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Abstract
In this work we examine a posteriori error control for post-processed approximations to ellip-
tic boundary value problems.We introduce a class of post-processing operator that “tweaks” a
wide variety of existing post-processing techniques to enable efficient and reliable a posteriori
bounds to be proven. This ultimately results in optimal error control for all manner of recon-
struction operators, including those that superconverge.We showcase our results by applying
them to two classes of very popular reconstruction operators, the Smoothness-Increasing
Accuracy-Conserving filter and superconvergent patch recovery. Extensive numerical tests
are conducted that confirm our analytic findings.

Keywords Post-processing · SIAC filter · Superconvergent patch recovery · Finite element
method · Discontinuous Galerkin · A posteriori error bound · Adaptivity

1 Introduction

Post-Processing techniques are often used in numerical simulations for a variety of reasons
from visualisation purposes [4] to designing superconvergent approximations [5] through to
becoming fundamental building blocks in constructing numerical schemes [6,12,13].Another
application of these operators is that they are a very useful component in the a posteriori
analysis for approximations of partial differential equations (PDEs) [2,33]. The goal of an a
posteriori error bound is to computationally control the error committed in approximating the

B Tristan Pryer
tmp38@bath.ac.uk

Andreas Dedner
A.S.Dedner@warwick.ac.uk

Jan Giesselmann
giesselmann@mathematik.tu-darmstadt.de

Jennifer K Ryan
jkryan@mines.edu

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

2 Department of Mathematics, TU Darmstadt, 64293 Darmstadt, Germany

3 Mathematical Sciences, University of Bath, Bath BS2 7AY, UK

4 Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01502-2&domain=pdf
http://orcid.org/0000-0003-4499-0563


34 Page 2 of 28 Journal of Scientific Computing (2021) 88 :34

solution to a PDE. In order to illustrate the ideas, let u denote the solution to some PDE and
let uh denote a numerical approximation. Then, the simplest possible use of post-processing
in a posteriori estimates is to compute some u∗ from uh and to use

‖ u − uh ‖≈‖ u∗ − uh ‖
as an error estimator.

However, a key observation here (and in several more sophisticated approaches) is that
u∗ must be at least as good of an approximation of the solution u as uh is. In fact, in many
cases, u∗ is actually expected to be a better approximation. This raises a natural question: If
an adaptive algorithm computes (on any givenmesh) not only uh but also u∗ and u∗ is a better
approximationofu thanuh is,why isuh andnotu∗ considered as the “primary” approximation
of u? Indeed, the focus of this paper is to consider u∗ as the primary approximation of u.
We are therefore interested in control of the error ‖ u − u∗ ‖ and in adaptivity based on an
a posteriori estimator for ‖ u − u∗ ‖. Specifically, we aim to provide reliable and efficient
error control for ‖ u − u∗ ‖.

Note that our goal is not to try to construct “optimal” superconvergent post-processors.
Rather we try to determine, from the a posteriori viewpoint, the accuracy of some given
post-processed solution and to determine how this is useful for the construction of adaptive
numerical schemes based on an error tolerance for u − u∗.

There are several examples of superconvergent post-processors, includingSIACand super-
convergent patch recovery. More details on the history, properties and implementation of
these methods will be provided in Sects. 4.1 and 4.2 . However, our a posteriori analysis,
aims at being applicable for a wide variety of post-processors and, therefore, we avoid special
assumptions that are only valid for specific post-processors. Indeed, our analysis makes only
very mild assumptions on the post-processing operator. Specifically, we only require that:

1. The post-processed solution u∗ belongs to a finite dimensional space that contains piece-
wise polynomials, although it does not necessarily need to be piecewise polynomial
itself.

2. The post-processed solution should be piecewise smooth over the same triangulation, or
a sub-triangulation, of the finite element approximation.

Given a post-processor, u∗ that satisfies these rather mild assumptions, we perturb it slightly
and call the result u∗∗. This is to ensure an orthogonality condition holds which then allows
us to show various desirable properties including:

1. The orthogonal post-processor provides a better approximation than the original post-
processor, i.e. ‖ u − u∗∗ ‖Ah≤‖ u − u∗ ‖Ah in the energy norm, see Lemma 3.4.

2. The orthogonal post-processor has an increased convergence order in the L2 norm. Prac-
tically, this is not always the case for the original post-processor, see Lemma 3.6.

3. Efficient and reliable a posteriori bounds are available for the error committed by the
orthogonal post-processor.

This, motivates us to consider u∗∗ (and not u∗ or uh) as the primary approximation. Since
the improved accuracy of u∗∗, compared to uh , stems from superconvergence it is much
more sensitive with respect to smoothness of the exact solution, i.e. in regions where the
exact solution is C∞ we expect u∗∗ to be much more accurate than uh whereas in places
where the exact solution is less regular, e.g. has kinks, uh and u∗∗ are expected to have similar
accuracy. Therefore, meshes constructed based on error estimators for u − uh will usually
not be optimal when used for computing u∗∗ in the sense that the ratio of degrees of freedom
to error ‖u − uh‖ would be much better for other meshes, this is elaborated upon in Sect. 5.
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We will demonstrate the good approximation properties of our modification strategy for
post-processors and the benefits of basing mesh adaptation on an estimator for ‖u − uh‖
in a series of numerical experiments. In order to highlight the versatility of our approach,
we conduct experiments based on two popular post-processing techniques: The Smoothness
Increasing Accuracy Conserving (SIAC) filter and superconvergent patch recovery (SPR).
Background on these methods is provided in Sects. 4.1 and 4.2 respectively.

The rest of the paper is structured as follows: In Sect. 2 we introduce the model elliptic
problem and its dG approximation. We also recall some standard results for this method. In
Sect. 3, for a given reconstruction, we perturb it so it satisfies Galerkin orthogonality and
show some a priori type results. We then study a posteriori results and give upper and lower
bounds for a residual type estimator. In Sect. 4 we describe the two families of post-processor
that we consider in this work. Finally, in Sect. 5 we perform extensive numerical tests on
the SIAC and SPR post-processors to show the performance of the a posteriori bounds, the
effect of smoothness of the solution on the post-processors and to study adaptive methods
driven by these estimators.

2 Problem Setup and Notation

Let � ⊂ R
d , d = 1, 2, 3 be bounded with Lipschitz boundary ∂�. We denote by Lp(�),

p ∈ [1,∞], the standard Lebesgue spaces and Hs(�), the Sobolev spaces of real-valued
functions defined over �. Further we denote H1

0(�) the space of functions in H1(�) with
vanishing trace on ∂�.

For f ∈ L2(�) we consider the problem

− div(D∇u) = f in �

u = 0 on ∂�,
(2.1)

where D : � → R
d×d is a uniformly positive definite diffusion tensor and D ∈

[
H1(�) ∩ L∞(�)

]d×d
. Weakly, the problem reads: find u ∈ H1

0(�) such that

A (u, v) :=
∫

�

D∇u · ∇v dx =
∫

�

f v dx ∀ v ∈ H1
0(�). (2.2)

LetT be a triangulationof� into disjoint simplicial or box-type (quadrilateral/hexahedral)
elements K ∈ T such that � = ⋃

K∈T K . Let E be the set of edges which we split into the
set of interior edges Ei and the set of boundary edges Eb.

We introduce the standard broken Sobolev spaces. For s ∈ N0 we define

Hs(T ) := {v ∈ L2(�) : v|K ∈ Hs(K ) ∀ K ∈ T }, (2.3)

and we will use the notation

‖ v ‖Hs (T )=
(

∑

K∈T
‖ v ‖2Hs (K )

)1/2

(2.4)

as an elementwise norm for the broken space.
For p ∈ Nwe denote the set of all polynomials over K of total degree at most p byPp(K ).

For p ≥ 1, we consider the finite element space

V
p
h := {φ ∈ L2(�) : v|K ∈ P

p(K ), K ∈ T }. (2.5)
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Let v ∈ H1(T ) be an arbitrary scalar function. For any interior edge e ∈ Ei there are two
adjacent triangles K−, K+ and we can consider the traces v± of v from K± respectively.
We denote the outward normal of K± by n± and define average and jump operators for one
Ei by

{{v}} := 1

2

(
v+ + v−) := 1

2

(
lim
s↘0

v(· + sn+) + lim
s↘0

v(· + sn−)

)
,

�v� :=(
v−n− + v+n+) := lim

s↘0
v(· + sn−)n− + lim

s↘0
v(· + sn+)n+.

(2.6)

For boundary edges there is only one trace of v and one outward pointing normal vector n
and we define

{{v}} := v �v� := vn. (2.7)

For vector valued functions v ∈ [H1(T )]d we define jumps and averages on interior edges
by

{{v}} := 1

2
v+ + 1

2
v−, �v� :=(

v− · n− + v+ · n+)
. (2.8)

As before, for boundary edges, we define jumps and averages using traces from the interior
only. Note that �v� , {{v}}∈ L2(E ) and �v� , {{v}}∈ [L2(E )]d .

For any triangle K ∈ T we define hK := diam K and collect these values into an
element-wise constant function h : � → R with h|K = hK . We denote the radius of the
largest ball inscribed in K by ρK . For every edge e we denote by he ={{h }} , i.e., the mean of
diameters of adjacent triangles. For our analysis wewill assume thatT belongs to a family of
triangulations which is quasi-uniform and shape-regular. Let us briefly recall the definitions
of these two notions: The triangulation T is called

• shape-regular if there exists C > 0 so that

hK < CρK ∀ K ∈ T (2.9)

• quasi-uniform if there exists C > 0 so that

max
K∈T hK < ChK ∀ K ∈ T . (2.10)

Note that for shape-regular triangulations we have inverse and trace inequalities [10, Lemmas
1.44, 1.46]. Note that the quasi-uniformity assumption is only required for the first part of
our analysis, in Sect. 3.1 and can be relaxed in Sect. 3.2.

In this work we will consider a standard interior penalty method to approximate solutions
of (2.2). We consider the Galerkin method to seek uh ∈ V

p
h such that

Ah(uh, vh) =
∫

�

f vh dx ∀ vh ∈ V
p
h , (2.11)

where Ah : H2(T ) × H2(T ) → R is given by

Ah(u, v) =
∫

T
D∇u · ∇v −

∫

E
�v� · {{D∇u }} −

∫

E
�u� · {{D∇v}} +

∫

E
σh−1

e �u� · �v�

(2.12)

Note that the bilinear form (2.12) is stable provided σ = σ(D) is large enough, see [1].
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Remark 2.1 (Continuous Galerkin methods). Note that if we restrict test and trial functions to
V

p
h∩H1(�) then all jumps on interior edges vanish and (2.11), (2.12) reduces to a (continuous)

finite element method with weakly enforced boundary data. Our analysis is equally valid in
this case.

We introduce two dG norms

‖ v ‖2dG :=‖ ∇v ‖2
L2(T )

+ ‖ h
− 1

2
e �v� ‖2

L2(E )

‖ v ‖2Ah
:= Ah(v, v) ,

(2.13)

which are equivalent provided σ > 0 is sufficiently large and conclude this section by stating
a-priori estimates for the Galerkin method as is standard in the literature [1,17].

Theorem 2.2 (Error bounds for the dG approximation). Let u ∈ Hs(�) for s ≥ 2 be the
solution of (2.1) and uh ∈ V

p
h be the unique solution to the problem (2.11). Then,

‖ u − uh ‖L2(�) +h ‖ u − uh ‖dG≤ C1h
min(p+1,s) |u|Hs (�) . (2.14)

Further, for u ∈ H1(�), we have the a posteriori error bound

‖ u − uh ‖dG≤ C2Rh := C2

(
∑

K∈T

(

η2K + 1

2

∑

e∈∂K

η2e

)) 1
2

, (2.15)

where

η2K :=‖ hK ( f + div(D∇uh)) ‖2
L2(K )

η2e :=‖ h
1
2
e �D∇uh� ‖2

L2(e)
+ ‖ h

− 1
2

e �uh� ‖2
L2(e)

,
(2.16)

and C1 is a constant depending on the shape-regularity and quasi-uniformity constants of
T and C2 depends only upon the shape-regularity. Here Rh is a computable residual that
we refer to during our numerical simulations.

3 The Orthogonal Reconstruction, a priori and a posteriori Error
Estimates

In this section, we derive robust and efficient error estimates. We make the assumption that
we have access to a computable reconstruction, u∗ ∈ V

∗
h ⊂ H2(T ) generated from our

numerical solution uh , where V∗
h is required to contain the original finite element space, that

is Vp
h ⊂ V

∗
h . We are unable to provide reliable a posteriori error estimates for u∗ directly,

but we can modify, and, as we shall demonstrate, improve any such reconstruction such that
a robust and efficient error estimate can be obtained for the modified reconstruction.

We split this section into two parts, the first subsection contains the definition of the
improved reconstruction and some of its properties. In particular, we study this from an a
priori viewpoint, show that it satisfies Galerkin orthogonality as well as some desirable a
priori bounds. Throughout this subsection we assume that u ∈ H2(�) and the underlying
mesh is quasi-uniform. In the second partwe derive reliable and efficient a posteriori estimates
under the weaker assumption that u ∈ H1(�) and the mesh is shape regular.
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3.1 Improved Reconstruction

In the following assume that u ∈ H2(�) solves (2.2) and let u∗ ∈ V
∗
h ⊂ H2(T ) be a

reconstruction of the discrete solution uh , e.g. a SIAC reconstruction as described in Sect.
4.1 or obtained by some patch recovery operator as described in Sect. 4.2.

Definition 3.1 Let R : H2(T ) → V
p
h denote the Ritz projection with respect to Ah(·, ·),

i.e.,

Ah(Rv, φh) = Ah(v, φh) ∀ φh ∈ V
p
h . (3.1)

We define the improved reconstruction as

u∗∗ := u∗ − Ru∗ + uh ∈ V
∗
h (3.2)

Remark 3.2 We make the following remarks:

1. The finite element approximation from (2.11) satisfies uh = Ru.
2. We work under the assumption that a post-processor u∗ is already being computed. To

realise u∗∗ we are required to solve the original elliptic problem a second time with a
different forcing term. This means the improved reconstruction u∗∗ is computable at a
small additional cost to u∗. Once u∗ has been computed, u∗∗ can be computed by solving
a discrete elliptic problem over Vp

h . A typical scenario is that the user already has a good
scheme for computing uh , and that the cost of computing u∗∗ (after the post-processing
to obtain u∗) is just that of solving the same system as that for uh with a different right
hand side. This means the assembly and preconditioning, perhaps ILU or AMG, can be
reused without change.
Estimating the cost of computing u∗ is more complicated and will depend on the method
used and the implementation.While our implementation for solving uh and the correction
are optimized (and implemented in C++) the computation of u∗∗ is a proof of concept
implementation in Python and is therefore not competitive.

3. Note that

u − u∗∗ = u − uh − u∗ + Ru∗ = (id − R)(u − u∗), (3.3)

where id is the identity mapping, i.e., the error of u∗∗ is the Ritz-projection of the error
of u∗ onto the orthogonal complement of Vp

h .
4. Even if u∗ is continuous, this does not necessarily hold for u∗∗ as V

p
h may contain

discontinuous functions.

One of the key properties of the improved reconstruction is that it satisfies a Galerkin
orthogonality result.

Lemma 3.3 (Galerkin orthogonality). The reconstruction u∗∗ from (3.2) satisfies Galerkin
orthogonality, i.e.,

Ah
(
u − u∗∗, vh

) = 0 ∀vh ∈ V
p
h . (3.4)

Proof For any vh ∈ V
p
h , we have using (3.3)

Ah
(
u − u∗∗, vh

) = Ah
(
(id − R)(u − u∗), vh

) = 0 (3.5)

by definition of the Ritz projection, as required. ��
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Now, we show that with respect to ‖ · ‖Ah the new reconstruction u∗∗ indeed improves
upon u∗:
Lemma 3.4 (Better approximation of the improved reconstruction). Let u∗∗ be defined by
(3.2), then the following holds:

‖ u − u∗∗ ‖Ah≤‖ u − u∗ ‖Ah . (3.6)

In (3.6) the inequality is an equality if and only if u∗∗ = u∗, i.e., if the original reconstruction
u∗ itself satisfies Galerkin orthogonality.

Proof Since the images of R and (id−R) are orthogonal with respect toAh(·, ·), Pythagoras’
theorem implies

‖ u − u∗ ‖2Ah
=‖ (id − R)(u − u∗) + R(u − u∗) ‖2Ah

≥‖ (id − R)(u − u∗) ‖2Ah
=‖ u − u∗∗ ‖2Ah

(3.7)

We have used (3.3) in the third step. Note that if u∗ is not Galerkin orthogonal then

‖ R(u − u∗) ‖Ah> 0

leading to a strict inequality in the first step. This completes the proof. ��
Remark 3.5 One appealing feature of the new reconstruction that results from Galerkin
orthogonality is that if the reconstruction u∗ has some superconvergence properties in the
energy norm this is inherited by u∗∗ and also immediately implies an additional order of
accuracy in L2. This results from an Aubin-Nitsche trick being available.

Lemma 3.6 (Dual bounds). Let � be a convex polygonal domain and let u∗∗ be defined by
(3.2), then there exists a constant C > 0 (only depending on the shape regularity of the mesh)
such that

‖ u − u∗∗ ‖L2(�)≤ Ch ‖ u − u∗∗ ‖Ah . (3.8)

Proof Let ψ ∈ H2(�) ∩ H1
0(�) solve

− div(D∇ψ) = u − u∗∗

which implies
∫

T
D∇ψ · ∇v −

∫

E
�v� · {{D∇ψ }}=

∫

�

(u − u∗∗)v ∀v ∈ H1(T ). (3.9)

Thus, by choosing v = u − u∗∗ in (3.9) we obtain

‖ u − u∗∗ ‖2
L2(�)

=
∫

T
D∇ψ · ∇(u − u∗∗) −

∫

E
�u − u∗∗� · {{D∇ψ }}

= Ah
(
ψ, u − u∗∗)

= Ah
(
ψ − ψh, u − u∗∗)

(3.10)

for any ψh ∈ V
p
h where the last equality follows from Galerkin orthogonality (3.4). Thus,

choosing ψh as the best approximation of ψ in the piecewise linear subspace of Vp
h , we

obtain

‖ u − u∗∗ ‖2
L2(�)

≤‖ ψ − ψh ‖Ah‖ u − u∗∗ ‖Ah

≤ Ch ‖ u − u∗∗ ‖Ah‖ ∇2ψ ‖L2(�)

≤ Ch ‖ u − u∗∗ ‖L2(�)‖ u − u∗∗ ‖Ah ,

(3.11)

123



34 Page 8 of 28 Journal of Scientific Computing (2021) 88 :34

by elliptic regularity of the dual problem, concluding the proof. ��

3.2 A Posteriori Error Estimates

Now that we have shown some fundamental results on the improved reconstruction, we relax
the regularity requirements on u in this subsection allowing for weak solutions to (2.1), that
is, u ∈ H1(�). With that in mind we modify the definition ofAh(·, ·) such that it is a suitable
extension over H1(T ) × H1(T ) to

Ah(u, v) :=
∫

T
D∇u · ∇v − r∗

h (�v�) · D∇u − r∗
h (�u�) · D∇v +

∫

E
σh−1

e �u� · �v� ,

(3.12)

for u, v ∈ H1(T ) and where r∗
h : [L2(E )]d → [

V
∗
h

]d is the lifting operator that we recall
from [10, Section 4.3.1]

∫

�

r∗
h (ϕ) · Dψh =

∫

E
ϕ· {{Dψh }} ∀ ψh ∈[

V
∗
h

]d
. (3.13)

The lifting operators satisfy the stability estimate, [10, Lemma 4.34],

‖ r∗
h (ϕ) ‖L2(�)≤ C ‖ h

− 1
2

e ϕ ‖L2(E ), (3.14)

For test and trial functions in V
∗
h (which contains V

p
h by assumption) the new definition

of Ah(·, ·) is equivalent to the one given in (2.12). Therefore for any function v∗ ∈ V
∗
h

the Ritz projection given in Definition 3.1 remains the same still satisfying Ah(Rv∗, φh) =
Ah(v

∗, φh) for all φh ∈ V
p
h . But note that we no longer have uh = Ru and Galerkin

orthogonality for u∗∗ no longer holds in general, it only holds for a H1(�) conforming
subspace of Vp

h :

Lemma 3.7 For u ∈ H1(�) and zh ∈ V
p
h ∩ H1

0(�) it holds that

Ah
(
u∗∗ − u, zh

) = 0. (3.15)

Proof By definition of u∗∗ we have that

Ah
(
u∗∗ − u, zh

) = Ah
(
u∗ − Ru∗ + uh − u, zh

)

= Ah
(
u∗ − Ru∗, zh

) + Ah(uh − u, zh)

= Ah(uh − u, zh) ,

(3.16)

since u∗ ∈ V
∗
h . Now, notice that by definition

Ah(uh − u, zh) = 〈 f , zh〉 −
∫

T
D∇u · ∇zh − r∗

h (�zh�) · D∇u = 0 (3.17)

as zh is an element of Vp
h ∩ H1

0(�) and, hence, continuous, as required. ��
Let a quantity of interest be given by the linear functionalJ ∈ H−1(T ), the dual space of

H1
0(T ). Note that H−1(T ) ⊂ H−1(�)where the latter is the dual space of H1

0(�). We begin
by deriving an error representation formula. Following [15], we split u∗∗ into a continuous
part u∗∗

C ∈ V
∗
h ∩ H1

0(�) and a discontinuous part u∗∗⊥ ∈ V
∗
h so that

u∗∗ = u∗∗
C + u∗∗⊥ and Ah

(
u∗∗⊥ , ψh

) = 0 ∀ ψ ∈ V
∗
h ∩ H1

0(�). (3.18)
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Theorem 3.8 (Dual error representation). Let u ∈ H1
0(�) be the solution of (2.2) and let

u∗∗ be given by (3.2), then

J (u − u∗∗) = 〈 f , z − zh〉 − Ah
(
u∗∗, z − zh

) + Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ ) (3.19)

where 〈·, ·〉 denotes the L2 scalar product and z ∈ H1
0(�) is the solution of the dual problem

A (v, z) = J (v) ∀ v ∈ H1
0(�) (3.20)

and zh is an arbitrary function in Vp
h ∩ H1

0(�).

Proof By definition of z, we have, for any zh ∈ V
p
h ∩ H1

0(�),

J (u − u∗∗) = J (u − u∗∗
C − u∗∗⊥ )

= J (u − u∗∗
C ) − J (u∗∗⊥ )

= A
(
u − u∗∗

C , z
) − J (u∗∗⊥ )

= 〈 f , z〉 − Ah
(
u∗∗
C , z

) − J (u∗∗⊥ )

= 〈 f , z〉 − Ah
(
u∗∗, z

) + Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ )

= 〈 f , z〉 − Ah
(
u∗∗, z − zh

) − Ah
(
u∗∗, zh

) + Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ )

= 〈 f , z − zh〉 − Ah
(
u∗∗, z − zh

) + Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ ),

(3.21)

where we made use of Galerkin orthogonality, Lemma 3.7, in the last step. ��
Theorem 3.9 (Primal error estimate). There exists some constant CA > 0 depending on
mesh geometry and polynomial degree such that

‖ u − u∗∗ ‖dG≤ CAR
∗∗ := CA

(
∑

K∈T

(

(η∗∗
K )2 + 1

2

∑

e∈∂K

(η∗∗
e )2

)) 1
2

, (3.22)

where

(η∗∗
K )2 :=‖ hK ( f + div

(
D∇u∗∗)) ‖2

L2(K )

(η∗∗
e )2 :=‖ h

1
2
e �D∇u∗∗� ‖2

L2(e)
+ ‖ h

− 1
2

e �u∗∗� ‖2
L2(e)

(3.23)

Proof Since

‖ u − u∗∗ ‖dG≤ C

(

‖ D
1
2
(∇u − ∇u∗∗) ‖2

L2(T )
+

∑

e∈E
‖ h

− 1
2

e �u∗∗� ‖2
L2(e)

) 1
2

, (3.24)

where C is some constant depending onD only, it is sufficient to show that

‖ D
1
2
(∇u − ∇u∗∗) ‖L2(T )

is bounded by the right hand side of (3.22).
In Theorem 3.8 we may choose

J (v) :=
∫

T
D(∇u − ∇u∗∗)∇v. (3.25)

Note that, by definition, z ∈ H1
0(�) so that, if Vp

h contains discontinuous functions, z �=
u − u∗∗. Nevertheless, z satisfies the stability estimate

‖ D
1
2 ∇z ‖L2(�)≤‖ D

1
2
(∇u − ∇u∗∗) ‖L2(T ) . (3.26)
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Then, for any zh ∈ V
p
h ∩ H1

0(�), Theorem 3.8 implies

‖ D
1
2 ∇(

u − u∗∗) ‖2
L2(T )

= J (u − u∗∗)
= 〈 f , z − zh〉 − Ah

(
u∗∗, z − zh

) + Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ )

= 〈 f , z − zh〉 −
∫

T
(∇u∗∗ − r∗

h (�u∗∗�))D∇(z − zh)

+ Ah
(
u∗∗⊥ , z

) − J (u∗∗⊥ ).

(3.27)

Integrating by parts in (3.27) and using (3.14) we obtain

‖ D
1
2 ∇(

u − u∗∗) ‖2
L2(T )

=
∫

T
( f + div

(
D∇u∗∗))(z − zh) −

∫

E
�D∇u∗∗� (z − zh)

+
∫

T
r∗
h (�u∗∗�)D∇(z − zh) + Ah

(
u∗∗⊥ , z

) − J (u∗∗⊥ )

≤
∑

K

hK ‖ f + div
(
D∇u∗∗) ‖L2(K ) h

−1
K ‖ z − zh ‖L2(K )

+ 1

2

∑

e∈∂K

h
1
2
e ‖ �D∇u∗∗� ‖L2(e) h

− 1
2

e ‖ z − zh ‖L2(e)

+ C ‖ h
− 1

2
e �u∗∗� ‖L2(E )‖ D

1
2 ∇(z − zh) ‖L2(�)

+ C ‖ u∗∗⊥ ‖dG‖ D
1
2 ∇(z − zh) ‖L2(�) + ‖ J ‖H−1(�)‖ u∗∗⊥ ‖dG

(3.28)

From [14, Theorem 5.3] we obtain

‖ u∗∗⊥ ‖dG≤ CP ‖ h
− 1

2
e �u∗∗� ‖L2(E ) (3.29)

with a constant CP > 0 which is independent of h but depends on the shape regularity of the
mesh and the polynomial degree and we also note that

‖ J ‖H−1(�)≤ C ‖ D
1
2 ∇(

u − u∗∗) ‖L2(T ) . (3.30)

We insert (3.29) and (3.30) into (3.28) and apply trace inequality and Cauchy-Schwarz
inequality and obtain

‖ D
1
2 ∇(

u − u∗∗) ‖2
L2(T )

≤
(

∑

K

(

(η∗∗
K )2 + C

∑

e∈∂K

(η∗∗
e )2

)) 1
2

‖ h−1(z − zh) ‖L2(�)

+ C

(
∑

K

∑

e∈∂K

(η∗∗
e )2

) 1
2

‖ D
1
2 ∇(z − zh) ‖L2(�) .

(3.31)

Now, we choose zh ∈ V
p
h ∩ H1

0(�) as the Clément interpolant of z so that

‖ h−1(z − zh) ‖L2(�) + ‖ D
1
2 ∇(z − zh) ‖L2(�) ≤ C ‖ ∇z ‖L2(�)

≤ C ‖ D
1
2 ∇(

u − u∗∗) ‖L2(T ),

(3.32)
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and insert (3.32) into (3.31) to obtain the assertion of the theorem. ��
The error estimator, derived in Theorem 3.9, is locally efficient in the following sense:

Theorem 3.10 (Local efficiency). Assume f and D are piecewise polynomial on T . Then,
there exists a constant C > 0 independent of h such that for any K ∈ T and any e ∈ E the
following estimates hold:

η∗∗
K ≤ C ‖ D

1
2 ∇(

u − u∗∗) ‖L2(K ) (3.33)

and

η∗∗
e ≤ C ‖ D

1
2 ∇(

u − u∗∗) ‖L2(Ke)
(3.34)

where Ke denotes the union of cells sharing common edge e.

Proof Both proofs are standard and follow [33]. ��
Remark 3.11 (Data oscillation). In case f or D are not polynomial the right hand side of
(3.33) contains additional data oscillation terms.

4 Post-processors

In order to show the versatility of our results, we consider two families of reconstruction oper-
ators. Namely, the Smoothness-Increasing Accuracy-Conserving (SIAC) post-processing
[5,30,32] as well as patch reconstruction via the Zienkiewicz and Zhu [37,39] Supercon-
vergent Patch Recovery (SPR) technique. Below we outline the procedure for performing
these reconstructions as well as error estimates for the ideal case.

4.1 SIAC Post-processors

One example of a superconvergent post-processor thatwe examine is the Smoothness Increas-
ingAccuracyConserving (SIAC) filter. The SIACfilter has its roots in an accuracy-enhancing
post-processor developed byBramble and Schatz [5]. The original analysiswas done for finite
element approximations for elliptic equations. This technique has desirable qualities includ-
ing its locality, allowing for efficient parallel implementations, and its effectiveness in almost
doubling the order of accuracy rather than increasing the order of accuracy by one or two
orders. This post-processor was also explored from a Fourier perspective and for derivative
filtering by Thomeé [32] and Ryan and Cockburn [29].

SIAC filters are an extension of the above ideas and have traditionally been used to
reduce the error oscillations and recover smoothness in the solution and its derivatives for
visualization purposes [24,31,34] or to extract accuracy out of existing code [28]. It has been
extended to a variety of PDEs aswell asmeshes [16].A quasi-interpolant perspective on SIAC
can be found in [26]. The important property of these filters is that, in addition to increasing
the smoothness, for smooth initial data and linear problems, the filtered solution is more
accurate than the DG solution. To combat the high computational cost of the tensor-product
nature of the multi-dimensional kernel, a line filter was introduced in [11].

For ease of presentation the following discussion only details the design of the filter
and presents a-priori error estimates for the case of a smooth solution. Although the dis-
cussion is limited to one-dimension, it can be extended to Cartesian meshes in more than
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one space dimension using a tensor product approach. More advanced applications of the
multi-dimensional SIAC post-processor are the Hexagonal SIAC [22] or Line SIAC [11].

The basic idea is that the reconstruction is done via convolution post-processing:

u∗(x̄) = K 2r+1,m+1
H ∗ uh = 1

H

∫ ∞

−∞
K

(
x̄ − y

H

)
uh(y) dy,

where h is the mesh size of the numerical scheme and H is the scaling of the post-processor.
The convolution kernel, K 2r+1,m+1(·), is defined as

K 2r+1,m+1(x) =
r∑

γ=−r

c2r+1,m+1
γ ψ(m+1) (x − γ ) .

This is a linear combination of 2r + 1 shifted copies of some function, ψ(m+1)(x). The
function weights are real scalars, c2r+1,m+1

γ ∈ R. For the kernel, r is chosen to satisfy
consistency as well as 2r moment requirements, i.e., polynomial reproduction conditions,
which are necessary for preserving the accuracy of the Galerkin scheme and m is chosen for
smoothness requirements. We focus on kernels built from B-splines which are defined via
the B-Spline recurrence relation:

ψ(1) = χ[−1/2,1/2]

ψ(m+1) = 1

m

[(
x + m + 1

2

)
ψ(m)

(
x + 1

2

)
+

(
m + 1

2
− x

)
ψ(m)

(
x − 1

2

)]
,
(4.1)

for m ≥ 1.

Remark 4.1 (Kernel scaling.). For cartesian grids, the kernel scaling is typically chosen to be
the element size, H = h. In adaptive meshes or structured triangular meshes and tetrahedral
meshes, H is typically chosen to be the length of the mesh pattern [21]. For Line SIAC, the
kernel scaling is taken to be the element diagonal [11], for unstructured meshes, the kernel
scaling is taken to be largest element side [23,25].

It can be shown that when the solution is sufficiently smooth the post-processed numerical
solution u∗ is a superconvergent approximation.

In particular, if u ∈ C∞(�), then the Galerkin solution converges in Theorem 2.2 as

‖ u − uh ‖L2(�)= O(h p+1). (4.2)

If we choose r = p and m = p − 2 then

‖ u − u∗ ‖L2(�)= O(h2p), (4.3)

see Theorem 1 in [5,32], which for p ≥ 2 constitutes an improvement. It is possible to obtain
the same estimates in H1 by taking higher order B-Splines.

In this paper, in order to apply the post-processor globally, we mirror the underlying
approximation as an odd function at the boundary as discussed in [5].

Remark 4.2 (Impact of in-cell regularity of u∗∗). If u∗, u∗∗ /∈ H2(T ) Theorem 3.9 does not
hold. Still, as long as u∗ ∈ H1(T ) similar results can be obtained by slightly modifying the
proof of Theorem 3.9. One interesting example is SIAC reconstruction with m = 0. In this
case, for any K ∈ T the restriction u∗∗|K contains several kinks, i.e. there are hypersurfaces
(points for d = 1, lines for d = 2) across which u is continuous but not differentiable.
However, for any K there exists a triangulation TK of K , such that u∗∗|K ∈ H2(TK ). If we
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follow the steps of the proof of Theorem 3.9 we realise that integration by parts can only be
carried out on elements of ∪K∈T TK and each term ‖ hK ( f + �u∗∗) ‖2

L2(K )
in the error

bound needs to be replaced by
∑

T∈TK

‖ hK ( f + �u∗∗) ‖2
L2(T )

+1

2

∑

e∈EK

‖ h
1
2
K �∇u∗∗� ‖2

L2(e)
, (4.4)

where EK denotes the set of interior edges of TK . Efficiency of this modified estimator can
be shown along the same lines as in Theorem 3.10 but bubble functions with respect to the
elements and edges in the sub-triangulation TK need to be used.

4.2 Superconvergent Patch Recovery

The second post-processing operatorwe study is based on the superconvergent patch recovery
(SPR) technique. This was originally studied numerically and showed a type of supercon-
vergence for elliptic equations using finite element approximations [36]. The mathematical
theory behind this recovery technique was addressed by Zhang and Zhu [38] for the two-
point boundary value problems and for two-dimensional problems and extended to parabolic
problems in [18,19]. The superconvergent patch recovery method works by recovering the
derivative approximation values for one element from patches surrounding the nodes of
that element using a least squares fitting of the superconvergent values at the nodes and
edges. In typical derivative recovery, the derivative approximation is a continuous piecewise
polynomial of some given degree. For overlapping patches, the recovered derivative is just
an average of the approximations obtained on the surrounding patches. Unlike SIAC post-
processing, this recovery technique does not rely on translation invariance for the high-order
recovery. The superconvergent patch recovery technique has been shown to work well for
elliptic equations that have a smooth solution, and for less smooth solutions with a suitably
refined mesh.

The usual application of this technique is for gradient recovery. However, in this article
we apply this technique to recover function values.

As mentioned, we suitably modify the algorithm to construct a function u∗ ∈ V
∗
h with

V
∗
h = V

2p+1
h ∩ C0(�). The construction of u∗, given some finite element function uh , is

carried out in two steps:

1. Construct a polynomial qi of order 2p at each node vi of the mesh using a least squares
fitting of function values of uh evaluated at suitable points in elements surrounding vi .

2. Given an element K we use linear interpolation of the values of qi for the three nodes of
K to compute u∗ ∈ V

∗
h .

There are many approaches for constructing the polynomials qi in the first step at a given
node vi with surrounding triangles K ′. For our experiments, we use the following approach.
For p = 1, we construct a quadratic polynomial qi by fitting the values of uh at the nodes
of all K ′. For a piecewise quadratic uh (p = 2) we also use the midpoints of all edges
of the K ′. Finally for our tests with p = 3 we evaluate uh at two points on each edge
chosen symmetrically around the midpoint of the edge (we use the Lobatto points with local

coordinates 1
2 ±

√
5

10 ) and also add the value of uh at the barycentre of the K
′. This is depicted

in Fig. 1. To guarantee that we have enough function values to compute the least squares fits,
we add a second layer of triangles around vi if necessary, e.g., at boundary nodes.

Note that this procedure is similar, although not the same, as the approach investigated in
[35]. Another related procedure was proposed in [27].
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Fig. 1 Evaluation points of uh used for the least squares fit of a polynomial at node vi for p = 1, 2, 3 (from
left to right)

5 Numerical Results

In this section we study the numerical behaviour of the error indicators proposed for the
SIAC and SPR post-processing operators. We compare this behaviour with the true error on
some typical model problems. The computational work was done in the DUNE package [3]
based on the new Python frontend for the DUNE-FEM module [8,9].

5.1 Smoothness-Increasing Accuracy-Conserving Post-processors

The implementation of the post-processor is done through simple matrix-vector multiplica-
tion and is discussed in [20].

We first investigate the behaviour of the error and the residual estimator for the problem
(2.1) in one space dimension with D = 1, i.e. the Laplace problem

−u′′ = f in �

u = 0 on ∂�,
(5.1)

where the forcing function f is chosen so that the exact solution is

u(x) = sin (6πx)2 cos

(
9

2
πx

)
(5.2)

on the interval (0, 1). We show both the L2 and H1 errors for the Galerkin approximation uh ,
the SIAC postprocessed approximation, u∗ and the orthogonal postprocessor, u∗∗. We also
show the two residual indicators Rh (from Theorem 2.2) and R∗∗ from (Theorem 3.9). For
the basis we consider the continuous Lagrange polynomials for uh and impose the boundary

conditions weakly with a penalty parameter 10p2

h , where p is the polynomial degree and h
is the grid spacing. Additional experiments were conducted using a discontinuous Galerkin
approximation, but no significant differences in the outcome where found and therefore do
not include the results. We solve the resulting linear system using an exact solver [7] to avoid
issues with stopping tolerances.

We will mainly focus on p = 2 but also show results for p = 1 and p = 3. The
SIAC postprocessing is constructed using a continuous B-spline, m = 1, as well as setting
r = � p+1

2 �. This leads to an inner stencil of 2�r + 1
2 − 1� + 1 = 2� p+1

2 + 3� elements. We
also tested other choices of r , m for p = 2 but the above choice provided the best results
and these are the results shown.
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Fig. 2 Errors and convergence rates for H1 (left two) and L2 (right two) for polynomial degree p = 2 using
a SIAC reconstruction

In Fig. 2 we show the errors for p = 2 for a series of grid refinement levels starting with
20 intervals and doubling that number on each level. In Fig. 2 we plot the corresponding
Experimental Orders of Convergence (EOCs). As can clearly be seen, SIAC postprocessing
(u∗) improves the convergence rate in H1 from 2 to 3 and in L2 from 3 to 4. While in H1 the
Galerkin orthogonality trick only leads to a small improvement in the error, in L2 we see an
improvement of a full order leading to a convergence rate of 5. As expected from the theory
the residual indicators follow the H1 errors of uh and u∗∗ closely. The efficiency index is
comparable between Rh and R∗∗.

For a better understanding of how the error is reduced by utilizing SIAC postprocessing
and theGalerkin orthogonality treatment, we show the pointwise errors of the approximations
in Fig. 3. It is evident that the function values are much smoother when applying SIAC. The
move from u∗ and u∗∗ does reintroduce small scale errors, but at a far lower level compared
to the original approximation, uh . As expected from the errors, the differences in H1 are less
pronounced.

In Fig. 4 we show errors and EOCs for p = 3. Due to the very low errors on the final grid
the actual convergence rates for u∗ and u∗∗ is not clear. However, the improvement due to
the Galerkin orthogonality trick, especially in L2 is quite noticable as it reduced the error by
two orders of magnitude.

We next show results for p = 1 in Fig. 5. Again, there is a clear reduction in the values of
the errors from uh to u∗ to u∗∗ in H1 together with an improvement in the convergence rate
due to the SIAC postprocessing. This improvement in the convergence rate is about 1 order.
While the convergence rate going from uh to u∗∗ seems to only be half an order on the higher
grid resolution, it is important to note that the error using u∗∗ is still significantly smaller
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Fig. 3 Pointwise errors for the three different solutions on the right half of the interval, evaluating the function
in a number of points per interval. These are results with p = 2 and h = 1/320 showing the errors in the
gradient (left) and in the function values (right)

Fig. 4 Errors and convergence rates for H1 (left two) and L2 (right two) for polynomial degree p = 3 using
SIAC reconstruction

than the error between the exact solution and u∗ by at least a factor of 2. Hence the results
do not contradict the theory. In L2, SIAC leads to no improvement while the convergence
rate of the error using u∗∗ is at least half an order higher. Overall the improvement in the
convergence rate is not quite as good as for the higher polynomial degrees. The following
tests summarized in Fig. 6 show that the weak form of the boundary conditions is responsible
for the reduced order improvement. The figure shows results using a hyperpenalty of the
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Fig. 5 Errors and convergence rates for H1 (left two) and L2 (right two) for polynomial degree p = 1 using
SIAC reconstruction

Fig. 6 Errors and convergence rates for H1 (left two) and L2 (right two) for polynomial degree p = 2 with
hyperpenalty at the boundary
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Table 1 Experimental rates of convergence for the smooth problem using different values for the polynomial
degree p. The convergence rates are shown for the three approximations, i.e., uh , u∗, u∗∗

p = 1 p = 2 p = 3

EOC(uh) EOC(u∗) EOC(u∗∗) EOC(uh) EOC(u∗) EOC(u∗∗) EOC(uh) EOC(u∗) EOC(u∗∗)

L2-error 2 2 4 3 4 5 4 6 6

H1-error 1 2 3 2 4 4 3 5 5

form 10p2

h2
. Applying this hyperpenalty term leads to improvements that are again more in

line with our observations for higher order polynomials. We note that strong enforcement of
the boundary conditions also lead to similar results.

We summarize our results for the smooth problem in Table 1. It can be clearly seen that
the step from u∗ to u∗∗, which requires solving one additional low order problem, is quite
advantageous and increases the convergence rate in the L2 norm by at least one. In the linear
case this improves by two and by one in the H1 norm. This makes it highly efficient in this
case, at least when implementing the hyperpenalization or strong constraints to enforce the
Dirichlet boundary conditions. The reason for this restriction will be investigated further
in future work. For p = 3 the actual EOCs of the postprocessed solutions are difficult to
determine and therefore we provide approximate numbers. In this case, SIAC shows a higher
order in L2 compared to the H1 norm. The Galerkin orthogonalty trick does not improve the
rate further, but note that the overall error is still a factor of 100 smaller. Additionally note
that in the other cases where there is no improvement in the rate, the error is reduced by
enforcing Galerkin orthogonality, e.g., in the H1 norm with p = 2 the error is still reduced
by about a factor of two. In addition, the orthogonality of u∗∗ allows us to compute a reliable
and efficient error estimator with a comparable efficiency index to the error estimator for uh
using Rh .

We conclude our investigations of the SIAC reconstruction and the residual estimates by
studying problems with less smooth solutions. We change the forcing function so that the
exact solution is of the form

u(x) =
{

w
( x−0.3

0.4

)
x ∈ (0.3, 0.7) ,

0 otherwise

where

w(s) = sin (6πs)2 cos

(
9

2
πs

)
(5.3)

is the smooth function from previous studies. We show results for polynomial degree p = 2.
We again implement a simple O(h−1) penalty term at the boundary. Note that the solution is
in C2 \C3 at x = 0.7 and only in C1 \C2 for x = 0.3. Overall the solution is an element of
H2(0, 1) but not of H3(0, 1), i.e., it is not smooth enough to achieve optimal convergence rates
for p = 2when themesh is not aligned. Evenwhen themesh is aligned, as in our experiments,
we do not expect an increase of the convergence rate using the SIAC reconstruction as can
be seen in Fig. 7. The local loss of regularity at x = 0.3 and x = 0.7 is clearly visible for
the pointwise errors of the two reconstructions as shown in Fig. 8. Examining the errors in
the original approximation, uh , the reduced smoothness is hardly visible. However, in both
of the reconstructions a jump in the error is clearly visible. At x = 0.7, where the solution
is still in C2 the error in u∗∗ increases approximately by two orders while at x = 0.3 it is
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Fig. 7 Errors and convergence rates for H1 (left two) and L2 (right two) for polynomial degree p = 2 using
SIAC for solution with reduced smoothness

close to four orders of magnitude larger since the solution is only C1 at this point. The lack of
smoothness is also identified by the residual indicator R∗∗, the spatial distribution of which
is shown in Fig. 9 together with the distribution of Rh . It is worthwhile to note that the region
of the ’reduced smoothness’ is better isolated by R∗∗ than by Rh . Hence it would be easier
for an adaptive algorithm to separate these different smoothness regions which would lead
to more optimal meshes. The picture clearly shows that Rh does not ’see’ the kink so that
an adaptive algorithm would either refine the whole non-constant region or nothing at all
depending on the tolerance. In contrast, with R∗∗ (and the right algorithm) refinement could
be isolated to the kinks.

5.2 Superconvergent Patch Recovery

In the following we solve

− div(D∇u) = f (5.4)

in a two dimensional domain � where the forcing function f is chosen by prescribing an
exact solution u. This function is also used to prescribe Dirichlet boundary conditions on
all of ∂�. In the first example we chose a smooth exact solution u with a scalar diffusion
coefficient D = I2

(|x |2 + 1
2

)
, while for the second test we use a solution with a corner

singularity andD = I2.
In the followingwe show results using aDG scheme on a triangular grid. The grid is refined

by splitting each element into four elements. In the final examples with local adaptivity, this
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Fig. 8 Pointwise errors of the three different approximations for the piecewise smooth problem. Top row
shows the difference in the solution values around x = 0.3 (left) and around x = 0.7 (right). The bottom row
shows gradient errors in the same two regions. These are results with p = 2 and h = 1/320

Fig. 9 Elementwise residual indicators using uh and u∗∗ for the piecewise smooth problem around x = 0.3
(left) and around x = 0.7 (right). bottom row shows gradient errors in the same two regions. These are results
with p = 2 and h = 1/320

leads to a grid with hanging nodes.We also carried out experiments using a continuous ansatz
space with very simular results.

Note that in all figures depicting errors and EOCs, the x-axis shows the number of degrees
of freedom for uh . While the other approximations have a larger number of degrees of
freedom, the global problem that has to be solved, i.e. solving the linear system for uh and
for Ru∗, scales with the number of degrees of freedom for uh and thus this seems a reasonable
indication of the computational complexity.
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Fig. 10 Macro grid and exact solution u for smooth problem. Note that the solution has been scaled down by
a factor of 4

Fig. 11 L2 errors and EOC (top two rows) and H1 errors and EOC (bottom two rows) for the smooth problem
with p = 1, 2, 3 (left to right)

For our first test we choose u(x, y) = sin (πx/(0.25 + xy)) sin (π(x + y)), and � =
(0, 1)2. We start with an initial grid which is slightly irregular as shown in Fig. 10. This is to
avoid any superconvergence effects due to a structured layout of the triangles.

Figure 11 shows L2 and H1 errors and EOCs for the three approximations uh, u∗, u∗∗ with
polynomial degrees p = 1, 2, 3. It can be seen that, in general, the postprocessor u∗ improves
the EOC by an order of 1 in the H1 norm and that the EOC of the improved postprocessor u∗∗
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Fig. 12 H1 errors and residuals for smooth problem with p = 1, 2, 3 (left to right). Results are shown for an
adaptive mesh using a tolerance of 0.2, 0.01, 0.001 for p = 1, 2, 3, respectively

is at least as good. While the actual error of u∗ can be larger on coarser grids than the error
computed with uh , the error using u∗∗ is significantly better in all cases. Focusing now on the
L2 norm, we see that when computing the error using u∗∗, the EOC is one order better then
the convergence rate in the H1 norm, as expected. For p = 2, 3, this is also true when using
u∗, while for p = 1 the EOC is only 2 in this case, and an increase to 3 is only achieved with
the improved postprocessor u∗∗. The same observation can be made when using the SIAC
postprocessor in the previous section.

Using the same problem setting, we investigate the performance of an adaptive algorithm
in Fig. 12. We use a modified equal distribution strategy where elements are marked for

refinement when the local indicator ηK exceeds
∑

ηK
#elements . We compute the local indicator

on either uh or on the improved reconstruction u∗∗. The advantage of basing the marking
strategy on u∗∗ is clearly demonstrated. While marking with respect to uh and then using
the postprocessor only on the final solution (filled upward triangles) leads to a significant
reduction of the final error, the difference in the convergence rate between Rh and R∗∗ results
in a finer grid than necessary for a given tolerance. A reduction in the number of degrees of
freedom by a factor of 10 to 100 can be easily achieved by using R∗∗.

For our final test we study a reentrant corner type problem, i.e., � = (−1, 1)2\([0, 1] ×
[−1, 0]) using a regular triangulation. First we choose the well known exact solution u ∈ H

3
2

leading to f = 0. Since the solution is not even H2 we can not expect the postprocessed
solution to have an increased convergence rate. This is confirmed by our numerical tests
summarized in Fig. 13. Due to the reduced smoothness and the simplicity of the solution
away from the corner, the postprocessing does not only not improve theEOCbut can even lead
to a slight increase in the overall error clearly noticeable in the H1 error for the p = 2 case.
This is even more obvious when the postprocessor, u∗, is used directly. Alternatively, going
from u∗ to u∗∗ leads to an approximation which is very close to the original uh in all cases.
Although the results for the globally refined grid are not that promising, the postprocessing
nevertheless has considerable benefits when adapting the grid using the residual indicator
based on u∗∗. Indeed Fig. 14 shows that, for a given number of dofs, mesh adaptation based
on R∗∗ produces an approximation u∗∗ which has a much smaller error than uh (on a mesh
constructed using Rh).

For a more challenging test, especially for p = 3, we construct the forcing function so
that the exact solution is u(x, y) = ω(x, y)ucorner(x, y), where ucorner is the solution to
the above corner problem and ω(x, y) = − sin

( 3
2π(1 − x2)(1 − y2)

)
. The function u still

has the same corner singularity but is also smooth. However, the challenging nature of this
solution is that it has large gradients towards the outer boundaries. Results for p = 2, 3 are
summarized in Figs. 15 and 17 . The final grids for p = 3 are shown in Fig. 16 using Rh

and R∗∗ to mark cells for refinement. In both cases 22 steps were needed and the resulting
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Fig. 13 Errors (right) and EOCs (left) for a simple corner problem. From top to bottom: L2 with p = 1, 2 and
H1 with p = 1, 2
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Fig. 14 H1 errors and residuals for simple corner problem with p = 1 (left) and p = 2 (right). Results are
shown for an adaptive mesh using a tolerance of 0.01

grids have 1597 and 4540 cells (20725 and 7381 degrees of freedom), respectively. While
the corner is highly refined in both cases, the regions that are smooth but strongly varying
in their solution are far less refined when using R∗∗. When using Rh the final errors are
‖u − uh‖dG ≈ 7.4 · 10−4 and ‖u − u∗∗‖dG ≈ 6.8 · 10−4 while adaptivity based on R∗∗
results in errors of the size ‖u−uh‖dG ≈ 3.9 ·10−3 and ‖u−u∗∗‖dG ≈ 7.0 ·10−4. Because
of the corner singularity, using the postprocessor after finishing the refinement (based on Rh)
does not lead to a significant improvement while basing the adaptive process on R∗∗ leads
to an almost identical error while requiring only 35% of the cells.

Figure 18 shows the efficiency index for all three test cases on globally refined grids. The
results seem to indicate that there is only a slight increase in the efficiency index R∗∗

‖∇(u∗∗−u)‖
compared to Rh‖∇(uh−u)‖ .

6 Summary Discussion

In this article, we provide a strategy for improving existing post-processing strategies for
numerical solutions of amodel elliptic problem.Themain idea is tomodify the post-processed
solution so that it satisfiesGalerkin orthogonality.Weprove variousapriori type results show-
ing desirable convergence properties of the orthogonal post-processor including an increased
order of accuracy in the L2 norm. We supported the analysis with numerical examples using
two types of post-processors – that of SIACandSPR–approximating smooth and non-smooth
solutions.

In addition to the a priori results, we provide a reliable and efficient a posteriori error
estimator for the orthogonal post-processed solution, it should be noted that no such estimator
is available for u−u∗. We demonstrate in several examples that much more efficient meshes
are obtained when adaptation is based on R∗∗ than when refinement is based on Rh and the
post-processor is only applied to the numerical solution on the final mesh.
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Fig. 15 Errors (right) and EOCs (left) for the extended corner problem. From top to bottom: L2 with p = 2, 3
and H1 with p = 2, 3
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Fig. 16 H1 errors and residuals for extended corner problem with p = 2 (left) and p = 3 (right). Results are
shown for an adaptive mesh using a tolerance of 0.01

Fig. 17 Discrete solution and adapted grid for extended corner problem with p = 2 using Rh (left) and R∗∗
(right) for marking. The iterate is chosen so that the resulting errors satisfty eh ≈ e∗∗ ≈ 0.013

Fig. 18 Efficiency index on globally refined grids for smooth problem with p = 1, 2, 3 (left), simple corner
problem with p = 1, 2 (middle), and extended corner problem with p = 2, 3 (right)
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