
Journal of Scientific Computing (2021) 88:36
https://doi.org/10.1007/s10915-021-01539-3

Rank-Adaptive Tensor Methods for High-Dimensional
Nonlinear PDEs

Alec Dektor1 · Abram Rodgers1 · Daniele Venturi1

Received: 11 December 2020 / Revised: 23 April 2021 / Accepted: 26 May 2021 / Published online: 24 June 2021
© The Author(s) 2021

Abstract
We present a new rank-adaptive tensor method to compute the numerical solution of high-
dimensional nonlinear PDEs. The method combines functional tensor train (FTT) series
expansions, operator splitting time integration, and a new rank-adaptive algorithm based
on a thresholding criterion that limits the component of the PDE velocity vector normal
to the FTT tensor manifold. This yields a scheme that can add or remove tensor modes
adaptively from the PDE solution as time integration proceeds. The new method is designed
to improve computational efficiency, accuracy and robustness in numerical integration of
high-dimensional problems. In particular, it overcomeswell-knowncomputational challenges
associated with dynamic tensor integration, including low-rank modeling errors and the need
to invert covariance matrices of tensor cores at each time step. Numerical applications are
presented and discussed for linear and nonlinear advection problems in two dimensions, and
for a four-dimensional Fokker–Planck equation.

Keywords Tensor train decomposition · Dynamical low-rank approximation · Tensor
manifolds

1 Introduction

High-dimensional partial differential equations (PDEs) arise in many areas of engineering,
physical sciences and mathematics. Classical examples are equations involving probability
density functions (PDFs) such as the Fokker–Planck equation [49], the Liouville equation
[13,14,58], and the Boltzmann equation [8,11,18]. More recently, high-dimensional PDEs
have also become central to many new areas of application such as optimal mass transport
[27,59], random dynamical systems [57,58], mean field games [19,52], and functional-
differential equations [55,56]. Computing the numerical solution to high-dimensional PDEs
is an extremely challenging problem which has attracted substantial research efforts in
recent years. Techniques such as sparse collocationmethods [4,9,12,25,41], high-dimensional
model representations [3,10,37], deep neural networks [46,47,60], and numerical tensor

B Daniele Venturi
venturi@ucsc.edu

1 Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, CA 95064, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01539-3&domain=pdf
http://orcid.org/0000-0001-8831-8547

36 Page 2 of 27 Journal of Scientific Computing (2021) 88 :36

methods [2,7,28,31,33,51] were proposed to mitigate the exponential growth of the degrees
of freedom, the computational cost and the memory requirements.

In this paper, we build upon our recent work on dynamical tensor approximation [16,17],
and develop new rank-adaptive temporal integrators to compute the numerical solution of
high-dimensional initial/boundary value problems of the form

⎧
⎨

⎩

∂u(x, t)

∂t
= G(u(x, t)),

u(x, 0) = u0(x),

(1)

where x ∈ � ⊆ R
d (� compact, d ≥ 1), and G is a nonlinear operator which may take into

account boundary conditions. A well-known challenge of dynamic tensor approximations
to (1) is that the curvature of the tensor manifold in which we compute the PDE solution
is inversely proportional to the energy of the tensor modes. This means that the smaller the
energy of the tensor modes the higher the curvature. Hence, to integrate a solution charac-
terized by tensor modes with a wide range of energies one has to consider time stepping
schemes that can effectively handle geometric features associated with the curvature of the
manifold. In projection-based approaches [16,17,34,43] the computational challenge posed
by the curvature of the tensor manifold translates into the need to invert the positive semi-
definite covariance matrices of the tensor cores at each time step. A time-integration scheme
constructed in this way may become numerically unstable in the presence of tensor modes
with small energy, or even singular when modes with zero energy are present (e.g., at a time
instant in which we increase the tensor rank by adding a mode with zero energy). To mitigate
this problem, Babaee et al. [1] introduced amatrix pseudo-inverse approximationmethod that
can handle potential singularities in the covariance matrices of the tensor cores, in particular
when adding modes with zero energy to the tensor series expansion of the PDE solution.

A mathematically rigorous framework to integrate dynamical tensors over manifolds with
arbitrary curvature was developed by Lubich et al. in [32,38,39]. The key idea is to integrate
the evolution equation generating the tensor dynamics using operator splitting schemes, e.g.,
the Lie–Trotter or the Strang time integrators (see [32,39] for details). This results in a scheme
that does not suffer from the curvature of the tensor manifold, and even provides an exact
representation in the presence of tensor modes with zero energy. The numerical method
presented in this work combines all these features, i.e., functional tensor train (FTT) series
expansions, operator splitting time integration, and a new rank-adaptive algorithm to add and
remove tensor modes from the PDE solution based on a thresholding criterion that limits the
component of the velocity vector normal to the FTT tensor manifold.

This paper is organized as follows. In Sect. 2we briefly reviewfinite-rank functional tensor
train (FTT) expansions of high-dimensional functions. In Sect. 3 we discuss dynamic tensor
approximation of nonlinear PDEs of the form (1) and develop robust temporal integration
schemes based on operator splitting methods. We also discuss step-truncation algorithms
[50,51] and prove that dynamic tensor approximation and step-truncation are at least order
one consistent to one another. In Sect. 4 we develop new rank-adaptive time integrators on
rank-structured FTT tensor manifolds and prove that the resulting scheme is consistent. In
Sect. 5 we present and discuss various numerical applications of the proposed rank-adaptive
tensor method, and demonstrate its accuracy and computational efficiency. Themain findings
are summarized in Sect. 6.

123

Journal of Scientific Computing (2021) 88 :36 Page 3 of 27 36

2 TheManifold of Fixed-Rank FTT Tensors

Let us consider the weighted Hilbert space1

H = L2
μ(�), (2)

where � ⊆ R
d is a separable domain such as a d-dimensional flat torus Td or a Cartesian

product of d real intervals �i = [ai , bi]

� =
dą

i=1

�i , (3)

and μ is a finite product measure on �

μ(x) =
d∏

i=1

μi (xi). (4)

Let τ be the counting measure on N. Each element u ∈ L2
μ(�) admits a functional tensor

train (FTT) expansion of the form

u(x) =
∞∑

α0=1

∞∑

α1=1

· · ·
∞∑

αd=1

√
λ(αd−1)ψ1(1; x1;α1)ψ2(α1; x2;α2) · · · ψd(αd−1; xd ; 1), (5)

where {ψi (αi−1; xi ;αi)}αi is an orthonormal basis for the space L2
τ×μi

(N × �i). It can
be shown that ψi (αi−1; xi ;αi) are eigenfunctions for a self-adjoint compact operator and
λ(1) ≥ λ(2) ≥ · · · ≥ 0 is a sequence of real numbers converging to zero (see [6,17] for more
details). By truncating (5) so that only the largest singular values are retained, we obtain the
approximation of u(x)

ur(x) =
r0∑

α0=1

r1∑

α1=1

· · ·
rd∑

αd=1

√
λ(αd−1)ψ1(α0; x1;α1)ψ2(α1; x2;α2) · · · ψd(αd−1; xd ;αd),

(6)

where r = (r0, r1, . . . , rd−1, rd) is the FTT rank. It is convenient to write (6) in a more
compact form as

ur(x) = �1(x1)�2(x2) · · · √��d(xd), (7)

where� i (xi) is a ri−1 ×ri matrix with entries [� i (xi)] jk = ψi (j; xi ; k) and� is a diagonal
matrix with entries λ(αd−1) (αd−1 = 1, . . . , rd−1). The matrix-valued functions � i (xi) will
be referred to as FTT cores, and we denote by Mri−1×ri (L2

μi
(�i)) the set of all ri−1 × ri

matrices with entries in L2
μi−1

(�i). To simplify notation even more, we will often suppress
explicit tensor core dependence on the spatial variable xi , allowing us to simply write � i =
� i (xi) and ψi (αi−1, αi) = ψi (αi−1; xi ;αi) as the spatial dependence is indicated by the
tensor core subscript.

1 The approximation theory presented in Sect. 2 may be applied to more general Hilbert spaces, e.g., to the
Sobolev space W 2,p [16] and to tree-based tensor manifolds in Banach spaces [20].

123

36 Page 4 of 27 Journal of Scientific Computing (2021) 88 :36

2.1 Orthogonalization and Truncation of FTT Tensors

For any tensor core � i ∈ Mri−1×ri (L2
μi

(�i)) we define the matrix

〈�T
i � i 〉i ∈ Mri ×ri (R) (8)

with entries2

〈
�T

i � i
〉

i (j, k) =
ri−1∑

p=1

∫

�i

ψi (p; xi ; j)ψi (p; xi ; k)dμi (xi). (9)

The FTT representation (7) is given in terms of FTT cores � i satisfying3

〈
�T

i � i
〉

i = Iri ×ri , i = 1, . . . , d − 1,
〈
�d�T

d

〉

d = Ird−1×rd−1 .
(10)

Other orthogonal representations can be computed, e.g., based on recursive QR decomposi-
tions. To describe different orthogonalizations of FTT tensors, let � i ∈ Mri−1×ri (L2

μi
(�i))

and consider each column of� i as a vector in
ri−1ą

n=1

L2
μi

(�i). Performing an orthogonalization

process (e.g. Gram–Schmidt) on the columns of the FTT core� i relative to the inner product
(8) yields a QR-type decomposition of the form

� i = Qi Ri , (11)

Where Qi is an ri−1 × ri matrix with elements in L2
μi

(�i) satisfying
〈
QT

i Qi

〉

i = Iri ×ri ,
and Ri is an upper triangular ri × ri matrix with real entries. Next consider an arbitrary
FTT tensor ur = �1�2 · · · �d , where the matrix 〈�T

i � i 〉i may be singular. For notational
convenience, we define the partial products

�≤i = �1 · · · � i and �>i = � i+1 · · · �d . (12)

One way to orthogonalize ur is by performing QR decompositions recursively from left to
right as we will now describe. Begin by decomposing �1 as

�1 = Q1R1, Q1 ∈ Mr0×r1(L2
μ1

(�1)),
〈
QT

1 Q1
〉

1 = Ir1×r1 ,

R1 ∈ Mr1×r1(R) is upper triangular.
(13)

Now we may write ur = Q1R1�2 · · · �d . Next, perform another QR decomposition

R1�2 = Q2R2, Q2 ∈ Mr1×r2(L2
μ2

(�2)),
〈
QT

2 Q2
〉

2 = Ir2×r2 ,

R2 ∈ Mr2×r2(R) is upper triangular.
(14)

Proceeding recursively in this way we obtain a representation for ur of the form

ur = Q1 · · · Qd−1Qd Rd , (15)

2 The averaging operation in (9) can be viewed as a an inner product on the space
ri−1ą

n=1

L2
μi

(�i).

3 Equation (10) follows immediately from the orthonormality of {ψi (αi−1; xi ; αi)}αi relative to the inner

product in L2
τ×μi

(N × �i).

123

Journal of Scientific Computing (2021) 88 :36 Page 5 of 27 36

where each Qi ∈ Mri−1×ri (L2
μi

(�i)) satisfies
〈
QT

i Qi

〉

i = Iri ×ri . We refer to such a repre-
sentation as a left orthogonalization of ur . We may stop orthogonolizing at any step in the
recursive process to obtain the partial left orthogonalization

ur = Q≤i Ri�>i . (16)

Similar to orthogonalizing from the left, we may also orthogonalize ur from the right. To do
so, begin by performing a QR decomposition

�T
d = K dWd , K d ∈ Mrd×rd−1(L2

μd
(�d)),

〈
KT

d K d
〉

d = Ird−1×rd−1 ,

Wd ∈ Mrd−1×rd−1(R) is upper triangular.
(17)

A substitution of (17) into (7) yields the expansion ur = �1 · · · �d−1WT
d K

T
d . Next perform

a QR decomposition

Wd�T
d−1 =K d−1Wd−1, K d−1 ∈ Mrd−1×rd−2(L2

μd−1
(�d−1)),

〈
KT

d−1K d−1
〉

d−1 = Ird−2×rd−2 ,

Wd−1 ∈ Mrd−2×rd−2(R) is upper triangular.

(18)

Proceeding recusively in this way we obtain the right orthogonalization

ur = WT
1 K

T
1 · · · KT

d . (19)

We may have stopped the orthogonalization process at any point to obtain the partial right
orthogonalization

ur = �≤iWT
i+1K

T
>i . (20)

It is also useful to orthogonalize from the left and right to obtain expansions of the form

ur = Q≤i RiWT
i+1K

T
>i , (21)

where the rank of the matrix RiWT
i+1 is the i-th component of the true FTT rank of the tensor

ur .
Another important operation is truncation of FTT tensors to smaller rank. Efficient algo-

rithms to perform this operation forTT tensors can be found in [44, section 3] and in [15]. Such
algorithmsare easily adapted toFTT tensors by replacingQRdecompositions ofmatriceswith
the QR of FTT cores given in (11) and SVD decomposition of matrices with Schmidt decom-
positions. In numerical implementations, this adaptation amounts to introducing appropriate
quadrature weight matrices into the algorithms.

2.2 Tangent and Normal Spaces of Fixed-Rank FTTManifolds

Let us denote by V (i)
ri−1×ri

the set of all tensor cores� i ∈ Mri−1×ri (L2
μi

(�i))with the property

that the autocovariance matrices
〈
�T

i � i
〉

i ∈ Mri ×ri (R) and
〈
� i�

T
i

〉

i ∈ Mri−1×ri−1(R) are
invertible for i = 1, . . . , d . The set

Mr = {ur ∈ L2
μ(�) : ur = �1�2 · · · �d , � i ∈ V (i)

ri−1×ri
, ∀i = 1, 2, . . . , d}, (22)

consisting of fixed-rankFTT tensors, is a smoothHilbert submanifold of L2
μ(�) (see [17]).We

represent elements in the tangent space, TurMr , ofMr at the point ur ∈ Mr as equivalence
classes of velocities of continuously differentiable curves on Mr passing through ur

123

36 Page 6 of 27 Journal of Scientific Computing (2021) 88 :36

Fig. 1 Sketch of the tensor
manifoldMr and the tangent
space TurMr at ur ∈ Mr . The
tangent space is defined as
equivalence classes of velocities
of continuously differentiable
curves γ (s) onMr passing
through ur

TurMr = {
γ ′(s)|s=0 : γ ∈ C1 ((−δ, δ),Mr) , γ (0) = ur

}
. (23)

A sketch ofMr and TurMr is provided in Fig. 1. Since L2
μ(�) is an inner product space, for

each u ∈ L2
μ(�) the tangent space Tu L2

μ(�) is canonically isomorphic to L2
μ(�). Moreover,

for each ur ∈ Mr the normal space to Mr at the point ur , denoted by NurMr , consists
of all vectors in L2

μ(�) that are orthogonal to TurMr with respect to the inner product in
L2

μ(�)

NurMr = {w ∈ L2
μ(�) : 〈w, v〉L2

μ(�) = 0, ∀v ∈ TurMr }. (24)

Since the tangent space TurMr is closed, for each point ur ∈ Mr the space L2
μ(�) admits

a decomposition into tangential and normal components

L2
μ(�) = TurMr ⊕ NurMr . (25)

3 Dynamic Tensor Approximation of Nonlinear PDEs

The idea of dynamic tensor approximation is to project the time derivative of a low-rank
tensor onto the tangent space of the corresponding low-rank tensor manifold at each time.
Such a projection results in evolution equations on the low-rank tensor manifold, and can be
used to solve initial/boundary value problem of the form (1). This approximation technique is
known in the quantum physics community as Dirac–Frenkel/Mclachlan variational principle
[26,40,45]. Dynamic approximation has been recently studied by Lubich et al. [34,35,38,43]
for finite-dimensional rank-structured manifolds embedded in Euclidean spaces. There have
also been extensions to the Tucker format on tensor Banach spaces [21] and tree-based tensor
formats on tensor Banach spaces [22].

3.1 Dynamic Tensor Approximation on Low-Rank FTTManifolds

Let us briefly describe the method of dynamic tensor approximation for the low-rank FTT
manifold (22). First we define a projection onto the tangent space of Mr at ur by

Pur : L2
μ(�) → TurMr

Pur v = argminvr∈TurMr
‖v − vr‖L2

μ(�).
(26)

123

Journal of Scientific Computing (2021) 88 :36 Page 7 of 27 36

For fixed ur , the map Pur is linear and bounded. Each v ∈ L2
μ(�) admits a unique repre-

sentation as v = vt + vn where vt ∈ TurMr and vn ∈ NurMr (see Eq. 25). From this
representation it is clear that Pur is an orthogonal projection onto the tangent space TurMr .
If the initial condition u0(x) is on the manifoldMr , then the solution to the initial/boundary
value problem

⎧
⎨

⎩

∂ur

∂t
= Pur G(ur),

u(x, 0) = u0(x),

(27)

remains on the manifold Mr for all t ≥ 0. Here G is the nonlinear operator on the right
hand side of equation (1). The solution to (27) is known as a dynamic approximation to
the solution of (1). In the context of separable Hilbert spaces, the dynamic approximation
problem (27) can be solved using dynamically orthogonal or bi-orthogonal constraints on
tensor modes [16,17]. Such constraints, also referred to as gauge conditions, provide the
unique solution of the minimization problem (26) with different FTT cores. However, in the
presence of repeated eigenvalues the bi-orthogonal constraints result in singular equations
for the tangent space projection (26). Hereafter we recall the equations which allow us to
compute (26) with FTT cores subject to dynamically orthogonal (DO) constraints.

First, expand ur ∈ Mr in terms of FTT cores ur = �1�2 · · · �d , where � i are orthog-
onalized from the left, i.e.,

〈
�T

i � i
〉

i = Iri ×ri , for all i = 1, . . . , d − 1. With this ansatz, an
arbitrary element of the tangent space TurMr can be expressed as

u̇r = �̇1�≥2 + · · · + �≤i−1�̇ i�≥i+1 + · · · + �≤d−1�̇d , (28)

where u̇r = ∂ur/∂t and �̇ i = ∂� i/∂t . The DO constraints are given by
〈
�̇

T
i � i

〉

i
= 0ri ×ri , i = 1, . . . , d − 1, (29)

which ensures that
〈
�T

i (t)� i (t)
〉

i = Iri ×ri for all i = 1, . . . , d −1 and for all t ≥ 0.We have
shown in [17] that under these constraints, the convex minimization problem (26) admits a
unique minimum for vectors in the tangent space (28) satisfying the PDE system

�̇1 =
[〈

G(ur)�
T≥2

〉

≥2 − �1
〈
�T

1G(ur)�
T≥2

〉

≥1

] 〈
�≥2�

T≥2

〉−1
≥2 ,

�̇k =
[〈

�T≤k−1G(ur)�
T≥k+1

〉

≤k−1,≥k+1 −
�k

〈
�T≤k G(ur)�

T≥k+1

〉

≥1

] 〈
�≥k+1�

T≥k+1

〉−1
≥k+1 , k = 2, 3, . . . , d − 1,

�̇d = 〈
�T≤d−1G(ur)

〉

≤d−1 .

(30)

Here, ur = �1�2 · · · �d ∈ Mr and we have introduced the notation

〈�〉≤k =
∫

�1×···×�k

�(x)dμ1(x1) · · · μk(xk),

〈�〉≥k =
∫

�k×···×�d

�(x)dμk(xk) · · · μd(xd),

〈�〉≤k−1,≥k+1 =
∫

�1×···×�k−1×�k+1×···×�d

�(x)dμ1(x1) · · · μk−1(xk−1)μk+1(xk+1) · · · μd(xd),

(31)

123

36 Page 8 of 27 Journal of Scientific Computing (2021) 88 :36

for any matrix �(x) ∈ Mr×s
(
L2

μ (�)
)
. The DO-FTT system (30) involves several inverse

covariance matrices
〈
�≥k�

T≥k

〉−1

≥k
, which can become poorly conditioned in the presence of

tensor modes with small energy (i.e. autocovariance matrices with small singular values).
This phenomenon has been shown to be a result of the fact that the curvature of the tensor
manifold at a tensor is inversely proportional to the smallest singular value present in the
tensor [34, section 4]. A slight improvement to the numerical stability of (30) can be obtained
by right orthogonalizing the partial products

�≥k = RT
k QT≥k, k = 2, . . . , d. (32)

Using the orthogonality of Qk it can easily be verified that Rk =
〈
�≥k�

T≥k

〉1/2

≥k
. With these

right orthogonalized cores, the DO-FTT system (30) can be written as

�̇1 =
[〈

G(ur)Q≥2
〉

≥2 − �1
〈
�T

1G(ur)Q≥2
〉

≥1

] 〈
�≥2�

T≥2

〉−1/2
≥2 ,

�̇k =
[〈

�T≤k−1G(ur)Q≥k+1
〉

≤k−1,≥k+1 −
�k

〈
�T≤k G(ur)Q≥k+1

〉

≥1

] 〈
�≥k+1�

T≥k+1

〉−1/2
≥k+1 , k = 2, 3, . . . , d − 1,

�̇d = 〈
�T≤d−1G(ur)

〉

≤d−1 ,

(33)

where
〈
�≥k�

T≥k

〉−1/2

k,...,d
denotes the inverse of the matrix square root. Since the condition

number of
〈
�≥k�

T≥k

〉

≥k
is larger than the condition number of

〈
�≥k�

T≥k

〉1/2

≥k
, the inverse

covariances at the right hand side of (33) can be computed more accurately than the ones in
(30) in the presence of small singular values.

3.1.1 Temporal Integration Using Operator Splitting Methods

As we mentioned previously, one of the challenges of dynamic approximation of PDEs on
low-rank tensormanifolds relates to the curvature of themanifold,which is proportional to the

inverse of the smallest singular value of
〈
�≥k�

T≥k

〉

≥k
[34, section 4]. Such curvature appears

naturally at the right hand side of the DO-FTT system (30) in the form of inverse covariances
〈
�≥k�

T≥k

〉−1

≥k
. Clearly, if the tensor solution is comprised of cores with small singular values,

then the covariance matrices
〈
�≥k�

T≥k

〉

≥k
are ill-conditioned and therefore not easily invert-

ible. Moreover, it is desirable to add and remove tensor modes adaptively during temporal
integration, and adding a mode with zero energy immediately yields singular covariance

matrices (see [16]). The problem of inverting the covariance matrices
〈
�≥k�

T≥k

〉

≥k
when

integrating (30) or (33) can be avoided by using projector-splitting methods. These methods
were originally proposed for integration on tensor manifolds by Lubich et al. in [32,38,39].
The key idea is to apply an exponential operator splitting scheme, e.g., theLie–Trotter scheme,
directly to the projection operator onto the tangent space defining the dynamic approxima-
tion (see Eq. 26). To describe the method, we begin by introducing a general framework for
operator splitting of dynamics on the FTT tangent space. We first rewrite the right hand side
of (27) as

123

Journal of Scientific Computing (2021) 88 :36 Page 9 of 27 36

Pur G(ur) = �̇1�≥2 + �1�̇2�≥3 + · · · + �≤d−1�̇d

= �̇1
〈
�≥2�

T≥2

〉1/2
≥2 QT≥2 + �1�̇2

〈
�≥3�

T≥3

〉1/2
≥3 QT≥3 + · · · + �≤d−1�̇d ,

(34)

where in the second line we used the right orthogonalizations in Eq. (32). A substitution of
the expressions for �̇k we obtained in (33) into (34) yields

Pur G(ur) = P+
d G(ur) +

d−1∑

i=1

P+
i G(ur) − P−

i G(ur), (35)

where we defined the following projection operators from L2
μ(�) onto TurMr

P+
k z(x) = �≤k−1

〈
�T≤k−1z(x)Q≥k+1

〉

≤k−1,≥k+1 QT≥k+1, k = 1, . . . , d,

P−
k z(x) = �≤k

〈
�T≤k z(x)Q≥k+1

〉

≥1 QT≥k+1, k = 1, . . . , d − 1,
(36)

for any z(x) ∈ L2
μ(�). Also we set �0 = 1. The key point in (35) is that inverse covariance

matrices no longer appear. To establish a general operator splitting framework, let us assume
that there exists an evolution operator EPur G for the solution of the initial/boundary value
problem (27), where Pur G is given in (35). Such an evolution operator EPur G : L2

μ(�) ×
[0, T] → L2

μ(�) satisfies a semi-group property and it maps the initial condition u0(x) into
the solution to (27) at a later time

u(x, t) = EPur G(u0(x), t). (37)

We write such an evolution operator formally as an exponential operator with generator
DPur G (see e.g. [36])

u(x, t) = et DPur G u0(x), 0 ≤ t ≤ T , (38)

where DPur G is the Lie derivative associated with Pur G. We now discretize the temporal
domain of interest [0, T] into N + 1 evenly-spaced time instants,

ti = i
t,
t = T

N
, i = 0, 1, . . . , N . (39)

An approximation to the exact solution of (27) is then obtained by the recurrence relation

ur (x, tn+1) ≈ S(
t, ur (x, tn)), (40)

where S is an exponential splitting operator that approximates the exact evolution operator

S(t, ·) =
s∏

i=1

⎡

⎣eγi,d t P+
d G

d−1∏

j=1

(
eγi, j t P+

j Geγi, j t P−
j G

)
⎤

⎦ . (41)

Setting s = 1 and γ1, j = 1 for all j = 1, . . . , d in (41) yields the well-known Lie–Trotter
splitting, which is first-order in time. The discrete time version of this scheme can be written

123

36 Page 10 of 27 Journal of Scientific Computing (2021) 88 :36

as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+
1 (ti+1) = u+

1 (ti) +
t P+
1 G(ur), u+

1 (ti) = ur(ti),

u−
1 (ti+1) = u−

1 (ti) −
t P−
1 G(ur), u−

1 (ti) = u+
1 (ti+1),

...

u+
j (ti+1) = u+

j (ti) +
t P+
j G(ur), u+

j (ti) = u−
j−1(ti+1),

u−
j (ti+1) = u−

j (ti) −
t P−
j G(ur), u−

j (ti) = u+
j (ti+1),

...

u+
d (ti+1) = u+

d (ti) +
t P+
d G(ur), ud(ti) = u−

d−1(ti+1),

ur(ti+1) = u+
d (ti+1).

(42)

This allows us to compute ur(ti+1) given ur (ti). Although each equation in (42) involves a
FTT tensor, it was shown in [38, Theorem 4.1] that each equation only updates one tensor
core. Clearly this is computationally more efficient than updating a full tensor. Moreover, in
(42) there is no need to invert covariancematrices, which is a distinct advantage over iterating
a discrete form of (30) or (33).

Regarding computational cost, suppose we discretize the d-dimensional domain � using
a tensor product grid with n points per dimension. It was pointed out in [38] that the compu-
tational complexity of the sweeping algorithm to update the tensor cores for the Lie–Trotter
scheme (42) applied to a linear PDE (i.e. Eq. 27 with linear G) is linear in the dimension d
but has high polynomial complexity in the tensor rank. On the other hand, discretizing such
linear PDE on the same tensor product grid and performing one time step with a first-order
time stepping scheme (e.g. Euler forward) has computational complexity which scales expo-
nentially with the dimension d . Specifically, assuming that the operator G in (1) is linear with
rank rG (see [5]), the computational cost of one time step of Euler forward is dnd+1rG +ndrG

floating point operations, hence exponential in d .

3.2 Step-Truncation Temporal IntegrationMethods

Another methodology to integrate nonlinear PDEs on fixed-rank tensor manifolds Mr is
step-truncation [33,50,51]. The idea is to integrate the solution off ofMr for short time, e.g.,
by performing one time step of the full equation with a conventional time-stepping scheme,
followed by a truncation operation back onto Mr . To describe this method further let us
define the truncation operator

Tr : L2
μ(�) → Mr

Tr(u) = argminur∈Mr
‖u − ur‖L2

μ(�),
(43)

which provides the best approximation of u on Mr . Such a map is known as a metric
projection or closest point function and in general it may be multivalued, i.e., the set of
ur ∈ Mr which minimize ‖u − ur‖L2

μ(�) is not a singleton set. However, since Mr is a

smooth submanifold of L2
μ(�), we have by [53, Proposition 5.1] that for each u0 ∈ Mr there

exists an open neighborhood U of u0 such that Tr is well-defined and smooth on U . Let

u(x, tk+1) = u(x, tk) +
t�(G, u(x, tk),
t) (44)

123

Journal of Scientific Computing (2021) 88 :36 Page 11 of 27 36

be a convergent one-step time integration scheme4 approximating the solution to the initial
value problem (1). Assume that the solution u(x, t0) at time t0 is on Mr .5 In order to
guarantee the solution u(x, tk) at time step tk is an element of the manifold Mr for each
k = 1, 2, . . ., we apply the truncation operator to the right hand side (44). This yields the
following step-truncation method

ur(x, tk+1) = Tr (ur(x, tk) +
t�(G, ur(x, tk),
t)) . (45)

3.3 Consistency of Dynamic Approximation and Step-TruncationMethods

Next we ask what happens in the step-truncation algorithm in the limit of time step
t
approaching zero. The result of such a limiting procedure results in a scheme which keeps
the solution u(x, t) on the manifoldMr for all time t ≥ t0 in an optimal way. We now show
that this limiting procedure in fact results in precisely the dynamic approximation method
described in Sect. 3.1. In other words, by sending
t to zero in (45) we obtain a solution
of (27). For similar discussions connecting these two approximation methods in closely
related contexts see [23,24,33]. To prove consistency between step-truncation and dynamic
approximationmethods we need to computeTr(u(x, t)) for t infinitesimally close to t0. Such
a quantity depends on the derivative

∂Tr(u(x, t))

∂t

∣
∣
∣
∣
t=t0

= lim

t→0

Tr(u(x, t)) − Tr(u(x, t0))

t
. (46)

The following proposition provides a representation of the derivative ∂Tr(u(x, t))/∂t in
terms of G(u(x, t)) and the Fréchet derivative [56] of the operator Tr(u).

Proposition 3.1 If the solution u0 = u(x, t0) to (1) at time t0 is on the manifold Mr , then

∂Tr(u(x, t))

∂t

∣
∣
∣
∣
t=t0

= (Tr)
′
u0G(u(x, t)), (47)

where (Tr)
′
u0 is the Fréchet derivative of the nonlinear operator Tr at the point u0.

Proof Express the solution of (1) at time t ≥ t0 as

u(x, t) = u0(x) + h(x, t), (48)

where

h(x, t) =
∫ t

t0
G(u(x, τ))dτ. (49)

Expanding Tr(u(x, t)) in a Taylor series around u0(x) we obtain [42, Theorem 6.1]

Tr(u(x, t)) = u0(x) + (Tr)
′
u0h(x, t) + 1

2
(Tr)

′′
u0h(x, t)2 + · · · . (50)

Differentiating (50) with respect to t and evaluating at t = t0 we obtain

∂Tr(u(x, t))

∂t

∣
∣
∣
∣
t=t0

= (Tr)
′
u0G(u(x, t0)), (51)

4 Time stepping schemes of the form (44) include Runge–Kutta methods and linear multi-step methods [50].
5 If u(x, t0) is not onMr then it may be mapped onto Mr by evaluating Tr (u(x, t0)).

123

36 Page 12 of 27 Journal of Scientific Computing (2021) 88 :36

where we assumed that ∂/∂t commutes with (Tr)
′
u0 and used the fact that ∂h(x, t)/∂t =

G(u(x, t)) for the first order term. All of the higher order terms are seen to be zero by
commuting ∂/∂t with (Tr)

(n)
u0 and using chain rule. ��

Since Tr(u(x, t)) is an element of Mr for all t ≥ t0, it follows that (47) is an element
of Tu0Mr . Arguing on the optimality of the tangent space element (Tr)

′
u0G(u(x, t0)) it is

seen that (51) is the same problem as dynamic approximation (27), i.e., (Tr)
′
u0 = Pu0 . Now

consider the scheme (45) and use a Taylor expansion ofTr around ur(x, tk) on the right hand
side

ur(x, tk+1) = ur(x, tk) +
t(Tr)
′�(G, ur(x, tk),
t) + O(
t2). (52)

Discarding higher order terms in
t yields

ur (x, tk+1) � ur (x, tk) +
t Pur�(G, ur(x, tk),
t) . (53)

Moreover if the increment function � defines the Euler forward scheme

�(G, ur (x, tk),
t) = G(ur(x, tk)), (54)

then the scheme (53) is equivalent to the scheme in (27). Thus, we just proved the following
lemma.

Lemma 3.1 Step-truncation and dynamic approximation methods are consistent at least to
first-order in
t .

This Lemma applies to any first-order time integrator for dynamic approximation and step-
truncation, including the Lie–Trotter splitting integrator we discussed in Sect. 3.1.1.

4 Rank-Adaptive Integration

The solution to the initial/boundary value problem (1) is often not accurately represented on
a tensor manifold with fixed rank, even for short integration times. In this section we discuss
effective methods to adaptively add and remove tensor modes from the solution based on
appropriate criteria.

In the context of step-truncation algorithms, if the solution rank naturally decreases in time
then the operatorTr in (45) is no longer well-defined. In this situation, replacing the operator
Tr with Ts for an appropriate6 s ≤ r allows for integration to continue. On the other hand, if
the solution rank increases in during integration then the operatorTr will still be well-defined
for small enough
t but the approximation on Mr will not retain accuracy. To address this
problem of constant rank integration we shall introduce a criterion for rank increase of the
FTT solution. Both decreasing and increasing rank are based on FTT orthogonalization and
truncation (see Sect. 2.1). For the remainder of this section let u(x, t) be the solution to
(1) and ur(x, t) ∈ Mr an approximation of u(x, t) obtained by either the solution of the
dynamical approximation problem (27) or step-truncation methods (see Sect. 3.2).

4.1 Decreasing Tensor Rank

For decreasing tensor rank at time t , we are interested in determining if ur(x, t) ∈ Mr is
close to an element us(x, t) ∈ Ms for s ≤ r . This can be achieved by simply performing a

6 Here ≤ denotes component-wise inequality of rank vectors, i.e., s < r if and only if si ≤ ri for all
i = 0, 1, . . . , d.

123

Journal of Scientific Computing (2021) 88 :36 Page 13 of 27 36

FTT truncation on ur(x, t) with small threshold εdec. Since the splitting integrator described
in Sect. 3.1.1 is robust to over approximation by tensor rank, it may not be strictly necessary
to decrease rank during integration. However, it is desirable to have solutions of the lowest
rank possible (while retaining accuracy) when solving high dimensional problems. For these
reasons it is advisable not to perform a FTT truncation at each time step (as this would be
unnecessary and inefficient when using an operator splitting integrator) but only every once
and a while. One may choose a criterion for when to check for rank decrease based on the
problem, step size, current rank, and dimension. If one is using a step-truncation method with
a tolerance based FTT truncation algorithm such as the one described in Sect. 2.1 then rank
decrease is already built into each time step.

4.2 Increasing Tensor Rank

As a general heuristic one would like to increase rank at the time when the error between
the low-rank approximation ur(x, t) and the PDE solution u(x, t) will become large after
the subsequent time step. Such critical time instant for rank increase can be determined by
examining the normal component of the dynamics

Nur G(ur) = G(ur) − Pur G(ur). (55)

To describe this situation further, suppose we are integrating one time step forward from ti
to ti+1. The error at ti+1 is given by

E(ti , ti+1) = ur(x, ti+1) − u(x, ti+1)

= u(x, ti) +
∫ ti+1

ti
G(u(x, τ))dτ

−
(

Tr(u(x, ti)) +
∫ ti+1

ti
Pur (x,τ)G(ur(x, τ))dτ

)

.

(56)

If u(x, ti) ∈ Mr then

E(ti , ti+1) =
∫ ti+1

ti

[
G(u(x, τ)) − Pur (x,τ)G(ur(x, τ))

]
dτ. (57)

For small
t the above integral can be approximated by the left endpoint

E(ti , ti+1) =
t
(
G(ur(x, ti)) − Pur (x,ti)G(ur(x, ti))

) + O(
t2)

=
t Nur (x,ti)G(ur(x, ti)) + O(
t2),
(58)

where Nur (x,τ) denotes the orthogonal projection onto the normal space of Mr at the point
ur(x, t). Hence, up to first-order in
t we have that

‖E(ti , ti+1)‖ �
t‖Nur (x,ti)G(ur(x, ti))‖. (59)

From this approximation we see that a reasonable criterion for increasing rank at time ti is
when the norm of the normal component of G(ur(x, ti)) is larger than some threshold εinc
(see Fig. 2)

‖Nur (x,ti)G(ur(x, ti))‖ > εinc. (60)

To efficiently compute the normal component Nur x,ti)G(ur(x, ti)) at each time instant ti we
use the formula

Nur (x,ti)G(ur(x, ti)) = G(ur(x, ti)) − Pur (x,ti)G(ur(x, ti)), (61)

123

36 Page 14 of 27 Journal of Scientific Computing (2021) 88 :36

Fig. 2 Tangent and normal components of G (ur) = ∂ur/∂t at ur . The tensor rank of the solution is increased
at time ti if the norm of the normal component Nur G(ur) is larger than a specified threshold εinc

where NrG(ur) and Pur G(ur) represent the normal and tangential components of G(ur).
The tangential component can be approximated at a low computational cost via backward
differentiation formulas (BDF) as

P̃(2)
ur G(ur) = ur (x, ti) − ur (x, ti−1)

t
+ O(
t2) (two-point formula),

(62)

P̃(3)
ur G(ur) = 3ur (x, ti) − 4ur (x, ti−1) + ur (x, ti−2)

2
t
+ O(
t3) (three-point formula),

(63)

P̃(p)
ur G(ur) =B Dp(
t, ur (x, ti), ur (x, ti−1), . . . , ur (x, ti−p)) + O(
t p+1) (p-point formula).

(64)

With a p-point backward difference approximation of the tangent space projection available
at ti we easily obtain an approximation of the normal component of G(ur) at ti

Nur (x,ti)G(ur(x, ti)) = G(ur(x, ti)) − P̃(p)

ur (x,ti)
G(ur(x, ti)) + O(
t p+1), (65)

which allows us to implement the criterion (60) for rank increase at time ti . Clearly, the
p-point formula (64), and the corresponding approximation of the normal component (65),
are effectively of order p in
t if and only if the time snapshots ur(x, ti) are computed
via a temporal integrator of order p. We emphasize that this method of using a finite differ-
ence stencil based on the temporal grid for approximating the tangential component of the
dynamics (and thus the normal component) creates a lower bound for the choice of normal
vector threshold εinc. In particular, we must have that K1(
t)p ≥ εinc for some constant K1

otherwise the error incurred from our approximation of the normal component may trigger
unnecessary mode addition. This approximation of the normal component is cheap but only
informs on whether or not it is appropriate to add modes at time instant ti .

123

Journal of Scientific Computing (2021) 88 :36 Page 15 of 27 36

The subsequent question is which entries of the rank vector r need to be increased. In
order to make such a determination we expand the approximate solution at time t as

ur(x, t) = �1(t) · · · �d(t)+�1(t) · · · �d(t), �i∈Mri−1×ri (L2
μi

(�i)),

�i ∈ M fi−1× fi (L2
μi

(�i)), (66)

where �1(t) · · · �d(t) = 0 for all t ∈ [0, T]. Differentiating (66) with respect to time yields

∂ur(x, t)

∂t
= ∂

∂t
[�1(t) · · · �d(t)] + ∂

∂t
[�1(t) · · · �d(t)] . (67)

Subtracting off the tangential component (28) we have the normal component at time t

Nur (x,t)
∂ur(x, t)

∂t
= ∂

∂t
[�1(t) · · · �d(t)] . (68)

Next, orthogonalize the partial product �≤i−1(t) from the left and the partial product �≥i (t)
from the right to obtain

Nur (x,t)
∂ur(x, t)

∂t
= ∂

∂t

[
�1(t) · · · �i−1(t)C i (t)�

T
i (t) · · · �T

d (t)
]
, (69)

where C i = 0ri−1×ri and
〈
�T

i �i
〉

i = I for all i = 1, 2, . . . , d . Expand (69) using a product
rule and evaluate at t = ti

[

Nur (x,t)
∂ur(x, t)

∂t

]

t=ti

= �1(ti) · · · � j−1(ti)
∂C j (t)

∂t

∣
∣
∣
∣
t=ti

� j (ti) · · · �d(ti). (70)

From the previous equation we see that the FTT autocorrelation matrices of the normal
component at time instant ti are the time derivatives of the zero energy modes in the current
solution. Thus, if the normal component has FTT rank n then the solution ur(x, t) at time
ti should be represented by an FTT tensor of rank r + n. Certainly, the solution will be
over represented at ti with rank r + n. However, after one step of the splitting integrator
the additional ranks will ensure that the low-rank solution ur+n(x, t) ∈ Mr+n retains its
accuracy.

The main steps of the algorithm we propose to adaptively increase the tensor rank are
summarized in Algorithm 1. The operation “∗” appearing within the conditional statement
if/end denotes scalar times FTT tensor, and is meant to indicate that the multiplication is
done by scaling the first core of the tensor with the scalar 0 and leaving the remainder of the
cores unchanged [44]. As we will demonstrate in Sect. 5, Algorithm 1 is robust and it yields
accurate results that do no require ad-hoc approximations such the matrix pseudo-inverse
approximation introduced in [1].

4.3 Order of the Rank-Adaptive Tensor Scheme

Let us choose the threshold εinc in (60) to satisfy

εinc ≤ K2
t, (71)

and assume that the condition
∣
∣Nur (x,t)G(ur(x, t))

∣
∣ ≤ εinc (72)

123

36 Page 16 of 27 Journal of Scientific Computing (2021) 88 :36

Algorithm 1: One step integration with adaptive rank increase
Input:

ur (x, ti), ur (x, ti−1), . . . , ur (x, ti−p) → time snapshots of the PDE solution with rank r ,
G(ur (x, ti)) → velocity vector defined by the right hand side of the PDE (1) at time ti ,

t → time step,
εinc → threshold for the norm of normal component Nur (x,ti)G(ur (x, ti)).

Output: ur+n(x, ti+1) → PDE solution with rank r + n at time ti+1

Initialization:

• Approximate the constant rank velocity vector via the BDF formula:

P̃(p)
ur (x,ti)

G(ur (x, ti)) = B Dp(ur (x, ti), ur (x, ti−1), . . . , ur (x, ti−p))

• Compute the normal component:

Nur (x,ti)G(ur (x, ti)) = G(ur (x, ti)) − P̃(p)
ur (x,ti)

G(ur (x, ti))

Runtime:

• if ‖Nur (x,ti)G(ur (x, ti))‖ > εinc then
Compute the FTT decomposition of normal component:
NTT(x, ti) = FTT(Nur (x,ti)G(ur (x, ti)))

Initialize to zero additional tensor modes in ur (x, ti), as many as the rank of NTT (say n):
ur+n(x, ti) = ur (x, ti) + 0 ∗ NTT(x, ti)

end
• Use one step of Lie–Trotter splitting integrator to map ur+n(x, ti) into ur+n(x, ti+1)

is satisfied for all t ∈ [0, T]. Then we have the following bound for the local truncation error

‖E(ti , ti+1)‖ =
∥
∥
∥
∥

∫ ti+1

ti
Nur (x,τ)G(ur(x, τ))dτ

∥
∥
∥
∥

≤
∫ ti+1

ti
‖Nur (x,τ)G(ur(x, τ))‖dτ

≤
∫ ti+1

ti
K2
tdτ

= K2
t2.

(73)

In particular, we have that the continuous-time rank-adaptive scheme is order one consistent
in
t if the normal vector threshold is set as in (71).

When implementing the adaptive scheme we usually discretize the time domain [0, T]
into a mesh of time instants as in (39). Therefore, we do not necessarily have control over the
normal vector for all t ∈ [0, T] but rather only at a finite number of time instants. However,
an analogous argument as we have made for order one consistency in the continuous time
rank-adaptive scheme holds for the discrete time rank-adaptive scheme by considering the
first-order approximation of the local truncation error given in (58). In particular by using
the equality in (58) and discrete time thresholding of the normal component

‖Nur (x,ti)G(ur(x, ti))‖ ≤ εinc, ∀i = 0, 1, . . . , N , (74)

123

Journal of Scientific Computing (2021) 88 :36 Page 17 of 27 36

we have that

‖E(ti , ti+1)‖ = ∥
∥
t Nur (x,ti)G(ur(x, ti)) + O(
t2)

∥
∥

≤ ∥
∥
t Nur (x,ti)G(ur(x, ti))

∥
∥ + ‖O(
t2)‖

= K2
t2 + O(
t2)

= O(
t2).

(75)

This proves that the discrete time rank-adaptive scheme with normal threshold given by (74)
is consistent with order one in
t . Higher-order consistency results can be obtained with
higher-order time integration methods and higher-order estimators for the normal vector
Nur G(ur).

5 Numerical Examples

In this section we demonstrate the proposed rank-adaptive FTT tensor method on linear and
nonlinear PDEs. In all examples the rank-adaptive scheme relies on first-order Lie–Trotter
operator splitting time integration (42), and the thresholding criterion (60). For each PDE we
rigorously assess the accuracy of the proposed rank-adaptive tensor method by comparing it
with benchmark solutions computed with well-established numerical methods.

5.1 Two-Dimensional Variable Coefficient Advection Equation

Let us begin with the two-dimensional variable coefficient advection problem
⎧
⎨

⎩

∂u(x1, x2, t)

∂t
= (sin(x1) + cos(x2))

∂u(x1, x2, t)

∂x1
+ cos(x2)

∂u(x1, x2, t)

∂x2
,

u(x1, x2, 0) = exp[sin(x1 + x2)],
(76)

on the flat torus � = T
2. We have shown in previous work [16] that the tensor solution to

the PDE (76) increases in rank as time increases.
As is well known, the PDE (76) can be reduced to the trivial ODE du/dt = 0 along the

flow generated by the dynamical system (see, e.g., [48])
⎧
⎪⎨

⎪⎩

dx1
dt

= sin(x1) + cos(x2),

dx2
dt

= cos(x2).
(77)

With the flow {x1(t, x01, x02), x1(t, x01, x02)} available, we can write the analytical solution
to (76) as

uref (x1, x2, t) = exp [sin(x01(x1, x2, t) + x02(x1, x2, t))] , (78)

where {x01(x1, x2, t), x02(x1, x2, t)} denotes the inverse flow generated by (77). We obtain a
semi-analytical solution to the PDE (76) by solving the characteristic system (77) numerically
for different initial conditions and then evaluating (78). A few time snapshots of the semi-
analytical solution (78) are plotted in Fig. 3 (middle row).

We also solve the PDE (76) using the proposed rank-adaptive tensor method with first-
order Lie–Trotter operator splitting and thresholding criterion (60). The initial condition is

123

36 Page 18 of 27 Journal of Scientific Computing (2021) 88 :36

Fig. 3 Variable coefficient advection equation (76). Time snapshots of the rank-adaptive FTT solution
ur (x1, x2, t) obtained with threshold εinc = 10−2 (top), the semi-analytical solution uref(x1, x2, t) (mid-
dle), and the pointwise error between the two solutions (bottom)

approximated by an FTT tensor ur(x1, x2, 0) with multivariate rank r = [
1 15 1

]

ur(x1, x2, 0) = �1(x1)
√

��2(x2), (79)

where

�1(x1) = [
ψ1(1; x1; 1) · · · ψ1(1; x1; 15)

]
,

√
� =

⎡

⎢
⎣

σ1
. . .

σ15

⎤

⎥
⎦ ,

�2(x2) =
⎡

⎢
⎣

ψ2(1; x1; 1)
...

ψ2(15; x2; 1)

⎤

⎥
⎦ .

(80)

Each tensor mode ψi is discretized on a grid of 81 evenly-spaced points in the interval
�i = [0, 2π]. One-dimensional Fourier pseudo-spectral quadrature rules and differentiation
matrices [29] are used to compute inner products and derivatives when needed. We run three
simulations with the initial tensor decomposition (79) and time step
t = 10−4. In the first
simulation we do not use any rank adaptation, in the second simulation we set the normal
vector threshold to εinc = 10−1 and in the third simulation we set εinc = 10−2. At each time
step the component of G(ur(x, ti)) normal to the tensor manifold is approximated with the
two-point BDF formula (Sect. 4.2). In Fig. 5 we plot a few time snapshots of the singular
values of the rank-adaptive FTT solution with εinc = 10−2.

123

Journal of Scientific Computing (2021) 88 :36 Page 19 of 27 36

(a) (b) (c)

Fig. 4 a Global L2(�) error of the FTT solution ur relative to the benchmark solution uref ; b Norm of the
two-point BDF approximation to the normal component Nur G(ur (x, t)) (note the effect of thresholding); c
tensor rank versus time of the constant-rank FTT solution and adaptive rank solutions with εinc = 10−1 and
εinc = 10−2

Fig. 5 Time snapshots of the singular values of the rank-adaptive FTT solution with threshold εinc = 10−2

Figure 4a–c summarize the performance and accuracy of the proposed rank-adaptive FTT
solver. In particular, in Fig. 4a we plot the time-dependent L2(�) error between the rank-
adaptive FTT solution and the reference solution we obtained with method of characteristics.
It is seen that decreasing the threshold εinc on the norm of the component of G(ur) normal to
the FTT tensor manifold (Fig. 4b) yields addition of more tensor mores to the FTT solution
(Fig. 4c). This, in turn, results in better accuracy as demonstrated in Fig. 4a.

5.2 Two-Dimensional Kuramoto–Sivashinsky Equation

In this section we demonstrate the rank-adaptive FTT integrator on the two-dimensional
Kuramoto–Sivashinsky equation [30]

⎧
⎨

⎩

∂

∂t
u(x1, x2, t) + 1

2
|∇νu(x1, x2, t)|2 +
νu(x1, x2, t) + ν1

2
νu(x1, x2, t) = 0,

u(x1, x2, 0) = sin(x1 + x2) + sin(x1) + sin(x2),
(81)

where

∇ν =
(

∂

∂x1
,
ν2

ν1

∂

∂x2

)

,
ν = ∂2

∂x21
+ ν2

ν1

∂2

∂x22
. (82)

Here, ν1, ν2 are bifurcation parameters. For our demonstration we set ν1 = 0.25, ν2 = 0.04
and solve (81) on the two-dimensional flat torus T2. The initial condition can be written as
rank r = [

1 2 1
]
FTT tensor

123

36 Page 20 of 27 Journal of Scientific Computing (2021) 88 :36

Fig. 6 Kuramoto–Sivashinsky equation (81). Time snapshots of the rank-adaptive FTT solution ur (x1, x2, t)
obtained with threshold εinc = 10−2 (top), the Fourier pseudo-spectral solution uref (x1, x2, t) (middle), and
the pointwise error between the two solutions (bottom)

u0(x1, x2) = ψ1(1; x1; 1)ψ2(1; x2; 1)
√

λ(1) + ψ1(1; x1; 2)ψ2(2; x2; 1)
√

λ(2), (83)

where

ψ1(1; x1; 1) = sin(x1)√
π

, ψ1(1; x1; 2) = cos(x1) + 1√
3π

,

ψ2(1; x2; 1) = cos(x2) + 1√
3π

, ψ2(2; x2; 1) = sin(x2)√
π

,

(84)

and
√

λ(1) = √
λ(2) = √

3π. (85)

We compute a benchmark solution by using a Fourier pseudo-spectral method [29] with
33 evenly-spaced grid points per spatial dimension (1089 total number of points). Derivatives
and integrals are approximated with well-known pseudo-spectral differentiationmatrices and
Gauss quadrature rules. The resulting ODE system is integrated forward in time using an
explicit fourth-order Runge–Kutta method with time step
t = 10−5.

As before, we performed multiple simulations using the proposed rank-adaptive FTT
algorithmwith different thresholds for the component ofG(ur) normal to the tensormanifold.
Specifically, we ran one simulationwith nomode addition and three simulationswith adaptive
mode addition based on Algorithm 1, and thresholds set to εinc = 10, εinc = 10−1, and
εinc = 10−2. We used the two-point BDF formula (62) to approximate the component of the
solution normal to the tensor manifold at each time step and the Lie–Trotter operator splitting

123

Journal of Scientific Computing (2021) 88 :36 Page 21 of 27 36

(a) (b) (c)

Fig. 7 a Global L2(�) error between the FTT solution ur to equation (81) and the benchmark solution uref . b
Norm of the approximation to Nur G(ur) = u̇r − G(ur) where the tangent space projection is computed with
a two-point BDF formula at each time. c Rank versus time of the constant rank FTT solution and rank-adaptive
FTT solutions with εinc = 10, 10−1, 10−2

scheme (42) with time step
t = 10−5 to integrate in time the rank-adaptive FTT solution.
In Fig. 6 we compare the time snapshots of the rank-adaptive FTT solution with εinc = 10−2

with the benchmark solution obtained by the Fourier pseudo-spectral method. As before, Fig.
7a–c demonstrate that the rank-adaptive FTT algorithm is effective in controlling the L2(�)

error of the FTT solution. Interestingly, the solution to the PDE (81) has the property that
any tensor approximation with sufficient rank yields a normal component that does not grow
in time. In fact, as seen in Fig. 7b the tensor rank becomes constant for each threshold εinc
after a transient of approximately 0.5 dimensionless time units.

In Fig. 7 we observe that the error associated with the constant rank 2 FTT solution
increases significantly during temporal integration. This suggests that projecting the nonlinear
Kuramoto–Sivashinsky equation (81) onto a rank 2 FTTmanifold yields a reduced-order PDE
which does not accurately capture the dynamics of the full system. A similar phenomenon
occurs in other areas of reduced-order modeling, e.g., when projecting nonlinear PDEs onto
proper orthogonal decomposition (POD) bases [54].

5.3 Four-Dimensional Fokker–Planck Equation

Finally, we demonstrate the proposed rank-adaptive FTT integrator on a four-dimensional
Fokker–Planck equation with non-constant drift and diffusion coefficients. As is well known
[49], the Fokker–Planck equation describes the evolution of the probability density function
(PDF) of the state vector solving the Itô stochastic differential equation (SDE)

dX t = μ(X t , t)dt + σ (X t , t)dW t . (86)

Here, X t is the d-dimensional state vector, μ(X t , t) is the d-dimensional drift, σ (X t , t) is
an d × m matrix and W t is an m-dimensional standard Wiener process. The Fokker–Planck
equation that corresponds to (86) has the form

⎧
⎨

⎩

∂ p(x, t)

∂t
= L(x, t)p(x, t),

p(x, 0) = p0(x),
(87)

where p0(x) is the PDF of the initial state X0,L is a second-order linear differential operator
defined as

123

36 Page 22 of 27 Journal of Scientific Computing (2021) 88 :36

L(x, t)p(x, t) = −
d∑

k=1

∂

∂xk
(μk(x, t)p(x, t)) +

d∑

k, j=1

∂2

∂xk∂x j

(
Di j (x, t)p(x, t)

)
, (88)

and D(x, t) = σ (x, t)σ (x, t)T/2 is the diffusion tensor. For our numerical demonstration
we set

μ(x) = α

⎡

⎢
⎢
⎣

sin(x1)
sin(x3)
sin(x4)
sin(x1)

⎤

⎥
⎥
⎦ , σ (x) = √

2β

⎡

⎢
⎢
⎣

g(x2) 0 0 0
0 g(x3) 0 0
0 0 g(x4) 0
0 0 0 g(x1)

⎤

⎥
⎥
⎦ , (89)

where g(x) = √
1 + k sin(x).With the drift and diffusionmatrices chosen in (89) the operator

(88) takes the form

L = − α

(

cos(x1) + sin(x1)
∂

∂x1
+ sin(x3)

∂

∂x2
+ sin(x4)

∂

∂x3
+ sin(x1)

∂

∂x4

)

+ β

(

(1 + k sin(x2))
∂2

∂x21
+ (1 + k sin(x3))

∂2

∂x22
+ (1 + k sin(x4))

∂2

∂x23
+ (1 + k sin(x1))

∂2

∂x24

)

.

(90)

Clearly L is a linear, time-independent separable operator of rank 9, since it can be written
as

L =
9∑

i=1

L(1)
i ⊗ L(2)

i ⊗ L(3)
i ⊗ L(4)

i , (91)

where each L(j)
i operates on x j only. Specifically, we have

L(1)
1 = −α cos(x1), L(1)

2 = −α sin(x1)
∂

∂x1
, L(2)

3 = −α
∂

∂x2
, L(3)

3 = sin(x3),

L(3)
4 = −α

∂

∂x3
, L(4)

4 = sin(x4), L(1)
5 = −α sin(x1), L(4)

5 = ∂

∂x4
,

L(1)
6 = β

∂2

∂x21
, L(2)

6 = 1 + k sin(x2), L(2)
7 = β

∂2

∂x22
, L(3)

7 = 1 + k sin(x3),

L(3)
8 = β

∂2

∂x23
, L(2)

8 = 1 + k sin(x4), L(4)
9 = β

∂2

∂x24
, L(1)

9 = 1 + k sin(x1),

(92)

and all other unspecified L(j)
i are identity operators.We set the parameters in (89) as α = 0.1,

β = 2.0, k = 1.0 and solve (87) on the four-dimensional flat torus T4. The initial PDF is set
as

p0(x) = sin(x1) sin(x2) sin(x3) sin(x4) + 1

16π4 . (93)

Note that (93) is a four-dimensional FTT tensor with multilinear rank r = [
1 2 2 2 1

]
.

Upon normalizing themodes appropriately we obtain the left orthogonalized initial condition
required to begin integration

p0(x) = ψ1(1; x1; 1)ψ2(1; x2; 1)ψ3(1; x3; 1)ψ4(1; x4; 1)
√

λ(1)

+ ψ1(1; x1; 2)ψ2(2; x2; 2)ψ3(2; x3; 2)ψ4(2; x4; 1)
√

λ(2),
(94)

123

Journal of Scientific Computing (2021) 88 :36 Page 23 of 27 36

Fig. 8 Time snapshots of marginal PDF pr (x1, x2, t) corresponding to the solution to the Fokker–Planck
equation (87). We plot marginals computed with the rank-adaptive FTT integrator using εinc = 10−4 (top
row) and with the full tensor product Fourier pseudo-spectral method (middle row). We also plot the pointwise
error between the two numerical solutions (bottom row). The initial condition is the FTT tensor (93)

where

ψi (1; xi ; 1) = sin(xi)√
π

,
√

λ(1) = 1

16π2 . (95)

All other tensor modes are equal to 1/
√
2π , and

√
λ(2) = 1/(2π2). To obtain a benchmark

solution with which to compare the rank-adaptive FTT solution, we solve the PDE (87) using
a Fourier pseudo-spectral method on the flat torus T4 with 214 = 194481 evenly-spaced
points. As before, the operator L is represented in terms of pseudo-spectral differentiation
matrices [29], and the resulting semi-discrete approximation (ODE system) is integrated with
an explicit fourth-order Runge Kutta method using time step
t = 10−4. The numerical
solution we obtained in this way is denoted by pref(x, t). We also solve the Fokker–Planck
using the proposed rank-adaptive FTT method with first-order Lie–Trotter time integrator
(Sect. 3.1.1) and normal vector thresholding (Sect. 4.2). We run three simulations all with
time step
t = 10−4: one with no rank adaption, and two with rank-adaptation and normal
component thresholds set to εinc = 10−3 and εinc = 10−4. In Fig. 8 we plot three time
snapshots of the two-dimensional solution marginal

p(x1, x2, t) =
∫ 2π

0

∫ 2π

0
p(x1, x2, x3, x4, t)dx3dx4 (96)

computed with the rank-adaptive FTT integrator (εinc = 10−4) and the full tensor product
pseudo-spectral method (reference solution). In Fig. 9a we compare the L2(�) errors of
the rank-adaptive method relative to the reference solution. It is seen that as we decrease

123

36 Page 24 of 27 Journal of Scientific Computing (2021) 88 :36

(a) (b)

Fig. 9 a The L2(�) error of the FTT solution pr (x, t) relative to the benchmark solution pref(x, t) computed
with a Fourier pseudo-spectral method on a tensor product grid. b Norm of the component of Lpr normal to
the tensor manifold (see Fig. 2). Such component is approximated with a two-point BDF formula at each time
step

(a) (b) (c)

Fig. 10 Tensor rank r = [1 r1 r2 r3 1] of the adaptive FTT solution to the four dimensional Fokker–Planck
equation (87)

the threshold the solution becomes more accurate. In Fig. 9b we plot the component of Lpr
normal to the tensor manifold, which is approximated using the two-point BDF formula (62).
Note that in the rank-adaptive FTT solution with thresholds εinc = 10−3 and εinc = 10−4

the solver performs both mode addition as well as mode removal. This is documented in
Fig. 10. The abrupt change in rank observed in Fig. 10a–c near time t = 0.4 corresponding
to the rank-adaptive solution with threshold εinc = 10−4 is due to the time step size
t being
equal to εinc. This can be justified as follows. Recall that the solution is first order accurate in

t and therefore the approximation of the component of Lpr normal to the tensor manifold
Mr is first-order accurate in
t . If we set εinc ≤
t , then the rank-adaptive scheme may
overestimate the number of modes needed to achieve accuracy on the order of
t . This does
not affect the accuracy of the numerical solution due to the robustness of the Lie–Trotter
integrator to over-approximation [38]. Moreover we notice that the rank-adaptive scheme
removes the unnecessary modes ensure that the tensor rank is not unnecessarily large (see
Sect. 4.1). In fact, the diffusive nature of the Fokker–Plank equation on the flat torusT4 yields
relaxation to a statistical equilibrium state that depends on the drift and diffusion coefficients
in (87). In this case such an equilibrium state is well-approximated by a low-rank FTT tensor.

123

Journal of Scientific Computing (2021) 88 :36 Page 25 of 27 36

6 Summary

We presented a new rank-adaptive tensor method to integrate high-dimensional nonlinear
PDEs. The new method is based on functional tensor train (FTT) expansions [6,17,44],
operator splitting time integration [32,39], and a new rank-adaptive algorithm to add and
remove tensor modes from the PDE solution based on thresholding the component of the
velocity vector normal to the FTT tensor manifold. We tested the proposed new algorithm
on three different initial/boundary value problems including a 2D variable-coefficient first-
order linear PDE, a 2D Kuramoto–Sivashinsky equation, and a 4D Fokker–Planck equation.
In all cases the adaptive FTT solution was compared to a benchmark numerical solution
constructed with well-established numerical methods. The numerical results we obtained
demonstrate that the proposed rank-adaptive tensor method is effective in controlling the
temporal integration error, and outperforms known integrationmethods for multidimensional
PDEs in terms of accuracy, robustness and computational cost. We also proved that the new
method is consistent with recently proposed step-truncation algorithms [33,50,51] in the limit
of small time steps.

Funding This research was supported by the U.S. Air Force Office of Scientific Research (AFOSR) Grant
FA9550-20-1-0174 and by the U.S. Army Research Office (ARO) Grant W911NF-18-1-0309.

Data availability statement The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

Code availability The code generated during the current study is available from the corresponding author on
reasonable request.

Declaration

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Babaee, H., Choi, M., Sapsis, T.P., Karniadakis, G.E.: A robust bi-orthogonal/dynamically-orthogonal
method using the covariance pseudo-inverse with application to stochastic flow problems. J. Comput.
Phys. 344, 303–319 (2017)

2. Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution
of high-dimensional partial differential equations. Found. Comput. Math. 16(6), 1423 (2016)

3. Baldeaux, J., Gnewuch, M.: Optimal randomized multilevel algorithms for infinite-dimensional integra-
tion on function spaces with ANOVA-type decomposition. SIAM J. Numer. Anal. 52(3), 1128–1155
(2014)

4. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv.
Comput. Mech. 12, 273–288 (2000)

123

http://creativecommons.org/licenses/by/4.0/

36 Page 26 of 27 Journal of Scientific Computing (2021) 88 :36

5. Beylkin, G., Mohlenkamp, M.J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad.
Sci. USA 99(16), 10246–10251 (2002)

6. Bigoni, D., Engsig-Karup, A.P., Marzouk, Y.M.: Spectral tensor-train decomposition. SIAM J. Sci. Com-
put. 38(4), A2405–A2439 (2016)

7. Boelens, A.M.P., Venturi, D., Tartakovsky, D.M.: Parallel tensor methods for high-dimensional linear
PDEs. J. Comput. Phys. 375, 519–539 (2018)

8. Boelens, A.M.P., Venturi, D., Tartakovsky, D.M.: Tensor methods for the Boltzmann–BGK equation. J.
Comput. Phys. 421, 109744 (2020)

9. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
10. Cao, Y., Chen, Z., Gunzbuger, M.: ANOVA expansions and efficient sampling methods for parameter

dependent nonlinear PDEs. Int. J. Numer. Anal. Model. 6, 256–273 (2009)
11. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1988)
12. Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and

applications to parametric PDEs. Found. Comput. Math. 14, 601–633 (2014)
13. Cho, H., Venturi, D., Karniadakis, G.E.: Statistical analysis and simulation of random shocks in Burgers

equation. Proc. R. Soc. A 2171(470), 1–21 (2014)
14. Cho, H., Venturi, D., Karniadakis, G.E.: Numerical methods for high-dimensional probability density

function equations. J. Comput. Phys. 315, 817–837 (2016)
15. Al Daas, H., Ballard, G., Benner, P.: Parallel algorithms for tensor train arithmetic. arXiv:2011.06532,

pp. 1–31 (2020)
16. Dektor, A., Venturi, D.: Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEs.

J. Comput. Phys. 404, 109125 (2020)
17. Dektor, A., Venturi, D.: Dynamic tensor approximation of high-dimensional nonlinear PDEs. J. Comput.

Phys. 437, 110295 (2021)
18. di Marco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)
19. Han, W .E,J., Li, Q.: A mean-field optimal control formulation of deep learning. Res. Math. Sci. 6(10),

1–41 (2019)
20. Falcó, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations. arXiv:1505.03027,

pp. 1–50 (2015)
21. Falcó, A., Hackbusch, W., Nouy, A.: On the Dirac–Frenkel variational principle on tensor Banach spaces.

Found. Comput. Math. 19(1), 159–204 (2019)
22. Falcó, A., Hackbusch, W., Nouy, A.: Geometry of tree-based tensor formats in tensor banach spaces.

ArXiv 2011(08466), 1–14 (2020)
23. Feppon, F., Lermusiaux, P.F.J.: A geometric approach to dynamical model order reduction. SIAM J.

Matrix Anal. Appl. 39(1), 510–538 (2018)
24. Feppon, F., Lermusiaux, P.F.J.: The extrinsic geometry of dynamical systems tracking nonlinear matrix

projections. SIAM J. Matrix Anal. Appl. 40(2), 814–844 (2019)
25. Foo, J., Karniadakis, G.E.:Multi-element probabilistic collocationmethod in high dimensions. J. Comput.

Phys. 229, 1536–1557 (2010)
26. Frenkel, J.: Wave Mechanics: Advanced General Theory. Oxford University Press, Oxford (1934)
27. Gangbo, W., Li, W., Osher, S., Puthawala, M.: Unnormalized optimal transport. J. Comput. Phys. 399,

108940 (2019)
28. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)
29. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral methods for time-dependent problems, volume 21

of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge (2007)

30. Kalogirou, A., Keaveny, E.E., Papageorgiou, D.T.: An in-depth numerical study of the two-dimensional
Kuramoto–Sivashinsky equation. Proc. A. 471(2179):20140932 (2015)

31. Khoromskij, B.N.: Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial
applications. In: CEMRACS 2013—Modelling and Simulation of Complex Systems: Stochastic and
Deterministic Approaches, volume 48 of ESAIM Proc. Surveys, pp. 1–28. EDP Sci., Les Ulis (2015)

32. Kieri, E., Lubich, C., Walach, H.: Discretized dynamical low-rank approximation in the presence of small
singular values. SIAM J. Numer. Anal. 54(2), 1020–1038 (2016)

33. Kieri, E., Vandereycken, B.: Projection methods for dynamical low-rank approximation of high-
dimensional problems. Comput. Methods Appl. Math. 19(1), 73–92 (2019)

34. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454
(2007)

35. Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31(5), 2360–2375
(2010)

123

http://arxiv.org/abs/2011.06532
http://arxiv.org/abs/1505.03027

Journal of Scientific Computing (2021) 88 :36 Page 27 of 27 36

36. Koch, O., Neuhauser, C., Thalhammer, M.: Error analysis of high-order splitting methods for nonlinear
evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics.
ESAIM Math. Model. Numer. Anal. 47(5), 1265–1286 (2013)

37. Li, G., Rabitz, H.: Regularized random-sampling high dimensional model representation (RS-HDMR).
J. Math. Chem. 43(3), 1207–1232 (2008)

38. Lubich, C., Oseledets, I.V., Vandereycken, B.: Time integration of tensor trains. SIAM J. Numer. Anal.
53(2), 917–941 (2015)

39. Lubich, C., Vandereycken, B., Walach, H.: Time integration of rank-constrained Tucker tensors. SIAM
J. Numer. Anal. 56(3), 1273–1290 (2018)

40. McLachlan,A.D.: A variational solution of the time-dependent Schrödinger equation.Mol. Phys. 8, 39–44
(1964)

41. Narayan, A., Jakeman, J.: Adaptive Leja sparse grid constructions for stochastic collocation and high-
dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)

42. Nashed, M.Z.: Differentiability and related properties of nonlinear operators: Some aspects of the role of
differentials in nonlinear functional analysis. In: Nonlinear Functional Anal. and Appl. (Proc. Advanced
Sem., Math. Res. Center, Univ. of Wisconsin, Madison, WI, 1970), pp. 103–309. Academic Press, New
York (1971)

43. Nonnenmacher, A., Lubich, C.: Dynamical low-rank approximation: applications and numerical experi-
ments. Math. Comput. Simul. 79(4), 1346–1357 (2008)

44. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
45. Raab, A.: On the Dirac–Frenkel/Mclachlan variational principle. Chem. Phys. Lett. 319, 674–678 (2000)
46. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential

equations. J. Comput. Phys. 357, 125–141 (2018)
47. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 606–707 (2019)

48. Rhee, H.-K., Aris, R., Amundson, N.R.: First-Order Partial Differential Equations, Volume 1: Theory and
Applications of Single Equations. Dover, New York (2001)

49. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications, vol. 60, 2nd edn.
Springer (1989)

50. Rodgers, A., Dektor, A., Venturi, D.: Adaptive integration of nonlinear evolution equations on tensor
manifolds. arXiv:2008.00155:1–22 (2020)

51. Rodgers, A., Venturi, D.: Stability analysis of hierarchical tensor methods for time-dependent PDEs. J.
Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.109341

52. Ruthotto, L., Osher, S., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning framework for solving
high-dimensional mean field game and mean field control problems. PNAS 117(17), 9183–9193 (2020)

53. Salas, D., Thibault, L.: On characterizations of submanifolds via smoothness of the distance function in
Hilbert spaces. J. Optim. Theory Appl. 182(1), 189–210 (2019)

54. Sirisup, S., Karniadakis, G.E.: A spectral viscosity method for correcting the long-term behavior of pod
models. J. Comput. Phys. 194(1), 92–116 (2004)

55. Venturi, D.: The numerical approximation of nonlinear functionals and functional differential equations.
Phys. Rep. 732, 1–102 (2018)

56. Venturi, D., Dektor, A.: Spectral methods for nonlinear functionals and functional differential equations.
Res. Math. Sci. 8(27), 1–39 (2021)

57. Venturi, D., Karniadakis, G.E.: Convolutionless Nakajima–Zwanzig equations for stochastic analysis in
nonlinear dynamical systems. Proc. R. Soc. A 470(2166), 1–20 (2014)

58. Venturi, D., Sapsis, T.P., Cho, H., Karniadakis, G.E.: A computable evolution equation for the joint
response-excitation probability density function of stochastic dynamical systems. Proc. R. Soc. A
468(2139), 759–783 (2012)

59. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)
60. Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained deep learning for high-

dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys.
394, 56–81 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2008.00155:1--22
https://doi.org/10.1016/j.jcp.2020.109341

	Rank-Adaptive Tensor Methods for High-Dimensional Nonlinear PDEs
	Abstract
	1 Introduction
	2 The Manifold of Fixed-Rank FTT Tensors
	2.1 Orthogonalization and Truncation of FTT Tensors
	2.2 Tangent and Normal Spaces of Fixed-Rank FTT Manifolds

	3 Dynamic Tensor Approximation of Nonlinear PDEs
	3.1 Dynamic Tensor Approximation on Low-Rank FTT Manifolds
	3.1.1 Temporal Integration Using Operator Splitting Methods

	3.2 Step-Truncation Temporal Integration Methods
	3.3 Consistency of Dynamic Approximation and Step-Truncation Methods

	4 Rank-Adaptive Integration
	4.1 Decreasing Tensor Rank
	4.2 Increasing Tensor Rank
	4.3 Order of the Rank-Adaptive Tensor Scheme

	5 Numerical Examples
	5.1 Two-Dimensional Variable Coefficient Advection Equation
	5.2 Two-Dimensional Kuramoto–Sivashinsky Equation
	5.3 Four-Dimensional Fokker–Planck Equation

	6 Summary
	References

