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Abstract
In this work, we present a novel numerical discretization of a variable pressure multilayer
shallow water model. The model can be written as a hyperbolic PDE system and allows the
simulation of density driven gravity currents in a shallow water framework. The proposed
discretization consists in an unlimited arbitrary high order accurate (ADER) Discontinuous
Galerkin (DG) method, which is then limited with the MOOD paradigm using an a posteriori
subcell finite volume limiter. The resulting numerical scheme is arbitrary high order accurate
in space and time for smooth solutions and does not destroy the natural subcell resolution
inherent in theDGmethods in the presence of strong gradients or discontinuities. A numerical
strategy to preserve non-trivial stationary solutions is also discussed. The final method is very
accurate in smooth regions even using coarse or very coarsemeshes, as shown in the numerical
simulations presented here. Finally, a comparison with a laboratory test, where empirical data
are available, is also performed.

Keywords Multilayer shallow-water model · Variable pressure · Density-stratified fluid ·
Well-balanced · ADER discontinous Galerkin methods · A posteriori subcell finite volume
limiter

1 Introduction

Whendealingwith geophysical flows in shallowareas, it is a commonpractice to use vertically
averaged models and, in particular, the so-called shallowwater (or Saint-Venant) models (see

B E. Guerrero Fernández
ernesto.guerrero@uma.es

1 Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, Campus de
Teatinos S/N, 29081 Málaga, Spain

2 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via
Mesiano 77, 38123 Trento, Italy

3 Departamento de Matemáticas, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01734-2&domain=pdf
http://orcid.org/0000-0002-8657-3840
http://orcid.org/0000-0003-3164-7715
http://orcid.org/0000-0002-8201-8372
http://orcid.org/0000-0001-7162-9672


52 Page 2 of 38 Journal of Scientific Computing (2022) 90 :52

[35]). In this framework, a vertically averaged horizontal velocity is considered, while the
vertical component of the velocity is assumed small and it is neglected. Although this kind of
approach has been largely used in many applications, this limits the amount of information
that themodel is able to provide. Although the lack on information in the vertical direction is a
potential drawback of this technique, it is counterbalanced by much less computational effort
compared to fully three-dimensional models, which is essential for efficient simulations of
geophysical flows. Indeed, it reduces the dimension of the problem by one, making it more
affordable to simulate large domains with a good horizontal resolution. However, there are
geophysical flows where the vertical component may be important in order to understand
the behavior of the full system. In recent years, multilayer shallow water models have been
developed to address this issue, and are commonly considered as a good compromise between
the traditional one layer shallow water model and the direct numerical simulation of the full
3D system. In themultilayer approach, a vertical division or discretization into a given number
of layers is considered. For each layer, similar assumptions to the ones in standard shallow
water models are imposed (see [4,6,53]). This allows, for instance, to recover a detailed
vertical profile of the velocity. Let us remark that the layers are just a means of capturing
complex vertical profiles and do not correspond necessarily to physical layers.

In the framework of multilayer shallow water systems, one may find different strategies
concerning the interaction between the layers. For instance, [10,19,28,57] assume immiscible
layers. For the multilayer systems considered in [3,49], the layers are not immiscible and a
continuous exchange between the layers is assumed. This is done through the incorporation
of the mass and momentum transfer terms that could be written as non-conservative terms
appearing in the equations. Some recent works on multilayer shallow water systems even
consider a variable number of layers, where the number of layers locally adapts depending
on the presence of relevant vertical effects (see [9]).

Many recent works related to multilayer shallow water models focus in the incorporation
and numerical treatment of non-hydrostatic effects, associated with an estimation of the
vertical acceleration of thefluid derived from theBoussinesq-typewave equations (see [11,46,
50] or [76]). By doing so, the dispersive properties of the model are enhanced and simulation
of more physical effects becomes possible. Of course, the computational effort is bigger, but
still more affordable than a fully three dimensional model. For recent first order hyperbolic
reformulations of nonlinear dispersive shallow water systems, the reader is referred to [7,14,
45,48].

In this work, we employ a model described in [5,54]. The considered model includes the
effect of relative changes in density in the pressure terms of the system. There are many
physical and practical situations where these density changes are relevant. One classical
example can be found at the Strait of Gibraltar, where two different currents, varying in terms
of temperature and salinity, meet. Indeed, the water from theMediterranean sea is warmer but
also has a higher salinity concentration than the water from the Atlantic ocean, resulting in a
higher density for water coming from the Mediterranean sea. In order to accurately simulate
this kind of situations, it is essential to take into account these changes in relative density.

Many multilayer models incorporating density variations may be found in the literature
in recent years. In [12,64], for instance, the differences in density are due to suspended
sediments, where sediment species have their own sedimentary velocity. Another approach is
given in [1], which considers a two layer model where the water entrainment is approximated
by means of an heuristic-dependent source term. Furthermore, in [5] the authors propose a
multilayer shallowwatermodel that takes into account density variations due to a given tracer,
such as the temperature. The model used in this paper follows a similar approach. Another
example is [51], where the authors derive a semi-implicit time discretization approach for a
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variable density shallow water model with a variable number of layers to improve flexibility
and efficiency. For an overview about the history of efficient semi-implicit discretizations of
hydrostatic and non-hydrostatic shallow water flows, including flows with multi-valued free
surface, the reader is referred to the work of Casulli, see e.g. [22–26].

When the vertical flow features are relevant and become the dominant effect, one may
need a big number of layers in order to resolve them. As a consequence, the computational
effort increases and we thus partially lose the advantage of using multilayer shallow water
models when compared to the full three dimensional system. In this work we propose the use
of the Discontinuous Galerkin (DG) method as a way to enhance the subcell resolution of the
scheme, allowing coarser meshes while keeping a good accuracy in the vertical direction.

The Discontinuous Galerkin (DG) method itself dates back to the early work by Reed
and Hill in [68]. It was later developed by Cockburn and Shu, who set a sound theoretical
foundation for these numerical schemes in a series of well-known publications ([30,31,33,34]
among others), where the DG methods were extended to non-linear hyperbolic systems of
conservation laws.

The DG framework provides the necessary tools that allow to reach arbitrary high order
of accuracy in space and time. A natural approach regarding explicit DG methods is to use
an explicit time discretization via high order Runge–Kutta schemes, leading to the family
of Runge–Kutta discontinuous Galerkin schemes [30,31,33,34]. Space-time DG methods
where space-time basis and test functions are employed were first developed in [42,59,78,
79]. The resulting schemes are unconditionally stable. For semi-implicit DG schemes, the
reader is referred to [15,40,70,77]. An alternative approach to building high-order space-time
DG approximations is to consider the Cauchy-Kovaleskaya procedure as the one used in
ADER schemes first developed by Toro and Titarev in the finite volume method framework,
see ( [16,71–75]), using Taylor series expansions of the variables while substituting time
derivatives by spatial derivatives, which are then treated by the DG scheme. It is well known
that the Cauchy-Kovaleskaya (CK) technique often involves complex computations of time
derivatives that can quickly become too cumbersome. To overcome these difficulties, onemay
use a local space-time DG predictor procedure, which allows to reach arbitrary high order
in time while completely avoiding the CK procedure, see [37,41]. The latter formulation of
the ADER approach is based on the approximate solution of generalized Riemann problems
by means of an element-local fixed point algorithm, the convergence of which was proven
in [13], leading naturally to high order fully discrete one-step schemes. This shall be the
approximation used in this paper.

DG and ADER-DG have been successfully applied to geophysical flows in the shallow
water framework. See for instance the works for the one-layer shallow water model [62,63,
81,82] among others. Application of this technique to immiscible two-layer models can be
found in [28,39,57]. Some works can be found also for multilayer flows in [56]. As far as we
know, this is the first attempt to adapt this technique for variable density multilayer shallow
water models, obtaining a well-balanced scheme for non-trivial steady states.

Notice that, no limiter is applied up to that point and therefore some way of coping with
the Gibbs phenomena associated to non-linear high order schemes must also be provided.
In this work, we use a multi-dimensional optimal order detection (MOOD) (see [29,36]),
which is a posteriori approach to the problem of limiting. In this way, the unlimited solution
of the ADER-DG method is a candidate solution, which is then evaluated by the MOOD
procedure to find its admissibility. If the solution is found inadequate in any given cell, then
it will be discarded and recomputed by means of a robust finite volume solver, which would
become the corrected solution in the cell. Notice that the use of a finite volume solver could
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destroy the subcell resolution of the DG scheme. In order to preserve it, an optimal subcell
discretization is used, see [44].

One of the main advantages of the MOOD technique is that it allows to analyze different
properties of the solutions, and therefore whether it is meaningful from the physical and
numerical point of view. For instance, in this paper we consider that the solution must fulfill
a relaxed discrete maximum principle to avoid spurious oscillations related to sharp gradients
or discontinuities, but also some physical properties like positivity or a relative density equal
or greater that a given threshold. The proper set up of these criteria is very important for the
admissibility of the solutions, as it will be shown in this work.

Another major issue for the simulation of geophysical flows is the preservation of station-
ary solutions. Indeed, in practical situations, we often find flows that are small perturbations
of an equilibrium state or they converge to one those for long simulation times. Thus, the
numerical scheme must be able to exactly preserve this kind of solutions. In this work, we
will present a technique to preserve stationary solutions in the framework of the ADER-DG
schemes and Riemann solvers. As it will be later discussed, the considered model has several
families of stationary solutions of interest, including stationary solutions with non-trivial
density profiles.

This paper is organized as follows. In Sect. 2, the model and its key features are presented.
The stationary solutions are also discussed in that section. In Sect. 3 the discretization of the
model is detailed, including the limiting techniques considered here, alongside the strategy to
preserve a certain class of stationary solutions exactly at the discrete level. Section 4 presents
different numerical tests in order to analyze the behavior of the proposed numerical solver.
Preservation of steady state solutions and a comparison with laboratory data is included.
Finally, Sect. 5 gives some conclusions.

2 Model Description

In this section, we briefly recall the governing equations for the system studied here. It is not
the aim of this paper to make an exhaustive derivation of the model. The interested reader
may refer to [5] or [54] for further details. The model is derived from the incompressible
Euler equations with free surface, where two continuity equations are considered: the one
corresponding to an incompressible flow with constant density ρ0 and another one corre-
sponding to an advected flow with variable density ρa . The total density of the flow can be
seen as a sum of the density ρ0 plus the density fluctuation, ρ1, with respect to ρ0. The total
density of the fluid is then,

ρ = ρ0 + ρ1. (2.1)

Instead of considering total density, we may introduce the relative density

θ = ρ

ρ0
= 1 + ρ1

ρ0
, (2.2)

resulting in the following Euler equations,

∇ · v = 0,

∂tθ + ∇ · (θ v) = 0,

∂t (θ v) + ∇ · (θv ⊗ v) = −g θk − 1

ρ0
∇ p, (2.3)
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Fig. 1 Sketch of the multilayer approach

where v is the velocity field, k is the canonical vertical unitary vector, and g is the gravity.
For the sake of simplicity, let us focus on the two dimensional (x, z) case.

A multilayer approach is considered, dividing the fluid into M layers, and the equations
(2.3) are vertically averaged within each layer, under the usual hypotheses of shallow-water
models. We then obtain the following density-dependent pressure expression in each layer
α,

pα(t, x, z) = pα+ 1
2

+ θα g (zα+ 1
2

− z), (2.4)

with

pα+ 1
2
(t, x) = pS(t, x) + g

M∑

β=α+1

θβhβ(t, x). (2.5)

Here, fα refers to the value of the variable f in the α-layer, whereas pα+ 1
2
is the kinematic

pressure at the interface between layers α and α + 1. Finally, hα refers to the thickness of
layer α and pS denotes the pressure at the free surface, which is usually set to zero. Figure 1
shows a sketch of the problem.

Using this procedure, the following model is obtained from (2.3) (see [49,64]):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t h + ∂x

(
h
∑M

β=1 lβuβ

)
= 0,

∂t (hθα) + ∂x (hθαuα) = 1
lα

(
θα+ 1

2
Gα+ 1

2
− θα− 1

2
Gα− 1

2

)
,

∂t (hθαuα) + ∂x (hθαu2α) + ghθα∂xη + g lα
2 (h∂x (hθα) − hθα∂xh)

+g
∑M

β=α+1 lβ
(
h∂x (hθβ) − hθα∂xh

) = 1
lα

(
uα+ 1

2
θα+ 1

2
Gα+ 1

2
− uα− 1

2
θα− 1

2
Gα− 1

2

)
,

(2.6)

where h is the total height of the water column, η = h + zb is the free surface, and zb is the
bathymetry function. Finally, uα refers to the horizontal velocity in the α-layer and Gα± 1

2
α = 1, · · · M − 1, are the mass transfer terms between layers. Note that the full system
(2.6) is obtained under the assumption of some closure relations, which will allow us to
properly define the mass transfer terms. More explicitly, it is assumed that the layer thickness
is proportional to the total height, hα = lαh, with lα ∈ [0, 1], α = 1, . . . , M such that∑M

α=1 lα = 1. Under this assumption, the expression for the mass transfer terms is given by

Gα+ 1
2

=
α∑

β=1

lβ
(
∂t h + ∂x (huβ)

) =
α∑

β=1

lβ

⎛

⎝∂x (huβ) − ∂x

⎛

⎝
M∑

γ=1

lγ huγ

⎞

⎠

⎞

⎠ . (2.7)
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We will assume no mass transfer at the bottom or the free surface, that is G1/2 = GM+1/2 =
0. Finally θα+1/2 and uα+1/2 are some approximations of u and θ at the layer interfaces.
Typically,

uα+1/2 = uα+1 + uα

2
, θα+1/2 = θα+1 + θα

2
, α = 1, · · · , M − 1,

with u1/2 = u1, uM+1/2 = uM and θ1/2 = θ1, θM+1/2 = θM .
Note that the full PDE system given by equations (2.6) has a number of different stationary

solutions. The most intuitive ones are probably the steady states corresponding to homoge-
neous density profiles. For the case of constant density, the standardmultilayer shallow-water
equations are obtained,

{
∂t h + ∂x

(
h
∑M

β=1 lβuβ

)
= 0,

∂t (huα) + ∂x (hu2α) + gh∂xη = 1
lα

(
uα+1/2Gα+1/2 − uα−1/2Gα−1/2

)
.

Therefore, we are able to recover the particular case of the lake-at-rest stationary solutions
with constant density,

θα = const, uα = 0, for α = 1, . . . , M, η = const.

However, system (2.6) also admits lake-at-rest stationary solutions corresponding to non-
trivial density profiles. Indeed, stationary solutions with uα = 0, α = 1, . . . , M for the
system (2.6) correspond to the solutions of the following ODE system,

Pα := ghθα∂xη + glα
2

(h∂x (hθα) − hθα∂xh) + g
M∑

β=α+1

lβ
(
h∂x (hθβ) − hθα∂xh

) = 0.

(2.8)

Equation (2.8) can be solved recursively by solving first the upper layer,

θM∂xη + lM
2
h∂xθM = 0,

and then going downwards throughout the lower layers. Notice that there is an infinite number
of solutions for η(x) = h(x)+zb(x) and θα(x) forα = 1, . . . , M . However, we are interested
in stationary solutions corresponding to a stratified fluid with constant free surface, that is

η(x) = h(x) + zb(x) = const, θ(z) = θsur f ace + γ (η − z). (2.9)

Unfortunately, the vertical discretization into layers of the model (2.6) does not allow a per-
fectly linear density profile as a stationary solution, unless the bathymetry is flat. Furthermore,
it is easy to check that (2.9) is not a solution of (2.8) for a non-trivial bathymetry function.
However, system (2.8) can be solved recursively, which results into a stratified density pro-
file that could be seen as an approximation of (2.9) associated to the multilayer approach. In
particular, those solutions are given by the following expression,

uα = 0, η(x) = zb(x) + h(x) = const,
θM (x) = θ̄M ≥ 1,

θα(x) = θ̄α h2(M−α)(x) +
M∑

β=α+1

S2(M−β)(M − α + 1)θ̄β h2(M−β)(x),
(2.10)
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Fig. 2 Solution of the ODE (2.8) for an stratified fluid with M = 5 (left) and M = 10 (right)

Fig. 3 Solution of the ODE (2.8) for an stratified fluid with M = 20 (left) and M = 25 (right)

with

Sβ(α) = (β + 1) · A β+2
2 +1(α),

Ap(k) =
{
1 if p ≥ k,

(p − 1)
∏k−p

γ=2(1 + (p − 2)Cγ−1) if p < k,

Cγ = Cγ−1 − 1

Qγ

,

Qγ = Qγ−1 + γ + 1,

C0 = Q0 = 1,

where θ̄α is a free choice constant parameter corresponding to the constant of integration of
the ODE and set a particular profile for the stationary solution. Figures 2 and 3 depicts how
the solution (2.10) behaves as we increase the number of layers.

Finally, we can give an approximation of the wave propagation speed of the PDE system
(2.6).While a complete study of the hyperbolicity of themodel (2.6) falls outside the scope of
this work and the full spectral behavior of the model is unknown, empirically we observe that
the model remains hyperbolic throughout all kind of situations. Furthermore, some previous
work by Fernández et al. [12] allows us to consider a bound for the maximum and minimum
wave propagation speed λmax, λmin, given by,

λmin ≥ ū − Ψ , λmax ≤ ū + Ψ (2.11)
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where

Ψ =
√√√√2M − 1

2M

(
2

M∑

α=1

(ū − uα)2 + gh

(
1 + 1

M

M∑

β=1

(2β − 1)θβ

))
, (2.12)

and

ū = 1

M

M∑

α=1

uα. (2.13)

3 Numerical Scheme

In this sectionwe describe anADER-DGnumerical scheme for (2.6) based on a discretization
on uniform meshes with a posteriori subcell finite volume limiter of the MOOD type.

System (2.6) may be expressed in the following form,

∂tw + ∂x FC (w) + P(w, ∂xw, ∂xη) − T (w, ∂xw) = 0, (3.1)

where w is the vector of the conserved variables,

w = (h | hθα | hθαuα)T ∈ R
2M+1. (3.2)

The physical convective flux FC (w) is defined by,

FC (w) = (
huα | hθαuα | hθα u

2
α

)T ∈ R
2M+1, (3.3)

and P(w, ∂xw, ∂xη) corresponds to the pressure term, which depends on the relative density
θα and the free surface η, and has the following form,

P(w, ∂xw, ∂xη) = (0 | 0 | Pα) ∈ R
2M+1, (3.4)

where

Pα = ghθα∂xη + g lα
2

(h∂x (hθα) − hθα∂xh) + g
M∑

β=α+1

lβ(h∂x (hθβ) − hθα∂xh). (3.5)

Finally, the term T (w, ∂xw) corresponds to the mass, density, and momentum exchange
between layers:

T (w, ∂xw)

=
(
0
∣∣∣
1

lα

(
θα+ 1

2
Gα+ 1

2
− θα− 1

2
Gα− 1

2

)

∣∣∣
1

lα

(
uα+ 1

2
θα+ 1

2
Gα+ 1

2
− uα− 1

2
θα− 1

2
Gα− 1

2

))T

∈ R
2M+1. (3.6)

We recall that Gα+ 1
2
is described by (2.7).

The system of equations (3.1) is solved by applying the family of pure discontinuous
Galerkin schemes PNPN , as described in [37], which provides high order of accuracy in
space and time. The numerical scheme can be formulated as a predictor-corrector method:
in the predictor step, a high order approximation of the solution of (3.1) is computed by
solving a local Cauchy problem in the small, without interaction with the neighbor cells.
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Next, the corrector step will use this approximation with an explicit DG method that solves
the Riemann problem taking into account the neighbor states.

We consider a computational domain Ω discretized into a set of conforming elements
Ti = [xi− 1

2
, xi+ 1

2
], i = 1, . . . , Ns , where Ns is the total number of cells with a constant

length Δx = xi+ 1
2

− xi− 1
2
. As usual, the computational grid is the union of all the elements

Ti ,

Ω =
N⋃

i=1

Ti . (3.7)

From now on, we shall use the following notation: for any variable f defined on a volume
Ti , we denote by fi± 1

2
the values at the interface, depending on whether it is the right or left

side of the cell. However, when the values correspond to projected or reconstructed variables
into the interface, they will generally be denoted with the super index f ±, depending on
whether they correspond to the left or to the right side of the intercell.

In the following, the discrete solution of the PDE system (3.1) at time tn is denoted
by wh(x, tn) and is defined in terms of piecewise polynomials of degree N on the spatial
direction. We shall denote by Uh the space of piecewise polynomials up to degree N so that
wh(·, tn) ∈ Uh . In this work, a nodal basis defined by the Lagrange interpolation polynomials
over the (N +1) Gauss-Legendre quadrature nodes on the element Ti is adopted. As usual in
the discontinuous Galerkin (DG) approach, the discrete solution wh may be discontinuous
across the intercells, as in finite volume methods. At each cell Ti , the discrete solution is
written in terms of the nodal spatial basis functions Φl(x) and some unknown degrees of
freedom ŵ

n
i,l ,

wh(x, t
n) =

∑

l

ŵ
n
i,lΦl(x) := ŵ

n
i,lΦl(x), for x ∈ Ti , (3.8)

where the Einstein summation convention over two repeated indices has been considered.
The spatial basis functions are defined on the reference interval [0, 1] and the transformation
from physical coordinates x ∈ Ti to reference coordinates ξ ∈ [0, 1] is given by the linear

mapping x = x(ξ) = xi − Δx

2
+ ξΔx . With this choice, the spatial basis function is

written in terms of the nodal basis function ϕk(ξ), which satisfy the interpolation property
ϕk(ξ j ) = δk j , where δk j is the usual Kronecker symbol, ξ j are the nodal quadrature points,
and the resulting basis is by construction orthogonal. Therefore, we write,

Φk(x) = ϕk(ξ).

Furthermore, due to this particular choice of a nodal basis, all integral operators can be
decomposed into a sequence of one-dimensional operators acting only on the N + 1 degrees
of freedom in each dimension.

In order to derive theADER-DGmethod,we firstmultiply the governing PDE system (3.1)
with a test functionΦk ∈ Uh and integrate over the space-time control volume Ti ×[tn, tn+1].
This leads to

∫ tn+1

tn

∫

Ti
Φk∂tw dxdt

+
∫ tn+1

tn

∫

Ti
Φk (∂x FC (w) dxdt + P(w, ∂xw, ∂xη) − T (w, ∂xw)) dxdt = 0. (3.9)
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As already mentioned, the discrete solution is allowed to jump across element interfaces,
which means that the resulting jump terms have to be properly taken into account. In our
scheme this is achieved via numerical flux functions in the form of approximate Riemann
solvers that follows the path-conservative approach that was developed by Parés, Castro and
collaborators in the finite volume framework [18,67] and which has later been extended to
the discontinuous Galerkin finite element framework in [38,43,69].

In classical Runge–Kutta DG schemes [32], only a weak form in space of the PDE is
obtained, while time is still kept continuous, thus reducing the problem to a nonlinear sys-
tem of differential equations, which is subsequently integrated with classical Runge–Kutta
methods in time. In the ADER-DG framework, a completely different strategy is used. Here,
higher order in time is achievedwith the use of an element-local space-time predictor, denoted
by qh(x, t) in the following, and which will be discussed in more detail later. Using (3.8),
integrating the first term by parts in time and integrating the flux derivative term by parts in
space, taking into account the jumps between elements and making use of this local space-
time predictor solution qh instead of wh , the weak formulation (3.9) can be rewritten as

(∫

Ti
ΦkΦl dx

)(
ŵ

n+1
i,l − ŵ

n
i,l

)
−
∫ tn+1

tn

∫

T ◦
i

(∂xΦk · FC (qh)) dxdt

+
∫ tn+1

tn
Φk,i+ 1

2
D−
i+ 1

2

(
q−
h,i+ 1

2
,q+

h,i+ 1
2
, zb

−
h,i+ 1

2
, zb

+
h,i+ 1

2

)
dt

+
∫ tn+1

tn
Φk,i− 1

2
D+
i− 1

2

(
q−
h,i− 1

2
,q+

h,i− 1
2
, zb

−
h,i− 1

2
, zb

+
h,i− 1

2

)
dt

+
∫ tn+1

tn

∫

T ◦
i

Φk (P(qh, ∂xqh, ∂xηh) − T (qh, ∂xqh)) dxdt = 0, (3.10)

where T ◦
i corresponds to the interior of Ti and ηh stands for the projection of η onto the

space Uh . Moreover, zb
±
h,i± 1

2
are the extrapolated values of the bathymetry at the intercells.

Remark that, due to the polynomial representation of zb at each cell, zb
−
h,i+ 1

2
�= zb

+
h,i+ 1

2
in

general.
The first integral in (3.10) leads to the element mass matrix, which is diagonal since our

basis is orthogonal. Note that the jumps across elements interfaces will be approximated with
a Riemann solver, described in Sect. 3.2.

3.1 ADER-DG Space-Time Predictor

As already mentioned, the element-local space-time predictor is an important feature of
ADER-DG schemes. The computation of the predictor solution qh(x, t) is based on a weak
formulation of the governing PDE system in space-time starting from the known solution
wh(x, tn). The PDE system is approximated with a so-called Cauchy problem in the small,
i.e. without considering the interaction with the neighbour elements. For an element Ti , the
predictor solution qh is now expanded in terms of a local space-time basis,

qh(x, t) =
∑

l

θl(x, t)q̂il := θl(x, t)q̂il , (3.11)

with the multi-index l = (l0, l1) and where the space-time basis functions θl(x, t) =
ϕl0(τ )ϕl1(ξ) are again generated from the same one-dimensional nodal basis functions ϕk(ξ)
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as before, i.e. the Lagrange interpolation polynomials of degree N passing through N + 1
Gauss-Legendre quadrature nodes. The spatial mapping x = x(ξ) is also the same as before
and the physical time is mapped to the reference time τ ∈ [0, 1] via t = tn + τΔt . Multi-
plication of the PDE system (3.1) with a test function θk and integration over the space-time
control volume Ti × [tn, tn+1] yields the following weak form of the governing PDE, which
we remark that it is different from (3.9), since now the test and basis functions are both space
and time dependent:

∫ tn+1

tn

∫

Ti
θk(x, t)∂tqh dxdt

+
∫ tn+1

tn

∫

Ti
θk(x, t) (∂x FC (qh) dxdt + P(qh, ∂xqh, ∂xηh)

−T (qh, ∂xqh)) dxdt = 0, (3.12)

where ηh represents now the projection of η onto the local space-time polynomials, that
is, ηh(x, t) = Π1qh(x, t) + zbh(x) with Π1qh the first component of qh and zbh(x) the
projection of the bottom topography, which only depends on space, onto the space Uh .

Since we are only interested in an element local predictor solution, without considering
interactions with the neighbor elements, the jump terms across interfaces are not taken into
account at this stage. Instead, it will be done in the final corrector step of the ADER-DG
scheme (3.10). This leads to,

∫

Ti
θk(x, t

n+1)qh(x, tn+1) dx

−
∫

Ti
θk(x, t

n)q0h(x, t
n) dx −

∫ tn+1

tn

∫

Ti
∂tθk(x, t)qh(x, t) dxdt

= −
∫ tn+1

tn

∫

Ti
θk(x, t) (∂x FC (qh) + P(qh, ∂xqh, ∂xηh)

−T (qh, ∂xqh)) dxdt . (3.13)

Using the local space-time ansatz (3.11), Eq. (3.13) becomes a local nonlinear system for the
unknown degrees of freedom q̂il of the space-time polynomials qh . The solution of (3.13)
can be easily found via a simple and fast converging fixed point iteration detailed e.g. in
[41,55] and the convergence of which was proven in [13]. For linear homogeneous systems,
the iteration converges in a finite number of, at most, N+1 steps since the associated iteration
matrix is nilpotent [58].

We stress that the choice of an appropriate initial guess q0h(x, t) for qh(x, t) is of great
importance in the convergence rate and thus the computational efficiency of the scheme.
Several strategies exist to speed up the algorithm: in [83] it is suggested an extrapolation
of qh from the previous time interval [tn−1, tn] while in [55] the authors propose a second-
order accurate MUSCL-Hancock-type approach based on discrete derivatives computed at
time tn . As an alternative, one can also use a Taylor series expansion of the solution qh(x, t)
about time tn and then use a continuous extension Runge–Kutta scheme (CERK) in order to
generate the initial guess for the space-time predictor, as pointed out in [47]. For details, see
[47] and [52,66].

If an initial guess with polynomial degree N − 1 in time is chosen, it is sufficient to use a
single Picard iteration to solve (3.13) to the desired accuracy, (see [37]). For an efficient task-
based formalism of ADER-DG schemes, see [27]. However, for the simulations considered
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in this work, we consider the initial guess to be q0h(x, t) = wh(x, tn). This completes the
description of the unlimited high order accurate and fully discrete ADER-DG schemes.

3.2 A Hydrostatic Reconstruction Riemann Solver

As in [54], here we use a path-conservative solver based on the hydrostatic reconstruction
technique (see [2,20,65]). Let us briefly recall its definition,

D±
i+ 1

2

(
q−
h,i+ 1

2
,q+

h,i+ 1
2
, zb

−
h,i+ 1

2
, zb

+
h,i+ 1

2

)
= D±

i+ 1
2

(
qHR,−
h,i+ 1

2
,qHR,+

h,i+ 1
2
, zb

H R
h,i+ 1

2
,

)
+ S±

i+ 1
2
,

(3.14)

where qHR,±
h,i+ 1

2
and zbH R

h,i+ 1
2
are the hydrostatic reconstructions of the extrapolated values

q±
h,i+ 1

2
and zb

±
h,i+ 1

2
while S±

i+ 1
2
is the correction introduced in the solver due to the hydrostatic

reconstruction procedure.
In order to make the notation easier, we shall neglect in what follows the subindex h,

which accounts for the element-local space-time predictor qh .
Now, for any variable f , we shall define its average at the intercell i + 1

2 as:

f ≡ f i+ 1
2

= 1

2

(
f −
i+ 1

2
+ f +

i+ 1
2

)
. (3.15)

In particular, for a variable fα defined within the layer α, we shall write

fα,i+ 1
2

= 1

2

(
f −
α,i+ 1

2
+ f +

α,i+ 1
2

)
. (3.16)

The difference at the intercell i + 1
2 will be written as

Δ f ≡ (Δ f )i+ 1
2

= f +
i+ 1

2
− f −

i+ 1
2
. (3.17)

We shall denote the average of a variable fα at the layer interface α + 1
2 by

〈
f
〉
α+ 1

2 ,i+ 1
2

= 1

2

(
fα+1,i+ 1

2
+ fα,i+ 1

2

)

= 1

4

(
f −
α,i+ 1

2
+ f +

α,i+ 1
2

+ f −
α+1,i+ 1

2
+ f +

α+1,i+ 1
2

)
(3.18)

In addition, at the bottom or free surface interfaces, we shall assume
〈
f
〉
1
2 ,i+ 1

2
= f1,i+ 1

2
,

〈
f
〉
M+ 1

2 ,i+ 1
2

= fM,i+ 1
2
. (3.19)

According to [54], qHR,±
i+ 1

2
and zbH R

i+ 1
2
are defined as follows: given the states q±

i+ 1
2
and

zb
±
i+ 1

2
, we consider first

zb
H R
i+ 1

2
= max

(
zb

−
i+ 1

2
, zb

+
i+ 1

2

)
, (3.20)

and

hHR,±
i+ 1

2
=
(
h±
i+ 1

2
+ zb

±
i+ 1

2
− zb

H R
i+ 1

2

)

+
, (3.21)
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where ( f )+ is the positive part of f . Using (3.21), we define

qHR,±
i+ 1

2
=
(
hHR,±
i+ 1

2

∣∣∣ hHR,±
i+ 1

2
θ±
α,i+ 1

2

∣∣∣ hHR,±
i+ 1

2
θ±
α,i+ 1

2
u±

α,i+ 1
2

)T

∈ R
2M+1, (3.22)

where

θ±
α,i+ 1

2
=

hθ±
α,i+ 1

2

h±
i+ 1

2

, u±
α,i+ 1

2
=

hθu±
α,i+ 1

2

hθ±
α,i+ 1

2

.

Remark that the notation (3.15)–(3.19) are nowdefined in termsof the reconstructed variables.
For instance, (3.15) reads now as follows,

f = 1

2

(
f H R,+
i+ 1

2
+ f H R,−

i+ 1
2

)
. (3.23)

Once, the reconstructed states qHR,±
i+ 1

2
are defined, the Riemann solver can be expressed as,

D−
i+ 1

2

(
qHR,−
i+ 1

2
,qHR,+

i+ 1
2

, zb
H R
i+ 1

2

)

= 1

2

(
(1 − α1,i+ 1

2
)Ei+ 1

2
− α0,i+ 1

2
(qHR,+

i+ 1
2

− qHR,−
i+ 1

2
)

)
+ FC (qHR,−

i+ 1
2

), (3.24)

and

D+
i+ 1

2

(
qHR,−
i+ 1

2
,qHR,+

i+ 1
2

, zb
H R
i+ 1

2

)

= 1

2

(
(1 + α1,i+ 1

2
)Ei+ 1

2
+ α0,i+ 1

2
(qHR,+

i+ 1
2

− qHR,−
i+ 1

2
)

)
− FC (qHR,+

i+ 1
2

), (3.25)

where

Ei+ 1
2

= FC (qHR,+
i+ 1

2
) − FC (qHR,−

i+ 1
2

) + P i+ 1
2

− T i+ 1
2
, (3.26)

with

P i+ 1
2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0

0

ghθαΔη + glα
2

(hΔ(hθα) − hθαΔh) + g
M∑

β=α+1

lβ(hΔ(hθβ) − hθαΔh)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that in order to make the notation less cumbersome, we have neglected the subindex
i + 1

2 , so that here h stands for hi+ 1
2
, Δh stands for (Δh)i+ 1

2
and so on.
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The term T i+ 1
2
corresponds to the discretization of the transfer terms. As pointed in [54],

those terms should be discretized in a vertical upwind manner as follows:

T i+ 1
2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

lα

(
(θG)U P

α+ 1
2 ,i+ 1

2
− (θG)U P

α− 1
2 ,i+ 1

2

)

1

lα

(
(uθG)U P

α+ 1
2 ,i+ 1

2
− (uθG)U P

α− 1
2 ,i+ 1

2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

(θG)U P
α+ 1

2 ,i+ 1
2

= 〈
θ
〉
α+ 1

2 ,i+ 1
2
G̃α+ 1

2
− 1

2
|G̃α+ 1

2
|(θα+1,i+ 1

2
− θα,i+ 1

2
),

(uθG)U P
α+ 1

2 ,i+ 1
2

= 〈
uθ
〉
α+ 1

2 ,i+ 1
2
G̃α+ 1

2
− 1

2
|G̃α+ 1

2
|((uθ)α+1,i+ 1

2
− (uθ)α,i+ 1

2
),

where, G̃ 1
2

= G̃M+ 1
2

= 0 and

G̃α+ 1
2

= ˜(Gα+ 1
2
)
i+ 1

2

=
α∑

β=1

lβ

⎛

⎝Δ(huβ) − Δ

⎛

⎝
M∑

γ=1

lγ huγ

⎞

⎠

⎞

⎠ 1 ≤ α < M .

The coefficients α0,i+ 1
2
and α1,i+ 1

2
are related with the numerical viscosity of the scheme

and are defined in terms of the upper and lower bounds of the maximum and minimum of
the waves speeds (see [17] for more details):

α0,i+ 1
2

=
λ+
i+ 1

2
|λ−

i+ 1
2
| − λ−

i+ 1
2
|λ+

i+ 1
2
|

λ+
i+ 1

2
− λ−

i+ 1
2

, α1,i+ 1
2

=
|λ+

i+ 1
2
| − |λ−

i+ 1
2
|

λ+
i+ 1

2
− λ−

i+ 1
2

,

where

λ±
i+ 1

2
= ūi+ 1

2
± Ψi+ 1

2
,

with

ūi+ 1
2

= 1

M

M∑

α=1

uα,i+ 1
2
,

and

Ψi+ 1
2

=
√√√√2M − 1

2M

(
2

M∑

α=1

(ūi+ 1
2

− uα,i+ 1
2
)2 + ghi+ 1

2

(
1 + 1

M

M∑

β=1

(2β − 1)θβ,i+ 1
2

))
.

Finally, the terms S±
i+ 1

2
correspond to the corrections due to the use of the hydrostatic

reconstruction and guarantee the consistency of the scheme as well as the well-balanced
property [8] for the lake-at-rest with constant density steady states. S±

i+ 1
2
are defined as,

S±
i+ 1

2
= P±

i+ 1
2

− T±
i+ 1

2
,
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where

P±
i+ 1

2
=
(
0
∣∣∣ 0
∣∣∣ P±

α,i+ 1
2

)T

∈ R
2M+1, (3.27)

with

P±
α,i+ 1

2
= g

M∑

β=α+1

lβh±Δh±(θ±
β,i+ 1

2
− θ±

α,i+ 1
2
),

where

f + =
f H R,+
i+ 1

2
+ f +

i+ 1
2

2
, f − =

f −
i+ 1

2
+ f H R,−

i+ 1
2

2
, (3.28)

and

Δ f + = f +
i+ 1

2
− f H R,+

i+ 1
2

, Δ f − = f H R,−
i+ 1

2
− f −

i+ 1
2
. (3.29)

Note that the simplified expression (3.27) derives from the fact that, in the hydrostatic recon-
struction, the primitive variables uα, θα , and η remain constant.

The term T±
i+ 1

2
is defined by

T±
i+ 1

2
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

lα

(
(θG)

U P,±
α+ 1

2 ,i+ 1
2

− (θG)
U P,±
α− 1

2 ,i+ 1
2

)

1

lα

(
(uθG)

U P,±
α+ 1

2 ,i+ 1
2

− (uθG)
U P,±
α− 1

2 ,i+ 1
2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

(θG)
U P,±
α+ 1

2 ,i+ 1
2

= 〈θ〉±
α+ 1

2 ,i+ 1
2
G̃α+ 1

2

± − 1

2
|G̃α+ 1

2

±|(θ±
α+1,i+ 1

2
− θ±

α,i+ 1
2
),

(uθG)
U P,±
α+ 1

2 ,i+ 1
2

= 〈uθ〉±
α+ 1

2 ,i+ 1
2
G̃α+ 1

2

± − 1

2
|G̃α+ 1

2

±|
(

(uθ)±
α+1,i+ 1

2
− (uθ)±

α,i+ 1
2

)
,

and

〈θ〉±
α+ 1

2 ,i+ 1
2

= 1

2

(
θ±
α,i+ 1

2
+ θ±

α+1,i+ 1
2

)
. (3.30)

Similar for 〈uθ〉±
α+ 1

2 ,i+ 1
2
. Finally, G̃α+ 1

2

±
is defined as

G̃α+ 1
2

± =
α∑

β=1

lβΔh±
⎛

⎝u±
β,i+ 1

2
−

M∑

γ=1

lγ u
±
γ,i+ 1

2

⎞

⎠ ,

and G̃ 1
2

± = G̃M+ 1
2

± = 0.
It is then straightforward to check that the numerical scheme (3.10) is exactly well-

balanced for the solutions corresponding to water at rest with constant density.
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3.3 Upwind Transference Terms at the Volume Integrals

As discussed before, according to [54], a direct discretization of transference terms may
yield non-physical results, like relative densities below the unity, which directly conflicts
with (2.2). Indeed, the transference terms can be interpreted as a vertical flux between layers,
but bywriting them as non-conservaive products, the information relative to the flux direction
is lost. In [5], it is suggested that this behavior can be avoided by an upwind approximation
of the transference terms that incorporate this information into the discretization.

Therefore, we perform a similar discretization as the one proposed at the intercells, that
is, we consider a vertical upwinding discretization of those terms at each degree of freedom
l using the following discretization,

T l =

⎛

⎜⎜⎜⎜⎜⎝

0

(θG)U P
α+ 1

2 ,l
− (θG)U P

α− 1
2 ,l

(uθG)U P
α+ 1

2 ,l
− (uθG)U P

α− 1
2 ,l

⎞

⎟⎟⎟⎟⎟⎠
,

where

(θG)U P
α+ 1

2 ,l
= 〈θ〉

α+ 1
2 ,l Gα+ 1

2
− 1

2
|Gα+ 1

2
|(θα+1,l − θα,l),

(uθG)U P
α+ 1

2 ,l
= 〈uθ〉

α+ 1
2 ,l Gα+ 1

2
− 1

2
|Gα+ 1

2
|((uθ)α+1,l − (uθ)α,l),

with (θG)U P
1
2 ,l

= (θG)U P
M+ 1

2 ,l
= (uθG)U P

1
2 ,l

= (uθG)U P
M+ 1

2 ,l
= 0, and we also denote,

〈θ〉
α+ 1

2 ,l = 1

2

(
θα+1,l + θα,l

)

and analogously for 〈uθ〉
α+ 1

2 ,l .
The term Gα+ 1

2
, defined in (2.7), is approximated according to the the polynomial basis

used in the spatial discretization.

3.4 A Posteriori Subcell Finite Volume Limiter

The numerical discretization proposed before is unlimited, in the sense that there is no
mechanism that prevents the appearance of Gibbs oscillations associated with high order in
the proximity of shocks or steep gradients. Certainly, there is no need for any measure when
the solution is smooth, but providing a non-linear limiter in the presence of shock waves
or discontinuities is essential. The limiter used in this work follows the ideas presented in
[44,60,80]. The limiting procedure acts in two steps: first it detects which cells need limiting,
and second it introduces some kind of numerical viscosity into the solution in these regions.

The unlimited solution of the governing equation given by (3.13) is now considered as
a candidate solution, w∗

h(x, t
n+1). This candidate solution will remain unchanged if it is

considered acceptable. However, the candidate solution will be overridden when it does
not satisfy some selection criteria. The cells where this occurs are denominated troubled
cells. In the cells that are deemed troubled, we recompute the solution with a fully discrete
second order accurate MUSCL-Hancock finite volume scheme. In order to do this, we first
project the solution wh(x, tn) into a subgrid of Ks elements in Ti and denoted by Si, j and
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verifying Ti = ⋃
j Si, j for j = 1, . . . , Ks . The projection can be seen as an alternative

data representation, denoted by vh(x, tn), and consists of a set of piecewise constant subcell
averages. These averages are a L2 projection that preserves the mean of wh(x, tn) in Si, j ,

vh(x, t
n) = 1

|Si, j |
∫

Si, j

wh(x, t
n) dx, ∀x ∈ Si, j ⊂ Ti . (3.31)

The subcell averages vh(x, tn) are evolved with an explicit second order finite volume solver.
The solution of this solver, vh(x, tn+1), has to be reconstructed into a limited DG polynomial.
This is achieved through a classical least square reconstruction operator that preserves the
average of the projected solutions,

∫

Si, j

wh(x, t
n+1) dx =

∫

Si, j

vh(x, t
n+1)dx, Si, j ⊂ Ti . (3.32)

Since a subcell resolution Ks > N + 1 is admitted, this problem may be overdetermined.
Hence, the following constraint must also be considered,

∫

Ti
wh(x, t

n+1) dx =
∫

Ti
vh(x, t

n+1)dx . (3.33)

In this way, the final solution wh(x, tn+1) is the candidate solution in regions where the
solution is deemed adequate and the reconstructed solution in the regions that it is not. Note
that vh(x, tn+1) is kept in memory in case that its cell Ti is again considered troubled in the
next time step. In this case, the finite volume solver uses vh(x, tn+1) as initial data and not
the projected DG polynomial (3.32).

The main advantage of this approach to limitation is that it allows to verify any number of
physical and numerical properties for the numerical scheme. Indeed, the nature of the limiter,
which evaluates the suitability of the candidate solution w∗

h(x, t
n+1) a posteriori, allows to

consider the cell as troubled not only in the presence of discontinuities, but also if the solution
does not fulfill some prescribed properties. In our particular case, we set a numerical criteria
and two physical ones.
Physical admissibility criteriaThephysical admissibility of the solutionmust be tightly corre-
latedwith the system of governing PDE (3.1).We set that the candidate solution,w∗

h(x, t
n+1),

has to fulfill positivity of water column height, h, and that the relative density, θα , must always
be equal or greater that one (see 2.2).
Numerical admissibility criteria A relaxed discrete maximum principle, adapted to polyno-
mials, is used to detect discontinuities (see [44]). The criteria is applied in a posteriori manner
as follows,

min
y∈Vi

(vh(y, t
n)) − δ ≤ vh(x, t

n+1) ≤ max
y∈Vi

(vh(y, t
n)) + δ, ∀x ∈ Ti (3.34)

where the projection vh(x, tn+1) is used as a discrete form of the polynomial wh(x, tn+1),
Vi is a set containing Ti and its neighbors cells and δ is a small value that relaxes the criteria
to allow some very small overshoot or undershoot and avoid roundoff errors that would arise
if (3.34) is applied strictly.

A suitable number of subcells, Ks , also has to be chosen. In particular, we choose an
optimal subgrid satisfying Ks = 2N + 1. This choice is optimal in the sense that it allows to
keep the same time step calculated for the DG polynomial and also to have a CFL number
close to the theoretical maximum for the finite volume numerical scheme (see [44]). Note
that in the case of a troubled cell next to a non-troubled cell, there will be a non-consistent
numerical flux caused by the two different methods used in the troubled and non-troubled
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cell. Thus, it is important to update the flux in the non-troubled cell to be consistent with
the flux calculated in the troubled cell, and keep intact the conservation properties of the
numerical scheme.

3.5 Preserving Stationary Solutions in the ADER-DG Framework

In [21], the authors have proposed a general procedure to construct well-balanced high-order
finite volumes schemes, i.e. numerical methods that satisfy the so-called C-property found
in [8]. In this section, we propose to adapt the strategy described in [21] to define a well-
balancedDGnumerical scheme that exactly preserves the stationary solutions given in (2.10),
that corresponds to a stationary stratified fluid.

The first step in this algorithm is to determine a local stationary solution of the family
(2.10) at each cell denoted by ue,i (x), x ∈ Ti at each time step. Let us remark that the
stationary solution is computed in every cell Ti at each time step tn . Nevertheless, we do
not write the dependence on tn in order to make the notation more readable. Notice that ue,i
is fully determined by he,i and θ1,e,i , . . . θM,e,i , since stationary solutions (2.10) assumes
uα,e,i = 0, 1 ≤ α ≤ M . According to (2.10), ue,i are determined by setting M + 1 locally
computed constants, denoted by η̄i , θ̄α,i , 1 ≤ α ≤ M . In particular, η̄i

η̄i = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

(
hh(x, t

n) + zbh(x)
)
dx,

where we have denoted by fh the discrete representation of f onto the polynomial space Uh .
Similarly, the constants θ1,e,i , . . . θM,e,i are computed as follows,

1

Δx

∫ x
i+ 1

2

x
i− 1

2

(hθ)α,e,i (x, η̄i , θ̄α,i , · · · , θ̄1,i ) dx = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

(hθ)h,α(x, tn) dx,

for 1 ≤ α ≤ M . Once these constants are computed, the local stationary solution ue,i (x)
is determined at each cell. Note that the local stationary solutions satisfy the pressure terms
(2.8) at each cell,

P(ue,i , ∂xue,i , ∂x η̄i ) = 0. (3.35)

Now, we can replace the numerical scheme (3.10) by the following equivalent well-
balanced ADER-DG scheme,
(∫

Ti
ΦkΦl dx

)(
ŵ
n+1
i,l − ŵ

n
i,l

)
−
∫ tn+1

tn

∫

T ◦
i

(∂xΦk · FC (qh) − ΦkT (qh, ∂xqh)) dxdt

+
∫ tn+1

tn
Φk,i+ 1

2
D−
i+ 1

2

(
q−
h,i+ 1

2
,q+

h,i+ 1
2
, zb

−
h,i+ 1

2
, zb

+
h,i+ 1

2

)
dt

+
∫ tn+1

tn
Φk,i− 1

2
D+
i− 1

2

(
q−
h,i− 1

2
,q+

h,i− 1
2
, zb

−
h,i− 1

2
, zb

+
h,i− 1

2

)
dt

+
∫ tn+1

tn

∫

T ◦
i

Φk (P(qh, ∂xqh, ∂xηh)

−P((ue,i )h, ∂x (ue,i )h, ∂x (ηe,i )h)
)
dxdt = 0, (3.36)

where (ue,i )h and ∂x (ue,i )h are respectively the projections of ue,i and ∂xue,i into Uh .
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Moreover, the extrapolated values at the cell interfaces, denoted by q±
h,i± 1

2
, are computed

in the following way,

q−
h,i+ 1

2
= ue,i (xi+ 1

2
) + q̂−

h,i+ 1
2
, (3.37)

where q̂−
h,i+ 1

2
is the extrapolation on the cell interface of the fluctuation (qh,i − (ue,i )h), that

is,

q̂−
h,i+ 1

2
= (qh,i − (ue,i )h)(xi+ 1

2
).

Similarly,

q+
h,i+ 1

2
= ue,i+1(xi+ 1

2
) + q̂−

h,i+ 1
2
, (3.38)

where

q̂+
h,i+ 1

2
= (qh,i+1 − (ue,i+1)h)(xi+ 1

2
).

Finally, zb
±
h,i+ 1

2
= zb(xi+ 1

2
). Note that if the bathymetry is a smooth function, it remains

continuous at the cell interfaces and the hydrostatic reconstruction is no longer needed.
The ADER space-time predictor step is also modified according to this previous idea: an

iterative algorithm that computes the fluctuation with respect to the local stationary solution
ue,i is proposed. In particular, the following well-balanced space-time predictor is consid-
ered,

∫

Ti
θk(x, t

n+1)q̂h(x, tn+1) dx

−
∫

Ti
θk(x, t

n)q̂0h(x, t
n) dx −

∫ tn+1

tn

∫

Ti
∂tθk(x, t)q̂h(x, t) dxdt

= −
∫ tn+1

tn

∫

Ti
θk(x, t) (∂x FC (qh) − T (qh, ∂xqh)) dxdt

−
∫ tn+1

tn

∫

Ti
θk(x, t)

(
P(qh, ∂xqh, ∂xηh) − P((ue,i )h, ∂x (ue,i )h, ∂x (ηe,i )h)

)
dxdt,

(3.39)

where q̂h(x, t) is the projection of the fluctuation about the stationary solution ue,i , t ∈
[tn, tn+1],

q̂h(x, t) = qh(x, t) − (ue,i )h(x).

Finally, to clean possible spurious oscillations due to the absence of numerical viscosity
in stationary solutions, we apply the following procedure: first we compute the average of
the fluctuation with respect to the local stationary solution,

ŵh,i = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

wh(x, t
n) − ue,i (x) dx .

if
∣∣ŵh,i

∣∣ < δε , then wh(x, tn) is redefined as follows,

wh(x, t
n) = ue,i (x) + ŵh,i .
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Some numerical tests applying the techniques presented in this section can be found in
Sect. 4.

3.6 Time Step Restriction

The DG method has a rather severe Courant-Friedrichs-Lewy (CFL) number that decreases
with the order of the approximation polynomial, N . The time step for the explicit DGmethod
in a multiple dimension framework follows,

Δt ≤ 1

d

CFL

2N + 1

Δx

|λmax | , (3.40)

with CFL < 1 and where d is the dimension space (here d = 1) and |λmax | is an approxi-
mation of the maximum wave speed, given by (2.11). This restrictive CFL condition has to
be seen with perspective. While it is true that it imposes a small and restrictive time step, the
enhanced subcell resolution of the DG scheme allows coarse or even very coarse meshes,
compensating the severe 1

2N+1 restriction.

4 Numerical Tests

In this section we present some numerical tests in order to show the efficiency of the new
well-balanced ADER-DG solver for multi-layer shallowwater systems described previously.
In particular, we consider a standard test to measure the order of accuracy of the numerical
scheme, several test cases where the well-balanced properties of the scheme presented in
Sect. 3.5 are shown, including a challenging test corresponding to a density stratified fluid
with non-trivial density profiles. Additionally, a comparison of the numerical solution of
the model and laboratory data of a simulation corresponding to an evolution of an internal
density wave is also included. Finally, two more simulations of an initially smooth density
profile and a highly discontinuous lock-exchange test are also considered.

Concerning the boundary conditions, it is well-known that the imposition of wall-type
and/or open boundary condition is difficult for DG solvers. In this work, the numerical tests
where open-boundary conditions is considered, we simply mark the boundary cells as always
troubled and impose the boundary conditions using the second-order FV scheme. Finally,
throughout all the numerical test presented in this section, the CFL parameter is set to 0.5.

4.1 Accuracy Test

We now seek to check numerically the order of accuracy of the numerical scheme. Since the
proposed ADER-DG method is arbitrary high order in space and time, a second, third and
fourth order version have been chosen for this test. We consider a 10 m long channel on the
interval [−5, 5] with 5 vertical layers, discretized with 25, 50, 100, 200 and 400 uniform
cells. The initial condition is given by:

uα(x, 0) = 0, θα(x, 0) = 1 + 1

100
e−5x2 , 1 ≤ α ≤ 5,

η(x, 0) = 1 + 1

10
e−10 x2 ,
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Fig. 4 Accuracy test for t = 0.5 s. Free surface (left) and velocity profiles (right)

Table 1 Order of accuracy for the second order scheme

N. Cells h hθ1 hθ1u1
Error Order Error Order Error Order

25 2.24e-02 – 2.23e-02 – 9.87e-02 –

50 6.45e-03 1.79 6.50e-03 1.78 3.00e-02 1.72

100 7.19e-04 3.16 7.30e-04 3.15 3.30e-03 3.19

200 1.03e-04 2.81 1.05e-04 2.79 4.69e-04 2.81

400 2.02e-05 2.34 2.09e-05 2.33 9.23e-05 2.35

Table 2 Order of accuracy for the third order scheme

N. Cells h hθ1 hθ1u1
Error Order Error Order Error Order

25 2.38e-03 – 2.38e-03 – 1.08e-02 –

50 3.30e-04 2.85 3.33e-04 2.84 1.62e-03 2.74

100 4.37e-05 2.92 4.56e-05 2.87 2.24e-04 2.86

200 4.80e-06 3.19 5.41e-06 3.07 2.45e-05 3.19

400 6.06e-07 2.98 7.71e-07 2.81 3.06e-06 3.00

and the bathymetry is given by,

zb(x) = 1

2
e−x2 .

The final simulation time is t = 0.5 s and periodic boundary conditions are considered. The
free surface and the velocity are depicted in Fig. 4 at the final simulation time t = 0.5 s for
the fourth order scheme using the 200 cells mesh.

Tables 1, 2 and 3 show the errors and order of accuracy for the conserved variables h, hθ1,
and hθ1u1. These variables have been chosen since they correspond to the bottom layer and
thus the pressure and transfer terms are more relevant. Similar results are obtained for the
other unknowns. The numerical solutions are compared to a reference solution, which has
been computed with the same numerical scheme on a finer mesh of 2400 points. As expected,
the numerical accuracy is achieved.
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Table 3 Order of accuracy for the fourth order scheme

N. Cells h hθ1 hθ1u1
Error Order Error Order Error Order

25 1.60e-03 – 1.60e-03 – 7.21e-03 –

50 9.03e-05 4.14 9.04e-05 4.14 4.08e-04 4.14

100 4.72e-06 4.26 4.73e-06 4.26 2.14e-05 4.26

200 2.75e-07 4.10 2.76e-07 4.10 1.24e-06 4.10

400 1.68e-08 4.04 1.68e-08 4.04 7.56e-08 4.04

Fig. 5 Lake-at-rest steady state with constant density. Left: initial condition. Right: free surface at t = 500 s

4.2 Well-Balanced Property

We now intend to validate the well-balanced property of the scheme thanks to the techniques
introduced in Sect. 3.5. Three test cases are considered: a classical lake at rest solution with
constant density, a lake at rest solution with a non-trivial density profile and a perturbation
of the free surface of the preceding test.

For the first one, we consider again a 10m long channel within the interval [−5, 5] and 5
vertical layers of constant density θα = 1 for α = 1, . . . , M . As initial condition, we fix a
constant free surface η = 2, and bottom topography given by,

zb(x) = 1

2
e−x2 . (4.1)

The simulation is run up to t = 500 seconds on a uniform mesh composed of 50 cells and a
fourth order ADER-DG scheme in space and time is considered. Figures 5 and 6 show the
surface and density profiles, respectively. As we can see, the scheme preserves the steady
state solution up to machine precision for long simulations times.

More sophisticated stationary solutions can also be preserved, as described in Sect. 2. As
it was discussed, system (2.6) also admits stationary solutions corresponding to steady lake-
at-rest states with non-constant density profile. In particular, let us consider the bathymetry
function (4.1) and the lake-at-rest steady state with constant free surface η = 2 and the
following θα profiles for the particular case of three layers,

θ1 = θ̄1 + 3 θ̄2 h(x)2, (4.2)

θ2 = θ̄1 + θ̄2 h(x)2, (4.3)

θ3 = θ̄1, (4.4)
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Fig. 6 Lake-at-rest steady state with constant density. Relative density (left) and velocities (right) at
t = 500 s

Fig. 7 Lake-at-rest steady state with non-constant density profile. Left: surface and bottom. Right: relative
density for each layer

Fig. 8 Difference between computed solution at time t = 500 seconds and the original steady state for a
lake-at-rest steady state with non-constant density profile: Left: difference on the relative densities. Right:
difference on the velocities

where θ̄1 = 1.01 and θ̄2 = 0.02. The ability of the scheme to preserve such a stationary
solution is tested in the following. To do so, we consider a fourth order ADER-DG scheme
with 100 uniform cells in the interval [−5, 5], and we compute the numerical solution up to
time 500 seconds. Open boundary conditions are set. Figures 7 and 8 show that the steady
state is indeed preserved up to machine precision (Fig. 9).
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Fig. 9 Free surface at time t = 0 s (left) and t = 500 s (right) for a lake-at-rest steady state with non-constant
density profile

Fig. 10 Perturbation of a steady state with non-constant density profile at t = 0 seconds. Left: surface and
bottom. Right: zoom on the free surface.

Finally, we consider a small perturbation of the previously described stationary lake-at-rest
solution with non-constant density profile. The same bathymetry function, relative density
profiles and number of cells are considered, but the free surface is now given by,

η(x, 0) = 2 + 1

10
e−5 x2 .

Wall boundary conditions are set.
The results are shown in Figs. 10, 11, 12, 13. As it can be seen, the numerical scheme

reaches another stationary solution, as wall boundary conditions are set. As expected, the
stationary free surface achieved at time t = 500 seconds has increased, due to the initial
perturbation (see 12). The final velocity profiles could be seen in Fig. 12, and they are close
to 0. Finally, a new stratified solution is achieved.

4.3 Smooth Distribution of Relative Density

In this example, we consider an initially smooth distribution of relative density given by

θ(x) = 1 + 1

100
e−10 x2 , for x ∈ [−4, 4]. (4.5)

The free surface is initially constant and equal to η = 2, while the bathymetry is continuous
and equal to 0. The spatial domain [−4, 4] is divided into just 30 cells and we consider
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Fig. 11 Left: initial relative density profiles. Right: difference of relative densities at t = 0 and t = 500 s

Fig. 12 Free surface and velocities at time t = 500 seconds

Fig. 13 Velocity profiles at time t = 100 s (left) and t = 200 s (right)

M = 10 layers. The relative density is assumed to be the same across all layers. Figure 14
shows this initial density distribution.

We consider open boundary conditions and the fifth order numerical scheme will be used.
In the sequence of Figs. 15, 16, 17, 18 and 19 we see the time evolution of the density
profiles. In order to better describe the behavior of the relative density in all these figures, a
dual representation has been chosen. On the left, the actual profile and values of the relative
density is displayed for a few selected layers. This is done for the sake of clarity. On the right,
the vertical relative density profile is shown through a heat map whiting the domain.
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Fig. 14 Initial condition for a smooth distribution of θ

Fig. 15 Evolution of a smooth distribution of θ at time t = 5 s

Fig. 16 Evolution of a smooth distribution of θ at time t = 10 s

We observe that the density in each layer tends to move towards the boundaries at different
speeds. At time t = 5 we see that a shock is formed, even though the initial density profile
is smooth. The appearance of this shock means that the limiter is then activated. To see this
fact, we have included in the figures a parameter β that accounts for the limiter activation. It
is equal to 1 when it is not activated and greater than 1 otherwise.
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Fig. 17 Evolution of a smooth distribution of θ at time t = 20 s

Fig. 18 Evolution of a smooth distribution of θ at time t = 30 s

Fig. 19 Evolution of a smooth distribution of θ at time t = 40 s

4.4 Lock-Exchange Experiment in a Flat Channel

We now intend to validate the numerical approach introduced here by comparison with a
laboratory test presented in [1], where experimental data is available. The experiment consists
in a lock-exchange process between two fluids with different densities ρ0 and ρ1 in a flat
channel. The channel is 3 m long and the height of the water at the initial time is 0.3 m. The
fluid with density ρ1 is in a gatebox of 0.1 m placed on the left of the channel, which is then
released into the fluid of density ρ0. This initial condition can be seen in Fig. 20. The density
ρ0 is 1000 kg/m3 while ρ1 is 1034 kg/m3. Therefore we set
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Fig. 20 Lock-exchange experiment in a flat channel: initial condition

Fig. 21 Lock-exchange experiment in a flat channel: evolution of the relative density at time t = 2.5 s

Fig. 22 Lock-exchange experiment in a flat channel: evolution of the relative density at time t = 5 s

θ(x) =
{
1.034 if x ≤ 0.1,

1.0 if x > 0.1.
(4.6)

A mesh of 80 uniform cells are used and a fourth order in space and time numerical scheme
is considered. To mimic the laboratory experiment in [1], wall-type boundary conditions are
considered.

The evolution of the density profile is shown in Figs. 20, 21, 22, 23, 24 and 25 for the
particular case of M = 40 layers. As in the previous case, a dual representation is introduced,
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Fig. 23 Lock-exchange experiment in a flat channel: evolution of the relative density at time t = 10 s

Fig. 24 Lock-exchange experiment in a flat channel: evolution of the relative density at time t = 15 s

Fig. 25 Lock-exchange experiment in a flat channel: evolution of the relative density at time t = 25 s

with the actual profile and values of the relative density for a few selected layers on the left,
and a heat map of the vertical density distribution on the right. Again, β stands for the
activation of the limiter.

The immediate formation of a shock can be observed, due to the discontinuous nature of
the initial condition. We see that the limiter is being activated throughout the jump in density
and it tracks the traveling wave corresponding to the perturbation of the free surface due to
the density change. Some high frequency oscillations associated with the high order can also
be appreciated, but the additional viscosity provided by the limiter manages to smooth the
solution.
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Fig. 26 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position com-
puted with the numerical scheme versus the laboratory data for 20 layers (left) and 25 layers (right)

Fig. 27 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position com-
puted with the numerical scheme versus the laboratory data for 30 layers (left) and 40 layers (right)

Fig. 28 Relative density dam break problem: initial condition

Figures 26 and 27 show the evolution of the front position over time. This is compared
with the experimental results presented in [1]. We observe a progressive convergence to the
empirical data as the number of layers is increased from M = 20, 25, 30, and M = 40,
where the convergence is excellent.

The agreement with experimental data is excellent, which is noteworthy since non-
hydrostatic effects present in situations such as this (see for example [46]) generally prevent
an accurate prediction of the front position of hydrostatic shallow water models. Let us also
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Fig. 29 Relative density dam break problem at time t = 2.5 s for a first order numerical scheme (upper) and
a fourth order numerical scheme (bottom)

Fig. 30 Relative density dam break problem at time t = 5 s for a first order numerical scheme (upper) and a
fourth order numerical scheme (bottom)
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Fig. 31 Relative density dam break problem at time t = 10 s for a first order numerical scheme (upper) and a
fourth order numerical scheme (bottom)

remark that this is achieved with a coarse discretization used in both the horizontal and
vertical directions.

4.5 Lock Exchange on a Non-Flat Bathymetry

We now consider a dam break in relative density problem with a continuous bathymetry
function in a channel on the interval [−5, 5]. Initially, a constant free surface η = 2 m is set.
The bathymetry function is given by

zb(x) = 1

2
e−x2 , (4.7)

and the following discontinuous profile in relative density is imposed

θ(x) =
{
1 if x ≤ 0,

1.15 if x > 0.
(4.8)

Figure 28 shows the initial condition. The channel is discretized with M = 25 layers on the
vertical direction and only 50 cells on the horizontal direction. Free-flow boundary conditions
are considered.

We show the simulations at different times obtainedwith the first and fourth order schemes
in Figs. 29, 30, 31, 32 and 33. The enhanced resolution of the high order scheme allows to
appreciate the sharp transition between fluids, that are expected to evolve in gravity currents
over obstacles (see [61]). The first order scheme is unable to accurately describe this solution,
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Fig. 32 Relative density dam break problem at time t = 40 s for a first order numerical scheme (upper) and a
fourth order numerical scheme (bottom)

Fig. 33 Relative density dam break problem at time t = 60 s for a first order numerical scheme (upper) and a
fourth order numerical scheme (bottom)
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with this coarse discretization, and ends up with nearly uniform density solution due to the
numerical viscosity. Conversely, the fourth order scheme accurately describes the experiment
and the typical profile in such physical situations is obtained.

5 Conclusions

We have presented a novel discretization for a multi-layer shallow water model with a den-
sity dependent pressure function. The proposed numerical scheme falls into the category of
ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite vol-
ume limiter. It is arbitrarily high order accurate in space and time, allowing to accurately
capture detailed solutions, even with coarse or very coarse meshes. Moreover, a suitable
well-balancing strategy has been presented that allows to preserve a set of non-trivial station-
ary solutions corresponding to stationary density stratified lake-at-rest type solutions. The
numerical results are promising, with excellent agreement with experimental data. Moreover,
the computational results satisfy a discrete maximum principle for the relative density, thanks
to its finite volume based a posteriori subcell limiter technique.
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