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Abstract
We consider a singularly perturbed reaction diffusion problem as a first order two-by-two
system. Using piecewise discontinuous polynomials for the first component and Hdiv-
conforming elements for the second component we provide a convergence analysis on layer
adapted meshes and an optimal convergence order in a balanced norm that is comparable
with a balanced H2-norm for the second order formulation.

Keywords Reaction diffusion problem · Singularly perturbed · First order system ·
Balanced norm
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1 Introduction

Consider the singularly perturbed reaction diffusion problem, given in Ω = (0, 1)2 by

− ε2Δu + cu = f , (1)

where 0 < ε � 1, c ∈ W 1,∞, c∞ ≥ c ≥ c0 > 0 and u = 0 on ∂Ω . We rewrite the problem,
using u = −ε grad◦ u, into a first order system

[(
c 0
0 1

)
+

(
0 ε div

ε grad◦ 0

)] (
u
u

)
=

(
f
0

)
, (2)

where grad◦ denotes the gradient in H1
0 (Ω) and div its adjoint, the divergence. This formula-

tion is also called a mixed formulation. For its weak formulation let 〈·, ·〉 denote the L2-scalar
product over Ω . Then (2) becomes with V = (v, v) ∈ L2(Ω) × Hdiv(Ω)

〈cu, v〉 + ε 〈div u, v〉 + 〈u, v〉 + ε
〈
grad◦ u, v

〉 = 〈 f , v〉
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which can also be written for U = (u, u) ∈ L2(Ω) × Hdiv(Ω) as

B(U , V ) := 〈cu, v〉 + ε 〈div u, v〉 + 〈u, v〉 − ε 〈u, div v〉 = 〈 f , v〉 . (3)

This is the weak form we will discretise and analyse.
Singularly perturbed reaction diffusion problems were analysed in many papers, see e.g.

[2,18]. The associated norm to (1) is the ε-weighted H1-norm, also called energy norm.
Unfortunately, that norm is not strong enough to see the boundary layers. For example, the
corresponding layer function for the boundary x = 0 is of the type e−x/ε. Here it holds

‖e−x/ε‖L2(Ω) + ε‖grad e−x/ε‖L2(Ω) � ε1/2
ε→0−→ 0.

Therefore over the last years convergence in a balanced norm, where the boundary layers do
not vanish for ε → 0, was considered, see [1,9,11,17]. For the lowest order Raviart-Thomas
elements on a Shishkin mesh the system (3) was also considered in [15, Section 5] and
analysed in a balanced H1-comparable norm.

In this paper we prove optimal convergence orders in a stronger balanced H2-comparable
norm

|||U |||2bal ∼ ‖u‖2L2(Ω)
+ ε−1‖u‖2L2(Ω)

+ ε‖div u‖2L2(Ω)

for a variety of Hdiv-conforming elements on general layer-adapted meshes. The paper is
organised as follows. In Sect. 2wedefine the numericalmethod and recall results for a solution
decomposition and interpolation errors. In Sect. 3 we provide the convergence analysis and
in the final Sect. 4 some numerical examples illustrating our theoretical results are given.

1.1 Notation

We denote vector valued functions with a bold font. L p(D) with the norm ‖·‖L p(D) is the
classical Lebesgue space of function integrable to the power p over a domain D ⊂ R

2 and
W �,p(D) the corresponding Sobolev space for derivatives up to order �. Furthermore, we
write A � B if there exists a generic constant C > 0 such that A ≤ C · B.

2 Numerical Method and Interpolation Errors

In order to define our numerical method, we need discrete spaces defined over an appropriate
mesh. A basic tool for defining this mesh is the knowledge of a solution decomposition,
especially the structure of layers.

Assumption 1 The solution u of (1) can be written as

u = s + w1 + w2 + w3 + w4 + w12 + w23 + w34 + w41

where s is the smooth part, wi are boundary layers and wi j are corner layers (both counted
counterclockwise). To be more precise, for any given degree k it holds for 0 ≤ i, j ≤ k + 2,

‖∂ ix∂ j
y s‖L∞(Ω) � 1, |∂ ix∂ j

yw1(x, y)| � ε−ie−x/ε, |∂ ix∂ j
yw12(x, y)| � ε−(i+ j)e−(x+y)/ε,

and analogously for the other boundary layers and corner layers.

Remark 2 Using above solution decomposition for u we derive a similar decomposition for
the solution U of (3), as U = (u, u) and u = −ε grad u.
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Such assumptions on a solution decomposition are very common in the analysis of sin-
gularly perturbed problems. They hold true under compatibility and regularity conditions on
the data, see e.g. [6,10,13].

We follow [16] and construct an S-type mesh using the information of the solution decom-
position. First, we define a transition point λ, such that a typical boundary layer function is
small enough:

exp(−λ/ε) = N−σ ⇒ λ = σε ln(N ),

for a constant σ > 0 specified later. We additionally assume

λ = min

{
σε ln(N ),

1

4

}
,

as otherwise ε is large enough to facilitate a standard numerical analysis. Now 0 = x0 <

x1 < · · · < xN = 1 are given by

xi :=

⎧⎪⎨
⎪⎩

σεφ
( 2i
N

)
, i = 0, . . . , N/4,

2i
N (1 − 2λ) − 1

2 + 2λ, i = N/4, . . . , 3N/4,

1 − σεφ
(
2 − 2i

N

)
, i = 3N/4, . . . , N ,

where φ is a mesh-generating function with the properties

– φ is monotonically increasing,
– φ(0) = 0 and φ(1/2) = ln N ,
– φ is piecewise differentiable with max φ′ ≤ CN and

– min
i=1,...,N/4

(
φ

( 2i
N

) − φ
(
2(i−1)

N

))
≥ CN−1.

The first three conditions are given in [16], while the last one allows the mesh-widths inside
the boundary layers to be bounded from below, see also [8]. Related to φ we define the mesh
characterising function ψ by

ψ = e−φ.

Several S-type meshes are given in [16] fulfilling above properties. We only provide the
definitions of the two mostly used. For the Shishkin mesh we have

φ(t) = 2t ln N , ψ(t) = N−2t , max |ψ ′| = 2 ln N

and the Bakhvalov-S-mesh

φ(t) = − ln(1 − 2t(1 − N−1)), ψ(t) = 1 − 2t(1 − N−1), max |ψ ′| = 2.

In addition to the mesh generating and characterising functions also max |ψ ′| :=
max

t∈[0,1/2] |ψ
′(t)| is given, that enters all the error estimates on S-type meshes.

The two-dimensional mesh TN is then defined by all cells Ki j := (xi−1, xi ) × (x j−1, x j )
for 1 ≤ i, j ≤ N . Note that it holds

hi := xi − xi−1 �
{

εN−1 max |ψ ′|ex/(σε), i ≤ N/4 or i > 3N/4, and x ∈ [xi−1, xi ],
N−1, otherwise,

(4)
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where the first estimate can e.g. be found in [12, Lemma 2.3]. It also follows the simpler
bound

h := max
i=1,...,N/4

hi � ε.

Let us denote two subdomains of Ω per layer function, exemplarily given for w1 by

Ω1 := [0, λ] × [0, 1] and Ω∗
1 := [0, xN/4−1] × [0, 1] ⊂ Ω1

and for w12 by

Ω12 := [0, λ]2 and Ω∗
12 := [0, xN/4−1]2 ⊂ Ω12.

With (3) only needing L2-regularity for the first component and Hdiv-regularity for the second
component, our discrete spaces are

UN := {(uN , uN ) ⊂ L2(Ω) × Hdiv(Ω) : ∀K ⊂ TN : uN |K ∈ Qk(K ), uN |K ∈ Dk(K )},
where Qk(K ) is the space of polynomials with degree up to k in each variable on the cell K
of TN . For the discretisation of Hdiv with Dk(K ) we can use

– the Raviart-Thomas space

RTk(K ) = Qk+1,k(K ) × Qk,k+1(K ),

introduced by Raviart and Thomas in [14] on triangular meshes, see also [4] for rectan-
gular meshes, whereQp,q(K ) is the space of polynomials with degree p in x and degree
q in y on the cell K or

– the Brezzi-Douglas-Marini space

BDMk(K ) := (Pk(K ))2 ⊕ span{curl(xk+1y), curl(xyk+1)},
see [5], where Pk(K ) is the space of polynomials of total degree k on the cell K and
curlw = (∂yw,−∂xw).

Then the discrete method reads: Find UN = (uN , uN ) ∈ UN , s.t. for all V ∈ UN it holds

B(UN , V ) = 〈cuN , v〉 + ε 〈div uN , v〉 + 〈uN , v〉 − ε 〈uN , div v〉 = 〈 f , v〉 . (5)

Note that the solution U of (3) does also fulfill (5) and we therefore have Galerkin orthogo-
nality

B(UN −U , V ) = 0, ∀ V ∈ UN . (6)

3 Numerical Analysis

Let us start with an interpolation operator into UN given by its two components. The first one
I1 will be a weighted local L2-projection, defined on any K ⊂ TN by

〈c(I1u − u), w〉K = 0 for all w ∈ Qk(K ).

This weighted L2-projection is L2-stable due to 0 < c0 ≤ c ≤ c∞ and

‖c1/2I1v‖2L2(K )
= 〈cI1v, I1v〉K = 〈cv, I1, v〉K ≤ ‖c1/2v‖L2(K )‖c1/2I1v‖L2(K )

⇒ ‖I1v‖L2(K ) ≤ 1

c1/20

‖c1/2I1v‖L2(K ) ≤ 1

c1/20

‖c1/2v‖L2(K ) ≤
(
c∞
c0

)1/2

‖v‖L2(K )

123



Journal of Scientific Computing (2021) 89 :38 Page 5 of 14 38

for all v ∈ L2(K ). Moreover, following [17] and denoting by L1 a pointwise Lagrange
interpolation operator into Qk(K ) we obtain

‖I1v − v‖L2(K ) ≤ ‖I1v − I1L1v‖L2(K ) + ‖I1L1v − v‖L2(K )

= ‖I1(v − L1v)‖L2(K ) + ‖L1v − v‖L2(K )

≤
((

c∞
c0

)1/2

+ 1

)
‖L1v − v‖L2(K ).

By using the interpolation error results of [2] for the remaining error, the anisotropic interpo-
lation error estimates follow, i.e. for any 0 ≤ � ≤ k + 1 it holds on a cell K with dimension
hx × hy

‖I1v − v‖L2(K ) � h�
x‖∂�

xv‖L2(K ) + h�
y‖∂�

yv‖L2(K ) (7)

if v ∈ H �(K ).
The second operator I2 utilises the classical interpolation operatorJ onDk . It is defined

on each cell K for

– Dk(K ) = RTk(K ) by∫
F
(J v − v) · n · q = 0, ∀q ∈ Pk(F) for all faces F ⊂ ∂K , (8a)
∫
K
(J v − v) · q = 0, ∀q ∈ Qk−1,k(K ) × Qk,k−1(K ), (8b)

– Dk(K ) = BDMk(K ) by∫
F
(J v − v) · n · q = 0, ∀q ∈ Pk(F),∀F ⊂ ∂K , (9a)
∫
K
(J v − v) · q = 0, ∀q ∈ (Pk−2(K ))2. (9b)

It holds the anisotropic interpolation error estimates for J , see [7,19],

‖J v − v‖L2(K ) �
k+1∑
s=0

hk+1−s
x hsy‖∂k+1−s

x ∂syv‖L2(K ) (10)

if v ∈ Hk+1(K ). Note that for RTk an even sharper result involving only pure derivatives
of v holds, see [7]. In addition, we have also anisotropic interpolation error estimates for the
L2-norm of the divergence, see [7],

RTk : ‖div(J v − v)‖L2(K ) � hk+1
x ‖∂k+1

x div v‖L2(K ) + hk+1
y ‖∂k+1

y div v‖L2(K ),

(11a)

BDMk : ‖div(J v − v)‖L2(K ) �
∑
|α|=k

hα1
x hα2

y ‖∂α1
x ∂α2

y div v‖L2(K ), (11b)

if v is such that div v ∈ Hk+1(K ) for RTk and div v ∈ Hk(K ) for BDMk .
If we only want to prove convergence in the L2-norm of U = (u,−ε grad u) the

interpolation operator J is enough. For a stronger convergence result we define a more
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sophisticated operator, following ideas from [11]. Recalling the decomposition of u, we have
for u = −ε grad u the decomposition

u = s + w1 + w2 + w3 + w4 + w12 + w23 + w34 + w41 (12)

with the obvious definition of the bold font letters. Now the operator I2 is defined piecewise
on each cell K ⊂ TN with id ∈ {1, 2, 3, 4, 12, 23, 34, 41}

I2s|K := J s|K , I2w
id |K :=

⎧⎪⎨
⎪⎩
Jwid |K , K ⊂ Ω∗

id ,

Ĵ id
wid |K , K ⊂ Ωid\Ω∗

id ,

0, K ⊂ Ω\Ωid .

Using Γid := ∂Ωid\Γ we define the remaining operators on each K ⊂ Ωid\Ω∗
id using the

same definition as for J with the exception of the first condition in (8) and (9). This one is
replaced by the two conditions∫

F
(Ĵ id

wid − wid) · n · q = 0 for each face F ⊂ ∂K\Γid , ∀q ∈ Pk(F),

∫
F
Ĵ id

wid · n · q = 0 for each face F ⊂ ∂K ∩ Γid , ∀q ∈ Pk(F).

For our analysis let us define a norm that is associated with B(·, ·). Here it holds
B(U ,U ) ≥ min{1, c0}‖U‖2L2(Ω)

(13)

that is equivalent to coercivity in the energy norm of the weak formulation of (1). But we
can actually use the stronger norm

|||U ||| :=
(
‖U‖2L2(Ω)

+ δ‖ε div u‖2L2(Ω)

)1/2
,

where δ ≤ c0
c2∞

. This norm is equivalent to the weighted H2-norm ‖u‖L2(Ω) +
ε‖grad u‖L2(Ω) + ε2‖Δu‖L2(Ω), which is stronger than the energy norm and, unfortunately,
also not balanced. To repair this weakness we also introduce a balanced version of this norm

|||U |||bal :=
(
‖u‖2L2(Ω)

+ ε−1‖u‖2L2(Ω)
+ δε−1‖ε div u‖2L2(Ω)

)1/2
,

that is also considered in [11]. The remainder of this section is devoted to proving optimal
uniform convergence orders in the balanced norm. Of course, convergence in the unbalanced
norm then follows.

Lemma 3 For each δ ≤ c0
c2∞

exists a constant β > 0, such that for all V ∈ UN it holds

sup
χ∈UN

B(V , χ)

‖χ‖L2(Ω)

≥ β |||V ||| .

Proof By (13) we already have

B(V , V ) ≥ min{1, c0}‖V ‖2L2(Ω)
.

Choosing as test function χ(V ) = (v + δε div v, v) ∈ UN , we obtain

B(V , χ(V )) ≥
(
c0 − δ

c2∞
2

)
‖v‖2L2(Ω)

+ ‖v‖2L2(Ω)
+ δ

2
‖ε div v‖2L2(Ω)
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and together with δ ≤ c0
c2∞

we have

B(V , χ(V )) ≥ c0
2

‖v‖2L2(Ω)
+ ‖v‖2L2(Ω)

+ δ

2
‖ε div v‖2L2(Ω)

≥ 1

2
min{c0, 2} |||V |||2 .

In addition it holds

‖χ(V )‖2L2(Ω)
≤ 2‖V ‖2L2(Ω)

+ 2δ2‖ε div v‖2L2(Ω)
≤ 2max {1, δ} |||V |||2 .

Thus it follows

sup
χ∈UN

B(V , χ)

‖χ‖L2(Ω)

≥ B(V , χ(V ))

‖χ(V )‖L2(Ω)

≥
√
2

4

min{2, c0}
max{1,√δ} |||V ||| .

Setting β =
√
2
4

min{2,c0}
max{1,√δ} ≥

√
2
4

min{2,c0}
max{1,

√
c0

c∞ } > 0 proves the assertion. ��

Let us split the error U −UN into an interpolation error and a discrete error

U −UN = U − IU + IU −UN =: (η, η) − (ξ, ξ), (ξ, ξ) ∈ UN .

Using above inf-sup inequality and the Galerkin orthogonality (6) we arrive at

β |||(ξ, ξ)||| ≤ sup
V∈UN

B((ξ, ξ), V )

‖V ‖L2(Ω)

= sup
V∈UN

B((η, η), V )

‖V ‖L2(Ω)

, (14)

and we are left with estimating B((η, η), V ) for any V ∈ UN . Here it holds using (5)

B((η, η), V ) = 〈cη, v〉 + ε 〈div η, v〉 + 〈η, v〉 − ε 〈η, div v〉
= ε 〈div η, v〉 + 〈η, v〉 − ε 〈η, div v〉

due to I1 being the weighted L2-projection. Note that in the case of constant c, the last term
would also vanish due to div v|K ∈ Qk(K ).

Lemma 4 It holds for σ > k + 1

‖η‖L2(Ω) � ε1/2(h + N−1 max |ψ ′|)k+1.

In the case of D(K ) = RTk(K ) and σ ≥ k + 3/2 we obtain

‖div η‖L2(Ω) � ε−1/2(h + N−1 max |ψ ′|)k+1,

while for D(K ) = BDMk and σ ≥ k + 1/2 we have

‖div η‖L2(Ω) � ε−1/2(h + N−1 max |ψ ′|)k .
Proof Using the solution decomposition (12) and the anisotropic interpolation error estimate
(10) we obtain

‖I2s − s‖L2(Ω) = ‖J s − s‖L2(Ω) � (h + N−1)k+1‖s‖Hk+1(Ω) � ε(h + N−1)k+1.

For the boundary layer terms we use the special structure of I2 and estimate differently on
the subdomains of Ω . We show the procedure for w1, the estimates of the other terms follow
similarly. In Ω\Ω1 the interpolant is zero and we get

‖I2w
1 − w1‖L2(Ω\Ω1)

= ‖w1‖L2(Ω\Ω1)
� ε1/2N−σ .

In Ω1 we have

‖I2w
1 − w1‖L2(Ω1)

≤ ‖Jw1 − w1‖L2(Ω1)
+ ‖P1w1‖L2(Ω1\Ω∗

1 ),
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where P1 := Ĵ 1 − J . For the first term we obtain using (10) and (4)

‖Jw1 − w1‖2L2(Ω1)
�

∑
K⊂Ω1

k+1∑
�=0

ε2(k+1−�)(N−1 max |ψ ′|)2(k+1−�)N−2�×

‖e (k+1−�)x
σε ε−(k+1−�)e− x

ε ‖2L2(K )

� (N−1 max |ψ ′|)2(k+1)‖e (k+1−σ)x
σε ‖2L2(Ω1)

� (N−1 max |ψ ′|)2(k+1)ε,

due to σ > k + 1. In the remaining ply of elements the operator P1 in the Raviart-Thomas
case is given by∫

F
P1w1 · n · q = 0 for all faces F ⊂ ∂K\Γ1, ∀q ∈ Pk(F),

∫
F
P1w1 · n · q =

∫
F

w1 · n · q for all faces F ⊂ ∂K ∩ Γ1, ∀q ∈ Pk(F),

∫
K
(P1w1) · q = 0, ∀q ∈ Qk−1,k(K ) × Qk,k−1(K ),

and similarly for the other finite elements. Thus P1w1 depends only on w1 · n|Γ1 . With P1

on Γ1 being defined by weighted integrals, we have

‖P1w1‖L2(Ω1\Ω∗
1 ) � meas(Ω1\Ω∗

1 )1/2‖w1 · n‖L∞(Γ1) � h1/2N/4N
−σ � ε1/2N−(k+1).

(15)

Applying the same techniques to the other boundary and corner layer terms, and collecting
the result finishes the first part of the proof.

For the divergence we can apply the same techniques with the difference of applying (11)
instead of (10). We obtain for σ > k + 1 and D(K ) = RTk(K )

‖div(I2s − s)‖L2(Ω) � (h + N−1)k+1‖div s‖Hk+1(Ω) � ε(h + N−1)k+1,

‖div(I2w
1 − w1)‖L2(Ω\Ω1)

= ‖divw1‖L2(Ω\Ω1)
� ε−1/2N−σ ,

‖div(Jw1 − w1)‖L2(Ω1)
� ε−1(N−1 max |ψ ′|)k+1‖e (k+1−σ)x

σε ‖L2(Ω1)

� ε−1/2(N−1 max |ψ ′|)k+1.

The last term to estimate is the error on the ply of elements in Ω1\Ω∗
1 . A closer inspection

of P1w1 reveals (P1w1)2 = 0. Thus, an inverse inequality followed by (15) yields

‖div(P1w1)‖L2(Ω1\Ω∗
1 ) � h−1

N/4‖(P1w1)1‖L2(Ω1\Ω∗
1 ) � h−1/2

N/4 ‖(w1)1‖L∞(Γ1)

� ε−1/2N 1/2N−σ ,

where hN/4 ≥ hmin ≥ εN−1 holds due to the assumptions on φ. The analysis for the other
terms of the decomposition follows the same lines.

For D(K ) = BDMk(K ) the same analysis can be done, only replacing the convergence
orders by k for σ ≥ k + 1/2. ��
Lemma 5 Assuming hε � N−2 and σ ≥ k + 1, it holds for any V = (v, v) ∈ UN

| 〈η, div v〉 | � ε−1/2(h + N−1 max |ψ ′|)k+1(ln N )1/2‖v‖L2(Ω).
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Proof Let cK := 1
meas(K )

∫
K c ≥ c0 be a piecewise constant approximation of c. Now

〈η, div v〉 =
∑
K∈TN

〈η, div v〉K =
∑
K∈TN

1

cK
〈(cK − c)η, div v〉K ,

due to the weighted L2-projection and div v|K ∈ Qk(K ). It holds

‖cK − c‖L∞(K ) � (hx + hy)‖c‖W 1,∞(K ).

Thus we obtain, using hx and hy as abbreviations for the dimensions of K , an inverse
inequality and (7) for any v ∈ Hk+1(K ) and v ∈ Dk(K )

| 〈(cK − c)(v − I1v), ∂xv1〉K |
�

(
1 + hy

hx

)
‖v − I1v‖L2(K )‖v‖L2(K )

�
(

(hx + hy)‖hkx∂k+1
x v‖L2(K ) +

(
1 + hy

hx

)
‖hk+1

y ∂k+1
y v‖L2(K )

)
‖v‖L2(K ) (16)

and similarly for the y-derivative of the second component.
Let us start with the smooth part s of the solution decomposition and denote the coarse part

of Ω by Ωc := Ω\⋃4
i=1 Ωi and the union of corners by Ωcor := Ω12 ∪ Ω23 ∪ Ω34 ∪ Ω41.

Then we obtain by using (16)

| 〈(cK − c)(s − I1s), ∂xv1〉 | �
(
(h + N−1)k+1‖∂k+1

x s‖L2(Ω) + N−(k+1)‖∂k+1
y s‖L2(Ωc)

+ ε−1N−(k+1)‖∂k+1
y s‖L2((Ω1∪Ω3)\Ωcor )

+ hNhk+1‖∂k+1
y s‖L2((Ω2∪Ω4)\Ωcor )

+ hε−1Nhk+1‖∂k+1
y s‖L2(Ωcor )

)
‖v‖L2(Ω)

� ε−1/2(h + N−1)k+1((ln N )1/2 + hε1/2N ln N
)‖v‖L2(Ω)

� ε−1/2(h + N−1)k+1(ln N )1/2‖v‖L2(Ω)

due to hmin ≥ εN−1 and the condition on hε implying

hε1/2 � (hε)3/4 � N−3/2.

For ∂yv2 holds a similar estimate due to symmetry. Next we look at the boundary layer term
w1. We obtain in Ω1 again by using (16)

| 〈(cK − c)(w1 − I1w1), ∂xv1〉Ω1 |
�

∑
K⊂Ω1

(
(h + N−1)‖hkx∂k+1

x w1‖L2(K )

+ ε−1N−(k+1)‖∂k+1
y w1‖L2(K\Ωcor )

+ Nhk+1‖∂k+1
y w1‖L2(K∩Ωcor )

)‖v‖L2(K )

�
(

(h + N−1 max |ψ ′|)k+1ε−1‖e kx
σε e− x

ε ‖L2(Ω1)

+ ε−1N−(k+1)‖e− x
ε ‖L2(Ω1\Ωcor )

+ Nhk+1‖e− x
ε ‖L2(Ω1∩Ωcor )

)
‖v‖L2(Ω1)

� ε−1/2(h + N−1 max |ψ ′|)k+1 (
1 + hεN 2) ‖v‖L2(Ω1)

� ε−1/2(h + N−1 max |ψ ′|)k+1‖v‖L2(Ω1)
,
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using again the condition on εh. For the y-derivative it holds similarly

| 〈(cK − c)(w1 − I1w1), ∂yv2
〉
Ω1

|
�

∑
K⊂Ω1

(
(h + N−1)‖hky∂k+1

y w1‖L2(K )+(1 + hN )‖hk+1
x ∂k+1

x w1‖L2(K\Ωcor )

+ (1 + hε−1N )‖hk+1
x ∂k+1

x w1‖L2(K∩Ωcor )

)‖v‖L2(K )

�
(

(h + N−1)k+1‖e− x
ε ‖L2(Ω1)

+ (1 + hN )(N−1 max |ψ ′|)k+1‖e (k+1)x
ε e− x

ε ‖L2(Ω1\Ωcor )

+ (1 + hε−1N )(N−1 max |ψ ′|)k+1‖e (k+1)x
ε e− x

ε ‖L2(Ω1∩Ωcor )

)
‖v‖L2(Ω1)

� ε−1/2(h + N−1 max |ψ ′|)k+1(ε + hεN (ln N )1/2 + hε3/2N ln N )‖v‖L2(Ω1)

� ε−1/2(h + N−1 max |ψ ′|)k+1‖v‖L2(Ω1)
,

where the condition on εh was used in the last step.
In the remainder of the domain we apply the L2-stability and get by considering the

different cases of hy
hx

| 〈(cK − c)(w1 − I1w1), ∂xv1〉Ω\Ω1 |
�

∑
K⊂Ω\Ω1

‖cK − c‖L∞(K )‖w1 − I1w1‖L2(K )‖h−1
x v1‖L2(K )

�
∑

K⊂Ω\Ω1

(
1 + hy

hx

)
‖w1‖L2(K )‖v‖L2(K )

�
(
1 + hN + ε−1 + hε−1N

) ‖w1‖L2(Ω\Ω1)
‖v‖L2(Ω\Ω1)

� ε−1/2N−(k+1)‖v‖L2(Ω\Ω1)

| 〈
(cK − c)(w1 − I1w1), ∂yv2

〉
Ω\Ω1

|

�
∑

K⊂Ω\Ω1

(
1 + hx

hy

)
‖w1‖L2(K )‖v‖L2(K )

� ε−1/2N−(k+1)‖v‖L2(Ω\Ω1)
.

The estimation of the other boundary layer terms and of the corner layer terms is similar.
Combining all the individual results proves the assertion. ��
Lemma 6 For hε � N−2 it holds for D(K ) = RTk(K ) with σ ≥ k + 3/2

|||(ξ, ξ)|||bal � (h + N−1 max |ψ ′|)k+1(ln N )1/2

and for D(K ) = BDMk(K ) with σ ≥ k + 1

|||(ξ, ξ)|||bal � (h + N−1 max |ψ ′|)k .
Proof Using the inf-sup estimate (14) and the previous lemmas we obtain for D(K ) =
RTk(K )

β |||(ξ, ξ)||| ≤ sup
V∈UN

B((η, η), V )

‖V ‖L2(Ω)

� ε1/2(h + N−1 max |ψ ′|)k+1(ln N )1/2,
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particularly

‖ξ‖L2(Ω) � ε1/2(h + N−1 max |ψ ′|)k+1(ln N )1/2,

ε−1/2‖ξ‖L2(Ω) � (h + N−1 max |ψ ′|)k+1(ln N )1/2,

δ1/2ε−1/2‖ε div ξ‖L2(Ω) � (h + N−1 max |ψ ′|)k+1(ln N )1/2,

which are the three components of |||ξ |||bal . Similar results follow for D(K ) = BDMk(K )

with the additional

(h + N−1 max |ψ ′|)(ln N )1/2 � 1.

��
Theorem 7 For hε � N−2 it holds for D(K ) = RTk(K ) with σ ≥ k + 3/2

|||U −UN |||bal � (h + N−1 max |ψ ′|)k+1(ln N )1/2.

and for D(K ) = BDMk(K ) with σ ≥ k + 1

|||U −UN |||bal � (h + N−1 max |ψ ′|)k .
Proof With the triangle inequality

|||U −UN |||bal ≤ |||(ξ, ξ)|||bal + |||(η, η)|||bal
and the previous lemmas it only remains to estimate ‖η‖L2(Ω), which can be done using the
local anisotropic interpolation error estimates (7) by standard techniques

‖η‖L2(Ω) � (h + N−1 max |ψ ′|)k+1.

��
Corollary 8 Under the same conditions as the previous theorem we also have for D(K ) =
RTk(K ) in the unbalanced norm

|||U −UN ||| � (h + N−1 max |ψ ′|)k+1.

Remark 9 On a Shishkin mesh we have h = hi �εN−1 ln N inside the boundary domain.
Thus the condition on εh becomes

ε2 � N−1

ln N
and h + N−1 max |ψ ′| � N−1 ln N .

On a Bakhvalov S-mesh we have h ∼ ε and the condition becomes

ε � N−1 and therefore h + N−1 max |ψ ′| � N−1.

Note also, that εh � N−2 and h � ε always imply h � N−1.

Remark 10 The same analysis can also be conducted for the Arnold-Boffi-Falk element

D(K ) = ABFk(K ) := Qk+2,k(K ) × Qk,k+2(K ),

see [3], using divD(K ) = Qk+1(K )\span{xk+1yk+1} as discrete space for the first com-
ponent. Anisotropic interpolation error estimates are given in [7]. Although ‖η‖L2(Ω) and
‖div η‖L2(Ω) can be estimated with order k + 2, we obtain only convergence rates of order
k + 1 due to ‖η‖L2(Ω) � ε1/2(h + N−1 max |ψ ′|)k+1.
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Table 1 Errors in various norms for varying values of ε and fixed N , RT1

ε ‖u − uh‖L2(Ω) ‖u − uh‖L2(Ω) ‖div(u − uh)‖L2(Ω)
|||U −Uh ||| |||U −Uh |||bal

10−3 5.904e−04 4.492e−05 1.445e−01 5.946e−04 2.311e−03

10−4 5.867e−04 1.401e−05 4.591e−01 5.871e−04 2.304e−03

10−5 5.863e−04 4.421e−06 1.452e−00 5.863e−04 2.303e−03

10−6 5.863e−04 1.398e−06 4.593e−00 5.863e−04 2.303e−03

4 Numerical Experiments

Let us consider on Ω = (0, 1)2

−ε2Δu + cu = f ,

where

c = 1 + x2y2exy/2 ⇒ c0 = 1, c∞ = 1 + e1/2, δ = 1

(1 + e1/2)2

and an exact solution

u =
(
cos

(πx

2

)
− e−x/ε − e−1/ε

1 − e−1/ε

)
·
(
1 − y − e−y/ε − e−1/ε

1 − e−1/ε

)

is prescribed, see [1,17] for c = 1. The solution has only boundary layers at x = 0 and
y = 0, and a corner layer at (0, 0). Therefore, we modify our mesh accordingly. For our
experiments we will always use Bakhvalov-S-meshes.

All computations were done in SOFE, a finite-element framework in Matlab and Octave,
see github.com/SOFE-Developers/SOFE.

Let us start the numerical investigation by looking at the dependence on ε. For that we
fix N = 16 and use RT1-elements, and vary ε ∈ {10−3, 10−4, 10−5, 10−6}. We obtain the
numbers in Table 1.

As expected from Theorem 7, we observe independence of ε in ‖u − uh‖L2(Ω), and a
dependence on ε in ‖u − uh‖L2(Ω) � ε1/2 and ‖div(u − uh)‖L2(Ω) � ε−1/2. Consequently,
|||U −Uh ||| stays independent of ε, due to the dominating effect of ‖u − uh‖L2(Ω), and the
larger balanced norm |||U −Uh |||bal is independent too due to the correct weighting of the
other two norms.

Now let us come to the convergence orders. For that purpose we fix ε = 10−4 and vary
for different values of k the number N of cells per dimension. We start with Raviart-Thomas
elements and obtain the results of Table 2.

Here along with the computed errors also the estimated rates of convergence are given
and they are close to the expected rates of k + 1 for the balanced norm.

In the case of Brezzi-Douglas-Marini elements we get Table 3.
As expected we only see rates of k in the balanced version with slightly better results for

the lowest order case. The reason for this behaviour lies in the components of the balanced
norms, where the faster converging ones dominate for smaller values of N the balanced
norm. A closer look reveals ‖u − uh‖L2(Ω) and ‖div(u − uh)‖L2(Ω) only to be convergent
with order 1, see Table 4.
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Table 2 Errors |||U −Uh |||bal for fixed ε = 10−4 in the Raviart–Thomas case

N k = 1 k = 2 k = 3

8 9.250e−03 1.059e−03 1.640e−04

16 2.304e−03 2.01 1.518e−04 2.80 1.238e−05 3.73

32 5.679e−04 2.02 2.023e−05 2.91 8.433e−07 3.88

64 1.402e−04 2.02 2.603e−06 2.96 5.480e−08 3.94

128 3.479e−05 2.01 3.298e−07 2.98 3.488e−09 3.97

256 8.657e−06 2.01 4.148e−08 2.99 2.198e−10 3.99

512 2.158e−06 2.00

Table 3 Errors |||U −Uh |||bal for fixed ε = 10−4 in the Brezzi–Douglas–Marini case

N k = 1 k = 2 k = 3

8 8.406e−01 1.520e−02 2.700e−03

16 6.451e−01 0.38 3.420e−03 2.15 3.624e−04 2.90

32 3.519e−01 0.87 8.492e−04 2.01 4.606e−05 2.98

64 1.796e−01 0.97 2.144e−04 1.99 5.553e−06 3.05

128 7.124e−02 1.33 5.403e−05 1.99 6.631e−07 3.07

256 2.186e−02 1.70 1.356e−05 1.99 8.129e−08 3.03

512 5.906e−03 1.89 3.390e−06 2.00 1.027e−08 2.98

1024 1.566e−03 1.92

Table 4 Errors is various norms for fixed ε = 10−4 in the BDM1-case

N ‖u − uh‖L2(Ω) ε−1/2‖u − uh‖L2(Ω) (δε)1/2‖div(u − uh)‖L2(Ω)

8 2.786e−03 8.386e−01 5.716e−02

16 9.940e−04 1.49 6.444e−01 0.38 3.034e−02 0.91

32 4.369e−04 1.19 3.516e−01 0.87 1.554e−02 0.96

64 2.114e−04 1.05 1.794e−01 0.97 7.860e−03 0.98

128 1.051e−04 1.01 7.113e−02 1.33 3.953e−03 0.99

256 5.254e−05 1.00 2.177e−02 1.71 1.982e−03 1.00

512 2.629e−05 1.00 5.822e−03 1.90 9.926e−04 1.00

1024 1.315e−05 1.00 1.485e−03 1.97 4.965e−04 1.00
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