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Abstract
The scalar, one-dimensional advection equation and heat equation are considered. These
equations are discretized in space, using a finite difference method satisfying summation-
by-parts (SBP) properties. To impose the boundary conditions, we use a penalty method
called simultaneous approximation term (SAT). Together, this gives rise to two semi-discrete
schemes where the discretization matrices approximate the first and the second derivative
operators, respectively. The discretization matrices depend on free parameters from the SAT
treatment. We derive the inverses of the discretization matrices, interpreting them as dis-
crete Green’s functions. In this direct way, we also find out precisely which choices of SAT
parameters that make the discretization matrices singular. In the second derivative case, it is
shown that if the penalty parameters are chosen such that the semi-discrete scheme is dual
consistent, the discretization matrix can become singular even when the scheme is energy
stable. The inverse formulas hold for SBP-SAT operators of arbitrary order of accuracy. For
second and fourth order accurate operators, the inverses are provided explicitly.

Keywords Finite differences · Summation by parts · Simultaneous approximation term ·
Discretization matrix inverses · Discrete fundamental solutions · Discrete Green’s functions

1 Introduction

Consider the time-dependent partial differential equation (1a) below, where L represents a
linear differential operator and f (x) is a forcing function. We assume that some suitable
initial condition and—for the moment homogeneous—boundary conditions are given such
that we have a well-posed problem. Applying the method of lines, that is discretizing first in
space while keeping time continuous, yields a system of ordinary differential equations (1b),
where we refer to L as the discretizarion matrix.
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ut + Lu = f , t ≥ 0, x ∈ [0, �], (1a)

vt + Lv = f, t ≥ 0. (1b)

We first look at the scalar advection equation and thereafter at the heat equation, both in one
spatial dimension. Thus L approximates either the first or the second derivative operator,
including boundary treatments.

In this paper, L is obtained using the SBP-SATfinite differencemethod. This class of finite
differencemethod is based on difference operators fulfilling summation-by-parts (SBP) prop-
erties, and is modified by the penalty technique simultaneous approximation term (SAT) for
treating the boundary conditions. The SBP operators were first developed for first derivatives
[21,29] and then later for second derivatives [7,25] and are designed to facilitate the deriva-
tion of energy estimates. A means to impose boundary conditions without destroying these
properties is to use SAT [6]. The SATs included in L contain free parameters. We follow the
common practice of determining these parameters using the energy method, such that (1b)
is guaranteed to be time-stable. Thereafter, any remaining degrees of freedom in the SATs
can be used to make the scheme dual consistent. Dual consistency is advantageous when
computing functionals of the solution, since the order of accuracy of functionals from dual
consistent schemes can be higher compared to those from non-dual consistent schemes [18].
For more details about SBP-SAT, see [12,31].

Thanks to the SBP-SAT properties, the discretization matrix can be factorized as L =
H−1K , where H is a symmetric, positive definite matrix that has the role of a quadrature
rule, see [19]. Now consider the steady version of (1a), Lu = f . Its solution u(x) may be
represented as in (2a) below, where G is the Green’s function. The steady version of (1b) is
Lv = f . Solving for v, yields (2b).

u(x) =
∫ �

0
G(x, y) f (y) dy, (2a)

v = K −1H f . (2b)

With H ’s role as a quadrature rule in mind, we can see a clear similarity between (2a) and
(2b): Since f approximates f and the multiplication by H approximates the integration, we
realize that K −1 resembles theGreen’s functionG. It makes sense to refer to K −1 as a discrete
Green’s function.

A finite difference analogue of the Green’s function was introduced already in the funda-
mental article [9]. Thereafter, discrete Green’s functions appear sporadically in the literature,
see for example [8,10] and references therein. E.g. in [4] (and correspondingly in [9] for
two-dimensional problems) the finite formula approximating (2a) is scaled with the spatial
mesh size h, which then corresponds closely to (2b). However, since traditional finite differ-
ence stencils usually do not have an assigned quadrature rule in the same sense as the SBP
operators, the term “discrete Green’s functions” often refers to L−1 rather than to K −1, for
example in [5,8,28].

In the above-mentioned articles, the standardway of enforcing boundary conditions, injec-
tion, has been used instead of SAT (for descriptions of these two boundary methods, see for
example [31]). In [14], the first and second derivatives were approximated using an SBP-SAT
finite volume method, the inverses analogous to K −1 were derived and used for analysing
errors. Here, we derive formulas for K −1 corresponding to the first and second derivatives as
well, however, as an extension to the results in [14], our formulas hold for arbitrary orders of
accuracy and in the second derivative case we consider general Robin boundary conditions
instead of only Dirichlet boundary conditions.
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The inverses are full matrices and are therefore probably not competitive for solving
systems Lv = f directly, compared to fast solvers for banded matrices. It is however often
advisable to use pre-conditioning to improve the convergence of iterative methods [16]. A
preconditioning matrix P should ideally approximate the inverse of L in some sense, and
knowledge about the structure of the inverses could—speculatively—be usedwhen designing
preconditioning matrices. If P is a sparse approximate inverse, the computations are cheap,
but preconditioners P may also be essentially densematrices, as for example the fundamental
solution preconditioners considered in [5].

The paper is organized as follows: in Sect. 2, we look at the semi-discrete scheme approxi-
mating the advection equation. Thematrix K associated with ∂

∂x is denoted Q̃, and its inverse
is presented in Theorem 2.1. In Sect. 3, we consider the heat equation, thus approximating
∂2

∂x2
. The related matrix K , denoted Ã, is inverted in Theorem 3.1. The SAT parameters are

chosen to give stability and dual consistency, and additionally it is of interest to know if
some choices of SAT parameters result in a singular discretization matrix L . In the second
derivative case, it turns out that an energy stable scheme can actually have a singular L if the
scheme is also dual consistent. Some relations between stability, dual consistency and a sin-
gular discretization matrix are discussed in Sect. 3.3. We also discuss the relations between
two different ways of showing energy stability, in Sect. 3.4. The paper is summarized in
Sect. 4.

2 The First Derivative

Consider the scalar advection equation with a Dirichlet boundary condition at the inflow
boundary, that is

ut + ux = f , x ∈ [0, �],
u = gL, x = 0,

(3)

valid for t ≥ 0, with initial condition u(x, 0) = u0(x). The forcing function f (x, t), the
initial data u0(x) and the boundary data gL(t) are known functions.

We call (3) well-posed if it has a unique solution and is stable (can be bounded by data).
Techniques for showing existence and uniqueness can be found in for example [17,20]. We
focus on showing stability, since we will derive a corresponding stable discrete problem
later. We use the energy method, and multiply the partial differential equation in (3) by u,
and integrate over the spatial domain. Thereafter, we use integration by parts and apply the
boundary condition. For simplicity, we consider the homogeneous case, that is with the data
f = 0 and gL = 0. This yields

d

dt
‖u‖2 = −u(�, t)2

where ‖u‖2 = ∫ �

0 u2 dx and where we have used that (u2)t = 2uut . In the homogeneous
case, the growth rate thus becomes d

dt ‖u‖2 ≤ 0. Integrating this in time yields the energy
estimate ‖u‖2 ≤ ‖u0‖2 and the solution is thus bounded. Since (3) is an one-dimensional
hyperbolic problem it is also possible to show strongwell-posedness, i.e., that ‖u‖ is bounded
by the data f , gL and u0. See [17,20] for different definitions of well-posedness.
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2.1 The Semi-discrete Scheme

We first discretize in space, on the interval x ∈ [0, �], using n + 1 equidistant grid points
xi = ih, where h = �/n and i = 0, 1, . . . , n. Using the SBP-SAT finite difference method,
we obtain a semi-discrete scheme approximating (3) as

vt + D1v = f + H−1σLeL
(
eTLv − gL

)
, (4)

where v(t) = [v0, v1, . . . , vn]T is the approximation of the continuous solution u(x, t), and
where f = [ f (x0, t), f (x1, t), . . . , f (xn, t)]T is the restriction of f (x, t) to the grid. In the
same way, we let the initial data be v(0) = [u0(x0), u0(x1), . . . , u0(xn)]T. The matrix D1

approximates the first derivative operator ∂/∂x , and fulfills the SBP-properties [21,29]

D1 = H−1Q, H = HT > 0, Q + QT = eReTR − eLeTL (5)

where eL = [1, 0, . . . , 0]T and eR = [0, . . . , 0, 1]T. By the notation >, we mean that the
matrix H is positive definite. Asmentioned in the introduction, H has the role of a quadrature
rule and ‖v‖2H ≡ vTHv approximates the L2-norm of u(x, t), see [19]. The scalar σL
determines the strength of the SAT, and will be chosen below such that the scheme (4) is
energy stable and dual consistent.

2.1.1 Stability and Dual Consistency

To show energy stability, we multiply (4) by vTH from the left and use the relations (5). We
thereafter add the transpose, and we consider f = 0 and gL = 0, just as in the continuous
case. This yields

d

dt
‖v‖2H = −v2n + (1 + 2σL)v20,

where v0 = eTLv and vn = eTRv. We need d
dt ‖v‖2H ≤ 0, which is guaranteed if σL ≤ −1/2.

For a dual consistent scheme, we need σL = −1, see [3,18].

2.2 The Inverse of the DiscretizationMatrix

We first rewrite (4) as

vt + H−1 Q̃v = f̃, (6)

where

Q̃ = Q − σLeLeTL, f̃ = f − H−1σLeLgL. (7)

We identify Q̃ as the first derivative version of K discussed in the introduction. The second
order accurate version of Q̃ was inverted in [14] and inspired by those results, we make a
similar ansatz and derive Q̃−1 of arbitrary order of accuracy. The result is given in Theo-
rem 2.1.

Theorem 2.1 Consider the (n + 1) × (n + 1)-matrices Q from (5) and Q̃ found in (7). The
structures of Q and Q̃ are

Q =
[−1/2 �qT

−�q Q

]
, Q̃ =

[−1/2 − σL �qT

−�q Q

]
, (8)
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where �q is an n × 1-vector and Q is an n × n-matrix. It is assumed that Q is invertible. The
inverse of Q̃ is

Q̃−1 = G1 − 1

σL
1bT, (9)

where

G1 =
[
0 �0T
�0 Q

−1

]
, 1 = [1, 1, . . . , 1]T, bT =

[
1 −�qTQ

−1
]
. (10)

Proof of Theorem 2.1 We aim to show that Q̃ Q̃−1 = I , where I is the (n + 1) × (n + 1)
identity matrix. Using Q̃ from (7) and Q̃−1 from (9), we compute

Q̃ Q̃−1 =
(

Q − σLeLeTL
)(

G1 − 1

σL
1bT

)

= QG1 − 1

σL
Q1bT − σLeLeTLG1 + eLeTL1b

T.

Note that D11 = 0, since D1 in (5) is a consistent difference operator. Hence, Q1 = 0.
Furthermore, eTLG1 = 0T since the first row of G1 consists of zeros. These relations, the fact
that eTL1 = 1 and the structures of the components in (8) and (10) yields

Q̃ Q̃−1 = QG1 + eLbT =
[
0 �qTQ

−1

�0 I

]
+

[
1 −�qTQ

−1

�0 0

]
= I

where I is the n × n identity matrix. �	
Corollary 2.2 The structure of Q̃−1 in (9) implies that Q̃ is singular only if σL = 0.

The existence of G1 and b in (10), and consequently the validity of Theorem 2.1 and
Corollary 2.2, rely on the assumption that Q is invertible. In the (2,1) order accurate case—
where we by the notation “(2,1) order accurate”, refer to a matrix D1 which has second
order of accuracy in the interior finite difference stencil and first order of accuracy at the
boundaries—the inverse of Q is derived and presented in “Appendix A.1”, which directly
proves its existence. The same is done for the inverse of the “Section A.2” of Appendix order
accurate operator, which is presented in “Section A.2” of Appendix. Higher order operators,
on the other hand, have free parameters. For example, for the diagonal norm (6,3) order
accurate version of D1 described in [29], x1 is a free parameter. In this case, Q̃ is invertible
for commonly used parameter values x1, see [27]. The invertibility of Q̃ is also addressed
for general SBP operators in [22], where it is shown that Q̃ (with σL = −1) is invertible if
and only if 1 spans the nullspace of D1.

The discussion above is focused on “classical FD-SBP operators”, constructed around
centred finite difference approximations with diagonal matrices H . However, Theorem 2.1
only requires consistency (such that Q1 = 0) and that the SATmakes Q̃ = Q−σLeLeTL. Thus
it holds for a more general class of SBP operators where the boundary nodes are included
in the operator, compare Definition 1 in [11]—as long as the corresponding Q is invertible.
Moreover, in Theorem 2.1 it is implied that Q + QT = eReTR − eLeTL, but this is not crucial
for the proof and the result applies also for e.g. upwind operators.

Remark 2.3 For the steady version of (3), that is ux = f with u(0) = gL, we have

u(x) = gL +
∫ �

0
G(x, y) f (y) dy, G(x, y) =

{
1, y < x,

0, x ≤ y,
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where G is a Green’s function. Starting from v = Q̃−1H f̃ , using (7) and (9) as well as the
relations bTeL = 1 and G1eL = 0 deduced from (10), we obtain

v = gL1 + Q̃−1H f .

Recall from the introduction that K −1 = Q̃−1 resembles G. E.g. the version of Q̃−1 found in
(34) in “Section A.1” of Appendix (which corresponds to the second order accurate operator)
is

(
Q̃−1)

i, j =
{
1 − (1 + 1/σL)(−1) j , 0 ≤ j ≤ i ≤ n,

(−1)i+ j − (1 + 1/σL)(−1) j , 0 ≤ i ≤ j ≤ n.

The dual consistent choice σL = −1 is optimal in the sense that it cancels the oscillations
such that (Q̃−1)i, j = 1 for j ≤ i , however (Q̃−1)i, j = (−1)i+ j 
= 0 for i ≤ j . If we instead
let σL → −∞, interpreted as mimicking the injection treatment, results in Q̃−1 = G1. By

writing the numerical solution as v = 1
(

gL − 1
σL
bTH f

)
+ G1H f , we see that the constant

level of the solution varies when σL is tuned. In particular, eTLv → gL as σL → −∞.

2.2.1 Interface SATs

The SBP-SAT methodology is well suited for dividing the computational domain into sub-
domains, coupled by interfaces [7]. As an example, we discretize (3) again, using two
subdomains with the unknowns vA,B, coupled such that eTRvA ≈ eTLvB at the interface.
Modifying (4) to this two-subdomain system yields

d

dt
V + H

−1
Q̃V = F̃,

with

V =
[
vA
vB

]
, H =

[
HA 0
0 HB

]
, Q̃ =

[
Q̃A − μAeReTR μAeReTL

μBeLeTR QB − μBeLeTL

]
, F̃ =

[
f̃A
fB

]
,

where all quantities with subindex A belongs to the left subdomain and the ones marked
with B to the right subdomain. The same vectors eL,R are used in both domains implying
that they have the same number of grid points, but that is merely for ease of presentation.
In particular, Q̃A = QA − σLeLeTL and f̃A = fA − H−1

A σLeLgL are modified to impose the
boundary condition, and μA,B are the penalty parameters at the interface. For μA − μB = 1
with μA + μB ≤ 0, the scheme is conservative, dual consistent and stable.

Assume QA,B1 = 0, and let Q̃−1
A = GA− 1

σL
1bTA, and (QB−μBeLeTL)−1 = GB− 1

μB
1bTB.

ThenQ1 = 0, where Q = Q̃(σL = 0) and where 1 is given below. In this case Theorem 2.1
applies and the inverse of Q̃ has the form Q̃

−1 = G − 1
σL

1bT, where

G=
[

GA
μA
μB

GAeRbTB
1eTRGA GB − 1

μB
1bTB + μA

μB
1eTRGAeRbTB

]
, 1=

[
1
1

]
, bT=

[
bTA

μAbTAeR
μB

bTB

]
,

are obtained using the formula for inverse of block-matrices together with the relations
eTLGB = 0T, GBeL = 0, bTBeL = 1 and eTL,R1 = 1.

As in the single domain case, Q̃−1 can be interpreted as a discrete Green’s function. In
particular, we note an interesting behaviour when μA = 0 and μB = −1, i.e. a fully up-wind
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coupling. Then Q̃ is block-triangular, which leads to

Q̃ =
[

Q̃A 0
−eLeTR QB + eLeTL

]
, Q̃

−1 =
[

Q̃−1
A 0

1eTR Q̃−1
A GB + 1bTB

]
.

We see that with up-wind the continuous feature of having G(x, y) = 0 for x ≤ y from
Remark 2.3 is at least mimicked on block-matrix level.

3 The Second Derivative

Now consider the scalar heat equation with Robin boundary conditions, that is

ut − uxx = f , x ∈ [0, �],
αLu − βLux = gL, x = 0,

αRu + βRux = gR, x = �,

(11)

valid for t ≥ 0, with initial condition u(x, 0) = u0(x). The forcing function f (x, t), the
initial data u0(x) and the boundary data gL,R(t) are known functions.

We multiply the partial differential equation in (11) by u and integrate the result over the
spatial domain, with the data put to f = 0 and gL,R = 0. Thereafter using integration by
parts and the boundary conditions, yields

d

dt
‖u‖2 + 2‖ux‖2 = −2

βR

αR
ux (�, t)2 − 2

βL

αL
ux (0, t)2.

For a decaying growth rate, we need αL,RβL,R ≥ 0.

3.1 The Semi-discrete Scheme

Using the SBP-SAT finite difference method, we obtain a scheme approximating (11) as

vt − D2v = f + H−1(σLeL − τLdL)
(
αLeTLv − βLdTLv − gL

)

+ H−1(σReR + τRdR)
(
αReTRv + βRdTRv − gR

)
,

(12)

where v, f , H and eL,R are described as in Sect. 2.1. The matrix D2 approximates the second
derivative operator, and fulfills the SBP-properties

D2 = H−1(−A + eRdTR − eLdTL), A = AT ≥ 0. (13)

The vectors dL and dR are consistent finite difference stencils approximating the first deriva-
tive, see [7]. Two common categories of D2 operators are wide-stencil and narrow-stencil
operators. Wide-stencil operators can be factorized as D2 = D2

1 , and the term “narrow”
describes finite difference schemes with a minimal stencil width [26].

The penalty parameters σL,R and τL,R in (12) are scalars that will be further specified and
discussed in the next sections. Now, we use (13) to rewrite (12) as

vt + H−1 Ãv = f̃, (14)

where

Ã = A −
[

eTL
−dTL

]T [
σLαL 1 + σLβL

τLαL τLβL

][
eTL

−dTL

]
−

[
eTR
dTR

]T [
σRαR 1 + σRβR

τRαR τRβR

][
eTR
dTR

]
(15)
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and where f̃ = f − H−1(σLeL − τLdL)gL − H−1(σReR + τRdR)gR. We identify Ã as the
second derivative version of the matrix K from the introduction.

3.1.1 Stability

To show energy stability, we multiply (12) by vTH from the left and use the relations (13).
We thereafter add the transpose, and let f = 0 and gL,R = 0. This yields

d

dt
‖v‖2H + 2vTAv = 2vT(eRdTR − eLdTL)v

+ 2vT(σLeL − τLdL)
(
αLeTLv − βLdTLv

)

+ 2vT(σReR + τRdR)
(
αReTRv + βRdTRv

)
,

(16)

where we need to show that d
dt ‖v‖2H ≤ 0. We will determine the stability limits of σL,R and

τL,R using a procedure sometimes called the borrowing technique [1,2,7,15,24,30,32]. The
idea is to “borrow” a maximum amount γ of “positivity” from A, more precisely as

A = Ãγ + hγ (dLdTL + dRdTR), Ãγ ≥ 0, γ > 0. (17)

Inserting the relation in (17) into (16), we obtain

d

dt
‖v‖2H + 2vT Ãγ v =

[
eTLv

−dTLv

]T [
2σLαL 1 + σLβL + τLαL

1 + σLβL + τLαL 2τLβL − 2hγ

][
eTLv

−dTLv

]

+
[
eTRv

dTRv

]T [
2σRαR 1 + σRβR + τRαR

1 + σRβR + τRαR 2τRβR − 2hγ

][
eTRv

dTRv

]
.

For stability, we need both the matrices in the two quadratic forms above to be negative
semi-definite. This is fulfilled if

2σL,RαL,R ≤ 0

2(τL,RβL,R − hγ ) ≤ 0

(1 + τL,RαL,R + σL,RβL,R)2 ≤ 4σL,RαL,R(τL,RβL,R − hγ ).

(18)

3.1.2 Dual Consistency

To make the scheme (12) dual consistent we first note that the operator ∂2/∂x2 (including
boundary conditions) is a symmetric operator and that the matrix Ã must be symmetric to
mimic this. From (15) it is clear that Ã is symmetric if 1 + σL,RβL,R = τL,RαL,R. Let

δL ≡ 1 + σLβL − τLαL δR ≡ 1 + σRβR − τRαR, (19)

where δL,R = 0 for dual consistent choices of penalty parameters. The relations in (19), with
δL,R = 0, can also be derived from the penalty parameters of the scalar problem in [13]. For
a background and more thorough descriptions of dual consistency, see [18].

Note that now, using the dual consistency parameters δL,R defined in (19), the three stability
requirements in (18) can be reformulated as

σL,RαL,R ≤ 0, τL,RβL,R ≤ hγ, δ2L,R ≤ −4αL,R(σL,Rhγ + τL,R). (20)
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3.2 The Inverse of the DiscretizationMatrix

We consider the steady version of (14), that is H−1 Ãv = f̃ , which has a unique solution
v = Ã−1H f̃ , if Ã−1 exists. We derive this inverse and present the result in Theorem 3.1.

Theorem 3.1 Consider Ã in (15), which depends on A and dL,R in (13) and on the boundary
related scalars σL,R, τL,R, αL,R and βL,R. Let the parts of A be denoted as follows,

A =
⎡
⎣ aL �aT

L aC
�aL Ā �aR
aC �aT

R aR

⎤
⎦ , (21)

where aL, aR and aC are scalars, �aL,R are (n −1)×1-vectors and Ā is an (n −1)× (n −1)-
matrix. The inverse of Ã is

Ã−1 = G2 + [−τLbL −τRbR 1 − x/� x/�
]

−1

⎡
⎢⎢⎢⎣

bTL
bTR

βL(1 − x/�)T

βRxT/�

⎤
⎥⎥⎥⎦ (22)

where 1 = [1 1 1 . . . 1]T and x = h[0 1 2 . . . n]T , and where

G2 =
⎡
⎣ 0 �0T 0

�0 Ā−1 �0
0 �0T 0

⎤
⎦ , bL ≡ 1 − x/� − G2dL, bR ≡ x/� + G2dR. (23)

Furthermore, 
 in (22) is a 4 × 4-matrix


 =

⎡
⎢⎢⎣

σL + τLξL −τRξC 0 0
−τLξC σR + τRξR 0 0

δL 0 αL + βL/� −βL/�

0 δR −βR/� αR + βR/�

⎤
⎥⎥⎦ (24)

that depends on αL,R and βL,R, that is on the choices of boundary conditions in (11), on the
choices of penalty parameters σL,R and τL,R in (12) and on the duality parameters δL,R in
(19), as well as on the scalars

ξL ≡ −dTLbL, ξR ≡ dTRbR ξC ≡ dTLbR = −dTRbL. (25)

Proof of Theorem 3.1 The proof is given in “Appendix B”. �	
Note that the quantities in (23), and thus the validity of Theorem 3.1, rely on the existence

of Ā−1. In “Appendix D”, the explicit values of Ā−1, as well as of G2, bL,R, ξL,R and ξC,
are provided for the (2,0), (2,1) and (4,2) order accurate narrow-stencil operators and the
(2,0) order accurate wide-stencil operator. This directly proves the existence of Ā−1 for these
operators. Higher order accurate operators have free parameters, but empirically we can
draw the conclusion that Ā−1 must exist at least for the parameter choices in [25], since the
operators therein have been applied successfully for many years.

Given the existence of Ā−1, we note that Ã in (22) is singular if and only if 
 in (24) is
singular. The matrix 
 is in turn singular if any of the two relations

(αL + βL/�)(αR + βR/�) − βLβR/�2 = 0 (26)

(σL + τLξL)(σR + τRξR) − τLτRξ2C = 0 (27)
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holds. The first condition is related to the continuous boundary conditions, and makes the
matrix singular if Neumann boundary conditions are imposed on both boundaries, i.e. if
αL = αR = 0. The second condition has to do with the choice of penalty parameters, and
leads us to the following corollary of Theorem 3.1:

Corollary 3.2 The matrix Ã, described in (15), is singular when the penalty parameters
simultaneous fulfill σL = − (ξL + ζ |ξC|) τL and σR = − (ξR + |ξC|/ζ ) τR, where ζ 
= 0. If
ξC, τL or τR is zero, the matrix Ã is singular if either σL = −τLξL or if σR = −τRξR.

Proof of Corollary 3.2 We make the ansatz σL,R = −τL,RξL,R − εL,R with some unknown
scalars εL,R. Inserting this into (27) above gives εLεR = τLτRξ2C which is fulfilled for all
pairs εL = τL|ξC|ζ and εR = τR|ξC|/ζ with arbitrary choices of ζ 
= 0. If ξC, τL or τR is
equal to zero, it is enough if either εL = 0 or εR = 0. �	

The requirements on A and dL,R in Theorem 3.1 are only that A is symmetric, that Ā−1

exists (as discussed above) and that D2 and dL,R in (13) are consistent such that the relations
(43) and (44) in “Appendix B” holds. In addition we will assume that D2 is constructed such
the left and right boundary closures are equivalent. This implies that A is a centrosymmetric
matrix, that is Ai, j = An−i,n− j for all 0 ≤ i, j ≤ n, and that (dL)i = −(dR)n−i for
0 ≤ i ≤ n. This additional assumption leads to ξL = ξR (this is easiest seen by expressing
the quantities in (25) as ξL,R = 1/�+dTL,RG2dL,R and ξC = 1/�+dTL,RG2dR,L and thereafter
using the fact that the inverse of a centrosymmetric matrix is also centrosymmetric). For later
reference we define

ξT ≡ ξL,R + |ξC|, (28)

and assume that the penalty is chosen to be equally strong on both boundaries:

Assumption 3.3 Choosing an equal penalty strength on both boundaries corresponds to hav-
ing ζ = 1 in Corollary 3.2. If in addition equivalent boundary closures are assumed, such that
ξL = ξR, we can use ξT ≡ ξL,R + |ξC| from (28). This simplifies the condition of singularity
in Corollary 3.2 to σL,R = −ξTτL,R.

Remark 3.4 The inverse of Ã mimics a fundamental solution. For example, the Green’s
function G of Poisson’s equation, −uxx = f with u(0) = u(�) = 0, is

u(x) =
∫ �

0
G(x, y) f (y) dy, G(x, y) =

{
y(1 − x/�), y < x,

x(1 − y/�), x ≤ y.

Recalling that the matrix H has the role of a quadrature rule, we see the clear similarity to
the time-independent, homogeneous version of (14), v = Ã−1H f . The resemblance is more
obvious if the penalty dependent part in (22) is ignored, since then v = G2H f . For the second
order accurate approximation given in (64), G2 is exact in the grid points, as

(G2)i, j =
{

x j (1 − xi/�), 0 ≤ j ≤ i ≤ n,

xi (1 − x j/�), 0 ≤ i ≤ j ≤ n.

This is identical with the result noted for the classical finite difference method using injection
instead of SAT, compare [4,28]. With Robin boundary conditions we have

u(x) =
∫ �

0
G(x, y) f (y) dy + cL(1 − x/�) + cRx/�
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where cL,R depends on the type and data of the boundary conditions from (11), as

[
cL
cR

]
=

[
αL + βL/� −βL/�

−βR/� αR + βR/�

]−1
[

gL + βL
∫ �

0 (1 − y/�)) f (y) dy

gR + βR
∫ �

0 (y/�) f (y) dy

]
.

The discrete counterpart is still v = Ã−1H f̃ , which, using relations in Theorem 3.1 and
“Section B.1” of Appendix and with f̃ = f− H−1(σLeL−τLdL)gL− H−1(σReR+τRdR)gR,
can be written

v = G2H f − τLηLbL − τRηRbR

+ [
1 − x/� x/�

] [αL + βL/� −βL/�

−βR/� αR + βR/�

]−1 [
gL + βL(1 − x/�)TH f − δLηL

gR + βR(x/�)TH f − δRηR

]
,

where

[
ηL
ηR

]
=

[
σL + τLξL −τRξC

−τLξC σR + τRξR

]−1
[
bTL
bTR

]
H f .

Unless f = 0, such that ηL,R = 0, the numerical solution v differs depending on the choice
of penalty parameters, where the vectors 1, x and bL,R span the possible perturbations. As
long as choices resulting in σL,R + ξTτL,R ≈ 0 are avoided, this perturbation is slight.

3.3 Relations Between Stability, Singularity and Dual Consistency

We take a look at the relation between the stability requirements on the scheme (12) and the
conditions that make its discretization matrix singular. First, we note that:

Theorem 3.5 Consider γ in (17) and ξT in (28). It holds that hγ = 1/ξT.

Proof Theorem 3.5 is proven in “Section C.1” of Appendix. �	

A consequence of Theorem 3.5 is that the stability demands in (20) can be written

σL,RαL,R ≤ 0, τL,RβL,R ≤ 1/ξT, δ2L,R ≤ −4αL,R(σL,R/ξT + τL,R), (29)

with δL,R from (19). We will see that the penalty can be chosen such that we have energy
stability and a singular discretization matrix at the same time: fromAssumption 3.3 we know
that the matrix Ã is singular when σL,R = −τL,RξT. Inserting this into (29), the third stability
demand becomes δ2L,R ≤ 0, which is only fulfilled if the penalty parameters are chosen in a
dual consistent way. This means that if (12) is an energy stable scheme, it must also be dual
consistent to risk having a singular discretization matrix. Note though that even if the scheme
is dual consistent, a singular discretizationmatrix is avoided by choosingσL,R 
= −τL,RξT. To
be precise, simultaneous having σL,R = −ξT/(βL,RξT+αL,R) and τL,R = 1/(βL,RξT+αL,R)

should be avoided, since this particular choice makes δL,R = 0, fulfills the stability demands
but at the same time makes Ã singular.

In Assumption 3.3, one can argue that ζ = −1 gives just as an equal penalty strength as
ζ = 1, simplifying Corollary 3.2 to σL,R = − (

ξL,R − |ξC|) τL,R. However, these choices do
not give energy stability and are therefore not interesting for our further discussions. Besides,
|ξC| tend to be very small so in practice it does not make much of a difference.
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3.4 Relations to the Stability Demands in [13]

In Sect. 3.1.1 the “borrowing technique” is used for deriving the stability restrictions on
the penalty parameters. In [13], a different approach (inspired by [3,18] where wide-stencil
discretizations are rewritten as first order systems) is used for showing stability, and here we
are going to comment on some connections between the two methods.

In [13], it is assumed that A can be decomposed as in [7], that is as

A = AT = STM S, dL = STeL, dR = STeR, (30)

and the strategy for showing stability is to modify the approximation of ux from Sv to the
auxiliary variable w = Sv + M−1eLρL + M−1eRρR. In [13], ρL,R are penalty-like terms
proportional to the solution deviations from boundary data, but other options are possible.
Computing wTMw makes the terms

2vTdLρL + 2vTdRρR + qLρ2
L + 2qCρLρR + qRρ2

R ≤ 2vT(dLρL + dRρR) + qT(ρ2
L + ρ2

R)

available to the boundary terms in (16), where qL,R, qC and qT are defined as

qL,R ≡ eTL,RM−1eL,R, qC ≡ eTLM−1eR = eTRM−1eL, qT ≡ qL,R + |qC|. (31)

The “borrowing technique” on the other hand, makes the terms −hγ vT(dLdTL + dRdTR)v
available for the boundary terms in (16).

Although these two approaches of showing stability are different, they are closely related.
In Lemma 3.6 we formalize this relation and show that qT = 1/(hγ ).

Lemma 3.6 Assume that A in (13) can be factorized as in (30) with M > 0, and define qT as
stated in (31). Next, consider (17), where the parameter γ is defined as the maximum number
such that Ãγ ≥ 0 still holds. Then it holds that hγ = 1/qT.

Proof Lemma 3.6 is proven in “Section C.2” of Appendix. �	
For wide-stencil operators, S = D1 and M = H in (30), and the parameters qL,R and

qC in (31) are easily obtained since M is known. For narrow-stencil operators on the other
hand, M and the interior of S are not uniquely defined. In [13], the strategy was (under the
contrary assumption that S is non-singular and M is singular) to compute

q̃L,R ≡ eTL,R M̃−1eL,R, q̃C ≡ eTL M̃−1eR = eTR M̃−1eL, q̃T ≡ q̃L,R + |̃qC| (32)

instead, where M̃ ≡ S−T(A + peLeTL)S−1 with p 
= 0 being a perturbation parameter. For
wide-stencil operators though, it can easily be checked numerically that qL,R 
= q̃L,R and
qC 
= q̃C. This is somewhat alarming, but it can as easily be checked that it still holds that
qT = q̃T. We confirm this analytically in Theorem 3.8 below, and the use of q̃T in [13] is
thus justified. First though, we note the following:

Lemma 3.7 The quantities q̃L,R and q̃C defined in (32) are identical to the quantities ξL,R

and ξC in (25).

Proof Lemma 3.7 is proven in “Section C.3” of Appendix. �	
Thus, in summary, we have that:

Theorem 3.8 Assume that A in (13) can be factorized as in (30) with M > 0, and define qT
as stated in (31). Next, assume that M is singular instead, with M ≥ 0, and define q̃T as
stated in (32). Then it holds that qT = q̃T.
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Table 1 The borrowing parameter γ computed in [24,32], for narrow-stencil second derivative operators from
[23,25]

Order hq̃T from [13] 1/γ from [24,32]

(2,0) 1 –

(2,1) 2.5 2.5

(4,2) 3.986391480987749 (for n = 8) 3.986350339

(6,3) 5.322804652661742 (for n = 12) 5.322787044

(8,4) 633.69326893357 (for n = 16) 633.62285

(10,5) – 28.4736205

In comparison the q̃T-values (scaled with h) from [13]

Proof From Lemma 3.6 we have that qT = 1/(hγ ) and from Theorem 3.5 we have that
1/(hγ ) = ξT. Combining Lemma 3.7 with the definitions in (32) and (28) we deduce that
ξT = q̃T. All in all, this gives qT = 1/(hγ ) = ξT = q̃T concluding the proof. �	

For an example, see the derived values of q̃L,R,C and qL,R,C for the wide-stencil (2,0) order
operator in “Section D.4” of Appendix. As a numerical confirmation, in Table 1 we compare
the values of hq̃T from [13] to the values of γ computed in [24,32]. In Table 1 though, it
appears that hq̃T ≥ 1/γ . This is because the listed γ are computed for n → ∞, and are as
such slightly too large for very coarse meshes.

4 Conclusions

We discretize the scalar advection equation and the heat equation in one-dimensional space,
using the SBP-SAT finite difference method. This gives rise to two semi-discrete schemes
of the form vt + Lv = f̃ , where the discretization matrix L is approximating either the
first derivative or the second derivative, including treatment of the boundary conditions. The
matrix L is, due to properties of the SBP-SAT method, associated with a positive definite
matrix H such that L = H−1K , where the inverse of K is interpreted as a discrete Green’s
function. We derive the general forms of these inverses, and provide explicit examples of
K −1 for some operators L of second and fourth order accuracy.

The boundary treatment SAT induces free parameters in L . We first determine these
parameters such that the semi-discrete schemes are energy stable. Any remaining degrees
of freedom can be used to make the schemes dual consistent. Another important question
is whether the discretization matrices L are invertible. Conveniently, the formula for K −1

reveals precisely which combinations of SAT parameters that make L singular.
In the second derivative case, it turns out that for one very particular choice of SAT

parameters, L can become singular even when the scheme is energy stable. Here, we can
avoid this and instead choose the parameters such that the scheme is energy stable, dual
consistent and guaranteed to have an invertible discretization matrix (and consequently a
unique solution). However, for more complex problems it might not be feasible to prove that
the discretization matrix is invertible, not even for energy stable schemes.

Last, we take a look at two supposedly different approaches of proving energy stability.
Curiously, they are closely related, leading to the same demands on the SAT parameters.
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A Explicit Inverses of the First Derivative Operator

A.1 The (2,1) Order Accurate Operator

In the second order case, we have

D1 = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
− 1

2 0 1
2

− 1
2 0 1

2
. . .

. . .
. . .

− 1
2 0 1

2−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 − σL

1
2

− 1
2 0 1

2
− 1

2 0 1
2

. . .
. . .

. . .

− 1
2 0 1

2
− 1

2
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

with the associated norm-matrix H = h diag
( 1
2 , 1, 1, . . . , 1, 1, 1

2

)
. In (33),

we identify �qT = [ 1
2 0 . . . 0 0

]
and Q (given below) according to (8). Using Gauss–

Jordan elimination we find the inverse of Q, as

Q = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�⇒ Q
−1 = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 · · ·
1 0 0 0 0 · · ·
1 0 1 −1 1 · · ·
1 0 1 0 0 · · ·
1 0 1 0 1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We compute �qTQ
−1 = [

1 −1 1 −1 1 · · · ] as well. Inserting these results into (9) and (10)
yields

Q̃−1 = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 · · ·
0 1 −1 1 −1 1 · · ·
0 1 0 0 0 0 · · ·
0 1 0 1 −1 1 · · ·
0 1 0 1 0 0 · · ·
0 1 0 1 0 1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

σL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 −1 · · ·
1 −1 1 −1 1 −1 · · ·
1 −1 1 −1 1 −1 · · ·
1 −1 1 −1 1 −1 · · ·
1 −1 1 −1 1 −1 · · ·
1 −1 1 −1 1 −1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

The formula (34) holds both for even and odd number of grid points n. If n is even (as
assumed in the derivation in [14]), the bottom last element of Q̃−1 is −1/σL, if n is odd, the
bottom last element of Q̃−1 is 2 + 1/σL.
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A.2 The (4,2) Order Accurate Operator

In [29], we find D1 with fourth order interior accuracy and the associated H . Together with
(5) and (7), this gives us

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 − σL

59
96 − 1

12 − 1
32 0 0 0 0 0 0 0

− 59
96 0 59

96 0 0 0 0 0 0 0 0
1
12 − 59

96 0 59
96 − 1

12 0 0 0 0 0 0
1
32 0 − 59

96 0 2
3 − 1

12 0 0 0 0 0
0 0 1

12 − 2
3 0 2

3 − 1
12 0 0 0 0

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.

0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0
0 0 0 0 0 1

12 − 2
3 0 59

96 0 − 1
32

0 0 0 0 0 0 1
12 − 59

96 0 59
96 − 1

12
0 0 0 0 0 0 0 0 − 59

96 0 59
96

0 0 0 0 0 0 0 1
32

1
12 − 59

96
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

We identify Q and �q as indicated in (8).We are now looking for amatrixG such that QG = I .
Let G be composed as

G = [ �g1 �g2 . . . �gn
]
, �g j = [

g1, j g2, j . . . gn, j
]T

.

For QG = I to hold, Q �g j = �e j must be fulfilled for all j = 1, 2, . . . , n, where the n × 1
vector �e j = [0, . . . , 0, 1, 0, . . . , 0]T is non-zero only in its j th element. For Q �g j = �e j to
be fulfilled, the interior rows lead to gi−2, j − 8gi−1, j + 8gi+1, j − gi+2, j = 12δi, j , where
δi, j is the Kronecker delta. Hence, the fourth order linear homogeneous recurrence relation
gi−2, j −8gi−1, j +8gi+1, j −gi+2, j = 0 has to be fulfilled by most gi, j . The general, explicit
solution to this recursive relation has the form gi, j = c1 + c2(−1)i + c3φi + c4φ−i , where
φ = 4 + √

15 ≈ 7.873 and where c1,2,3,4 are j-dependent constants.
The requirement Q �g j = �e j takes slightly different forms depending on j . For j = 1, we

have Q �g1 = �e1, which is expressed explicitly as

1

96

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

59g2,1
−59g1,1 + 59g3,1 − 8g4,1
−59g2,1 + 64g4,1 − 8g5,1

8
(
g2,1 − 8g3,1 + 8g5,1 − g6,1

)
...

8
(
gi−2,1 − 8gi−1,1 + 8gi+1,1 − gi+2,1

)
...

8
(
gn−6,1 − 8gn−5,1 + 8gn−3,1 − gn−2,1

)
8gn−5,1 − 64gn−4,1 + 59gn−2,1 − 3gn,1

8gn−4,1 − 59gn−3,1 + 59gn−1,1 − 8gn,1

−59gn−2,1 + 59gn,1

3gn−3,1 + 8gn−2,1 − 59gn−1,1 + 48gn,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

0
...

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

The ansatz gi,1 = c1 + c2(−1)i + c3φi + c4φ−i holds for 2 ≤ i ≤ n − 2 where c1,2,3,4
are unknowns to be determined. In addition, we have the three unknowns g1,1, gn−1,1 and
gn,1. The three first and the four last rows in (36) gives us seven conditions. Inserting the
above mentioned expressions for gi,1 into (36), gives a linear system with seven unknowns
and seven conditions, as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 59 59 59φ2 59φ−2 0 0 96
−59 51 −67 59φ3 − 8φ4 59φ−3 − 8φ−4 0 0 0
0 −3 13 −59φ2 + 8φ3 −59φ−2 + 8φ−3 0 0 0
0 3 −13(−1)n φn(−8φ−3 + 59φ−2) φ−n(−8φ3 + 59φ2) 0 −3 0
0 −51 67(−1)n φn(8φ−4 − 59φ−3) φ−n(8φ4 − 59φ3) 59 −8 0
0 −59 −59(−1)n −59φn−2 −59φ2−n 0 59 0
0 11 5(−1)n φn(3φ−3 + 8φ−2) φ−n(3φ3 + 8φ2) −59 48 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the unknowns sorted as g1,1, c1, c2, c3, c4, gn−1,1 and gn,1, and where we have used
the relation φ + φ−1 = 8 to simplify the expressions.

A.2.1 The Inverse with an Even Number of Grid Points n

To make the expressions manageable, we simplify by assuming that n is an even number. In
this particular case, when solving the 7 × 7 system above, we obtain

g1,1 = 1

2

(
12Cn

59Dn

)2

, gn−1,1 = 12

59

( Cn

Dn
− 9

59D2
n

)
, gn,1 = 12Cn

59Dn
.

where Cn and Dn are integers given in (37) below. Note that Dn ≥ 1 for even n, so there is
no risk of division by zero. Moreover, we obtain

c1 = 12Cn

59Dn
, c2 = 36

590D2
n
, c3 = 6(φ − 1)φ1−n

590D2
n

, c4 = 6(φ−1 − 1)φn−1

590D2
n

,

which inserted into the ansatz gi,1 = c1 + c2(−1)i + c3φi + c4φ−i leads to

gi,1 = 12

59

( Cn

Dn
− 3Bn−i

D2
n

)
, for 2 ≤ i ≤ n − 2.

The quantities B j are integers for integers j , and are specified below

Dn = νn/2−1 + νn/2−2

10
, Cn = 9νn/2−1 + 4νn/2−2

10

B j = ν j−1 − ν j−2 − 6(−1) j

60
, A j =

1−(−1) j

2 νn/2−1 + 1+(−1) j

2 νn/2−2 − νn/2− j

60
.

(37)

where ν j = φ j + φ− j . For convenience, all the gi,1 presented above will be restated in (38)
and (39), wherein we will also make use of A j defined above.

We use the same strategy for the other columns j > 1. For 2 ≤ j ≤ n − 2, we need
two different versions of the constants c1,2,3,4, depending on if we consider gi, j for i ≤ j
or for i ≥ j . We let gi, j = cu

1 + cu
2 (−1)i + cu

3φ
i + cu

4φ
−i for 2 ≤ i ≤ j ≤ n − 2 and

gi, j = cl
1 + cl

2(−1)i + cl
3φ

i + cl
4φ

−i for 2 ≤ j ≤ i ≤ n − 2. Thus for every 2 ≤ j ≤ n − 2,
we have eight unknown constants, as well as the three remaining unknowns g1, j , gn−1, j and
gn, j . The three first and the four last rows in the system above gives us seven conditions.
From the rows i = j − 1, j, j + 1, we get three more conditions and in addition, we demand
that the two versions of g j, j are identical. All in all, this gives a linear system with eleven
unknowns g1, j , cu

1 , cu
2 , cu

3 , cu
4 , cl

1, cl
2, cl

3, cl
4, gn−1, j and gn, j and eleven conditions.

We still consider even numbers of n. Solving for the unknowns and inserting cu
1,2,3,4 and

cl
1,2,3,4 into their respective ansatz, we eventually end up with gi, j for the inner columns,
presented below in (40) and (41). Furthermore, repeating the procedure for the last two
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columns, we obtain gi, j for j = n − 1 and j = n, given in (38) and (39). To simplify the
expressions in (39)–(41), we have used A j in (37).

In summary, when n is even, the inverse of Q is given by Q
−1 = (gi, j )n×n with gi, j as

described in (38)–(41) below. First, the corner elements are

g1,1 = 72C2n
592D2

n
, g1,n−1 = 12

59

(
12C2n + 9

59D2
n

− Cn

Dn

)
, g1,n = − 12Cn

59Dn
,

gn−1,1 = 12

59

( Cn

Dn
− 9

59D2
n

)
, gn−1,n−1 = 72C2n

592D2
n
, gn−1,n = − 12Cn

59Dn
,

gn,1 = 12Cn

59Dn
, gn,n−1 = 12Cn

59Dn
, gn,n = 0. (38)

For 2 ≤ i ≤ n − 2, we obtain

gi,1 = 12

59

( Cn

Dn
− 3Bn−i

D2
n

)
, gi,n−1 = 36

4CnAi +Bi

59D2
n

− 12Ai

Dn
, gi,n = −12Ai

Dn
, (39)

while we for 2 ≤ j ≤ n − 2 have

g1, j = 36
4CnA j + Bn− j

59D2
n

− 12Cn

59Dn
, gn−1, j = 12A j

Dn
− 36B j

59D2
n
, gn, j = 12A j

Dn
. (40)

Finally, the interior elements are

gi, j = 122
AiA j

D2
n

− 12

(Ai

Dn
− BiBn− j

D2
n

)
, for 2 ≤ i ≤ j ≤ n − 2,

gi, j = 12

(A j

Dn
− B jBn−i

D2
n

)
, for 2 ≤ j ≤ i ≤ n − 2.

(41)

In the expressions above we have used Dn , Cn , B j and A j defined in (37). Next, we recall
the structure in (8), and identify �q in (35) as

�qT = [
59
96 − 1

12 − 1
32 0 0 · · · 0

]
,

and compute �qTQ
−1

as (�qTQ
−1

) j = 59
96g1, j − 1

12 g2, j − 1
32 g3, j . This gives

(�qTQ
−1

) j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

12Cn
59Dn

− 1 for j = 1
12A j
Dn

− 1 for j = 2, . . . , n − 2
12Cn
59Dn

− 1 for j = n − 1

−1 for j = n,

(42)

where we have used the structures of gi, j in (38)–(41), together with the following relations:

B2 = 0, A2 = 0, Bn−2 = CnDn − 8D2
n

3

B3 = 1, A3 = Cn − 8Dn

3
, Bn−3 = −2C2n + 33CnDn − 136D2

n

3
.
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As an example, we write out Q
−1

from (38)–(41) explicitly, for n = 8, as

Q
−1 = 12

552

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1291776
3481 − 24200

59
19192
59 − 19931

59
19027
59 − 25520

59
1077881
3481 − 25520

59
24200
59 0 0 0 0 0 0 0

25352
59 0 384 −337 329 −440 18587

59 −440
25499
59 0 433 6 48 −55 2344

59 −55
25517
59 0 439 48 384 −440 18752

59 −440
25520
59 0 440 55 440 0 1320

59 0
1505671
3481 0 25957

59
3224
59

25792
59 − 1320

59
1291776
3481 − 25520

59
25520
59 0 440 55 440 0 25520

59 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where e.g. D8 = 55. Correspondingly, we have

�qTQ
−1 = 1

55

[ 2323
59 −55 41 −43 41 −55 2323

59 −55
]
.

Inserting Q
−1

from (38)–(41), and (42) into (9) and (10) yields the inverse of Q̃ in the (4,2)
order accurate case (for n even). In the example with n = 8, we have

Q̃−1 ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.72 1 −0.75 0.78 −0.75 1 −0.72 1
1 0.76 −0.63 0.54 −0.56 0.53 −0.72 0.51 −0.72
1 0.91 1 −0.75 0.78 −0.75 1 −0.72 1
1 0.99 1 0.78 −0.56 0.56 −0.75 0.53 −0.75
1 1.00 1 0.97 0.81 −0.56 0.78 −0.56 0.78
1 1.00 1 1.00 0.97 0.78 −0.75 0.54 −0.75
1 1 1 1 1 1 1 −0.63 1
1 1.00 1 1.00 1.00 0.99 0.91 0.76 −0.72
1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for σL = −1, which we see mimic the Green’s function, as discussed in Remark 2.3.
Recall that we assumed that n was even. Repeating the derivation for odd n, the resulting

inverse Q̃−1 has a similar behaviour, but with other coefficients. For example, the denomi-
nators will instead be D̃n = (φ(n−3)/2 − φ(3−n)/2)/

√
60, which are positive integers for odd

n ≥ 5.

B Proof of Theorem 3.1

Theorem 3.1 states that the inverse of Ã from (15) is equal to the expression (22). This is
shown in “Section B.2” of Appendix, however, first, we present some useful relations.

B.1 Preliminaries

Note that D21 = 0 and D2x = 0, since D2 approximates the second derivative operator
(these two relations actually hold also for the inconsistent (2,0) order accurate operators in
“Sections D.1” and “D.4” of Appendices). Furthermore, dTL,R consistently approximate the

first derivative, so that dTL,R1 = 0 and dTL,Rx = 1. Hence

dTL(�1 − x) = −1, dTLx = 1, dTR(�1 − x) = −1, dTRx = 1. (43)
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Combining the above relations with A = −H D2 + eRdTR − eLdTL from (13), gives

A(�1 − x) = eL − eR, Ax = eR − eL. (44)

Now, we define the additional (n −1)×1-vectors �1 = [1 1 . . . 1]T and �x = h[1 2 . . . n −1]T
(they are shorter versions of 1 and x in Theorem 3.1). With these new variables and with the
notation from (21), the relations (44) can be expressed as

⎡
⎢⎣

�aL + �aT
L(��1 − �x)

��aL + Ā(��1 − �x)

�aC + �aT
R(��1 − �x)

⎤
⎥⎦ =

⎡
⎣ 1

�0
−1

⎤
⎦ ,

⎡
⎢⎣

�aT
L �x + �aC

Ā�x + ��aR
�aT
R �x + �aR

⎤
⎥⎦ =

⎡
⎣−1

�0
1

⎤
⎦ .

Given that A is correctly constructed, such that Ā in invertible, this leads to the relations

�1 − �x/� = − Ā−1�aL, �x/� = − Ā−1�aR (45)

and

aL = �aT
L Ā−1�aL + 1

�
, aR = �aT

R Ā−1�aR + 1

�
, aC = �aT

R Ā−1�aL − 1

�
= �aT

L Ā−1�aR − 1

�
. (46)

Now, multiplying A from (21) by G2 from (23) and using the relations (45), we get

AG2 =
⎡
⎣ 0 �aT

L Ā−1 0
�0 Ī �0
0 �aT

R Ā−1 0

⎤
⎦ = I − eL(1 − x/�)T − eRxT/� (47)

where Ī is the (n − 1) × (n − 1) identity matrix. From (23) we have bL = 1− x/� − G2dL
and bR = x/� + G2dR, and using the relations (44), (47) and (43), we arrive at

AbL = −dL, AbR = dR. (48)

The vectors eL,R picks out the first and last elements in the vectors they are multiplied by,
such that

eTL(1 − x/�) = 1, eTLx/� = 0, eTR(1 − x/�) = 0, eTRx/� = 1,

eTLbL = 1, eTLbR = 0, eTRbL = 0, eTRbR = 1.
(49)

Finally, from (23) we have

eTLG2 = eTRG2 = 0T, dTLG2 = (1 − x/� − bL)T, dTRG2 = (bR − x/�)T. (50)

We are now ready to prove Theorem 3.1.

B.2 Confirmation of Eq. (22) with (23)–(25)

We multiply Ã in (15) by the expression for Ã−1 in (22), with the aim of showing that
Ã Ã−1 = I indeed holds. In the first step, (22) yields

Ã Ã−1 = ÃG2 + Ã

⎡
⎢⎢⎢⎣

−τLbTL
−τRbTR

(1 − x/�)T

xT/�

⎤
⎥⎥⎥⎦

T

︸ ︷︷ ︸
�


−1

⎡
⎢⎢⎢⎣

bTL
bTR

βL(1 − x/�)T

βRxT/�

⎤
⎥⎥⎥⎦ . (51)
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We start by looking at the first term in (51). First using (15), followed by the relations in (47)
and (50), and thereafter just rearranging the terms, we arrive at

ÃG2 = AG2

[
eTL

−dTL

]T [
σLαL σLβL + 1
τLαL τLβL

][
eTL

−dTL

]
G2

−
[
eTR
dTR

]T [
σRαR σRβR + 1
τRαR τRβR

][
eTR
dTR

]
G2

= I − eL(1 − x/�)T − eRxT/� −
[

eTL
−dTL

]T [
σLβL + 1

τLβL

]
(bL − 1 + x/�)T

−
[
eTR
dTR

]T [
σRβR + 1

τRβR

]
(bR − x/�)T

= I −

⎡
⎢⎢⎢⎢⎣

(σLβL + 1)eTL − τLβLdTL
(σRβR + 1)eTR + τRβRdTR

− (
σLeTL − τLdTL

)
−(σReTR + τRdTR)

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎣

bTL
bTR

βL(1 − x/�)T

βRxT/�

⎤
⎥⎥⎦ .

(52)

Next, we look at the part � in (51). After rewriting Ã using (15), we use the relations in
(48), (44), (49), (43) and (25). Thereafter, the resulting terms are rearranged. These steps are
shown below in (53).

� = A

⎡
⎢⎢⎢⎣

−τLbTL
−τRbTR

(1 − x/�)T

xT/�

⎤
⎥⎥⎥⎦

T

−
[

eTL
−dTL

]T [
σLαL σLβL + 1

τLαL τLβL

][
eTL

−dTL

]
⎡
⎢⎢⎢⎣

−τLbTL
−τRbTR

(1 − x/�)T

xT/�

⎤
⎥⎥⎥⎦

T

−
[
eTR
dTR

]T [
σRαR σRβR + 1

τRαR τRβR

][
eTR
dTR

]
⎡
⎢⎢⎢⎢⎣

−τLbTL
−τRbTR

(1 − x/�)T

xT/�

⎤
⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎣

τLdTL
−τRdTR

(eTL − eTR)/�

(eTR − eTL)/�

⎤
⎥⎥⎥⎥⎦

T

−
[

eTL
−dTL

]T [
σLαL σLβL + 1
τLαL τLβL

][ −τL 0 1 0

−τLq̃L τRq̃C 1/� −1/�

]

−
[
eTR
dTR

]T [
σRαR σRβR + 1

τRαR τRβR

][
0 −τR 0 1

τLq̃C −τRq̃R −1/� 1/�

]

=

⎡
⎢⎢⎢⎢⎣

(σLβL + 1)eTL − τLβLdTL
(σRβR + 1)eTR + τRβRdTR

−σLeTL + τLdTL
−σReTR − τRdTR

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎣

σL + τLq̃L −τRq̃C 0 0
−τLq̃C σR + τRq̃R 0 0

δL 0 αL + βL
�

−βL
�

0 δR −βR
�

αR + βR
�

⎤
⎥⎥⎦ ,

(53)
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We note that the last 4× 4-matrix is nothing but 
 from (24). Inserting the results from (52)
and (53) into (51) gives us

Ã Ã−1 = I −

⎡
⎢⎢⎢⎢⎣

(σLβL + 1)eTL − τLβLdTL
(σRβR + 1)eTR + τRβRdTR

−σLeTL + τLdTL
−σReTR − τRdTR

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

bTL
bTR

βL(1 − x/�)T

βRxT/�

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

(σLβL + 1)eTL − τLβLdTL
(σRβR + 1)eTR + τRβRdTR

−σLeTL + τLdTL
−σReTR − τRdTR

⎤
⎥⎥⎥⎥⎦

T



−1

⎡
⎢⎢⎢⎣

bTL
bTR

βL(1 − x/�)T

βRxT/�

⎤
⎥⎥⎥⎦ = I ,

concluding the proof.

C Proofs of the Relations Between �T, �, qT and q̃T

Below we present the proofs of Theorem 3.5 and the Lemmas 3.6 and 3.7.

C.1 Proof of Theorem 3.5

We aim to relate γ in (17) to ξT in (28). Note that the latter quantity relies on that ξL = ξR
in (25). To emphasize this, we introduce ξD = ξL,R.

We start by defining ṽ = v − bLρL + bRρR with bL,R from (23), and compute

ṽT Ãv = vTAv + 2ρLvTdL + 2ρRvTdR + ρ2
LξL + 2ρLρRξC + ρ2

RξR (54)

using (48) and (25). The (n + 1) × 1-vector v is arbitrary and for the scalars ρL,R we make
the ansatz ρL = (sLdTL + tRdTR)v and ρR = (sRdTR + tLdTL)v where tL,R and sL,R are scalars
yet to be determined. Inserted into (54), this yields

ṽT Ãv = vTAv + vT(zLdLdTL + 2zCdLdTR + zRdRdTR)v (55)

where we have defined

zL = 2sL + 2ξCsLtL + ξLs2L + ξRt2L

zR = 2sR + 2ξCsRtR + ξRs2R + ξLt2R
zC = tL + tR + ξLsLtR + ξRsRtL + ξCsLsR + ξCtLtR.

(56)

Using the “borrowing technique”, γ is the maximum value such that Ãγ ≥ 0 still holds,
referring to γ and Ãγ from (17). For (55) to correspond to (17), we need zL = zR and
zC = 0, and under these constraints we must mimimize zL,R. To get there, we first define
xL = sL + tL, yL = sL − tL, xR = sR + tR and yR = sR − tR. Now

xL + yL = 2sL, x2L − y2L = 4sLtL, x2L + y2L = 2(s2L + t2L),

xR + yR = 2sR, x2R − y2R = 4sRtR, x2R + y2R = 2(s2R + t2R).
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Inserted into zL and zR in (56), these relations gives us

zL,R = xL,R + yL,R + ξC
x2L,R − y2L,R

2
+ ξD

x2L,R + y2L,R

2

= ξD + ξC

2

(
xL,R + 1

ξD + ξC

)2

+ ξD − ξC

2

(
yL,R + 1

ξD − ξC

)2

− ξD

ξ2D − ξ2C

where we have used that ξD = ξL = ξR. Note that for fixed values of zL and zR, the pairs
(xL, yL) and (xR, yR) describe ellipses. Reformulated in a parametric form, they are

xL = −1

ξD + ξC
+

√
2

ξD + ξC
rL cos(θL), yL = −1

ξD − ξC
+

√
2

ξD − ξC
rL sin(θL),

xR = −1

ξD + ξC
+

√
2

ξD + ξC
rR cos(θR), yR = −1

ξD − ξC
+

√
2

ξD − ξC
rR sin(θR),

(57)

where r2L = zL + ξD/(ξ2D − ξ2C) and r2R = zR + ξD/(ξ2D − ξ2C). To enforce zL = zR, we simply
let rL = rR = r . This gives us

zL,R = r2 − ξD

ξ2D − ξ2C
. (58)

Next, we need to fulfull the requirement zC = 0. Inserting the relations

tL,R = xL,R − yL,R

2
, sLtR + tLsR = xLxR − yLyR

2
, sLsR + tLtR = xLxR + yLyR

2

into zC in (56), and thereafter using (57) with rL,R = r , leads to

2zC = xL − yL + xR − yR + ξD(xLxR − yLyR) + ξC(xLxR + yLyR)

= 2

(
ξC

ξ2D − ξ2C
+ r2 cos(θL + θR)

)
.

Now, we want zC = 0 while keeping r2 to a minimum (in order to in turn minimize zL,R).
We achieve this by putting

r2 = |ξC|
ξ2D − ξ2C

, cos(θL + θR) = −sgn(ξC).

It can be shown that ξ2D − ξ2C ≥ 0 (by inserting (48) into (25) and using that AT = A ≥ 0),
therefore the absolute value is only needed for ξC. Inserting the above choice of r2 into zL,R

in (58) and thereafter using (28) with ξL,R = ξD, we obtain

zL,R = |ξC| − ξD

ξ2D − ξ2C
= −1

ξD + |ξC| = − 1

ξT
.

We have thereby shown that, with zC = 0 and zL = zR in (55), 1/ξT is the maximum amount
of “positivity” in form of (dLdTL + dRdTR) we can extract from A. Inserting zC = 0 and
zL,R = −1/ξT into (55) and noting that ṽT Ãv ≥ 0, we get

vTAv − 1

ξT
vT(dLdTL + dRdTR)v ≥ 0. (59)

Comparing with (17), we deduce that hγ = 1/ξT.
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C.2 Proof of Lemma 3.6

We define w = Sv + M−1eLρL + M−1eRρR and use the relations in (30) to compute

wTMw = vTAv + 2ρLvTdL + 2ρRvTdR + ρ2
LqL + 2ρLρRqC + ρ2

RqR (60)

where qL,R,C are defined in (31) and where ρL,R are any scalars. It is assumed that M > 0
and thatwTMw ≥ 0. Note that the right-hand-side of (60) has the same form as (54), but with
ξL,R,C replaced by qL,R,C. Thus, by following the same procedure, we obtain the relation
corresponding to (59), namely

vTAv − 1

qT
vT

(
dLdTL + dRdTR

)
v ≥ 0

with qT defined in (31). Comparing with (17) we see that hγ = 1/qT.

C.3 Proof of Lemma 3.7

In [13], it was shown that q̃L,R and q̃C in (32) can be computed as

q̃L = dTLK0dL, q̃R = dTRK0dR, q̃C = dTLK0dR = dTRK0dL, (61)

with K0 defined (using our notation from (21)) as

K0 =
⎡
⎣

0 �0T 0
�0
0

[
Ā �aR
�aT
R aR

]−1

⎤
⎦ .

Now, we want to show that the quantities in (61) are equal to the ones in (25). Applying the
formula for inverses of block matrices to the above definition of K0, and thereafter using the
relation for aR in (46), we obtain

K0 = 1

aR − �aT
R Ā−1�aR

⎡
⎣ 0 �0T 0

�0 (aR − �aT
R Ā−1�aR) Ā−1 + Ā−1�aR�aT

R Ā−1 − Ā−1�aR
0 −�aT

R Ā−1 1

⎤
⎦

=
⎡
⎣ 0 �0T 0

�0 Ā−1 �0
0 �0T 0

⎤
⎦ + �

⎡
⎣ 0

− Ā−1�aR
1

⎤
⎦[

0 −�aT
R Ā−1 1

]
. (62)

Comparing (62) with (23) and (45), we note that K0 = G2 + xxT/�. Inserting this into (61),
and thereafter using (50) and that dTL,R1 = 0 and dTL,Rx = 1, yields

q̃L = −bTLdL, q̃R = bTRdR, q̃C = −bTLdR = bTRdL,

that is exactly the same relations as in (25).

D Explicit Inverses of the Second Derivative Operator

We provide the explicit expressions of Ā−1, bL,R, ξL,R and ξC for the (2,0), (2,1) and (4,2)
order accurate narrow-stencil operators and the (2,0) order accurate wide-stencil operator.
By the notation “(2,0) order accurate operator”, we refer to a matrix D2 which has order 2
in the interior finite difference stencil and order 0 at the boundaries.
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D.1 The Narrow-Stencil (2,0) Order Operator

The simplest possible example of a second derivative operator D2 fulfilling the SBP-
properties in (13) is the narrow-stencil (2,0) order operator, and its corresponding matrix
Ã was inverted already in [14] for the special case αL,R = 1, βL,R = 0 and τL,R = 0. It is
given below, together with its associated dL,R vectors.

D2 = 1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, dL = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. dR = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

The operator D2 is also associated with H = h diag
( 1
2 , 1, 1, . . . , 1, 1,

1
2

)
, and using (13)

we obtain the (n + 1) × (n + 1) matrix A given below. The (n − 1) × (n − 1) matrix Ā is
identified using (21). Gauss–Jordan elimination then leads to Ā−1 as

A = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ā−1 = h

⎡
⎢⎢⎢⎢⎢⎣

1 − 1
n 1 − 2

n · · · 1
n

1 − 2
n 2(1 − 2

n ) · · · 2
n

...
...

. . .
...

1
n

2
n · · · 1 − 1

n

⎤
⎥⎥⎥⎥⎥⎦

.

Inserting Ā−1 from above into (23), and using that xi = ih, yields

(G2)i, j =
{

x j (1 − xi/�), 0 ≤ j ≤ i ≤ n,

xi (1 − x j/�), 0 ≤ i ≤ j ≤ n.
(64)

Note the striking similarity to the continuous Green’s function in Remark 3.4. Next, by
noticing the structure of dL,R in (63) and identifying the first and last columns of Ā−1 as
h(�1 − �x/�) and h �x/� we can compute G2dL,R and consequently bL,R in (23) as

G2dL =
⎡
⎣ 0

�1 − �x/�

0

⎤
⎦ , G2dR = −

⎡
⎣ 0

�x/�

0

⎤
⎦ , bL = eL, bR = eR.

Furthermore, inserting these bL,R and dL,R from (63) into (25), we obtain

ξL = ξR = 1/h, ξC = 0.

D.2 The Narrow-Stencil (2,1) Order Operator

The narrow-stencil (2,1) order operator (see Section C.1 in [25]), have the same matrices H
and A as the (2,0) order operator, and hence its G2 is given by (64). However, the difference
matrices dL,R differ, for the (2,1) order operator they are

dTL= 1

h

[− 3
2 2 − 1

2 0 0 · · · 0
]
, dTR = 1

h

[
0 · · · 0 0 1

2 −2 3
2

]
.

123



Journal of Scientific Computing (2021) 89 :30 Page 25 of 29 30

We can compute G2dL as

G2dL = h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0

0 1 − 1
n 1 − 2

n · · · 1
n 0

0 1 − 2
n 2(1 − 2

n ) · · · 2
n 0

...
...

...
. . .

...
...

0 1
n

2
n · · · 1 − 1

n 0

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 3
2
2

− 1
2
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3
2 − 1

n
1 − 2

n
...
1
n
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and repeating the procedure for G2dR and thereafter using (23), we arrive at

bL = [
1 − 1

2 0 · · · 0 0
]T

, bR = [
0 0 · · · 0 − 1

2 1
]T

.

Finally, we use (25) to compute

ξL,R = 2.5/h, ξC = 0,

where ξC = 0 holds for n ≥ 4.

D.3 The Narrow-Stencil (4,2) Order Operator

The operator D2 with fourth order interior accuracy and diagonal norm H , see Section C.2
in [25], is associated with the difference operators

dTL = 1

h

[−11
6 3 −3

2
1
3 0 · · · 0] , dTR = 1

h

[
0 · · · 0 −1

3
3
2 −3 11

6

]
. (65)

Using (13) and identifying the interior of A according to (21), we obtain

Ā = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

59
24 − 59

48 0

− 59
48

55
24 − 59

48
1
12

0 − 59
48

59
24 − 4

3
1
12

1
12 − 4

3
5
2 − 4

3
1
12

. . .
. . .

. . .
. . .

. . .

1
12 − 4

3
5
2 − 4

3
1
12

1
12 − 4

3
59
24 − 59

48 0
1
12 − 59

48
55
24 − 59

48
0 − 59

48
59
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We are now looking for a matrix Ḡ such that Ḡ = Ā−1, and follow the same procedure as in
“Section A.2” of Appendix. We make the ansatz

Ḡ = [ �g1 �g2 . . . �gn−1
]
, �g j = [

g1, j g2, j . . . gn−1, j
]T

.

For ĀḠ = Ī to hold, Ā�g j = �e j must be fulfilled for all j = 1, 2, . . . , n −1, where the vector
�e j = [0 . . . 0 1 0 . . . 0]T is non-zero only in its j th element. From the mid rows of Ā�g j ,
given the inner structure of Ā, we thus need

gi−2, j − 16gi−1, j + 30gi, j − 16gi+1, j + gi+2, j = 12hδi, j ,
∀i = 4, 5, . . . , n − 4,
∀ j = 1, 2, . . . , n − 1,
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where δi, j is the Kronecker delta. Hence, the fourth order linear homogeneous recurrence
relation gi−2, j −16gi−1, j +30gi, j −16gi+1, j +gi+2, j = 0 has to be fulfilled by almost all gi, j .
The explicit solution to this recursive relation has the form gi, j = c1 + c2i + c3ψ i + c4ψ−i ,
whereψ = 7+√

48 ≈ 13.9 and where c1,2,3,4 are j-dependent constants. To be precise, gi, j

has this form for 2 ≤ i ≤ n −2, and we need two versions of the j-dependent constants, that
is gi, j = cu

1 + cu
2 i + cu

3ψ
i + cu

4ψ
−i for 2 ≤ i ≤ j and gi, j = cl

1 + cl
2i + cl

3ψ
i + cl

4ψ
−i for

j ≤ i ≤ n − 2. For each j = 2, 3, . . . , n − 2, we thus have eight unknown constants cu
1,2,3,4

and cl
1,2,3,4, as well as the two remaining unknowns g1, j and gn−1, j . These are determined

by the three first and the three last rows in the requirement Ā�g j = �e j , which gives us six
conditions. From the rows i = j − 1, j, j + 1, we get three more conditions and in addition,
we demand that the two versions of g j, j are identical. Altogether, this leads to a 10 × 10
system of equations which we solve using Gauss–Jordan elimination. The boundary columns
j = 1 and j = n − 1 must be treated separately, in a similar manner. All in all, these steps
lead to the elements of the inverse ( Ā−1)i, j = gi, j as

( Ā−1)i, j = κi, j +
{

x j (1 − xi/�), 1 ≤ j ≤ i ≤ n − 1
xi (1 − x j/�), 1 ≤ i ≤ j ≤ n − 1,

which is thus similar to the second order version of Ā−1, plus an additional term κi, j . This
additional correction term is, for 2 ≤ i, j ≤ n − 2, given by

κi, j =

⎧⎪⎨
⎪⎩

−h
P jPn−i

Qn
, 2 ≤ j ≤ i ≤ n − 2,

−h
PiPn− j

Qn
, 2 ≤ i ≤ j ≤ n − 2,

where

Pi = (51 − 2ψ−1)ψ i−2 − (51 − 2ψ)ψ2−i

ψ − ψ−1 ,

Qn = ψn−4(2ψ−1 − 51)2 − ψ4−n(2ψ − 51)2

ψ − ψ−1 .

Note that Qn 
= 0 (unless n ≈ 3.7), so there is no risk of division by zero. Moreover, for
i, j = 1 or i, j = n − 1 we have

κ1, j = −h
Pn− j

Qn
, κn−1, j = −h

P j

Qn
, 2 ≤ j ≤ n − 2,

κi,1 = −h
Pn−i

Qn
, κi,n−1 = −h

Pi

Qn
, 2 ≤ i ≤ n − 2,

and

κ1,1 = κn−1,n−1 = −h
Pn−2

2Qn
− h

11

118
, κ1,n−1 = κn−1,1 = −h

P2

2Qn
.
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Table 2 The parameters hξL,R
and hξC in the (4,2) order case
evaluated explicitly

n hξL,R hξC

8 3.986350339808304 0.000041141179445

9 3.986350339313381 0.000002953803786

10 3.986350339310831 0.000000212073570

11 3.986350339310817 0.000000015226197

12 3.986350339310817 0.000000001093192

From (23) we have that the interior of G2 is given by Ā−1 described above. Next, we use dL
from (65) to compute G2dL and thereafter (23) again, to compute bL as

(bL)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 i = 0
− 85

118 + 17
2

Pn−2
Qn

i = 1

17Pn−i
Qn

i = 2, 3, . . . , n − 2,

17
Qn

i = n − 1

0 i = n

lim
n→∞bL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.5532 . . .

0.3342 . . .

0.0239 . . .

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (66)

where we have used that Qn + 2Pn−3 = 51Pn−2. Then, bR is given by (bR)i = (bL)n−i .
We also compute the scalars from (25), as

ξL = ξR = 1

h

(
2417

354
− 172Pn−2

2Qn

)
, ξC = 1

h

172

Qn
.

Evaluating hξL,R and hξC explicitly for some values of n, see Table 2, we see that these
numbers corresponds exactly (to machine precision) to q̃Lh and q̃Ch tabulated in [13]. This
serves as a numerical verification of Lemma 3.7 and indirectly of Theorem 3.1.

D.4 TheWide-Stencil (2,0) Order Operator

The wide-stencil (2,0) order accurate operator D2, which is obtained by squaring the (2,1)
order accurate operator D1 from (33), is given below together with dL,R = DT

1eL,R

D2 = 1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 −1 1

2
1
2 − 3

4 0 1
4

1
4 0 − 1

2 0 1
4

. . .
. . .

. . .
. . .

. . .

1
4 0 − 1

2 0 1
4

1
4 0 − 3

4
1
2

1
2 −1 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dL = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
...

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dR = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The operator is also associatedwith the same H = hdiag
( 1
2 , 1, 1, . . . , 1, 1, 1

2

)
as the other operators with second order accuracy, and from this we can compute the (n+1)×
(n + 1) matrix A. Identifying the parts of A according to (21), gives us the (n − 1) × (n − 1)
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matrix Ā. The inverse of this matrix Ā is

Ā−1 = 2h

⎡
⎢⎢⎢⎣

1 − 1
n 0 1 − 3

n · · ·
0 2(1 − 2

n ) 0 · · ·
1 − 3

n 0 3(1 − 3
n ) · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎦ ,

that is the discrete Green’s function in (23) becomes

(G2)i, j =
{

x j (1 − xi/�)(1 + (−1)i+ j ), 0 ≤ j ≤ i ≤ n,

xi (1 − x j/�)(1 + (−1)i+ j ), 0 ≤ i ≤ j ≤ n.

Thus the discrete Green’s function produced by the wide operator oscillate, jumping between
0 and 2 times the exact value. Next, using (23) we obtain the vectors

bTL = [
1 −(1 − 1

n ) 1 − 2
n −(1 − 3

n ) . . . (−1)n 2
n −(−1)n 1

n 0
]
,

bTR = [
0 −(−1)n 1

n (−1)n 2
n . . . −(1 − 3

n ) 1 − 2
n −(1 − 1

n ) 1
]
.

Last, we compute the (2,0) order wide-stencil version of (25), as

ξL = ξR = 2

h
− 1/�, ξC = −(−1)n/�.

In the wide-stencil case, qL,R = eTL,RH−1eL,R = 2/h and qC = eTL,RH−1eR,L = 0 can be
computed directly. We recall that q̃L,R,C = ξL,R,C and note that q̃L,R 
= qL,R and q̃C 
= qC,
but still q̃T = qT = 2/h. Compare with the discussion in Sect. 3.4.
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