−2

|Br |
ˆ

B2r

∣∣∣|ŷ · e1| + c−1rC(|x | + r)β−2
∣∣∣

p−2
C(|x | + r)β−2 dy + cp−2‖D2 f ‖L∞(B̃r )

h2.

where we use that B̃r ⊂ Br+√
dh ⊂ B2r for r small enough, since h = o(r). The only thing

left is to prove that the last term is or+|x |(1). Differentiation of f yields

‖D2 f ‖L∞(B̃r )
�

∣∣∣c−1rC(|x | + r)β−2
∣∣∣

p−4
C(|x | + r)β−2.

Since h = o(r p/(p−1)) = o(r3/2), β − 2 > 0, p − 3 < 0 and c = β|x |β−1, we obtain

cp−2‖D2 f ‖L∞(B̃r )
h2 � cp−2c4−p(|x | + r)(β−2)(p−3)r p−1

= c2(|x | + r)(β−2)(p−3)r p−1

= |x |2(β−1)(|x | + r)(β−2)(p−3)r p−1

If |x | ≤ r then

|x |2(β−1)(|x | + r)(β−2)(p−3)r p−1 � r2(β−1)r (β−2)(p−3)r p−1 = r (β−1)(2+p−3)−p+3+p−1 = r3.

3 Here a � b stands for a ≤ Cb where C is a constant that may depend on p and d but not on r , h or x .
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Likewise, if r ≤ |x | then
|x |2(β−1)(|x | + r)(β−2)(p−3)r p−1 � |x |2(β−1)|x |(β−2)(p−3)|x |p−1 = |x |3.

This shows (A.1) and concludes the proof. 
�

Appendix 2: Invertibility of the Jacobian

In this part we discuss the invertibility of the Jacobian used in the Newton-Raphson method
formulated in Sect. 5. We have the following general result.

Lemma B.1 Let A = (Ai j ) be an n × n matrix satisfying

(a) |Aii | > 0 for all i = 1, . . . , n;

(b)
n∑

j=1, j �=i

|Ai j | ≤ |Aii | for all i = 1, . . . , n;

(c)
n∑

j=2

|A1 j | < |A11|;
(d) For all i = 2, . . . , n and for some j < i we have either

n∑

j=1, j �=i

|Ai j | < |Aii | (B.1)

or
Ai j �= 0. (B.2)

Then A is invertible.

Proof We argue towards a contradiction. Assume there is a non-zero x = (x1, . . . , xn) ∈ R
n

such that Ax = 0. We may also assume that ‖x‖∞ = 1.
We observe that if |xi | = 1 for i = 1 or i such that property (B.1) holds, then

|Aii | = |Aii xi | =
∣∣∣

n∑

j=1, j �=i

Ai j x j

∣∣∣ ≤
n∑

j=1, j �=i

|Ai j x j | < |Aii |, (B.3)

which is a contradiction. In the last inequality, we used property (c) or (B.1).
Assume now that |xi | < 1 for i = 1, . . . , k − 1 and that |xk | = 1. If k is such that (B.1)

holds, then arguing as in (B.3), we arrive at a contradiction. Therefore, k must be such that
(B.2) holds, which means that there is 	 < k such that Ak	 �= 0. Then

|Akk | = |Akk xk | =
∣∣∣Ak	x	 +

n∑

j=1, j �=k,	

Akj x j

∣∣∣

≤ |Ak	||x	| +
n∑

j=1, j �=k,	

|Akj ||x j |

< Ak	 +
n∑

j=1, j �=k,	

|Akj |

≤ |Akk |,
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where we have used that |x	| < 1 and that |x j | ≤ 1 in the third inequality, and property 2) in
the last inequality. This is a contradiction. 
�

We now review the form of the Jacobian in the Newton-Raphson method (see Sect. 5) and
give sufficient conditions for it to satisfies the assumptions of Lemma B.1. Recall that the
Jacobian is given by the matrix Ai j as follows. If i is such that xγ+i−1 ∈ ∂�r then

Ai j =
{
1 if j = i

0 if j �= i
(B.4)

while if xγ+i−1 ∈ � then

Ai j = (p − 1)hd

Dd,p ωd r p+d
×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|z j − zi |p−2 if j �= i and xγ+ j−1 − xγ+i−1 ∈ Br ,

−
∑

xα∈Br

|zi+α − zi |p−2 if j = i,

0 otherwise.
(B.5)

For simplicity, let

h(t) = (p − 1)hd

Dd,p ωd r p+d
|t |p−2.

Assume that Br contains 2L + 1 elements. Then the first L rows are simply given by

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), · · · , (0, . . . , 0︸ ︷︷ ︸
L zeros

, 1, 0, . . .).

Row number L + 1 + m for m = 0, . . . , k − 2L − 1 is (transposed)
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0
h(z2+m − zL+1+m)

...

h(zL+m − zL+1+m)

−
2L∑

j=2

h(z j+m − zL+1+m)

h(zL+2+m − zL+1+m)
...

h(z2L+m − zL+1+m)

0
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and this continues until the last L rows, that are of the form

(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
L zeros

), · · · , (0, . . . , 1, 0), (0, . . . , 0, 1).

Wewill nowgive conditions on the values z1, . . . , zk , assuring that the assumptions of Lemma
B.1 are satisfied.
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Lemma B.2 Assume that for each zi , with i = L +1, . . . , k − L, there is j between i − L +1
and i − 1 such that z j �= zi . Then the matrix A defined by (B.4)–(B.5) is invertible.

Proof Let us go through the assumptions of Lemma B.1. The diagonal elements consists of
1s or are of the form

−
2L+m∑

j=2+m

h(zL+1+m − z j ).

By assumption, at least one of the terms of the sum is non-zero. It is therefore clear that
assumption (a) is satisfied. Assumptions (b) and (c) are trivially satisfied. Regarding assump-
tion (d), it is clear that (B.2) is always satisfied. 
�

We note that the condition given in Lemma B.2 is saying that the solution is not constant
in any Br neighbourhood to the left of any point. This is a very reasonable assumption, since,
for example, for non-vanishing right hand side f , this is true for smooth solutions. Also for
f = 0 and g �= 0, in dimension two, this is the case.
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