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Abstract
In this work, in order to obtain higher-order schemes for solving forward backward stochas-
tic differential equations, we propose a new multi-step scheme by adopting the high-order
multi-step method in Zhao et al. (SIAM J. Sci. Comput., 36(4): A1731-A1751, 2014) with
the combination technique. Two reference ordinary differential equations containing the con-
ditional expectations and their derivatives are derived from the backward component. These
derivatives are approximated by using the finite difference methods with multi-step combi-
nations. The resulting scheme is a semi-discretization in the temporal direction involving
conditional expectations, which are solved by using the Gaussian quadrature rules and poly-
nomial interpolations on the spatial grids. Our new proposed multi-step scheme allows for
higher convergence rate up to ninth order, and are more efficient. Finally, we provide a
numerical illustration of the convergence of the proposed method.

Keywords Forward backward stochastic differential equations · Multi-step scheme · Finite
difference method · Time-space grid · Gauss-Hermite quadrature rule

Mathematics Subject Classification 60H10 · 60H35 · 65C20

1 Introduction

Recently, the forward-backward stochastic differential equation (FBSDE) becomes an impor-
tant tool for formulating many problems in various areas including physics and financial
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mathematics. We are interested in the numerical approximation of the general FBSDEs

⎧
⎪⎪⎨

⎪⎪⎩

dXt = a(t, Xt , Yt , Zt ) dt + b(t, Xt , Yt , Zt ) dWt , forward component
X0 = x0,

−dYt = f (t, Xt , Yt , Zt ) dt − Zt dWt , backward component
YT = ξ = g(XT )

(1)

on a filtered complete probability space (Ω,F, P) with the natural filtration (Ft )0≤t≤T ,

where a : [0, T ] × R
n × R

m × R
m×d → R

n and b : [0, T ] × R
n × R

m × R
m×d →

R
n×d , are drift and diffusion coefficients in the forward component, respectively; Wt =

(W 1
t , . . . ,Wd

t )T is a d-dimensional Brownianmotion (all Brownianmotions are independent
with each other); f (t, Xt , Yt , Zt ) : [0, T ] ×R

n ×R
m ×R

m×d → R
m is the driver function

and ξ is the square-integrable terminal condition. We see that the terminal condition YT
depends on final value of the forward component. Note that a, b and f are all Ft -adapted,
and a triple (Xt , Yt , Zt ) is called an L2-adapted solution of (1) if it is Ft -adapted, square
integrable, and satisfies

{
Xt = X0 + ∫ t

0 a(s, Xs, Ys, Zs) ds + ∫ t
0 b(s, Xs, Ys, Zs) dWs,

Yt = ξ + ∫ T
t f (s, Xs, Ys, Zs) ds − ∫ T

t Zs dWs .
(2)

One obtains decoupled FBSDEs if a and b are independent with Yt and Zt in (1), which
become backward stochastic differential equations (BSDEs) when a = 0 and b = 1.

The existence and uniqueness of solution of the BSDEs assuming the Lipschitz conditions
on f , a, b and g are proven by Pardoux and Peng [25,26]. The uniqueness of solution is
extended under more general assumptions for f in [20], but only in the one-dimensional
case. The existence and uniqueness of solution of FBSDEs have been studied in [21,28].

In recent years, many numericalmethods have been proposed for the BSDEs and FBSDEs.
We list some of them here: [2–4,8–11,14,15,18,19,22–24,30,32–34,36,37,39–43], and many
others. In this literature, the high-ordermethods rely on the high-order approaches for both the
forward and backward components, where are clearly difficult and computationally expensive
to achieve.

Moreover, Zhao et al. proposed in [38] the high-order multi-step schemes for FBSDEs,
which can keep high-order accuracy while using the Euler method to solve the forward
component. This is quite interesting since the use of Euler method can dramatically simplify
the entire computations. However, the convergence rate is restricted to sixth order, since the
stability condition can not be satisfied for a higher order. For this reason,we adopt thismethod
in this work, and we combine some multi-steps to achieve higher rate of convergence. More
precisely, following the idea, proposed in [38], two reference ordinary differential equations
(ODEs) can be firstly derived for (2), which contain the conditional expectations and their
derivatives. To approximate these derivatives, the authors in [38] use the numerical methods
derived using Taylor’s expansions for multi-time levels, say ti , i = 0, 1, . . . , k, k is a positive
integer. The resulting multi-step scheme is stable only up to that k = 6. In order to achieve a
better stability for higher-order methods, we propose new finite difference methods (FDMs)
by novelly combining Taylor’s expansions for some multi-time levels, e.g., ti , ti+1 ti+2 and
ti+3, i = 0, 1, . . . , k. This is to say that we propose new multi-step schemes by using the
FDMs with the combination of multi-steps for a better stability. Furthermore, we investigate
what is the best combinations. The resulting conditional expectations are solved by using the
Gaussian quadrature rules. And thanks to the local property of the generator of diffusion
processes, the forward component, Xt can be simply solved by using the Euler method
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while keeping a high rate of convergence for the numerical solution of FBSDE. Numerical
experiments are presented to demonstrate the improvement in the rate of convergence.

In the next section, we start with preliminaries on FBSDEs and derive in Sect. 3 the
approximations of derivatives by using the FDM with combined multi-steps. In Sect. 4, we
derive the referenceODEs, based onwhich the semi-discrete higher-ordermulti-step schemes
are introduced for solving decoupled FBSDEs. Section 5 is devoted to the fully discrete
higher-order schemes. In Sect. 6, these methods are extended to solve a coupled FBSDE. In
Sect. 7, several numerical experiments on the decoupled and coupled FBSDEs including two-
dimensional applications are provided to show the higher efficiency and accuracy. Finally,
Sect. 8 concludes this work.

2 Preliminaries

As mentioned before, throughout the paper we assume that (Ω,F, P) is a complete, filtered
probability space. A standard d-dimensional Brownian motionWt with a finite terminal time
T is defined, and the forward component, Xt generates the filtrationFt = σ {Xs, 0 ≤ s ≤ t}.
And the usual hypotheses should be satisfied. We denote the set of all Ft -adapted and square
integrable processes inRd with L2 = L2(0, T ;Rd), and list following notations to be used:

– | · | : the Euclidean norm in R, Rn and Rn×d ;
– F s,x

t : σ -algebra generated by the diffusion process {Xr , s ≤ r ≤ t, Xs = x};
– E

s,x
t [·] : conditional expectation under F s,x

t , i.e., Es,x
t [·|F s,x

t ];
– Ck

b : the set of continuous functions with uniformly bounded derivatives up to order k;
– Ck1,k2 : the set of functions with continuous partial derivatives ∂

∂t and
∂
∂x up to k1 and

k2, respectively;
– CL : the set of uniformly Lipschitz continuous function with respect to the spatial vari-

ables;

– C
1
2
L : the subset of CL such that its element is Hölder- 12 continuous with respect to time,

with uniformly bounded Lipschitz and Hölder constants.

Let Xt be a diffusion process

Xt = x0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) dWs (3)

starting at (t0, x0) and t ∈ [t0, T ],which has a unique solution.Note thatEx
s [Xt ] := E

s,x
s [Xt ]

is equal to E[Xt |Xs = x] for all s ≤ t with the Markov property of the diffusion process.
Given a measurable function g : [0, T ] × R

n → R, Ex
s [g(t, Xt )] is a function of (t, s, x),

whose partial derivative with respect to t reads

∂Ex
s [g(t, Xt )]

∂t
= lim

τ→0+
Ex

s [g(t + τ, Xt+τ )] − Ex
s [g(t, Xt )]

τ

provided that the limit exists and is finite.

Definition 1 (Generator) The generator Ax
t of Xt satisfying (3) on a measurable function

g : [0, T ] × R
n → R is defined by

Ax
t g(t, x) = lim

h→0+
Ex

t [g(t + h, Xt+h)] − g(t, x)

h
, x ∈ R

n .
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Theorem 1 Let Xt be the diffusion process defined by (3), then it holds

Ax
t f (t, x) = Lt,x f (t, x) (4)

for f ∈ C1,2 ([0, T ] × R
n) with

Lt,x = ∂

∂t
+
∑

i

ai (t, x)
∂

∂xi
+ 1

2

∑

i, j

(bb�)i, j (t, x)
∂2

∂xi∂x j
.

The proof can be simply completed by using the Itô’s lemma and the dominated convergence
theorem.

Remark 1 From (4) one can straightforwardly deduce that

AXt
t f (t, Xt ) = Lt,Xt f (t, Xt ),

which is a stochastic process.

By using the Itô’s lemma and Theorem 1 we calculate

d Ex0
t0 [ f (t, Xt )]

dt

∣
∣
∣
∣
∣
t=t0

= lim
t→t+0

E
x0
t0 [ f (t, Xt )] − g(t0, x0)

t − t0
= Lt,x f (t0, x0) = Ax

t f (t0, x0),

from which we deduce Theorem 2 as follows.

Theorem 2 Assume that f ∈ C1,2 ([0, T ] × R
n) andEx0

t0

[∣
∣Lt,Xt f (t, Xt )

∣
∣
]

< ∞, let t0 < t
be a fixed time point, and x0 ∈ R

n be a fixed space point, it holds that

d Ex0
t0 [ f (t, Xt )]

dt
= E

x0
t0

[
AXt

t f (t, Xt )
]
, t ≥ t0.

Furthermore, one has the following identity

d Ex0
t0 [ f (t, Xt )]

dt

∣
∣
∣
∣
∣
t=t0

= d Ex0
t0 [ f (t, X̃t )]

dt

∣
∣
∣
∣
∣
t=t0

, (5)

where X̃t is an approximating diffusion process defined by

X̃t = x0 +
∫ t

0
ã ds +

∫ t

0
b̃ dWs,

ãt = ã(t, X̃t ; t0, x0) and b̃t = b̃(t, X̃t ; t0, x0) are smooth functions of (t, X̃t ) with the
parameter (t0, x0) which satisfy

ã(t0, X̃t0 ; t0, x0) = a(t0, x0) and b̃(t0, X̃t0 ; t0, x0) = b(t0, x0).

It has been noted in [38] that the different approximations of (5) can be obtained by choos-
ing different ãt ’s and b̃t ’s. One can simply e.g., choose ã(s, X̃s; t0, x0) = a(t0, x0) and
b̃(s, X̃s; t0, x0) = b(t0, x0) for all s ∈ [t0, t].

For existence, regularity and representation of solutions of decoupled FBSDEs we refer
to [23,27,35]. In the following of this section we will present some of those. We denote the
forward stochastic differential equation (SDE) starting from (s, x) with Xs,x

t and consider
the decoupled FBSDEs

{
Xs,x
t = x + ∫ t

s a(r , Xs,x
r ) ds + ∫ t

s b(r , X
s,x
r ) dWr ,

Y s,x
t = g(Xs,x

T ) + ∫ T
t f (r , Xs,x

r , Y s,x
r , Zs,x

r ) dr − ∫ T
t Zs,x

r dWr ,
(6)
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where t ∈ [s, T ], and the superscript s,x will be omitted when the context is clear.
Throughout the paper, we shall often make use of the following standing assumptions:

1. The functions a, b ∈ C1
b , and assume

sup
0≤t≤T

{|a(t, 0)| + |b(t, 0)|} ≤ L,

where the common constant L > 0 denotes all the Lipschitz constants.
2. n = d and we assume that b satisfies

b(t, x)b�(t, x) ≥ 1

L
In, ∀(t, x) ∈ [0, T ] × R

n .

3. a, b, f , g ∈ CL , and assume that

sup
0≤t≤T

| f (t, 0, 0, 0)| + |g(0)| ≤ L,

where L denotes all the Lipschitz constants.

4. a, b, f ∈ C
1
2
L .

Under the above conditions, it is clear that (6) is well-posed; the resulting integrands by
taking conditional expectation on both side of the backward component is continuous with
respect to time; the nonlinear Feynman-Kac formula [23,27] can be given as follows.

Theorem 3 Let u ∈ C1,2 ([0, T ] × R
n) be a classical solution to the following PDE

Lt,xu(t, x) + f (t, x, u(t, x),∇u(t, x)b(t, x)) = 0, u(T , x) = g(x),

then Y s,x
t = u(t, Xs,x

t ), Zs,x
t = ∇xu(t, Xs,x

t )b(t, Xs,x
t ), ∀t ∈ (s, T ] is the unique solution

to (6).

3 Calculation of theWeights in the FDM for Approximating Derivative

In this sectionwe calculate theweights in the FDMfor approximating the function derivatives,
e.g., du(t)

dt . Let u(t) ∈ Ck+1
b , k is a positive integer, and ti = iΔt, i.e., t0 < t1 < · · · < tk .

3.1 Combination of Two Temporal Points

We consider the Taylor’s expansions of u(ti ) and u(ti+1), i = 0, . . . , k

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(ti ) =
k∑

j=0

(Δti ) j

j !
d ju

dt j
(t0) + O(Δti )

k+1,

u(ti+1) =
k∑

j=0

(Δti+1)
j

j !
d ju

dt j
(t0) + O(Δti+1)

k+1,
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from which we can deduce
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

i=0

αk,i u(ti ) =
k∑

j=0

k∑

i=0

αk,i (Δti )
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti )
k+1

)

,

k∑

i=0

αk,i u(ti+1) =
k∑

j=0

k∑

i=0

αk,i (Δti+1)
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti+1)
k+1

)

,

where αk,i , i = 0, 1, . . . , k are real numbers. Straightforwardly, we obtain

k∑

i=0

αk,i (u(ti ) + u(ti+1)) =
k∑

j=0

k∑

i=0

αk,i

(
(Δti )

j + (Δti+1)
j
)

j !
d ju

dt j
(t0)

+ O
(

k∑

i=0

αk,i

(
(Δti )

k+1 + (Δti+1)
k+1

)
)

,

and also

du

dt
(t0) =

k∑

i=0

αk,i (u(ti ) + u(ti+1)) + O
(

k∑

i=0

αk,i

(
(Δti )

k+1 + (Δti+1)
k+1

)
)

(7)

by choosing

k∑

i=0

αk,i

(
(Δti )

j + (Δti+1)
j
)

j ! =
{
1, j = 1,

0, j 
= 1.
(8)

Note that ti = iΔt and ti+1 = (i+1)Δt, the conditions in (8) are equivalent to the following
system

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 2 2 . . . 2
1 3 5 . . . k + (k + 1)
1 5 13 . . . k2 + (k + 1)2

...
...

...
...

...

1 1k + 2k 2k + 3k . . . kk + (k + 1)k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

αk,0Δt
αk,1Δt
αk,2Δt

...

αk,kΔt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

which can be solved for αk,iΔt, i = 0, . . . , k. We refer to the algorithm proposed in [13]
for those solutions. We report αk,iΔt for k = 1, 2, . . . , 7 in Table 1. The related multi-step
schemes proposed in this paper is unstable from k = 8, which will be explained below.

The multi-step schemes (combining two temporal points) can be obtained by approxi-
mating the reference ODEs (see Sect. 4.1) with (7). Considering the ODE

Y (t)

dt
= f (t, Y (t)), t ∈ [0, T ) (9)
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Table 1 The values of αk,iΔt for combining two temporal points

αk,iΔt i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

k = 1 − 1
2

1
2

k = 2 −1 3
2 − 1

2

k = 3 − 17
12

11
4 − 7

4
5
12

k = 4 − 7
4

49
12 − 15

4
7
4 − 1

3

k = 5 − 121
60

65
12 − 77

12
53
12 − 5

3
4
15

k = 6 − 67
30

403
60 − 29

3
35
4 − 59

12
47
30 − 13

60

k = 7 − 2027
840

319
40 − 1613

120
361
24 − 269

24
641
120 − 59

40
151
840

Table 2 The maximum absolute root of (11) except the simple roots

k 2 3 4 5 6 7 8

max
(∣
∣λk, j

∣
∣
)

0.5000 0.5424 0.6344 0.7438 0.8636 0.9915 1.1264

with the known terminal condition Y (T ),we investigate the stability, see also [38]. Applying
(7) to (9) one obtains the multi-step scheme as

αk,0Y
n +

k∑

j=1

(
αk, j−1 + αk, j

)
Yn+ j + αk,kY

n+k+1 = f (tn, Y
n) (10)

under the uniform time partition 0 = t0 < t1 < · · · < tN = T . (10) is stable if the roots
{λk, j }kj=1 of the characteristic equation

P(λ) = αk,0λ
k+1 +

k∑

j=1

(
αk, j−1 + αk, j

)
λk+1− j + αk,kλ

0 (11)

satisfy the following root conditions [6]

– |λk, j | ≤ 1,
– P

′
(λk, j ) 
= 0 if |λk, j | = 1 (simple roots).

By the definition of αk, j in Tabel 1, it can be checked that 1 is the simple root of the latter
characteristic function for each k, except which we list the maximum absolute values of the
roots for k = 2, . . . , 8 in Table 2. We see that the multi-step scheme (10) is unstable for
k ≥ 8.

However, compared to the multi-step scheme proposed in [38](unstable ≥ 7), stability
for k = 7 has been achieved, i.e., 1-order higher convergence rate is obtained. Combination
of more temporal points can be done similarly, and the resulting multi-step schemes have
different instabilities. In our investigation we find that the multi-step scheme by combining
four temporal points are stable for k ≤ 9, which is the best. Thus, we show its detailed
derivation in next subsection and apply it for the numerical experiments.
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3.2 Combination of Four Temporal Points

Similarly but slightly different to the multi-step scheme in Sect. 3.1, we consider the Taylor’s
expansions of u(ti ), u(ti+1), u(ti+2) and u(ti+3), i = 0, . . . , k,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(ti ) =
k∑

j=0

(Δti ) j

j !
d ju

dt j
(t0) + O(Δti )

k+1,

u(ti+1) =
k∑

j=0

(Δti+1)
j

j !
d ju

dt j
(t0) + O(Δti+1)

k+1,

u(ti+2) =
k∑

j=0

(Δti+2)
j

j !
d ju

dt j
(t0) + O(Δti+2)

k+1,

u(ti+3) =
k∑

j=0

(Δti+3)
j

j !
d ju

dt j
(t0) + O(Δti+3)

k+1,

from which we deduce
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

i=0

αk,i u(ti ) =
k∑

j=0

k∑

i=0

αk,i (Δti )
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti )
k+1

)

,

k∑

i=0

αk,i u(ti+1) =
k∑

j=0

k∑

i=0

αk,i (Δti+1)
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti+1)
k+1

)

,

k∑

i=0

αk,i u(ti+2) =
k∑

j=0

k∑

i=0

αk,i (Δti+2)
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti+2)
k+1

)

,

k∑

i=0

αk,i u(ti+3) =
k∑

j=0

k∑

i=0

αk,i (Δti+3)
j

j !
d ju

dt j
(t0) + O

(
k∑

i=0

αk,i (Δti+3)
k+1

)

,

where αk,i , i = 0, 1, . . . , k are real numbers as well. Straightforwardly, we obtain

k∑

i=0

αk,i (u(ti ) + u(ti+1) + u(ti+2) + u(ti+3))

=
k∑

j=0

k∑

i=0

αk,i

(
(Δti )

j + (Δti+1)
j + (Δti+2)

j + (Δti+3)
j
)

j !
d ju

dt j
(t0)

+ O
(

k∑

i=0

αk,i

(
(Δti )

k+1 + (Δti+1)
k+1 + (Δti+2)

k+1 + (Δti+3)
k+1

)
)

︸ ︷︷ ︸
:=ε

(12)
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Table 3 The values of αk,iΔt for combining four temporal points

αk,iΔt i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

k = 1 − 1
4

1
4

k = 2 − 3
4

5
4 − 1

2

k = 3 − 4
3 3 − 9

4
7
12

k = 4 − 11
6 5 − 21

4
31
12 − 1

2

k = 5 − 87
40

161
24 − 26

3 6 − 53
24

41
120

k = 6 − 19
8

949
120 − 35

3 10 − 125
24

37
24 − 1

5

k = 7 − 419
168

1049
120 − 85

6
85
6 − 75

8
97
24 − 31

30
5
42

k = 8 − 145
56

2661
280 − 101

6
39
2 − 385

24
75
8 − 37

10
37
42 - 2

21

k = 9 − 6781
2520

2917
280 − 4303

210
841
30 − 3461

120
887
40 − 367

30
953
210 - 106105

32
315

and also

du

dt
(t0) =

k∑

i=0

αk,i (u(ti ) + u(ti+1) + u(ti+2) + u(ti+3)) + ε (13)

by choosing

k∑

i=0

αk,i

(
(Δti )

j + (Δti+1)
j + (Δti+2)

j + (Δti+3)
j
)

j ! =
{
1, j = 1,

0, j 
= 1,

which are equivalent to the following system

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4 4 . . . 4
6 10 . . . k + (k + 1) + (k + 2) + (k + 3)
14 30 . . . k2 + (k + 1)2 + (k + 2)2 + (k + 3)2

...
...

...
...

1k + 2k + 3k 1k + 2k + 3k + 4k . . . kk + (k + 1)k + (k + 2)k + (k + 3)k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

αk,0Δt
αk,1Δt
αk,2Δt

...

αk,kΔt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In Table 3 we report solutions of the latter system for k = 1, . . . , 9.
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Table 4 The maximum absolute root of (15) except the simple roots

k 2 3 4 5 6 7 8 9 10

max
(∣
∣λk, j

∣
∣
)

0.6667 0.6614 0.6875 0.7104 0.7224 0.7376 0.8134 0.9931 1.2286

Applying (13) to (9) one obtain the multi-step scheme as

αk,0Y
n + (αk,0 + αk,1)Y

n+1 + (αk,0 + αk,1 + αk,2)Y
n+2

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Yn+ j

+ (αk,k−2 + αk,k−1 + αk,k)Y
n+k+1

+ (αk,k−1 + αk,k)Y
n+k+2 + αk,kY

n+k+3 = f (tn, Y
n),

(14)

whose characteristic equation reads

αk,0λ
k+3 + (αk,0 + αk,1)λ

k+2 + (αk,0 + αk,1 + αk,2)λ
k+1

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
λk+3− j

+ (αk,k−2 + αk,k−1 + αk,k)λ
2 + (αk,k−1 + αk,k)λ

1 + αk,kλ
0 = 0.

(15)

By the definition of αk, j in Table 3, it can be checked that 1 is the simple root of the
latter characteristic function for each k. The maximum absolute values of the roots for k =
2, . . . , 10 expect the simple roots are listed in Table 4, we see that the multi-step scheme
(14) is stable for k ≤ 9.

We remark that the stability cannot be guaranteed for k > 9 by combining more temporal
points, e.g., the multi-step scheme constructed by combining five temporal points is stable
for k ≤ 8.

4 The Semi-discrete Multi-step Scheme for Decoupled FBSDEs

Following the idea in [38] we derive the semi-discrete scheme for (2) in the decoupled case.
We consider the time interval [0, T ] with the following partition

0 = t0 < t1 < t2 < · · · tNT = T .

We denote tn+k − tn by Δtn,k and Wtn+k −Wtn by ΔWn,k, i.e., Δttn ,t = t − tn and ΔWtn ,t =
Wt − Wtn for t ≥ tn .

4.1 Two Reference ODEs

Let (Xt , Yt , Zt ) be the solution of the decoupled FBSDEs (2). By taking conditional expecta-
tionEx

tn [·] on both sides of the backward component in (2) one obtains the integral equation

Ex
tn [Yt ] = Ex

tn [ξ ] +
∫ T

t
Ex

tn [ f (s, Xs, Ys, Zs)] ds, ∀t ∈ [tn, T ].
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As explained in Sect. 2, the integrand in the latter integral equation is continuous with respect
to the time. By taking the derivative with respect to t on both sides one thus obtain the first
reference ODE

d Ex
tn [Yt ]

dt
= −Ex

tn [ f (t, Xt , Yt , Zt )] , ∀t ∈ [tn, T ]. (16)

Furthermore, we have

Ytn = Yt +
∫ t

tn
f (s, Xs, Ys, Zs) ds −

∫ t

tn
Zs dWs, t ∈ [tn, T ].

By multiplying both sides of the latter equation by ΔW�
tn ,t and again taking the conditional

expectation Ex
tn [·] on its both sides we obtain

0 = Ex
tn

[
YtΔW�

tn ,t

]
+
∫ t

tn
Ex

tn

[
f (s, Xs, Ys, Zs)ΔW�

tn ,s

]
ds −

∫ t

tn
Ex

tn [Zs] ds,

t ∈ [tn, T ]. Similarly, we obtain the second reference ODE

d Ex
tn

[
YtΔW�

tn ,t

]

dt
= −Ex

tn

[
f (t, Xt , Yt , Zt )ΔW�

tn ,t

]
+ Ex

tn [Zt ] , t ∈ [tn, T ]. (17)

by taking the derivative with respect to t ∈ [tn, T ].
Remark 2 The both ODEs (16) and (17) are the derived reference equations for (2). The next
step is to derive the numerical schemes by approximating the conditional expectations and
the derivatives in (16) and (17).

4.2 The Semi-discrete Scheme

Let ā(t, x) and b̄(t, x) be smooth functions for t ∈ [tn, T ] and x ∈ R
n satisfying ā(t, x) =

a(t, x) and b̄(t, x) = b(t, x), and thus define the diffusion process

X̄ tn ,x
t = x +

∫ t

tn
ā(s, X̄ tn ,x

s ) ds +
∫ t

tn
b̄(s, X̄ tn ,x

s ) dWs . (18)

Let (Xtn ,x
t , Y tn ,x

t , Ztn ,x
t ) be the solution of the decoupled FBSDEs, i.e., Y tn ,x

t and Ztn ,x
t can

be represented by u(t, Xtn ,x
t ) and ∇xu(t, Xtn ,x

t )b(s, Xtn ,x
s ), respectively, see Theorem 3.

Therefore, we set Ȳ tn ,x
t = u(t, X̄ tn ,x

t ) and Z̄ tn ,x
t = ∇xu(t, X̄ tn ,x

t )b(s, X̄ tn ,x
s ), By Theorem

2, we have

d Ex
tn [Y tn ,x

t ]
dt

∣
∣
∣
∣
∣
t=tn

= d Ex
tn [Ȳ tn ,x

t ]
dt

∣
∣
∣
∣
∣
t=tn

and

d Ex
tn [Y tn ,x

t ΔW�
tn ,t ]

dt

∣
∣
∣
∣
∣
t=tn

= d Ex
tn [Ȳ tn ,x

t ΔW�
tn ,t ]

dt

∣
∣
∣
∣
∣
t=tn

.
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Finally, we apply (13) to terms on the right hand side of both the latter equations to obtain

d Ex
tn [Y tn ,x

t ]
dt

∣
∣
∣
∣
∣
t=tn

=
k∑

i=0

αk,iE
x
tn

[
Ȳ tn ,x
tn+i

+ Ȳ tn ,x
tn+i+1

+ Ȳ tn ,x
tn+i+2

+ Ȳ tn ,x
tn+i+3

]+ R̄k
y,n

= αk,0E
x
tn

[
Ȳ tn ,x
tn

]+ (αk,0 + αk,1)E
x
tn

[
Ȳ tn ,x
tn+1

]+ (αk,0 + αk,1 + αk,2)E
x
tn

[
Ȳ tn ,x
tn+2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
Ȳ tn ,x
tn+ j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+1

]

+ (αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+2

]+ αk,kE
x
tn

[
Ȳ tn ,x
tn+k+3

]+ R̄k
y,n

(19)

and

d Ex
tn [Y tn ,x

t ΔW�
tn ,t ]

dt

∣
∣
∣
∣
∣
t=tn

=
k∑

i=1

αk,iE
x
tn

[
Ȳ tn ,x
tn+i

ΔW�
n,i

+Ȳ tn ,x
tn+i+1

ΔW�
n,i+1 + Ȳ tn ,x

tn+i+2
ΔW�

n,i+2 + Ȳ tn ,x
tn+i+3

ΔW�
n,i+3

]
+ R̄k

z,n

= (αk,0 + αk,1)E
x
tn

[
Ȳ tn ,x
tn+1

ΔW�
n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn ,x
tn+2

ΔW�
n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
Ȳ tn ,x
tn+ j

ΔW�
n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+2

ΔW�
n,k+2

]

+ αk,kE
x
tn

[
Ȳ tn ,x
tn+k+3

ΔW�
n,k+3

]
+ R̄k

z,n,

(20)

where αk,i are given in Table 3, R̄k
y,n and R̄k

z,n are truncation errors. By inserting (19) and
(20) into (16) and (17), respectively, we obtain

αk,0E
x
tn

[
Ȳ tn ,x
tn

]+ (αk,0 + αk,1)E
x
tn

[
Ȳ tn ,x
tn+1

]+ (αk,0 + αk,1 + αk,2)E
x
tn

[
Ȳ tn ,x
tn+2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
Ȳ tn ,x
tn+ j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+1

]+ (αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+2

]

+ αk,kE
x
tn

[
Ȳ tn ,x
tn+k+3

] = − f (tn, x, Ytn , Ztn ) + Rk
y,n

(21)
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and

(αk,0 + αk,1)E
x
tn

[
Ȳ tn ,x
tn+1

ΔW�
n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ tn ,x
tn+2

ΔW�
n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
Ȳ tn ,x
tn+ j

ΔW�
n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x
tn

[
Ȳ tn ,x
tn+k+2

ΔW�
n,k+2

]

+ αk,kE
x
tn

[
Ȳ tn ,x
tn+k+3

ΔW�
n,k+3

]
= Ztn + Rk

z,n,

(22)

where Rk
y,n = −R̄k

y,n and Rk
z,n = −R̄k

z,n .

We denote the numerical approximations of Yt and Zt at tn by Yn and Zn, respectively.
Furthermore, for ā and b̄ in (18) we choose ā(t, X̄ tn ,x

t ) = a(tn, x) and b̄(t, X̄
tn ,x
t ) = b(tn, x)

for t ∈ [tn, T ]. Finally, from (21) to (22), the semi-discrete scheme can be obtained as

Scheme 1 Assume that Y NT −i and ZNT −i are known for i = 0, 1, . . . , k + 2. For n =
NT − k − 3, . . . , 0, Xn, j , Yn = Yn(Xn) and Zn = Zn(Xn) can be solved by

Xn, j =Xn + a(tn, X
n)Δtn, j + b(tn, X

n)ΔWn, j , j = 1, . . . , k + 3, (23)

Zn =(αk,0 + αk,1)E
Xn

tn

[
Ȳ n+1ΔW�

n,1

]
+ (αk,0 + αk,1 + αk,2)E

Xn

tn

[
Ȳ n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
EXn

tn

[
Ȳ n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
Xn

tn

[
Ȳ n+k+1ΔW�

n,k+1

]

+ (αk,k−1 + αk,k)E
Xn

tn

[
Ȳ n+k+2ΔW�

n,k+2

]
+ αk,kE

Xn

tn

[
Ȳ n+k+3ΔW�

n,k+3

]
,

(24)

αk,0Y
n = − (αk,0 + αk,1)E

Xn

tn

[
Ȳ n+1]− (αk,0 + αk,1 + αk,2)E

Xn

tn

[
Ȳ n+2]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
Xn

tn

[
Ȳ n+ j

]

− (αk,k−2 + αk,k−1 + αk,k)E
Xn

tn

[
Ȳ n+k+1

]

− (αk,k−1 + αk,k)E
Xn

tn

[
Ȳ n+k+2

]

− αk,kE
Xn

tn

[
Ȳ n+k+3

]
− f (tn, X

n, Yn, Zn). (25)

Remark 3 1. Ȳ n+ j is the value of Yn+ j at the space point Xn, j for j = 1, . . . , k + 3.
2. The latter implicit equation can be solved by using iterative methods, e.g., Newton’s

method or Picard scheme.
3. By Theorem 2 and (12) it holds [6]

R̄k
y,n = O(Δt)k and R̄k

z,n = O(Δt)k

provided that Lk+4
t,x u(t, x) is bounded, where R̄k

y,n and R̄k
z,n are defined in (19) and (20),

respectively.
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4. Similar to the scheme proposed in [38], one can obtain high-order accurate numerical
solutions for (24) and (25), although the Euler scheme is used for (23). This is the main
advantages because the usage of the Euler scheme reduces dramatically the total compu-
tational complexity, and one is only interested in the solution of (24) and (25) in many
applications.

5 The Fully Discrete Multi-step Scheme for Decoupled FBSDEs

To solve (Xn, Yn, Zn) numerically, next we consider the space discretization. We define
firstly the partition of the real space as Rn

h = {xi |xi ∈ R
n} with

hn = max
x∈Rn

dist(x,Rn
h),

where dist(x,Rn
h) is the distance from x to Rx

h . Furthermore, for each x we define the
neighbor grid set (local subset) Rn

h,x satisfying

1. dist(x,Rn
h) < dist(x,Rn

h)/ Rn
h,x ,

2. the number of elements in Rn
h,x is finite and uniformly bounded.

Based on the space discretization, we can solve Y n(x) and Zn(x) for each grid point x ∈ Rn
h,

n = Nt − k − 3, . . . , 0, by

Zn =(αk,0 + αk,1)E
x
tn

[
Ȳ n+1ΔW�

n,1

]
+ (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
Ȳ n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ n+k+1ΔW�

n,k+1

]

+ (αk,k−1 + αk,k)E
x
tn

[
Ȳ n+k+2ΔW�

n,k+2

]
+ αk,kE

x
tn

[
Ȳ n+k+3ΔW�

n,k+3

]
,

(26)

and

αk,0Y
n = − (αk,0 + αk,1)E

x
tn

[
Ȳ n+1]− (αk,0 + αk,1 + αk,2)E

x
tn

[
Ȳ n+2]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
x
tn

[
Ȳ n+ j

]

− (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
Ȳ n+k+1

]
− (αk,k−1 + αk,k)E

x
tn

[
Ȳ n+k+2

]

− αk,kE
x
tn

[
Ȳ n+k+3

]
− f (tn, x, Y

n, Zn).

(27)

Note that Ȳ n+ j is the value of Yn+ j at the space point Xn, j generated by

Xn, j = x + a(tn, x)Δtn, j + b(tn, x)ΔWn, j , j = 1, . . . , k + 3.

However, Xn, j does not belong toRn+ j
h . This is to say that the value of Yn+ j at Xn, j needs

to be approximated based on the values of Y n+ j onRn+ j
h , this can be done by using a local

interpolation. By L I nh,X F we denote the interpolated value of the function F at space point
X ∈ R

n by using the values of F only in the neighbor grid set, namely Rn
h,X . Including the
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interpolations, (26) and (27) become

Zn =(αk,0 + αk,1)E
x
tn

[
L I n+1

h,Xn, j Y
n+1ΔW�

n,1

]

+ (αk,0 + αk,1 + αk,2)E
x
tn

[
L I n+2

h,Xn, j Y
n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
Ex

tn

[
L I n+ j

h,Xn, j Y
n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x
tn

[
L I n+k+2

h,Xn, j Y
n+k+2ΔW�

n,k+2

]

+ αk,kE
x
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

ΔW�
n,k+3

]
+ Rk,L Ih

z,n ,

(28)

and

αk,0Y
n = − (αk,0 + αk,1)E

x
tn

[
L I n+1

h,Xn, j Y
n+1

]

− (αk,0 + αk,1 + αk,2)E
x
tn

[
L I n+2

h,Xn, j Y
n+2

]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
x
tn

[
L I n+ j

h,Xn, j Y
n+ j

]

− (αk,k−2 + αk,k−1 + αk,k)E
x
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

]

− (αk,k−1 + αk,k)E
x
tn

[
L I n+k+2

h,Xn, j Y
n+k+2

]

− αk,kE
x
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

]
− f (tn, x, Y

n, Zn) + Rk,L Ih
y,n .

(29)

Furthermore, to approximate the conditional expectations in (28) and (29) we employ the
Gauss-Hermite quadrature rule which is an extension of the Gaussian quadrature method for
approximating the value of integrals of the form

∫∞
−∞ exp(−x2)g(x) dx by

∫ ∞

−∞
. . .

∫ ∞

−∞
g(x) exp(−x�x) dx ≈

L∑

j=1

wjg(aj), (30)

where x = (x1, . . . , xn)�, x�x =
n∑

j=1

x2j , L is the number of used sample points, j =

( j1, j2, . . . , jn) ,

L∑

j=1

=
L,...,L∑

j1=1,..., jn=1

, aj = (a j1 , . . . , a jn ) and ωj =
n∏

i=1

ω ji , {a ji }Lji=1 are the

roots of the Hermite polynomial HL(x) of degree L and {ω ji }Lji=1 are corresponding weights
[1]. For a standard n-dimensional standard normal distributed random variable X we know
that

E [g(X)] = 1

(2π)
d
2

∫ ∞

−∞
g(x) exp

(

−x�x
2

)

dx

= 1

(π)
d
2

∫ ∞

−∞
g(

√
2x) exp

(
−x�x

)
dx
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(30)= 1

(π)
d
2

L∑

j=1

ωjg(aj) + RGH
L ,

where RGH
L is the truncation error of the Gauss-Hermite quadrature rule for g.

In the conditional expectations of the form Ex
tn

[
L I n+ j

h,Xn, j Y
n+ jΔW�

n, j

]
and Ex

tn[
L I n+ j

h,Xn, j Y
n+ j

]
in (28) and (29), L I n+ j

h,Xn, j Y
n+ j is the interpolated value of Ȳ n+ j , which

is a function of Xn, j and can be represented by (Theorem 3)

Ȳ n+ j = Yn+ j
(
Xn+ j

)
= Yn+ j

(
Xn+ j + a(tn, X

n)Δtn, j + b(tn, X
n)ΔWn, j

)
,

where ΔWn, j ∼ √
Δtn, j N (0, In). Straightforwardly, we can approximate those conditional

expectations as

E
x,h
tn

[
Ȳ n+ j

]
= 1

π
d
2

L∑

j=1

ωjY
n+ j

(
x + a(tn, x)Δtn, j + b(tn, x)Δtn, j

√
2Δtn, jaj

)

+RGH
L (Y )

and

E
x,h
tn

[
Ȳ n+ jΔW�

tn , j

]
= 1

π
d
2

L∑

j=1

ωjY
n+ j

(
x + a(tn, x)Δtn, j + b(tn, x)Δtn, j

√
2Δtn, jaj

)
aj

+RGH
L (YW ),

where Ex,h
tn [·] denotes the approximation of Ex

tn [·] . Finally, by inserting these approxima-
tions into (28) and (29) we obtain

Zn =(αk,0 + αk,1)E
x,h
tn

[
L I n+1

h,Xn, j Y
n+1ΔW�

n,1

]

+ (αk,0 + αk,1 + αk,2)E
x,h
tn

[
L I n+2

h,Xn, j Y
n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
E

x,h
tn

[
L I n+ j

h,Xn, j Y
n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2ΔW�

n,k+2

]

+ αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

ΔW�
n,k+3

]
+ Rk,L Ih

z,n + Rk,E
z,n ,

(31)

and

αk,0Y
n = − (αk,0 + αk,1)E

x,h
tn

[
L I n+1

h,Xn, j Y
n+1

]

− (αk,0 + αk,1 + αk,2)E
x,h
tn

[
L I n+2

h,Xn, j Y
n+2

]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
x,h
tn

[
L I n+ j

h,Xn, j Y
n+ j

]

− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

]
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− (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2

]

− αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

]
− f (tn, x, Y

n, Zn) + Rk,L Ih
y,n + Rk,E

y,n . (32)

Remark 4 1. The estimate of Rk,E
y,n or Rk,E

z,n reads [1,31,43]

O
(

L!
2L(2L)!

)

.

2. For the local interpolation errors Rk,L Ih
y,n or Rk,L Ih

z,n the following estimate holds

O (
hr+1) (33)

when using r -degree polynomial interpolation in the k-step scheme, and provided that a,

b, f and g are sufficiently smooth such that Lk+4
t,x u(t, x) is bounded and u(t, ·) ∈ Cr+1

b ,

see [1,5,6,43].
3. To balance the temporal discretization error Rk

y,n = O(Δt)k and Rk
z,n = O(Δt)k, one

needs to control well both the interpolation and integration error mentioned in last two
points.

4. For a k-step scheme we need to know the support values of Y NT −i and ZNT −i , i =
0, . . . , k + 2. One can use the following three ways to deal with this problem: before
running the multi-step scheme, we choose a quite smaller Δt and run one-step scheme
until NT −k−2;Alternatively, one can prepare these initial values “iteratively”, namely
we compute Y NT −1 and ZNT −1 based on Y NT and ZNT with k = 1, and the compute
Y NT −2 and ZNT −2 based on Y NT , Y NT −1, ZNT , ZNT −1 with k = 2 and so on; Finally,
one can use the Runge–Kutta scheme proposed in [7] with small Δt to initialize our
proposed multi-step scheme.

By removing all the error terms, from (31) and (32) we obtain the fully discrete scheme as
follows.

Scheme 2 Assume that Y NT −i and ZNT −i onRNT −i
h are known for i = 0, 1, . . . , k + 2. For

n = NT − k − 3, . . . , 0 and x ∈ Rn
h, Y

n = Yn(x) and Zn = Zn(x) can be solved by

Xn, j =x + a(tn, x)Δtn, j + b(tn, x)ΔWn, j , j = 1, . . . , k + 3,

Zn =(αk,0 + αk,1)E
x,h
tn

[
L I n+1

h,Xn, j Y
n+1ΔW�

n,1

]

+ (αk,0 + αk,1 + αk,2)E
x,h
tn

[
L I n+2

h,Xn, j Y
n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
E

x,h
tn

[
L I n+ j

h,Xn, j Y
n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2ΔW�

n,k+2

]

+ αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

ΔW�
n,k+3

]
,

αk,0Y
n = − (αk,0 + αk,1)E

x,h
tn

[
L I n+1

h,Xn, j Y
n+1

]
− (αk,0 + αk,1 + αk,2)E

x,h
tn

[
L I n+2

h,Xn, j Y
n+2

]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
x,h
tn

[
L I n+ j

h,Xn, j Y
n+ j

]
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− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

]

− (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2

]

− αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

]
− f (tn, x, Y

n, Zn).

We note that Scheme 2 is a k-step scheme. For a fixed k, one needs to perform three
procedures for approximating Yn and Zn at every point in Rn

h on each time level: (1) solve
Xn, j by using the Euler scheme; (2) solve Zn explicitlywith the second equation in Scheme 2;
(3) finally, solve Yn implicitly by using e.g., the Newton iteration provided that the driver
function f (t, x, y, z) is Lipschitz continuous with respect to y, and a prescribed tolerance.

6 Numerical Schemes for Coupled FBSDEs

The authors in [38] extended their scheme proposed for solving decoupled FBSDEs to the
one which can solve fully coupled FBSDEs. Similarly, our Scheme 2 can be extended to
solve (2) in a fully coupled case.

Scheme 3 Assume that Y NT −i and ZNT −i onRNT −i
h are known for i = 0, 1, . . . , k + 2. For

n = NT − k − 3, . . . , 0 and x ∈ Rn
h, Y

n = Yn(x) and Zn = Zn(x) can be solved by

1. set Yn,0 = Yn+1(x) and Zn,0 = Zn+1(x), and set l = 0;
2. for l = 0, 1, . . . , solve Yn,l+1 = Yn,l+1(x) and Zn,l+1 = Zn,l+1(x) by

Xn, j =x + a(tn, x, Y
n,l(x), Zn,l(x))Δtn, j + b(tn, x, Y

n,l(x), Zn,l(x))ΔWn, j ,

j = 1, . . . , k + 3,

Zn =(αk,0 + αk,1)E
x,h
tn

[
L I n+1

h,Xn, j Y
n+1ΔW�

n,1

]

+ (αk,0 + αk,1 + αk,2)E
x,h
tn

[
L I n+2

h,Xn, j Y
n+2ΔW�

n,2

]

+
k∑

j=3

(
αk, j−3 + αk, j−2 + αk, j−1 + αk, j

)
E

x,h
tn

[
L I n+ j

h,Xn, j Y
n+ jΔW�

n, j

]

+ (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

ΔW�
n,k+1

]

+ (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2ΔW�

n,k+2

]

+ αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

ΔW�
n,k+3

]
,

αk,0Y
n = −(αk,0 + αk,1)E

x,h
tn

[
L I n+1

h,Xn, j Y
n+1

]

− (αk,0 + αk,1 + αk,2)E
x,h
tn

[
L I n+2

h,Xn, j Y
n+2

]

−
k∑

j=3

(αk, j−3 + αk, j−2 + αk, j−1 + αk, j )E
x,h
tn

[
L I n+ j

h,Xn, j Y
n+ j

]

− (αk,k−2 + αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+1

h,Xn, j Y
n+k+1

]

− (αk,k−1 + αk,k)E
x,h
tn

[
L I n+k+2

h,Xn, j Y
n+k+2

]
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− αk,kE
x,h
tn

[
L I n+k+3

h,Xn, j Y
n+k+3

]
− f (tn, x, Y

n, Zn).

until max
(∣
∣Yn,l+1 − Yn,l

∣
∣ ,
∣
∣Zn,l+1 − Zn,l

∣
∣
)

< ε0,

3. let Yn = Yn,l+1 and Zn = Zn,l+1.

Remark 5 1. Scheme 3 coincides with Scheme 2 if a and b do not depend on Y and Z .

2. We only assume that the coupled FBSDEs are uniquely solvable, the lacking analysis
will be the task of future work.

We know that the mesh Rn
h is essentially unbounded. However, in real computations, one

is usually interested in certain approximations of (Yt , Zt ) at (tn, x), where x belongs to a
bounded domain. For example, the value of an option at the current asset price is usually
asked. Therefore, only a bounded sub-mesh of Rn

h is used on each time level.

7 Numerical Experiments

In this section we use some numerical examples to show that Schemes 2 and 3 can achieve
ninth-order convergence rate for solving FBSDEs. The uniform partitions in both time and
space will be used, that is, the time interval [0, T ] will be uniformly divided into NT parts
with Δt = T

NT
such that tn = nΔt, n = 0, 1, . . . , NT ; the space partition is Rn

h = Rh for
all n with

Rh = R1,h × R2,h × · · ·Rn,h,

where R j,h is the partition of R

R j,h =
{
x j
i : x j

i = ih, i = 0,±1, . . . ,±∞
}

, j = 1, 2, . . . , n.

In our numerical experiments we choose the local Lagrange interpolation for L I nh,x based
on the set of some neighbor grids near x, i.e., Rh,x ⊂ Rh such that (33) holds. Following
[38], we set sufficientlymanyGauss-Hermite quadrature points such that the quadrature error
could be negligible.Note that the truncation error is defined in (12), in order to thus balance the
temporal and space truncation error in our numerical examples, we force hr+1 = (Δt)k+1,

where r is the degree of the Lagrangian interpolation polynomials. For example, one can

firstly specify a value of r , and then adjust the value of h such that h = Δt
k+1
r+1 . For the

numerical results in this paper, r is set to be a value from the set {10, 11, · · · , 21} to control
the errors. Furthermore, we will consider k from 3 such that at least one combination of four
αk,i s is included, however, up to that k = 9. Finally, CR and RT are used to denote the
convergence rate and the running time in second, respectively. For the comparative purpose,
we take examples considered in [38]. Numerical experiment were performed in MATLAB
with an Intel(R) Core(TM) i5-8350 CPU @ 1.70 GHz and 15 G RAM.

Example 1 The first example reads
⎧
⎪⎪⎨

⎪⎪⎩

dXt = 1
1+2 exp(t+Xt )

dt + exp(t+Xt )
1+exp(t+Xt )

dWt , X0 = 1,

−dYt =
(
− 2Yt

1+2 exp(t+Xt )
− 1

2

(
Yt Zt

1+exp(t+Xt )
− Y 2

t Zt

))
dt − Zt dWt ,

YT = exp(T+XT )
1+exp(T+XT )

,
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Table 5 Errors, running time and convergence rates for Example 1, T = 1

Scheme 2 NT = 16 NT = 20 NT = 24 NT = 28 NT = 32 CR

k = 3 |Y 0 − Y0| 4.717e-06 2.613e-06 1.569e-06 1.015e-06 6.905e-07 2.78

|Z0 − Z0| 2.547e-05 1.552e-05 1.009e-05 6.889e-06 4.903e-06 2.39

RT 0.37 0.49 0.65 0.91 1.19

k = 4 |Y 0 − Y0| 6.871e-07 3.152e-07 1.629e-07 9.240e-08 5.618e-08 3.61

|Z0 − Z0| 6.879e-06 3.097e-06 1.595e-06 9.027e-07 5.488e-07 3.65

RT 0.39 0.61 0.85 1.12 1.41

k = 5 |Y 0 − Y0| 5.623e-08 2.077e-08 9.011e-09 4.355e-09 2.343e-09 4.59

|Z0 − Z0| 6.522e-07 2.427e-07 1.047e-07 5.016e-08 2.704e-08 4.60

RT 0.46 0.69 0.95 1.25 1.58

k = 6 |Y 0 − Y0| 3.549e-09 1.073e-09 3.929e-10 1.623e-10 7.549e-11 5.56

|Z0 − Z0| 5.658e-08 1.632e-08 6.000e-09 2.519e-09 1.168e-09 5.59

RT 0.52 0.85 1.26 1.74 2.10

k = 7 |Y 0 − Y0| 2.156e-10 4.809e-11 1.457e-11 5.075e-12 2.019e-12 6.73

|Z0 − Z0| 6.349e-09 1.556e-09 4.796e-10 1.749e-10 7.147e-11 6.47

RT 0.60 1.10 1.65 2.15 2.79

k = 8 |Y 0 − Y0| 6.025e-11 8.573e-12 3.292e-12 7.027e-13 4.868e-13 7.10

|Z0 − Z0| 1.029e-09 1.934e-10 5.811e-11 1.459e-11 6.696e-12 7.35

RT 0.62 1.17 1.73 2.37 3.11

k = 9 |Y 0 − Y0| 2.315e-11 4.131e-12 9.073e-13 2.169e-13 2.398e-14 9.55

|Z0 − Z0| 3.672e-10 5.073e-11 1.184e-11 2.528e-12 5.760e-13 9.19

RT 0.69 1.32 2.04 2.83 3.74

with the analytic solution
{
Yt = exp(t+Xt )

1+exp(t+Xt )
,

Zt = (exp(t+Xt ))
2

(1+exp(t+Xt ))3
.

Obviously, in this example, the generator a and b does not depend on Yt and Zt , i.e., a
decoupled FBSDE. All the convergence rates, running time and absolute errors are reported
in Table 5. In the proposed scheme, k + 3 points are needed for the iterations, i.e., one need
at least 12 points when k = 9. Furthermore, we can not choose a large value for NT due to
the accuracy of double precision. Therefore, to show the convergence rate up to ninth order
we consider NT = {16, 20, 24, 28, 32} in this example.

From Table 5 we see that the quite high accuracy of Scheme 2 for solving decoupled
FBSDEs. Scheme 2 is a k-order scheme up to that k = 9, and more efficient for taking a
larger value for k, which is consistent with the theory [6], see also Table 4. By using the
scheme proposed in [38], one can obtain the accuracy of the order 1e−14 for 113 seconds by
using k = 6 and NT = 128, see Table 3 in [38]. In Table 5, we show that the same accuracy
can be achieved only for around 4 seconds by using k = 9 and NT = 32.

For the second example we consider the coupled FBSDE (taken from [38]) to test
Scheme 3, in which an iterative process is required with longer computational time.
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Table 6 Errors, running time and convergence rates for Example 2, T = 1

Scheme 3 NT = 13 NT = 15 NT = 17 NT = 19 NT = 21 CR

k = 3 |Y 0 − Y0| 2.269e-04 1.398e-04 9.186e-05 6.025e-05 4.336e-05 3.47

|Z0 − Z0| 1.562e-04 1.143e-04 6.555e-05 4.431e-05 3.359e-05 3.36

RT 3.89 4.79 5.78 6.53 7.84

k = 4 |Y 0 − Y0| 9.569e-06 7.654e-06 4.799e-06 2.734e-06 1.571e-06 3.83

|Z0 − Z0| 1.447e-04 1.126e-04 6.268e-05 3.009e-05 1.223e-05 5.14

RT 4.51 5.73 6.79 8.12 10.43

k = 5 |Y 0 − Y0| 4.773e-07 1.740e-07 3.835e-08 6.464e-08 2.325e-08 5.96

|Z0 − Z0| 2.433e-06 6.129e-07 2.215e-08 1.988e-07 2.968e-07 4.89

RT 21.07 28.68 35.43 41.14 53.55

k = 6 |Y 0 − Y0| 4.469e-08 2.509e-08 1.361e-08 6.572e-09 3.257e-09 5.47

|Z0 − Z0| 4.257e-07 3.145e-07 1.629e-07 7.017e-08 2.121e-08 6.15

RT 33.49 48.76 63.83 80.93 99.07

k = 7 |Y 0 − Y0| 6.510e-10 4.904e-10 1.536e-11 4.256e-11 3.250e-11 7.20

|Z0 − Z0| 1.218e-08 1.207e-08 8.072e-10 3.704e-09 2.249e-10 7.56

RT 34.39 53.76 75.34 97.09 120.69

k = 8 |Y 0 − Y0| 1.876e-10 8.477e-11 3.098e-11 1.028e-11 5.961e-12 7.51

|Z0 − Z0| 8.841e-09 2.877e-09 1.727e-10 7.179e-11 5.141e-10 8.19

RT 35.76 90.17 149.87 172.70 247.68

k = 9 |Y 0 − Y0| 1.926e-11 5.744e-12 5.828e-13 9.910e-13 3.098e-14 12.10

|Z0 − Z0| 2.502e-10 1.526e-10 3.190e-11 3.039e-11 2.234e-12 9.07

RT 55.19 173.80 275.15 384.02 503.85

Example 2
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dXt = − 1
2 sin(t + Xt ) cos(t + Xt )(Y 2

t + Zt ) ds

+ 1
2 cos(t + Xt ) + (Yt sin(t + Xt ) + Zt + 1) dWs, X0 = 1.5,

−dYt = (Yt Zt − cos(t + Xt )) dt − Zt dWt ,

YT = sin(T + XT ).

has the analytic solution
{

Yt = sin(t + Xt ),

Zt = cos2(t + Xt ).

In this coupled FBSDE, the diffusion coefficient b depends on X , Y and Z , i.e., quite general.
For the same reasons as those explained for Example 1, we set NT = {13, 15, 17, 19, 21} in
order to show the convergence rate up to ninth order.

From the results listed in Table 6, we can draw same conclusions as those having been
for Example 1.

Finally, we illustrate the accuracy of the proposed scheme for a two-dimensional example,
which is also taken from [38] and reads
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Example 3
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
dX1

t
d X2

t

)

=
( 1

2 sin
2(t + X1

t )
1
2 sin

2(t + X2
t )

)

dt +
( 1

2 cos
2(t + X1

t )
1
2 cos

2(t + X2
t )

)

dWt ,

(
X1
0

X2
0

)

=
(
0
0

)

,

(
dY 1

t
dY 2

t

)

=

⎛

⎜
⎜
⎝

− 3
2 cos(t + X1

t ) sin(t + X2
t ) − 3

2 sin(t + X1
t ) cos(t + X2

t ) − Z2
t

+ 1
2Y

1
t

( 1
4 cos

4(t + X2
t ) + 1

4 cos
4(t + X1

t )
)− 1

4 (Y
2
t )3

3
2 sin(t + X1

t ) cos(t + X2
t ) + 3

2 cos(t + X1
t ) sin(t + X2

t ) − Z1
t

+ 1
2Y

2
t

( 1
4 cos

4(t + X2
t ) + 1

4 cos
4(t + X1

t )
)− 1

4Y
1
t (Y 2

t )2

⎞

⎟
⎟
⎠ dt

−
(
Z1
t

Z2
t

)

dWt ,
(
Y 1
T

Y 2
T

)

=
(
sin(T + X1

T ) sin(T + X2
T )

cos(T + X1
T ) cos(T + X2

T )

)

with the analytic solution
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Y 1
t

Y 2
t

)

=
(
sin(t + X1

t ) sin(t + X2
t )

cos(t + X1
t ) cos(t + X2

t )

)

,

(
Z1
t

Z2
t

)

=
⎛

⎝

1
2 cos(t + X1

t ) sin(t + X2
t ) cos

2(t + X2
t )

+ 1
2 sin(t + X1

t ) cos(t + X2
t ) cos

2(t + X1
t )

− 1
2 sin(t + X1

t ) cos
3(t + X2

t ) − 1
2 cos

3(t + X1
t ) sin(t + X2

t )

⎞

⎠ .

The numerical approximations are reported in Table 7,which show that ourmulti-step scheme
is still quite highly accurate for solving a two-dimensional FBSDE.

We observe that the convergence rates are roughly consistent with the theoretical results,
the slight deviation comes from the quadratures and especially the two-dimensional interpo-
lations. Obviously, the high efficiency and accuracy have been shown in this two-dimensional
example.Note that the parallel computing toolbox inMATLABhas been used in this example,
more precisely, the parallel for-Loops (parfor) is used for the two-dimensional interpolation
on the grid points. Theoretically, our schemes can be also used for very high-dimensional
problems.Although our semi-discrete scheme allows for ninth order of convergence in time, it
is quite challenging to approximate the resulting conditional expectationswith the same accu-
racy due to the curse of dimensionality. Recently, several approaches, see e.g., [12,16,17,29]
have been proposed for solving extremely high-dimensional problems. Those works open up
possibility in practical applications, and preventing the curse of dimensionality. Thus, a high
order accurate method for numerically solving very high-dimensional FBSDEs is considered
as our future work.

8 Conclusion

In this work, by using the FDMs with the combinations of some the multi-steps we have
adopted the high-order multi-step method in [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci.
Comput., 36(4) (2014), pp.A1731-A1751] for numerically solving FBSDEs. First of all, our
new schemes allow for higher convergence rate up to ninth order. Secondly, they also keep
the key feature that is the numerical solution of backward component maintains the higher-
order accuracy by using the Euler method to the forward component. This feature makes our
schemes be promising in solving problems in practice. The effectiveness and higher-order
accuracy have been confirmed by the numerical experiments. A rigorous stability analysis
for the proposed schemes is the task of future work.
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Table 7 Errors, running time and convergence rates for Example 3, T = 1

Scheme 2 NT = 16 NT = 20 NT = 24 NT = 28 NT = 32 CR

k = 3 |Y 0,1 − Y 1
0 | 4.308e-03 2.447e-03 1.495e-03 9.726e-04 6.651e-04 2.70

|Y 0,2 − Y 2
0 | 3.896e-03 2.200e-03 1.340e-03 8.705e-04 5.949e-04 2.71

|Z0,1 − Z1
0 | 3.887e-03 2.041e-03 1.201e-03 7.602e-04 5.110e-04 2.93

|Z0,2 − Z2
0 | 2.980e-03 1.491e-03 8.465e-04 5.243e-04 3.451e-04 3.11

RT 34.65 53.68 74.87 92.42 130.14

k = 4 |Y 0,1 − Y 1
0 | 8.829e-04 4.437e-04 2.417e-04 1.413e-04 8.759e-05 3.34

|Y 0,2 − Y 2
0 | 7.776e-04 3.845e-04 2.072e-04 1.202e-04 7.413e-05 3.39

|Z0,1 − Z1
0 | 6.653e-04 2.556e-04 1.161e-04 5.899e-05 3.270e-05 4.35

|Z0,2 − Z2
0 | 6.845e-04 2.659e-04 1.218e-04 6.268e-05 3.521e-05 4.29

RT 43.52 70.30 100.41 142.95 195.94

k = 5 |Y 0,1 − Y 1
0 | 5.686e-05 2.367e-05 1.084e-05 5.445e-06 2.952e-06 4.27

|Y 0,2 − Y 2
0 | 5.131e-05 2.112e-05 9.605e-06 4.801e-06 2.595e-06 4.31

|Z0,1 − Z1
0 | 7.703e-05 2.621e-05 1.067e-05 4.923e-06 2.517e-06 4.94

|Z0,2 − Z2
0 | 7.237e-05 2.402e-05 9.582e-06 4.363e-06 2.201e-06 5.04

RT 50.72 79.97 132.00 186.09 231.84

k = 6 |Y 0,1 − Y 1
0 | 4.277e-06 1.706e-06 7.258e-07 3.354e-07 1.674e-07 4.68

|Y 0,2 − Y 2
0 | 3.857e-06 1.509e-06 6.336e-07 2.901e-07 1.437e-07 4.75

|Z0,1 − Z1
0 | 5.569e-06 1.667e-06 5.803e-07 2.309e-07 1.016e-07 5.78

|Z0,2 − Z2
0 | 5.531e-06 1.655e-06 5.791e-07 2.313e-07 1.026e-07 5.76

RT 64.97 110.97 173.50 246.96 337.71

k = 7 |Y 0,1 − Y 1
0 | 5.753e-07 1.843e-07 6.513e-08 2.568e-08 1.115e-08 5.70

|Y 0,2 − Y 2
0 | 5.312e-07 1.669e-07 5.836e-08 2.283e-08 9.864e-09 5.76

|Z0,1 − Z1
0 | 9.466e-07 2.291e-07 7.027e-08 2.528e-08 1.027e-08 6.52

|Z0,2 − Z2
0 | 9.091e-07 2.157e-07 6.529e-08 2.326e-08 9.404e-09 6.59

RT 73.89 139.46 234.34 339.44 453.70

k = 8 |Y 0,1 − Y 1
0 | 2.586e-08 1.080e-08 4.077e-09 1.592e-09 6.652e-10 5.30

|Y 0,2 − Y 2
0 | 2.384e-08 9.742e-09 3.623e-09 1.400e-09 5.802e-10 5.39

|Z0,1 − Z1
0 | 6.238e-08 1.548e-08 4.186e-09 1.299e-09 4.791e-10 7.06

|Z0,2 − Z2
0 | 6.290e-08 1.534e-08 4.077e-09 1.255e-09 4.579e-10 7.14

RT 84.65 177.96 299.48 436.73 592.02

k = 9 |Y 0,1 − Y 1
0 | 8.294e-09 2.371e-09 6.964e-10 2.250e-10 8.045e-11 6.70

|Y 0,2 − Y 2
0 | 7.739e-09 2.153e-09 6.229e-10 1.991e-10 6.989e-11 6.80

|Z0,1 − Z1
0 | 2.771e-08 5.329e-09 1.262e-09 3.491e-10 1.245e-10 7.84

|Z0,2 − Z2
0 | 2.748e-08 5.202e-09 1.217e-09 3.350e-10 9.998e-11 8.08

RT 91.19 210.99 356.54 534.76 760.94
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