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Abstract
We introduce a new framework of numerical multiscale methods for advection-dominated
problems motivated by climate sciences. Current numerical multiscale methods (MsFEM)
work well on stationary elliptic problems but have difficulties when the model involves
dominant lower order terms. Our idea to overcome the associated difficulties is a semi-
Lagrangian based reconstruction of subgrid variability into amultiscale basis by solvingmany
local inverse problems. Globally the method looks like a Eulerian method with multiscale
stabilized basis. We show example runs in one and two dimensions and a comparison to
standard methods to support our ideas and discuss possible extensions to other types of
Galerkin methods, higher dimensions and nonlinear problems.

Keywords Multiscale simulation · Semi-Lagrangian · Inverse problems ·
Advection–diffusion · Multiscale finite elements

1 Introduction

1.1 Motivation and Overview

Simulating complex physical processes at macroscopic coarse scales poses many problems
to engineers and scientists. Such simulations strive to reflect the effective behavior of observ-
ables involved at large scales even if the processes are partly driven by highly heterogeneous
micro scale behavior. On the one hand resolving the microscopic processes would be the
safest choice but such a strategy is prohibitive since it would be computationally expensive.
On the other hand microscopic processes significantly influence the macroscopic behavior
and cannot be neglected.

Incorporating micro scale effects into macro simulations in a mathematically consistent
way is a challenging task. There exist many scenarios in different disciplines of science that
are faced with such challenges. In fully coupled paleo climate simulations, i.e., climate sim-
ulations over more than hundred thousand years a typical grid cell has edge lengths of around
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200km and more. Consequently, subgrid processes such as heterogeneously distributed and
moving ice shields are not or just insufficiently resolved [30]. These subgrid processes are
usually taken care of by so-called parameterizations. One can imagine this as small micro
scale simulations that are then coupled to the prognostic variables such as wind speed, tem-
perature and pressure on the coarse grid (scale of the dynamical core). This coupling from
fine to coarse scales is being referred to as upscaling and is unfortunately often done in
rather heuristic ways. This leads to wrong macroscopic quantities like wrong pressures and
eventually even to wrong wind directions and more undesired effects such as phase errors.

The increasing complexity of earth systemmodels (ESMs), in general, demands for math-
ematically consistent upscaling of parametrized processes that occur or are modelled on very
different scales relative to the dynamical core. A first example was already mentioned: In
global climate simulations a sea ice model computes the average ice cover for each coarse
cell. This information then enters heat fluxes between ocean and atmosphere since sea ice
forms an interface between them and is hence modeled as an averaged diffusive process.
It is known from homogenization theory that simple averaging of heterogeneous diffusive
quantities does not reflect the correct coarse scale diffusion [8].

Another, quite contrary, approach to perform multiscale simulations is adaptive mesh
refinement (AMR), see [7]. The idea of AMR is to initially run a coarse scale simulation and
then assess the quality of the solution locally bymeans of mathematically or physically based
a posteriori estimators. The coarse mesh is then refined in regions where the quality of the
solution is not sufficient or coarsened where the solution is smooth. This approach is different
from the above upscaling since micro scales are locally resolved—it is therefore sometimes
referred to as downscaling. Such an approach is attractive and is being used in practice but
it is not feasible in situations in which heterogeneities in the solution are expected to occur
globally.

One early attempt to use multiscale methods are Eulerian Lagrangian localized adjoint
methods (ELLAM), which constitute a space-time finite element framework, see [9,18], and
form the basis of the multiscale version MsELLAM [10,37]. Such methods rely on operator
splitting and basis functions are required to satisfy an adjoint equation. For a review see [32].

There exist many other multiscale methods. Homogenization is an originally analytical
tool to find effective models of otherwise heterogeneous models in the limit of a large scale
separation [5,8,25]. Unfortunately it is often too difficult to find such an effective equation
but there exist numerical techniques that aim at designing numerical algorithms to effectively
capture the behavior of the solution to the unknown homogenized problem.

The heterogeneous multiscale method (HMM)was pioneered byWeinan and Enquist [39,
40] and refers to a rich population of variants [3,15,16]. This method emphasizes important
principles in the design ofmultiscale methods such as the choice of macro- andmicro-models
and their communication. For reviews and further references see [1,2,38] for a discussion of
the HMM with special focus on PDEs.

Variational multiscale methods (VMM) have been developed in the 1990s by Hughes and
collaborators, see [22,23]. The spirit of the method lies in a decomposition of the solution
space and in the design of variational forms that reflect the relevant scale interactions between
the spaces. Many versions of it exist and we point the reader to recent reviews [4,31] and the
vast literature therein.

The present work is inspired by multiscale finite element methods (MsFEM) which can
be seen as a special variant of the VMM. The idea of this method is to introduce subgrid
variations into basis functions and can be dated back to works by Babuška et al. [6] and
shares ideas with the partition of unity method [29]. The MsFEM in its current form was
introduced in [12,20,21]. The essential idea of the method is to capture the local asymptotic
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structure of the solution through adding problem dependent bubble correctors to a standard
basis and use these as ansatz and trial functions. Many variations of this method exist and
we refer the reader to [11,14] for a review.

Many of the afore-mentioned methods have the advantage that they work well for elliptic
or parabolic problems and that they are accessible to an analysis. The difficulty in many
applications on the other hand is their advection or reaction dominated character, i.e., the
dynamics is often driven by low order terms. This poses major difficulties to numerical
multiscale methods. Multiscale finite element methods naively applied will not converge to
any reasonable solution since basis functions will exhibit artificial boundary layers [36] that
are not present in the actual physical flow. Ideas to tackle this problem are based on combining
transient multiscale methods with Lagrangian frameworks [36] or with stabilization methods
for stationary problems, see [26] for an overview.

When it comes to comparing numerical multiscale methods with dominant advection it is
important to distinguish between stationary problems and transient problems since the former
usually describe balanced states of (possibly more complicated) transient problems. They
therefore contain no information on initial states and one cannot take advantage of knowledge
on how “information” is transported by the dynamics inherent to the model. Multiscale
methods for stationary problems [3,20,21,26,28] therefore are conceptually different. To
the best of our knowledge existing methods for transient problems usually aim at different
regimes, e.g., see [16,27] and make some (legitimate) assumptions of the flow field specific
to the application that motivated the authors. This regime dependency in turn influences the
design of the method. Such regimes include periodic or quasi-periodic subscale coefficients,
zero-meanflows, existence of scale separations, incompressible backgroundflowsor different
limiting regimes. It is our goal to avoid such assumptions keeping in mind that processes that
are advectively driven by flows in climate and weather applications have divergence, do not
have mean zero and do not exhibit a scale separation. Yet, they dominate many parameterized
processes that canmanifest in precomputed diffusion coefficients coming from other sources,
e.g., see [33,34] for a simulation environment of urban areas and canopies.

1.2 Contribution

Our main contribution is a framework of numerical methods for advection-dominated flows
which by reconstructing subgrid variations on local basis functions aims at reflecting the
local asymptotic structure of solutions correctly. The idea combines multiscale Galerkin
methods with semi-Lagrangian methods by locally solving an inverse problem for the basis
representation of solutions that is adapted to the actual flow scenario.We demonstrate the idea
on one and two-dimensional advection–diffusion equations with heterogeneous background
velocities and diffusivities in both non-conservative and conservative form.

Applying standard MsFEMs directly leads to failure since boundary conditions (BCs) for
the modified basis functions cannot be prescribed arbitrarily. Suitable BCs on the subgrid
scale are an essential ingredient formanymultiscalemethods.Awrong placement ofDirichlet
BCs, for example, leads to boundary layers in basis functions that are not there in the real
large scale flow, i.e., the way information propagates in advection-dominant flow needs
to be respected and not artificially blocked. Other choices of BCs usually complicate the
enforcement of conformity or obfuscate additional assumptions on the problem structure
(such as local periodicity).

Conformal MsFEM techniques for advection-dominated tracer transport were already
explored in our previous work in one spatial dimension on a transient advection–diffusion
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equation [36]. The finding is that one has to follow aLagrangian point of view on coarse scales
such that flow is “invisible”. On fine scales one can then simplify Lagrangian transforms in
order to make advective effects milder near coarse grid boundaries without going to a fully
Lagrangian setting. This amounts to prescribing Dirichlet boundary conditions on coarse
flow characteristics and has the effect that basis functions do not develop spurious boundary
layers that are not present in the actual flow. While this work gave some useful insights it is
unfortunately not feasible for practical applications since it suffers from several weaknesses.
First, it is not directly generalizable to higher dimensions. Secondly, it needs assumptions on
the background velocity that are not necessarily fulfilled in practical applications to ensure
that coarse scale characteristics do not merge.

In order to circumvent these problems we suggest here a new idea based on a semi-
Lagrangian framework that locally in time constructs a multiscale basis on a fixed Eulerian
grid. The construction is done in a semi-Lagrangian fashion on the subgrid scale whereas the
macroscopic scale is conveniently treated fully Eulerian. This is in contrast to our previous
work but still respects that information in advection-dominant flows is “mostly” propagated
along flow characteristics. We do not make any special assumptions on the flow field with
respect to scale separation, divergence or mean except that the flow-field be not “too badly”
behaved. From the point of view of climate and weather applications this is reasonable since
velocities are usually given on relatively coarse meshes.

The construction of the basis in each cell at time tn+1 is done by tracing each Eulerian cell
back to time tn . This yields a distorted cell. A basis on this distorted cell is then reconstructed
by solving an inverse problem for the representation of the global solution at the previous
time step. Then the local representation of the solution on this cell is propagated forward in
time to get a basis on the Eulerian grid at tn+1 instead of propagating the solution itself.

All reconstructions of the basis in coarse cells are independent from each other and can
be performed in parallel. The global time step with the modified basis is not critical since
the coarse problem is small and since we can use algebraic constructs to make the assembly
of the global problem efficient. Note that although we formulate the algorithm globally in
an implicit form it can well be formulated explicitly which will allow for computational
efficiency for the global step.

Our new approach has several advantages. First, the idea of our method is quite simple and
allows to effectively incorporate subgrid behavior of the solution into the multiscale basis
via the solution of local inverse problems. It is important to note that the statement that the
idea of the method is simple rather refers to the idea of semi-Lagrangian reconstruction than
to the actual computational effort that one needs to invest to locally reconstruct a basis.

Secondly, the method can be parallelized similarly to semi-Lagrangian methods and thus
the actual basis reconstructions can be done on individual compute nodes and are indepen-
dent of each other. This eases the computational overhead (which increases with the space
dimension) the more compute nodes are involved (ideally, the method scales best when each
coarse cell is owned on a separate compute node). We do not take advantage of parallelism
here since our first implementation is a proto-type but in a forthcoming paper we will present
an MPI parallel and locally threaded implementation (for a climate specific application) to
investigate scaling on large clusters. However, this is ongoing work and we cannot report on
it yet. Furthermore, the idea works in any dimension.

Numerical tests show that it is accurate in both L2 and H1 since it represents subgrid vari-
ability correctly. The method can handle problems that involve an additional reaction term.
This consequently includes conservation problems since then ∇ · (cδu) = cδ ·∇u+ (∇ · cδ)u
in our model (2). A preliminary version of the idea was discussed in [35]. The preliminary
version, however, does not contain algorithmic details and does not allow to reproduce the
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method. Here we aim at a self contained clear presentation with details how inverse prob-
lems for basis reconstruction can be designed and with an extensive computational study on
model problems that are chosen to be close to our climate and weather application scenarios,
i.e., the flow does not exhibit a scale separation and is dominant in both compressible and
incompressible regimes while (given) parameterized processes manifest in fine scale diffu-
sion coefficients that often have high contrast. We also provide the reader with algorithmic
details on the 2D method and the global assembly procedure in Sect. 2.1.

We would like to stress that the idea is generic and can be used for vector valued prob-
lems and problems that involve subgrid information coming from actual data which renders
the technique suitable for data assimilation on both the coarse scale and the subgrid scale.
Applying it to finite element frameworks with different elements such as conformal elements
in H(curl) or H(div) is possible. Thus this manuscript should rather be seen as an instance of
how the idea can be realized on a specific model problem whereas we picked the simulation
of passive tracer transport.

2 The Semi-Lagrangian Basis Reconstruction in One and Two Spatial
Dimensions

In this section we will outline our ideas on an advection–diffusion equation (ADE) with
periodic boundaries as a model problem. We will outline all ideas for didactic purposes first
in d = 1 and in d = 2 dimensions on

∂t u + cδ · ∇u = ∇ · (Aε∇u) + f in T
d × [0, T ] ∼ [0, 1]d × [0, T ]

u(x, 0) = u0(x)
(1)

and

∂t u + ∇ · (cδu) = ∇ · (Aε∇u) + f in T
d × [0, T ]

u(x, 0) = u0(x)
(2)

where cδ(x, t) is the background velocity, Aε(x, t) is a matrix-valued diffusivity, and f and
u0 are some smooth external forcing and initial condition. Td denotes the d-dimensional
torus which is topologically equivalent to [0, 1]d with periodic boundary conditions. We will
use bold letters for the vectors and tensors independent of the dimension. From the modelling
point of view the difference between (1) and (2) is that in case of ∇ · cδ �= 0 and f = 0
that (2) is a conservation law. One can then see that since ∇ · (cδu) = cδ · ∇u + (∇ · cδ)u
this means that (2) is the same as (1) apart from an additional reaction term compensating
for “loss” of u.

The indices δ > 0 and ε > 0 indicate that both quantities may have large variations on
small scales that are not resolved on coarse scales H > 0 of our multiscale method. We
will also work locally on a scale h � H that can resolve the variations in the coefficients.
Furthermore, we assume that cδ � Aε (see remark below) and that cδ is well-behaved,
for example Lipschitz in space and continuous in time. This assumption is often satisfied
in practice for example in climate simulations where cδ is given at the nodes of a coarse
grid. Depending on the application variations in cδ may be resolved on scale H or not. The
diffusivity tensor is assumed to be positive definite (uniformly in ε and point-wise in x) with
Aε ∈ L∞

t (L∞
x )d×d , and is often derived from parameterized processes such as a varying sea

ice distribution, convection, topographical features, or land use patterns. Note, that (1) does
not conserve the tracer u in contrast to Eq. (2) provided f = 0.
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Fig. 1 Global coarse mesh and local fine mesh in 1D (left) and 2D (right)

Remark 1 Advection-dominance of a flow (what we sloppily expressed by cδ � Aε) is
usually expressed by a dimensionless number—the Péclet number Pe which is essentially
the ratio between advective and diffusive time scales. There exist several versions of this
number [24]. Since for large variations of the coefficients on the subgrid scale advection-
dominance is a very local property we need be more precise with what me mean by that.

Here we assume that Pe is high on average, i.e., Pe = ‖cδ‖L2 L‖Aε‖L2 where L is a characteristic

length. We take L to be the length of the computational domain.

Although the general idea of reconstructing subgrid variability in basis functions is not
substantially different for (1) and (2) there are some differences in the propagation of local
boundary information described below that strongly influence the accuracy.Wewill explicitly
describe these differences.

We start with outlining our method in one dimension since the idea is very simple and
avoids complications that arise in higher dimensions. The idea is to represent non-resolved
fine scale variations of the solution locally on a set of non-polynomial basis functions in
each coarse cell. That is we fix two (Eulerian) meshes: A coarse mesh TH of width H
and on each cell K ∈ TH of the coarse mesh we have a fine mesh T K

h of width h � H
(we assume that h does not depend on K ). On the coarse mesh we have a multiscale basis
ϕ
H ,ms
i :TH × [0, T ] → R, i = 1, . . . , NH , where NH is the number of nodes of TH .

This basis depends on space and time and will be constructed so that we will obtain a
spatially H1-conformal (multiscale) finite element space. Note that this is a suitable space
for problems (1) and (2) since they have unique solutions u ∈ L2([0, T ], H1(Td)) with
∂t u ∈ L2([0, T ], H−1(Td)) and hence in u ∈ C([0, T ], L2(Td)) [13]. The initial condition
u0 can therefore be assumed to be in L2(Td) but in later experiments we will choose it to be
smooth. The fine mesh on each cell K ∈ TH is used to represent the basis locally, see Fig. 1.

Standard MsFEM methods used for porous media flows are designed in such a way that
the coarse scale basis solves the PDE model locally with the same boundary conditions
as standard FEM basis functions. Note that the global coarse scale MsFEM solution is a
linear combination of modified local basis functions that do resolve the fine scale structure
induced by the problem’s heterogeneities and therefore do represent the asymptotics correctly.
This works for stationary elliptic problems and for parabolic problems as long as there is
no advective term involved or even dominant. The reason is that advective terms as they
appear in our model problems prevent a basis constructed by a standard MsFEM technique
to represent the correct asymptotics. This is since flow of information is artificially blocked
at coarse cell boundaries. Due to the incorrect boundary conditions for the multiscale basis
artificial steep boundary layers form in basis functions that do not exist in the actual global
flow. For transient problems another difficulty is that the local asymptotics around a point
depends on the entire domain of dependence of this point and hence subscale information
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represented by a base function must contain memory of the entire history of the local domain
of that base function.

A first attempt to bypass these difficulties was to pose boundary conditions for the basis
on suitable space-time curves, across which naturally no information is propagated on the
coarse scales. Such curves are Lagrangian paths. Therefore, a Lagrangian framework on the
coarse scale and an “almost Lagrangian” setting on fine scales was proposed by us earlier
[36]. Unfortunately, this method is not feasible since it can not be generalized to higher
dimensions and needs restrictive assumptions on the flow field.

Nonetheless, the results of [36] suggest that a coarse numerical splitting of the domain
should correspond to a reasonable physical splitting of the problem. Instead of a fully
Lagrangian method on coarse scales semi-Lagrangian techniques for building the basis can
circumvent the difficulties of Lagrangian techniques. But these are only local in time and
therefore they do not take into account the entire domain of dependence of a point. We show
how to deal with this in the following. First, we start with the global problem.

2.1 The Global Time Step in 1D/2D

Suppose we know a set of multiscale basis functions in a conformal finite element setting,
i.e., we approximate the global solution at each time step in a spatially coarse subspace
V H (t) ⊂ H1(Td) in which the solution u is sought (almost everywhere). We denote this
finite-dimensional subspace as

V H (t) = span
{

ϕ
H ,ms
j (·, t)

∣∣∣ i = 1, . . . , NH

}
. (3)

First, we expand the solution uH (x, t) in terms of the basis at time t ∈ [0, T ], i.e.,

uH (x, t) =
NH∑
j=0

uH
j (t)ϕH ,ms

j (x, t). (4)

Then we test with the modified basis and integrate by parts. Therefore, the spatially discrete
version of both problem (1) and (2) becomes the ODE

M(t)
d

dt
uH (t) + N(t)uH (t) = A(t)uH (t) + fH (t)

uH (0) = uH ,0
(5)

where

Ai j (t) =
∫

Td
ϕ
H ,ms
i (x, t) · Aε(x, t)∇ϕ

H ,ms
j (x, t) dx

−
∫

Td
ϕ
H ,ms
i (x, t) (cδ(x, t) · ∇) ϕ

H ,ms
j (x, t) dx (6)

for (1) and

Ai j (t) =
∫

Td
ϕ
H ,ms
i (x, t) · Aε(x, t)∇ϕ

H ,ms
j (x, t) dx

+
∫

Td

(
∇ϕ

H ,ms
i (x, t) · cδ(x, t)

)
ϕ
H ,ms
j (x, t) dx (7)
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Fig. 2 The fine mesh in each cell K ∈ TH is traced back one time step where the known solution can be used
to reconstruct a basis representation of the solution

for (2). The mass matrix is given by

Mi j (t) =
∫

Td
ϕ
H ,ms
i (x, t)ϕH ,ms

j (x, t) dx, (8)

fH (t) contains forcing and boundary conditions and the initial conditionuH ,0 is the projection
of u0 ∈ L2(Td) onto V H (0). Note that (5) contains a derivative of the mass matrix:

Ni j (t) =
∫

Td
ϕ
H ,ms
i (x, t)∂tϕ

H ,ms
j (x, t) dx. (9)

This is necessary since the basis functions depend on time and since we discretized in space
first. The reader will notice that using Rothe’s method of lines, i.e., discretizing in time first,
it is not clear what basis function to use for testing and this a priori leads to a different linear
system.

For the time discretization we simply use the implicit Euler method. The discrete ODE
then reads

M(tn)un+1 = M(tn)un + δt
[
A(tn+1)un+1 − N(tn+1)un+1 + fH (tn)

]
. (10)

Other time discretization schemes, in particular, explicit schemes are of course possible. For
didactic reasons we choose to present the algorithm in an implicit version. We will come
back to that later. The next step is to show how to construct the multiscale basis.
Convention In both 1D and 2D we use bold letters like x,A to express potentially vector
valued quantities although they would be scalar in one dimension in all formulas and figures.
We do so since we would like to avoid confusing the reader with different notations that are
merely due to different dimensionality although the basic ideas are the same. Difficulties that
arise in more than one dimension will be pointed out explicitly. For the sake of consistency
we also use ∇ instead of ∂x in one dimension. Quantities marked with a tilde like x̃ signalize
(semi-)Lagrangian quantities.

Remark 2 The assembly of the global system matrices or a cell-wise decomposition of their
action as done in matrix-free FEM frameworks in high-performance computing software can
efficiently be represented as matrix-vector multiplications. To see this let K ∈ TH and let
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Fig. 3 2D illustration similar to
the one shown in Fig. 2. Each
coarse cell is together with its
fine mesh being traced back one
time step at which the known
global solution can be used to
reconstruct a basis

ϕ
H ,ms
i and ϕ

H ,ms
j be two reconstructed multiscale basis functions that are supported on K

at nodes with global degrees of freedom i, j and with local numbering α(i), α( j). In the
subsequent presentation such basis functions will be given on the fine meshes in terms of
their (fine scale) degrees of freedom so let further ϕk

i be the kth nodal value on the fine
mesh T K

h of basis function i . If we were, for example, to assemble the element mass matrix
contributed to Mi j in (8) by the element K a simple calculation shows that

(
MK

i j

)
α(i),α( j)

=
∫

K
ϕ
H ,ms
i (x, t)ϕH ,ms

j (x, t) dx

= ϕk
i M

K
klϕ

l
j

(11)

where MK
kl is the (fine scale) mass matrix on T K

h . This matrix will be computed anyway
(see the subsequent discussion) so one can store it and use it for the assembly in a more
efficient way instead of looping first over all fine cells in each coarse. On a single machine
storing local matrices can potentially become a bottleneck but this is less of a problem on
large clusters. Even the use of matrix-free methods is possible. Since this work is focused on
the method we pass on these algorithmic details.

2.2 The ReconstructionMesh in 1D/2D

Our idea combines the advantage of both semi-Lagrangian andmultiscalemethods to account
for dominant advection. The reconstruction method is based on the simple observation that
local information of the entire domain of dependence is still contained in the global solution
at the previous time step. This can be used to construct an Eulerian multiscale basis: we trace
back an Eulerian cell K ∈ TH at time tn+1 on which the solution and the basis are unknown
to the previous time step tn . This gives a distorted cell K̃ over which the solution un is known
but not the multiscale basis ϕ̃i , i = 1, 2.

In order to find the points where transported information originates we trace back all
nodes in T K

h from time tn+1 to tn . For this one simply needs to solve an ODE with the
time-reversed velocity field that reads

d

dt
x̃l(t) = −cδ(x̃l(t),−t), t ∈ [−tn+1,−tn]

x̃l(−tn+1) = xl
(12)
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Fig. 4 Left: Illustration of an oscillatory function (black) being approximated by a standard linear basis (red)
on a single cell compared to a modified basis (blue) that solves (14). The regularization parameters were taken
as αi = 0.1. Right: Comparison of the standard basis to the modified basis. The modified basis does not
constitute a partition of unity (colour figure online)

for each xl and then take x̃l = x̃l(−tn), see Figs. 2 and 3 for an illustration. This procedure
is standard in semi-Lagrangian schemes and can be parallelized.

Remark 3 In semi-Lagrangian schemes it is possible that (if Courant numbers are large) cells
may nearly collapse or flip when tracing them back in time. In practice this can be prevented
by decreasing the time step δt = tn+1 − tn according to the (cell-wise) Jacobian of the
Lagrangian transform induced by the flow. In our numerical experiments, however, we did
not choose our time step too large so that we did not run into this problem.

2.3 Basis Reconstruction in 1D

After tracing back each point xl of K ∈ TH to its origin x̃l in a distorted coarse cell K̃ ∈ TH

we need to reconstruct a local representation of the (known) solution un on K̃ :

un(x)
∣∣
K̃ = un(x̃ j )ϕ̃K ,1(x) + un(x̃ j+1)ϕ̃K ,2(x) (13)

where x̃ j and x̃ j+1 are the boundary points of K̃ . In one dimension one can of course choose
a representation using the standard basis of hat functions but this would not incorporate
subgrid information at step tn at all. Even in the forward advection step (explained below)
that is being carried out in the next step subgrid information on the basis will not contain
the correct subgrid variability because the information contained in the basis does not take
into account the entire domain of dependence of K . We choose to bypass this problem by
solving an inverse problem for the basis to adjusts the representation. The idea is to fit a linear
combination of the basis locally such that un is optimally represented, i.e., we solve

minimize
ϕ̃K ,i∈V (K̃ )

∥∥∥un −
(
unj ϕ̃K̃ ,1 + unj+1ϕ̃K̃ ,2

)∥∥∥
2

L2(K̃ )
+

∑
i

αiRi (ϕ̃K̃ ,i )

s.t. unj = un(x̃ j ), unj+1 = un(x̃ j+1)

ϕK̃ ,1(x̃ j ) = ϕK̃ ,2(x̃ j+1) = 1

ϕK̃ ,1(x̃ j+1) = ϕK̃ ,2(x̃ j ) = 0.

(14)

The functionsRi : V (K̃ ) → R are regularizers weighted by positive numbersαi ∈ R and V is
a suitable function space. In practice we choose V to be a finite-dimensional subspace (which
is then closed) of H1. A simple regularizer that we found useful in one spatial dimension is
a penalization of the deviation of the modified basis function from the standard linear basis
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function with the same boundary values in the quadratic mean, i.e., we use

Ri (ϕ̃K̃ ,i ) =
∥∥∥ϕ̃K̃ ,i − ϕ̃0

K̃ ,i

∥∥∥
2

H1
(15)

where ϕ̃0
K̃ ,i

denotes the i-th standard (linear) basis on K̃ . Note that the problem is convex

and hence there exists a solution. In finite dimensions this amounts to a system of linear
equations that can be computed explicitly. In a spatially discrete version this system will
be small and cheap to solve. A suitable choice of a regularizer depends on the problem at
hand and prevents instabilities in the global time step. For problems in two dimensions we
found a different regularizer to be useful (see below). Figure 4 illustrates the effect of a local
reconstruction of a basis compared to a representation with a standard basis.

2.4 Basis Propagation in 1D

After having reconstructed a suitable basis on each coarse cell K̃ we have an H1-conformal
basis. This basis, however is a basis at time step tn and does not live on the coarse Eulerian
grid TH that we initially fixed. The step to take now is to construct a basis at tn+1 on TH .
This is done similarly to [36], i.e., we evolve the basis according to the model at hand with a
vanishing external forcing.Note, however, thatwe compute the basis at tn+1 alongLagrangian
trajectories starting from tn , i.e., we need to transform the original model. Equation (1)
becomes

d

dt
ϕK ,i = ∇̃ ·

(
Ãε∇̃ϕK ,i

)
in K̃ × [tn, tn+1]

ϕK ,i (x̃ j , t) = ϕ̃K̃ ,i (x̃ j ), t ∈ [tn, tn+1]
ϕK ,i (x̃ j+1, t) = ϕ̃K̃ ,i (x̃ j+1), t ∈ [tn, tn+1]

ϕK ,i (x̃, tn) = ϕ̃K̃ ,i (x̃)

(16)

and Eq. (2) transforms into

d

dt
ϕK ,i +

(
∇̃ · c̃δ

)
ϕK ,i = ∇̃ ·

(
Ãε∇̃ϕK ,i

)
in K̃ × [tn, tn+1]

ϕK ,i (x̃ j , t) = ϕ̃K̃ ,i (x̃ j ), t ∈ [tn, tn+1]
ϕK ,i (x̃ j+1, t) = ϕ̃K̃ ,i (x̃ j+1), t ∈ [tn, tn+1]

ϕK ,i (x̃, tn) = ϕ̃K̃ ,i (x̃).

(17)

where ∇̃ denotes the gradient in Lagrangian coordinates. Note that these evolution equations
are solved on K̃ , i.e., on the element K ∈ TH traced back in time. Advection is “invisible”
in these coordinates. The end state ϕK ,i (x̃, tn+1) on K̃ can then be transformed onto the
Eulerian element K ∈ TH to obtain the desired basis function ϕK ,i (x, tn+1) ∼ ϕn+1

K ,i (x)
at the next time step. Corresponding basis functions in neighboring cells can then be glued
together to obtain a modified global basis ϕ

H ,ms
i , i = 1, . . . , NH . This way we get a basis of

a subspace of H1 that is neither a partition of unity nor is it necessarily positive. Nonetheless,
it is adjusted to the problem and the data at hand. The propagation step is illustrated in Fig. 5.

Using our method we reconstruct and advect the representation of the global solution
first and then the solution itself using the modified representation. The global step is com-
pletely Eulerian while the local reconstruction step is semi-Lagrangian in contrast to [36]
where the global step is Lagrangian and the local step is “almost”-Lagrangian. The essential
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Fig. 5 The basis reconstructed
according to (14) at time tn is
propagated forward to time tn+1

according to (16) or (17)

Algorithm 1 Sketch of reconstruction algorithm for a 1D problem. Implicit version using
backward Euler. Note that all loops over cells K ∈ TH can be parallelized.
input : Problem parameters for (1) or (2), H , h, δt
output: Weights uH (t j ) of multiscale solution and set of multiscale basis functions ϕ

H ,ms
i

1 begin
2 Initialize a coarse mesh TH

3 On each cell K ∈ TH initialize a fine mesh T K
h

/* We need to reconstruct a basis at time t0. Note that no
trace back and no propagation are needed. */

4 for K ∈ TH do in parallel
5 Reconstruct the optimal basis representation of u0(x)|K according to (14)
6 end

/* Now the time stepping starts. We compute the solution

at tn+1. */
7 for n = 0 to n ≤ Nsteps do
8 for K ∈ TH do in parallel
9 Trace back each node in K one time step from tn+1 to tn according to (12)

10 Reconstruct the optimal basis representation of un(x)|K̃ according to (14)
11 Propagate the optimal basis forward onto K according to (16) or (17)
12 end
13 Assemble the global (coarse) system matrices for (10)
14 Make a global backward Euler time step using (10)
15 end
16 Postprocess the solution
17 Return
18 end

steps described above are summarized in Algorithm 1. Note that the steps to reconstruct the
multiscale basis are embarrassingly parallel and consist of small local problems.
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2.5 Basis Reconstruction in 2D

The basis reconstruction step in two dimensions is slightly different. We separate the descrip-
tion of the procedure from the reconstruction in one dimension to make the reader aware of
difficulties that arise when increasing the space dimension. Keeping the difficulties in mind
one can then easily generalize the procedure even to 3D.Wewill comment on that again later.
It is worth mentioning that these difficulties do not need to arise in non-conformal settings
but since we agreed on a conformal method we will be consistent here.

To construct a H1-conformal basis we need to ensure that the reconstructed global basis
is continuous across coarse cell boundaries. This can be achieved by first looping over all
coarse edges of the traced back mesh and reconstructing the solution at the previous time
step tn with a basis representation on each edge, i.e., we solve first an inverse problem of the
kind (14).

minimize
ϕ̃

Γ̃ ,i∈V (Γ̃ )

∥∥∥un |Γ̃ −
(
un1 ϕ̃Γ̃ ,1 + un2 ϕ̃Γ̃ ,2

)∥∥∥
2

L2(Γ̃ )
+

∑
i

αiRi (ϕ̃Γ̃ ,i )

s.t. unj = un(x̃ j ), x̃ j is end point of (traced back) edge Γ̃

ϕΓ̃ ,i (x̃ j ) = δi j .

(18)

Note that the regularizer (15) needs to be replaced since the edge can be curved (it is unclear
what ϕ̃0

K ,i in this case is). We use a harmonic prior for the reconstructed basis

Ri (ϕ̃Γ̃ ,i ) =
∥∥∥Δg(Γ̃ )ϕ̃Γ̃ ,i

∥∥∥
2

L2(Γ̃ )
(19)

with a low weight αi in (14). The operator Δg(Γ̃ ) denotes the Laplace–Beltrami operator
induced by the standard Laplace operator with the trace topology of the respective (traced
back) edge Γ̃ , i.e., g(Γ̃ ) is the metric tensor. We pass on providing details here.

The edge reconstructed basis then serves as boundary value for the cell basis reconstruc-
tion. The optimization problem to solve on the traced back cell K̃ then reads

minimize
ϕ̃K̃ ,i∈V (K̃ )

∥∥∥∥∥∥
un −

3∑
j=1

unj ϕ̃K̃ , j

∥∥∥∥∥∥

2

L2(K̃ )

+
∑
i

αiRi (ϕ̃K̃ ,i )

s.t. unj = un(x̃ j ), x̃ j is corner point of (traced back) cell K̃

ϕK̃ , j |Γ̃l
= ϕΓ̃ , jl

,

(20)

wherewealso used aLaplacian regularizer.However, the essential task is to ensure conformity
of the global basis by first reconstructing representations on all edges and then inside the
cells K̃ .

In three dimensions it would be necessary to first reconstruct edge then face and only
then the interior representations. This sounds potentially expensive but it is embarrassingly
parallel since all reconstructions are independent.

2.6 Basis Propagation in 2D

Again, for didactic reasons we make the reader aware of differences to the propagation of
the basis in contrast to one spatial dimension. As in Sect. 2.5 we need to preserve conformity
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Fig. 6 Illustration of a
reconstructed multiscale basis in
2D

of the global basis. This can easily be done by fixing the boundary values in the propagation
step of the basis functions similar to the propagation in 1D, see Sect. 2.4.

However, this strategy can result in numerical errors from two sources. Recall that the
goal of our multiscale method is to represent the local asymptotic structure of the solution
correctly by putting subgrid variations into the basis. This can be interpreted as adding a non-
polynomial corrector function in each coarse cell to a standard FEM basis which changes
the boundary conditions. These boundary conditions are themselves subject to evolution and
keeping them fixed in time will not reflect any system intrinsic dynamics.

The first source of a numerical error is a resonance error. This error usually becomes
dominant if the scale of oscillations in the diffusion term is close to the scales resolved by
the coarse grid. This is well-documented in the literature on multiscale FEMs for stationary
elliptic problems that are usually not dominated by lower order terms. Note, that in practical
problems it is often unclear if a scale separation exists or it can not be quantified which makes
it difficult to identify a resonance regime [17,21].

Another source for not capturing the asymptotic structure with fixed boundary values even
if there was a scale separation between coarse mesh and diffusion oscillations (which can
not be guaranteed) appears in the conservative case (2). This is due to the reactive term

(
∇̃ · c̃δ

)
ϕK ,i (21)

that appears also in (17). This term compensates divergence, i.e., it triggers a reaction on the
boundary wherever the divergence of the background velocity does not vanish. Essentially
that means that this term is very local but can be quite strong, i.e., it is of the order of δ−1 if
c is of order 1 but oscillates on a scale of order δ. This term must be taken into account when
evolving a reconstructed basis (Fig. 6).

Fortunately, both errors can be dealt with by employing two strategies. The first one
is oversampling, i.e., the local reconstruction and basis propagation on a coarse cell K is
performed on a slightly larger domain than K os ⊃ K . After that the basis is being truncated to
the relevant domain K . Using this strategy is generally possible but results in a non-conformal
technique and hence we will not use it here [17]. Instead we will solve a reduced evolution
problem on the edges that predicts the boundary values and then evolve the reconstructed
interior basis for which we then know the boundary values in time. The edge evolution
strategy is in general only necessary in the case of a missing scale separation for the diffusion
as explained above or in the conservative case. Note that both errors do not appear in one
dimension. We summarize this discussion below.
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Algorithm 2 Sketch of modified reconstruction algorithm for a 2D problem. Implicit version
using backward Euler.
input : Problem parameters for (1) or (2), H , h, δt
output: Weights uH (t j ) of multiscale solution and set of multiscale basis functions ϕ

H ,ms
i

19 begin
20 Initialize a coarse mesh TH

21 On each cell K ∈ TH initialize a fine mesh T K
h

/* We need to reconstruct a basis at time t0. Note that no
trace back and no propagation are needed. */

22 for K ∈ TH do in parallel
23 Reconstruct the optimal basis representation of u0(x)|K according to (14)
24 end

/* Now the time stepping starts. We compute the solution

at tn+1. */
25 for n = 0 to n ≤ Nsteps do
26 for K ∈ TH do in parallel
27 Trace back each node in K one time step from tn+1 to tn according to (12)
28 Reconstruct the boundary condition of optimal basis representation of un(x)|K̃

according to (18), see Section 2.5
29 Reconstruct the optimal basis representation of un(x)|K̃ according to (20), see

Section 2.5
30 if Problem is not in conservation form then
31 Propagate the optimal basis forward onto K according to (22)
32 else
33 Propagate the boundary conditions of the optimal basis forward onto K

according to (23)
34 Propagate the optimal basis forward onto K according to (24)
35 end
36 end
37 Assemble the global (coarse) system matrices for (10)
38 Make a global backward Euler time step using (10)
39 end
40 Postprocess the solution
41 Return
42 end

Strategy Without Edge Evolution In this case we keep the boundary values of the basis that
we reconstructed at the previous time step fixed. Similarly to (16) this amounts to solving
the evolution problem

d

dt
ϕK ,i = ∇̃ ·

(
Ãε∇̃ϕK ,i

)
in K̃ × [tn, tn+1]

ϕK ,i (·, t)|Γ̃l
= ϕ̃Γ̃l ,i

, t ∈ [tn, tn+1]
ϕK ,i (x̃, tn) = ϕ̃K̃ ,i (x̃)

(22)

for the i th basis function.

123



49 Page 16 of 33 Journal of Scientific Computing (2021) 87 :49

Strategy with Edge Evolution This method requires a prediction of the boundary values. The
prediction is done by solving a reduced evolution problem

d

dt
ϕΓ ,i +

(
∇̃ · c̃redδ

)
ϕΓ ,i = ∇̃ ·

(
Ãred

ε ∇̃ϕΓ ,i

)
on Γ̃ × [tn, tn+1]

ϕK ,i (x j , t) = δi j , t ∈ [tn, tn+1], x̃ j is end point of edge Γ̃

ϕΓ ,i (x̃, tn) = ϕ̃Γ̃ ,i (x̃)

(23)

on each edge Γ̃ of K̃ . The reduced quantities c̃redδ and Ãred
ε only contain the tangential parts

of their counterparts c̃δ and Ãε . Once this evolution problem is solved for each edge Γ̃ the
boundary values for the full evolution problem on K̃ are known and one can solve

d

dt
ϕK ,i +

(
∇̃ · c̃δ

)
ϕΓ ,i = ∇̃ ·

(
Ãε∇̃ϕK ,i

)
in K̃ × [tn, tn+1]

ϕK ,i (·, t)|Γ̃l
= ϕ̃Γ̃l ,i

(·, t), t ∈ [tn, tn+1]
ϕK ,i (x̃, tn) = ϕ̃K̃ ,i (x̃)

(24)

to get the i th basis.
In both cases note again that the evolution Eqs. (22) and (24) are solved on K̃ . The end

state ϕK ,i (x̃, tn+1) on K̃ can again be mapped onto the Eulerian element K ∈ TH to obtain
the desired basis function ϕK ,i (x, tn+1) ∼ ϕn+1

K ,i (x) at the next time step.
The described modifications for 2D problems are summarized in Algorithm 2. Note that

the number of local problems can be quite large and one needs to be careful in designing
a true parallel algorithm to avoid unnecessary communication between nodes. Ideally, one
would like to use a number of processors that is of the order of the number of coarse cells.
This number can be very large but super computers with several million cores do already
exist so it does not exceed today’s capacities.

3 Numerical Examples in 1D

We will show several 1D examples in a non-conservative and conservative setting according
to (1) and (2), respectively. For all 1D tests we use a Gaussian

u0(x) = 1

σ
√
2π

exp− (x − μ)2

2σ 2 . (25)

with variance σ = 0.1 centered in the middle of the domain T
1, i.e., μ = 0.5. The end

time is set to T = 1 with a time step δt = 1/300. We show our semi-Lagrangian multiscale
reconstruction method (SLMsR) with a coarse resolution H = 10−1 in comparison to a
standard FEM with the same resolution and high order quadrature. As a reference method
we choose a high-resolution standard FEM with href = 10−3. For the multiscale method we
choose a fine mesh T K

h with h = 10−2 in each coarse cell K ∈ TH .
Test 1 We start with four tests showing the capability of the SLMsR to capture subgrid
variations correctly. Note that the coarse standard FEM has as many cells the SLMsR has
coarse cells and that it does not capture subgrid variations in the following tests. The resolution
for the reference solution resolves all subgrid variations but the reader should keep in mind
that practical applications do not allow the application of high-resolution methods. The
coefficients
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cδ(x, t) = 1

4
+ 1

2
cos(10πx) + 1

4
cos(74πx) + 3

20
cos(196πx)

Aε(x, t) = 10−3 + 9 · 10−4 cos(10π t) cos(86πx)
(26)

and

cδ(x, t) = 1

2
cos(2π t) + 1

4
cos(6π t) cos(8πx) + 1

8
cos(4π t) cos(62πx)

+ 1

8
cos(150πx)

Aε(x, t) = 10−3 + 9 · 10−4 cos(10π t) cos(86πx)

(27)

are chosen for the non-conservative equation (1) and the coefficients

cδ(x, t) = 1

2
+ 1

8
cos(8πx) + 1

8
cos(62πx)

+ 1

8
cos(150πx)

Aε(x, t) = 10−2 + 9 · 10−3 cos(10π t) cos(86πx)

(28)

and

cδ(x, t) = 3

4
+ 1

2
cos(8πx) + 1

4
cos(62πx) + 1

10
cos(150πx)

Aε(x, t) = 10−2 + 9 · 10−3 cos(10π t) cos(86πx)
(29)

conservative equation (2). The latter one is numerically more difficult when it comes to
capturing fine-scale variations, i.e., if cδ(x) ∼ f (x/δ) then d

dx cδ(x) ∼ δ−1 f ′(x/δ). So if
f and f ′ are of the same order like in one term of a Fourier expansion of cδ then one can
expect very steep slopes in the solution. The results of the tests are shown in Fig. 7 and the
corresponding errors in Fig. 8 and in Table 1.
Test 2a It is an important question how the SLMsR behaves in different regimes of data. For
the non-conservative case we show two tests.

The first test demonstrates how the SLMsR behaves when all coefficients of the equation
are resolved by the SLMsR, i.e., h ≤ ε, δ but not by the low resolution FEM that has the
same resolution as the SLMsR’s coarse resolution, i.e., H � ε, δ. For the coefficients we
chose

cδ(x, t) = 1

2
+ 1

4
cos(8πx) + 1

8
cos(196πx) + 1

16
cos(210πx)

Aε(x, t) = 10−3 + 9 · 10−4 cos(174πx).
(30)

The different spatial resolutions were taken as H = 1
8 ,

1
32 ,

1
128 ,

1
512 while the number of fine

cells in each coarse cell was fixed to n f = 64. The reference solution was computed with
href = 2−11 and the time step for all methods was taken as δt = 10−2.

Error plots of the results are shown in the first row of Fig. 9. The plots indeed show that
the SLMsR captures the reference solution much more accurately than the standard FEM in
both L2 and H1 even for small H . Only when decreasing H to a resolution that resolves
all coefficients the FEM is able to represent the solution correctly and starts converging,
i.e., it leaves the pre-asymptotic regime. The reader should keep in mind that in real world
applications the standard FEM will be too expensive to compute while the SLMsR allows
for massive parallelization. This is the regime that is of practical interest. Increasing the fine
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resolution in each coarse cell on the other hand does not improve the accuracy of the SLMsR.
It increases the size of the subgrid problems for the basis functions though.
Test 2b The second test is to show that the SLMsR essentially starts behaving like a standard
FEM if H � ε, δ. To demonstrate that we took low frequency coefficients

cδ(x, t) = 1

2
+ 1

4
cos(6πx) + 1

8
cos(10πx) + 1

16
cos(14πx)

Aε(x, t) = 10−3 + 9 · 10−4 cos(16πx).
(31)

and refined with the sequence H = 1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256 while we fixed the number of fine

cells in each coarse cell to n f = 32. Note that we start with a coarse resolution regime that
almost resolves the data.

The error plots for the SLMsR and the FEM indeed indicate that as H decreases the
SLMsR does not dramatically increase its accuracywhile the FEMwith linear basis functions
increases its accuracy according to the standard estimates. This is expected since the standard
low-resolution FEM leaves the pre-asymptotic regimewith increasing resolution. At the same
time that means that the solution gets locally smoother, i.e., it is easier to approximate with
piece-wise linear functions. Hence the reconstructed basis does not deviate much from a
(linear) standard basis. Note that the SLMsR is still slightly more accurate in the resolved
regime but the additional effort that is spent on reconstructing the basis may not be justified
any more. This can be observed in the second row of Fig. 9. The relative errors at t = 1/2
and t = 1 for both test problems (30) and (31) are summarized in Tables 2 and 3 in the
“Appendix” together with the estimated order of convergence (EOC) in space.

We recall that the EOC can be computed as follows: Let eH : Rn+ → R+ be an (error)
function that maps a high dimensional vector to a positive real for each H > 0. Then the
EOC w.r.t. H can then be computed as

EOC = log(eH ) − log(eH/q)

log(q)
. (32)

Remark 4 Interpreting the EOCs for the SLMsR is delicate in both regimes. In particular the
decay rate of the error for the multiscale method will depend on a homogenized solution and
on the fine scale. In both the unresolved regime of test (2a) and in the resolved regime of
test (2b) one can observe that the error of the SLMsR is lower in L2 and H1 than the error of
the standard FEM [in L2 even one order of magnitude in test (2a)]. While the convergence
rate of the standard FEM follows a known power law in the asymptotic regime the EOC of
the SLMsR follows a different pattern. For a much simpler stationary diffusion problem, for
example, one obtains in the case H � ε estimates of the form

∥∥∥u − uH
∥∥∥
H1

≤ C1(H + ε) ‖ f ‖L2 + C2

( ε

H

)1/2 ‖uhom‖W 1,∞ , (33)

see [11, Ch. 6]. Determining the exact asymptotic pattern in our case requires a substantial
scale analysis and possibly the knowledge of a homogenized problem (the homogenized
limiting regime may depend on an a priori known coupling of the small scale parameters).
This will need different tools than in the “simple” case in [11] and is likely to be very difficult
in our case. This is out of the scope of this work.

Similar results in terms of accuracy can be obtained in case of a conservative equation.
We pass on showing this here.
Test 3This test shows an examplewhere both diffusion and background velocity are generated
randomly. We intend to show an example of the SLMsR behaves when data is involved that
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(a) (b)

(c) (d)

Fig. 7 Snapshots of the solution at t = 1/3, t = 2/3 and T = 1. The colored dashed lines show the solution
of the standard FEM, the colored line shows the SLMsR. The reference solution is shown in black. a Non-
conservative equation (1) Coefficients (26). bNon-conservative equation (1) Coefficients (27). c Conservative
equation (2) Coefficients (28). d Conservative equation (2) Coefficients (29) (colour figure online)

does not exhibit a clear scale separation. For this we initially generate fixed mesh based
functions with random nodal coefficients. In each mesh cell the functions are interpolated
linearly. Note that this is not to simulate a sampled stochastic process. We simply intend not
to create any scale or symmetry bias when constructing coefficient functions. The results
look appealing and show a clear advantage of the SLMsR, see Fig. 10.

123



49 Page 20 of 33 Journal of Scientific Computing (2021) 87 :49

(a) (b)

Fig. 8 Relative errors over time in a L2(T1) and b H1(T1) to the reference solution of the tests shown in
Fig. 7. The dashed lines show the error of the standard FEM, the full line shows the error of the SLMsR. Color
codes are the same as in Fig. 7

(a1) (a2)

(b1) (b2)

Fig. 9 Relative errors over time for the unresolved regime of test problem (30) in L2(T1) are shown in (a1)
and errors in H1(T1) are shown in (a2). The coarse resolutions were chosen as H = 1/8 (yellow), H = 1/32
(red), H = 1/128 (green), H = 1/512 (blue). The errors of the numerically resolved regime of problem (31)
in L2(T1) are shown in (b1) and errors in H1(T1) are shown in (b2). The respective reference solutions
were computed with href = 2−11 and for all experiments we used δt = 10−2. The dashed lines show the
error of the standard FEM, the full line shows the error of the SLMsR. The coarse resolutions were chosen
as H = 1/16 (yellow), H = 1/32 (red), H = 1/64 (green), H = 1/128 (blue), and H = 1/256 (cyan). All
errors are shown in a logarithmic scale (colour figure online)
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(a)

(b) (c)

Fig. 10 Comparison of SLMsR and standard FEM for randomly generated (but fixed) coefficient functions.
a Snapshots of the solution at t = 1/2 and t = 1. Solid black lines show the reference solution, dashed red
lines show the standard solution and solid blue lines show the SLMsR. b Relative error plots for H1 and L2.
c Coefficient functions: the diffusion coefficient (upper plot) was generated from a uniform distribution and
scale to have minimum 10−5 and maximum 10−2. The velocity coefficient (lower plot) we chose to be a
smooth function disturbed by Gaussian noise with mean zero and variance 0.1 (colour figure online)

4 Numerical Examples in 2D

This section is to experimentally demonstrate that the SLMsR can handle conservative and
non-conservative advection–diffusion equations with dominant advection term in higher
dimensions. All tests are being carried out on the torus T2 (periodic unit square) in the time
interval t ∈ [0, 1] and use the same initial condition. As initial value we chose a normalized
super-position of two non-isotropic Gaussians

u0(x) = 1

2
√

(2π)2 det(M)

2∑
i=1

exp

{
−1

2
(x − µi )

TM−1(x − µi )

}
(34)

where

M =
[ 3
100 0
0 3

100

]
and µi = [

i
3 ,

1
2

]T
. (35)

All tests of the SLMsR are performed on a coarse unstructured uniform triangular Delaunay
mesh with nc = 62 coarse cells, i.e., for our triangulation H ∼ 0.3 (mean diameter of
circumcircle of a cell). We compare the SLMsR to a standard low resolution FEM with the
same resolution and to a standard high resolution FEM with approximately n f = 63K cells.
To get a fine mesh on each coarse cell of the SLMsR we created a triangulation such that
the sum of all fine cells over all coarse cells is approximately n f to get a fair comparison of
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Fig. 11 Snapshots of the solution for Test 1 at time T = 1 for a the low resolution standard FEM, b the
SLMsR and c the reference solution

the SLMsR to the low resolution standard FEM with respect to the reference solution that
resolves all coefficients involved.
Test 1Here we test our multiscale reconstruction method with a solenoidal field cδ described
by the stream function

ψ(x, t) = sin(2π(x1 − t)) sin(2πx2) (36)

so that

cδ(x, t) = ∇⊥ψ = 2π

[
sin(2π(x1 − t)) cos(2πx2)

− cos(2π(x1 − t)) sin(2πx2)

]
. (37)

This background velocity describes four vortices moving in time through the (periodic)
domain from left to right and get back to their starting point at T = 1. Note that this velocity
field involves scales that are resolved by the coarsemesh aswell as scales that are not resolved,
see Fig. 12. Note that since ∇ · cδ = 0 Eqs. (1) and (2) are (analytically) identical and hence
we only solve (1).

The diffusion tensor is chosen to be

Aε(x, t) = 1

100
I2 − 0.9999

[
sin(60πx1) 0

0 sin(60πx2)

]
. (38)

Note that in this case advection dominance is a local property and Péclet numbers are ranging
fromPe = 0 to Pe ∼ 6·106. Snapshots of the solutions are shown inFig. 11. It can be observed
that the low resolution FEM does not capture the effective solution well since it diffuses too
strongly while the SLMsR reasonably captures the effective behavior of the solution and
even the fine scale structure. This can be seen also in the error plots (Fig. 18).
Test 2a For this test we use two divergent background velocities and hence we split it into
two parts to distinguish between the diffusive transport problem (1) and the conservation
law (2). We start with showing how the SLMsR behaves on equation (1). The velocity field
is a modification of (37) and is given by

cδ(x, t) =
[
cos(2π t) sin(2π t)

− sin(2π t) cos(2π t)

]
·
[

2π sin(2π(x1 − t)) cos(2πx2)
− cos(2π(x1 − t)) sin(2πx2) sin(2πx1)

]
.

while the diffusion tensor is also given by (38). Here the standard solution does not converge
to any reasonable approximation of the effective solution and no valuable understanding of
the dynamics can be drawn from it. The SLMsR shows a surprisingly good approximation
of the reference solution, see Fig. 14.
Test 2b Here we solve Eq. (2), i.e., a conservation problem. The divergent velocity field for
this test describes regions of fast and slow flow with two separatrices across which there is
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Fig. 12 Background velocity for
Test 1 and Test 3. Four vortices
moving through the domain from
left to right and come back to
their starting points at T = 1.
The color indicates the
magnitude (red is high, blue is
low) (colour figure online)

no flow moving in time from left to right once through the domain during the time interval.
The field is given by

cδ(x, t) = 2π

5

[
sin(2π(x1 − t))2 cos(π(x2 − 0.5))2

2 sin(2π(x1 − t)) cos(2π(x1 − t)) cos(π(x2 − 0.5))2.

]
(40)

Both velocity fields for Test 2a and Test 2b are shown in Fig. 13. The diffusion tensor is again
given by (38). The difference to the previous test is that we have quite a large additional
reaction term to handle. This will be taken care of in the basis representation as described in
Sects. 2.5 and 2.6 as well as in the global weak form, see Eq. (7).

Note that the difficulty we focus on here is not the actual conservation (although this
is an important issue) but the fact that we do have another lower order (reaction) term in
the equation with a multiscale character. Fortunately this term is very local and is handled
nicely by the SLMsR since it scales with its magnitude. The results are shown in Fig. 15
where we also show how the quality of the SLMsR solution is negatively affected when
the reconstructed basis boundary conditions are not propagated. As the reader can see the
SLMsRwithout edge evolution shows a slight grid imprinting of the coarse mesh. This effect
can be more pronounced depending on the strength of the reactive term since it is due to
keeping the boundary conditions fixed in time in the local basis evolution step. This in turn
increases the error in the evolution of the asymptotic structure near coarse grid boundaries
due to the additional reaction term.

We pass on showing a comparison of all snapshots to the low resolution FEM here (which
does not behave well) for the sake of brevity. Error plots including the low resolution FEM
are again summarized in Fig. 18.
Test 3 This test has a similar intention as Test 3 in Sect. 3. We intend to show a reasonable
behavior of the SLMsR if the coefficients do not show a clear scale separation on Eq. (1).
For this we again used (37) as background velocity and generated a diagonal diffusion tensor
that is constant in each cell of a mesh generated to represent solely the diffusion. The cell
based constants are random and are fixed at the beginning of the simulation. The diffusion
tensor was then scaled to contain values in the range of 10−5 to 10−1, see Fig. 16. Snapshots
of the solution can be found in Fig. 17 and error plots in Fig. 18.

Remark 5 According to the choice of boundary conditions of the basis functions during the
reconstruction the basis are linearly independent. Theoretically it could nonetheless happen
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Fig. 13 Background velocities
for Test 2a and Test 2b given
by (39) and (40), respectively.
Both fields are divergent. The
color indicates the magnitude
(red is high, blue is low) (colour
figure online)

that the basis functions become “nearly dependent” which would result in “nearly” ill-posed
(ill-conditioned) discrete problems. This case is for example given if the multiscale corrector
(i.e., the difference between a standard basis and the computed multiscale basis) becomes
too dominant over the standard basis. We did not observe this in our experiments and it can
generally be avoided through putting more weight on the regularizing term in the inverse
problem for the basis reconstruction, e.g. to penalize a deviation from the standard basis
that is too strong as done in Eq. (15). After the application of boundary conditions the
condition numbers of the discrete systems to solve that we found were around 3–4 for the
coarse standard FEM and about 4–5 times higher compared to the coarse standard problem
for our semi-Lagrangian multiscale method which is below the condition number of the
high-resolution reference FEM.

5 Summary and Discussion

In this work we introduced a multiscale method for advection–diffusion equations that are
dominated by the advective term. Such methods are of importance, for example, in reservoir
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Fig. 14 Comparison of a low resolution FEM and b SLMsR to c the reference solution of Test 2a at two time
instances

Fig. 15 Comparison of a SLMsR without edge evolution and b SLMsR with edge evolution to c the reference
solution in case of conservative problem Test 2b shown at two time instances. The SLMsR without edge
evolution shows stronger grid imprinting of the coarse mesh

modeling and tracer transport in earth systemmodels. Themain obstacles in these applications
are, first, the advection-dominance and, secondly, the multiscale character of the background
velocity and the diffusion tensor.
The latter makes it impossible to simulate with standard methods due to computational
constraints while simulating using standard methods with lower resolution that does not
resolve variations in the coefficients leads to wrong effective solutions.

Our idea to cope with these difficulties is inspired by ideas for semi-Lagrangian methods,
ideas based on “convected fluid microstructure” as described in [19], inverse problems and
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Fig. 16 Magnitude of randomly generated (but fixed) diffusion tensor for Test 3

Fig. 17 Snapshot of solutions of Test 3 at T = 1. We show a the low resolution FEM, b the SLMsR and c the
reference solution

Fig. 18 Relative errors in L2(T) and H1(T) over time for all test cases of Sect. 4. The SLMsR (solid lines)
in general shows lower errors than the low resolution standard FEM (dashed lines). The color codes are as
follows: Test 1 is shown in blue, Test 2a is shown in red, Test 2b is shown in green where the dark green solid
line shows the error without edge evolution and the light green solid line shows the error with edge evolution
according to (23). Test 3 is shown in yellow (colour figure online)

123



Journal of Scientific Computing (2021) 87 :49 Page 27 of 33 49

multiscale finite elements [11]. At each time step we reconstruct fine scale information
from the solution at the previous time step. This fine scale information enters the local
representation of the solution in each coarse cell, i.e., it is added as a corrector to the local
basis such that the basis representation is optimal in some sense. Due to advection-dominance
the optimal basis needs to be reconstructed in its departure area, i.e., we locally trace back
information like in a semi-Lagrangian method for the reconstruction. The reconstruction is
performed by solving an inverse problem with a suitable regularizer. It constructs a basis
that does not constitute a partition of unity (PoU) and is tailored for the actual problem at
hand. The idea of adding prior knowledge about the solution to a local representation in PoU
methods, however, is similar, see for example [15,29]. After reconstructing the basis at the
previous time step it is evolved with suitable boundary conditions to the time level, where
it is needed; i.e., we evolve the local representation of the solution rather that the solution
itself. Note that the global framework of the SLMsR is completely Eulerian while only the
local reconstruction step in each coarse cell is semi-Lagrangian.

The SLMsR also shares shallow similarities with stabilized methods such as streamline
upwind Petrov–Galerkin (SUPG) methods in which “advected” basis functions are used as
correctors for test functions to add a small diffusion in the direction of the flow. This is
however not the same since our basis also corrects for the fine scale asymptotic structure
induced by diffusion and other low order terms.

Numerical experiments that we carried out in one and two dimensions for conservative and
non-conservative advection diffusion equations show a clear advantage in terms of accuracy
for the SLMsR at low (coarse) resolutions.We formulated themethod globally as a conformal
FEM to show how the idea works in a quite restrictive setting. Other frameworks are possible.
A non-conformal FEM, for example, would put less restrictions on the basis reconstruction
at the price of having to compute a boundary integral in the global assembly for each cell.

One of the main features of the SLMsR is its scalability: Although it sounds expensive
to trace back each coarse cell, then solve an inverse problem and then solve a PDE at each
time step (the so-called offline phase) we would like to point out that these local problems
are independent and usually small and therefore the offline phase is embarrassingly parallel.
The global time step (online phase) also consists of a small problem and matrix assembly
procedures can be made very efficient by using algebraic expressions, see [11,21].

Also, note that although the global time step maybe needs to be decreased to prevent
coarse cells from flipping when tracing the cell back but this problem appears in all semi-
Lagrangian methods. Small scale variations in the background flow of order δ though are not
too dangerous it is rather the large scale dominant features that are problematic. Yet, as is
known from standard semi-Lagrangian methods large Courant numbers can be achieved in
the reconstruction step (how large depends on the coarse mesh size and on the data). The fine
scale time steps may need to be smaller since scales of order ε, δ must be resolved locally.
But, again, this is only a local constraint. This does not pose a severe bottleneck either due
to the option to parallelize and since local problems are independent.

We would like to further emphasize the flexibility of the SLMsR. Here we presented an
implicit version but explicit time stepping is possible. Also, the method can be transferred
to higher dimensions as well as it can be extended to deal with advection–diffusion-reaction
problems. Furthermore, the use of inverse problems in the local steps to adjust the basis
makes it generally possible to incorporate knowledge coming from measurement data. For
this a thorough understanding of the data is necessary (as for any other assimilation method).
We would like to explore that opportunity in the future.

We believe that this method has potential to improve solutions to real-life multi-scale
problems since it is flexible and rises many possibilities to transfer ideas to different types of
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equations and methods. Some of the future issues that we aim at include its transfer to other
Galerkin methods such as discontinuous Galerkin methods, attacking nonlinear and vector
valued problems and at the use of actual data for subscale assimilation.
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Table 1 Relative errors of standard FEM and SLMsR for the non-conservative test problem (27) (upper table)
and for the conservative problem (28) (lower table)

H t L2
rel H1

rel

FEM SLMsR FEM SLMsR

H = 1/8 1/3 0.109517 0.0170849 0.738011 0.223987

2/3 0.110731 0.0121468 0.521164 0.104679

1 0.100034 0.0183614 0.652919 0.191475

H = 1/32 1/3 0.0429804 0.0141442 0.681634 0.305783

2/3 0.0336967 0.00553025 0.27492 0.139942

1 0.0264641 0.00911659 0.559342 0.144821

H = 1/128 1/3 0.0148088 0.00477275 0.431396 0.17528

2/3 0.0163083 0.00225746 0.173665 0.0740701

1 0.0113428 0.00258289 0.426786 0.160761

H = 1/512 1/3 0.00088987 0.00097043 0.126697 0.0947134

2/3 0.000589497 0.000504804 0.0446262 0.0435349

1 0.000578547 0.000491731 0.159977 0.173261

H = 1/8 1/3 0.214453 0.0702007 0.921891 0.321898

2/3 0.171949 0.0662604 0.940582 0.261431

1 0.188325 0.0743565 0.975117 0.336754

H = 1/32 1/3 0.139444 0.0283479 0.975416 0.256681

2/3 0.108827 0.0294402 0.974576 0.250716

1 0.140284 0.0398691 1.02447 0.252878

H = 1/128 1/3 0.0373321 0.00634348 0.62717 0.109299

2/3 0.0322432 0.0119677 0.628683 0.086647

1 0.0446856 0.0233804 0.78208 0.183882

H = 1/512 1/3 0.00274732 0.00200674 0.182691 0.0595046

2/3 0.00238125 0.00412889 0.181782 0.0554508

1 0.0045627 0.00622009 0.290947 0.140458

The errors are shown at three different time steps
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