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Abstract
We prove that the most common filtering procedure for nodal discontinuous Galerkin
(DG) methods is stable. The proof exploits that the DG approximation is constructed from
polynomial basis functions and that integrals are approximated with high-order accurate
Legendre–Gauss–Lobatto quadrature. The theoretical discussion re-contextualizes stable fil-
tering results for finite difference methods into the DG setting. Numerical tests verify and
validate the underlying theoretical results.
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1 Introduction

High frequency errors are always present in numerical simulations due to inaccuracies of
the spatial derivatives at high-wave numbers. A common technique to combat such errors is
to use a filter operator that removes high wave number oscillations, e.g. [7, Sect. 5.3]. The
filtering procedure is separate from the scheme itself, and is often done in an ad hoc fashion.
Filtering is applied “as little as possible, but as much as needed”.

Recently, Lundquist and Nordström [11] removed the ad hoc nature of filtering in finite
difference (FD) methods. They derive a contractivity condition on the explicit filter matrix by
re-framing the filtering procedure as a transmission problem [13]. The work in [11] develops
a necessary condition for the filter matrix and how it must be related to the particular discrete
quadrature rule.

The goal of the present work is to remove the ad hoc nature of the nodal DG filtering
procedure and prove that the commonly used explicit filter technique from the spectral com-
munity [5,6] is stable. Just as in the case of FD methods, the stability of the filtering for
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nodal DG relies upon the existence of a high-accuracy auxiliary filter matrix as well as a
semi-discrete bound on the solution.

The remainder of the paper is organized as follows: Sect. 2 gives an overview of the nodal
DGmethod and the commonly used filtering procedure. Section 3 generalizes the theoretical
stability results from [11] into the DG context. Numerical results that verify the theoretical
findings are found in Sect. 4. Concluding remarks are given in Sect. 5.

2 Overview of Nodal DG Approximation

DG methods are principally designed to approximate solutions of hyperbolic conservation
laws, see [7, Chap. 2] or [9, Sect. 4.8] for details. Here, we consider such a conservation law
in one spatial dimension

∂u

∂t
+ ∂ f

∂x
= 0, x ∈ [xL , xR],

where u ≡ u(x, t) is the solution and f ≡ f (u) is the flux function. The conservation law
is then equipped with an initial condition u(x, 0) ≡ uini(x) and boundary condition(s).

To arrive at the nodal DG approximation we first transform the domain [xL , xR] to the
reference interval [−1, 1]. To do so, we apply an affine mapping ξ(x) ∈ [−1, 1] [9, Eq.
8.10] and rewrite the conservation law in the computational coordinate ξ . The nodal DG
approximation is built from theweak formof themapped equation. The solution andfluxes are
approximated by Lagrange polynomials of degree N and the inner products in the variational
form are approximated with high-order Legendre-Gauss-Lobatto (LGL) quadrature. Full
details are given in [9, Sect. 4.7].

The resulting strong form, nodal DG approximation is then

�x

2
U̇ + D F + M−1B (

F∗ − F
) = 0, (2.1)

where U = [U0,U1, . . . ,UN ]T is the vector form for the degrees of freedom and F is
the discrete flux. The matrices in (2.1) are the discrete derivative matrix [9, Sect. 3.5.2]
Di j = �′

j (ξi ) where {� j (ξ)}Nj=0 are the nodal Lagrange basis polynomials and {ξi }Ni=0 are
the LGL quadrature nodes, the mass matrix M = diag(ω0, . . . , ωN ) containing the LGL
quadrature weights and the boundary matrix B = diag(−1, 0, . . . , 0, 1). There exist several
numerical flux functions depending on the particular mathematical flux function f (u), see
Toro [16, Chap. 2] for details. The numerical flux used in this work is the Lax-Friedrichs
flux, F∗ = (FR + FL − λmax(UR − UL))/2 where λmax is the largest wave speed, see [4,
Sect. 4.2] or [16, Sect. 5.3.4] for details.

Two features to note for this flavour of nodal DG approximation are: Firstly, the diagonal
mass matrixM denotes a quadrature rule that is exact for polynomials up to degree 2N − 1.
So, there is equality between the continuous and discrete integral

〈V ,W 〉N = V T MW =
N∑

i=0

ViMi iWi =
∫ 1

−1
v w dξ = 〈v,w〉 (2.2)

provided the product of the functions v and w is a polynomial of degree ≤ 2N − 1. From
(2.2), the continuous and discrete L2 norms are 〈v, v〉 = ||v||2 and 〈V , V 〉N = ||V ||2N .
Secondly, the mass and derivative matrices of the LGL collocation DG scheme (2.1) form
a summation-by-parts (SBP) operator pair [14] for any nodal polynomial order N [4, Sect.
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2.1], i.e. MD + (MD)T = B. From the SBP property, stable versions of the nodal DG
method can be constructed [3,4].

2.1 Construction of Filtering for Nodal DG

The general idea of filtering in DG exploits that the polynomial representation of the function
U is unique, and hence can bewritten in terms of other basis polynomial functions. At present,
we select the modal (normalized) hierarchical Legendre basis polynomials {L j (ξ)}Nj=0 to
express the function U in a modal polynomial basis. It is straightforward to compute the
Vandermonde matrix V associated with the LGL nodal interpolation nodes Vi j = L j (ξi ),
with i, j = 0, . . . , N ,which allows us to transform the nodal degrees of freedom, {Ui }Ni=0, to
modal degrees of freedom, {Ũ j }Nj=0 and vice versa, i.e., U = VŨ and Ũ = V−1U . Filtering
in modal space is performed with a diagonal cutoff matrix Ci j = δi jσi [5, Eq. 23], such that
a typical filter matrix becomes F = V C V−1.

Vandeven [17, Theorem 3] states that a filter function σ(η) : R+ 	→ [0, 1] should be

• σ is (s − 1)-times continuously differentiable in R.
• σ(0) = 1 and σ (k)(0) = 0 for k = 1, . . . , s − 1.
• σ(η) = 0 if η ≥ 1.

In the nodal DG community a typical choice to define the coefficients σi is [7]

σi =
⎧
⎨

⎩

1 if 0 ≤ i ≤ Nc − 1

exp
(
−α

(
i+1−Nc
N+1−Nc

)s)
if Nc ≤ i ≤ N

(2.3)

where α, s and Nc are the filter parameters. The value Nc indicates the number of the unaf-
fected modes, α is chosen such that exp(−α) is machine epsilon and s is an even number
determining the strength of the filter. For any choice of the filter parameters the filter coeffi-
cients are constructed such that 0 ≤ σi ≤ 1. This exponential filter does not strictly adhere
to Vandeven’s definition of the filter function [17, Theorem 3], but it does so in practice by
choosing α such that σN is below machine accuracy [1, Sect. 2.1.4]. This filter matrix retains
the high-order accuracy of the nodal DG approximation for smooth functions [6, Chap. 5],
[1, Sect. 7.6.3]. The accuracy of the filter F lies entirely in the filter function σ used to create
the diagonal entries in the matrix C, as shown by Vandeven [17, Theorem 3].

Remark 1 Filtering has often been used as a stabilization technique for numerical methods
such as in FD [8] as well as DG [5, Sect. 2.3] methods. We strongly advise against such use.
Instead, one should first construct construct a (provably) stable numerical scheme. After this,
the solution quality can be addressed and cleaned-up, possibly using filtering.

3 Stability

Filtering is separate from the spatial discretization and changes the approximate solution
during the time integration procedure. To discuss the filtering and its effect on stability
we follow [11] into the nodal DG context. With homogeneous boundary conditions, semi-
discrete stability ensures that the discrete norm of the approximate solution is bounded by
the discrete norm of the initial conditions, see [12, Sect. 4] for complete details. For the nodal
DG approximation such a stability statement takes the form ||U (t)||N ≤ ||Uini||N , where
Uini is the initial condition evaluated at the LGL nodes.
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Pursuant to the work [11], we view the application of a filter matrix to a discrete solution
at some intermediate time t1 as a transmission problem [13, Sect. 3]:

Ut + D(U ) = 0, 0 ≤ t ≤ t1, U (0) = U ini,

V t + D(V ) = 0, t ≥ t1, V (t1) = FU (t1)
(3.1)

where the operator D contains the derivative matrix D as well as the boundary conditions.
The filtering stated in the final term of (3.1) is performed in an explicit fashion. For stability it
must hold that the filter is contractive, i.e. ||V (t1)||N ≤ ||U (t1)||N . In turn, this contractive
property guarantees that the filter procedure is stable because ||V (t1)||N ≤ ||U (t1)||N ≤
||Uini||N .

The contractivity property implies that the following contractivity condition [11, Eq. 7]
on the explicit filter matrix F must hold

FT MF − M ≤ 0. (3.2)

The contractivity condition (3.2) expresses a precise interplay between the filter matrix and
the mass matrix. A necessary condition for the explicit filter matrix to satisfy (3.2) is that
an auxiliary filter matrix F̃aux = M−1FTM, exists and possesses the same accuracy as F ,
otherwise (3.2) is provably indefinite [11, Sect. 4.1].

We will show that the auxiliary filter matrix is identical to the original filter matrix for
the LGL nodal DG approximation. Furthermore, the filter matrix F indeed satisfies the
contractivity condition (3.2). Both results require the following Lemma.

Lemma 1 Thematrix productVTMV is the LGLquadrature rule applied to the (normalized)
Legendre polynomial functions {L j (ξ)}Nj=0 and results in a diagonal matrix

VTMV = diag (1, 1, . . . , 1, 2 + 1/N ) :=K. (3.3)

Proof The entries of this matrix product in terms of discrete inner products is

VTMV =

⎡

⎢⎢⎢⎢
⎣

||L0||2N 〈L0, L1〉N · · · 〈L0, LN 〉N
〈L1, L0〉N ||L1||2N · · · 〈L1, LN 〉N

...
...

. . .
...

〈LN , L0〉N 〈LN , L1〉N · · · ||LN ||2N

⎤

⎥⎥⎥⎥
⎦

.

From the accuracy of the LGL quadrature and the fact that {L j (ξ)}Nj=0 are polynomials, we
have equality between the discrete and continuous inner products

〈
L j , Lk

〉
N = 〈

L j , Lk
〉 = ∣∣∣∣L j

∣∣∣∣2 δ jk = δ jk,

provided j + k ≤ 2N − 1. The result above utilizes that the Legendre basis is orthonormal.
The quadratures are therefore exact for all inner products except the one related to LN with
itself since 2N > 2N − 1. Thus, VTMV = diag(1, 1, . . . , 1, ||LN ||2N ). The discrete and
continuous norms are equivalent in that when φ is a polynomial of degree N , the discrete
and continuous L2 norms are related by ||φ||N = √

2 + 1/N ||φ|| for the LGL quadrature
[2, Lemma 3.2]. From this, VTMV equals the diagonal matrix K.

We can now prove

Proposition 1 The auxiliary filter is identical to the DG filter matrix, i.e. F̃aux = F .
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Proof We examine the difference between the two filter matrices

F̃aux − F = M−1FTM − F = M−1V−T C VTM − V C V−1.

Next, we factor out the matrix V on the left and V−1 on the right to have

F̃aux − F = V [(V−1M−1V−T
) C (VTMV) − C]V−1 = V

[(VTMV)−1 C (VTMV) − C
]
V−1.

Applying the result from Lemma 1 gives

F̃aux − F = V [K−1CK − C]V−1 = 0,

where we use that the matrices C and K are diagonal to obtain the desired result. �
The following result is then self-evident.

Corollary 1 The auxiliary filter F̃aux exists and is as accurate as F .

Further, the result from Lemma 1 allows us to prove

Proposition 2 The nodal DG filter matrix F is contractive in the sense of (3.2).

Proof We substitute the form of the filter matrix into the condition (3.2) to obtain

FT MF − M = (V C V−1)T M (V C V−1) − M = (V−1)T C (VTMV) C V−1 − M.

The middle term, VTMV , grouped above is precisely that from Lemma 1, which gives

FT MF − M = (V−1)T C K C V−1 − M= (V−1)T C2 KV−1 − M,

where we use that the matrices C and K are diagonal. From (3.3), the contractivity condition
then becomes

FT MF − M = (V−1)T C2KV−1 − M = (V−1)T
(C2 − I)KV−1.

Recall that the modal filter matrix C is diagonal with entries {σi }Ni=0 and, by construction,
the term σN = e−α ≈ 0. Therefore,

C2 − I = diag
(
σ 2
0 − 1, σ 2

1 − 1, . . . , σ 2
N−1 − 1, e−α − 1

) ≤ 0

because 0 ≤ σi ≤ 1 for i = 0, . . . , N . Thus, (3.2) holds.

Remark 2 Theproof above holds provided thefilter function is chosen such thatσ(η) ∈ [0, 1].
Thus, other proposedfilter functions like those given inVandeven [17,Remark 5] also produce
a provably stable filter matrix.

The discussions above are for a single spectral element. However, the contractive filter
matrix F and its stability carries through to a multi-element DG approximation. At a given
time and applied locally within each element, the filtering in a DG formulation is stable.
This is because the underlying spatial approximation is constructed to be stable, e.g. [4,10].
Therefore, the overall discretization in a given time step is, for example: (1) Filter the current
solution at time tn in each element using the above described filter; (2) Apply the stable DG
coupling of the elements by numerical flux functions (3) Evolve the solution in all elements
one time step to tn+1; (4) Repeat the procedure from (1). Such an algorithm retains a semi-
discrete stability estimate.

Remark 3 A crucial component in order for the filtering procedure to be stable in a semi-
discrete sense is that the underlying spatial approximation is stable.
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Fig. 1 Unfiltered (left) and filtered (right) nodal DG solution for the variable wave speed problem at T = 4
with polynomial order N = 256

4 Numerical Results

We consider two test problems that develop a non-smooth solution over time and select
α = 36, Nc = 4 and s = 16 for the filter parameters in (2.3). To integrate the semi-
discrete DG method (2.1) in time, we use a third-order, low storage Runge–Kutta scheme of
Williamson [18, Table 1].

As a first example we consider a variable coefficient linear advection problem, ut +
a(x)ux = 0, with a bounded solution that develops steep gradients [6, Sect. 3.2]. The variable
wave speed is a(x) = sin(πx − 1)/π on the domain � = [−1, 1]. The wave speed a(x)
is positive at the boundaries of the domain. Therefore, no boundary condition is set at the
right and at the left the boundary condition is enforced weakly through the numerical flux
function and the prescription of an external solution state using the exact solution. We take
the initial condition uini(x) = sin(πx) with the corresponding analytical solution u(x, t) =
sin

(
2 tan−1

(
e−t tan ((πx − 1)/2)

) + 1
)
[6, Sect. 3.2]. In Fig. 1 we compare the solutions at

time T = 4 using polynomial order N = 256 and �t = 1/2000. The unfiltered DG scheme
contains spurious oscillations whereas the filtered one does not. The filter matrix was applied
to the solution after every time step in the simulation.

The second example illustrates the importance of the stability of the underlying spatial
discretization. We consider Burgers’ equation and two forms of the nodal DG spatial dis-
cretization. One discretizes the conservative form of the PDE where the nonlinear Burgers’
flux is f (u) = u2/2 while the other writes the spatial derivative of the flux in a split formu-
lation fx (u) = ((u2)x + uux )/3. On the continuous level these two forms are equivalent;
however, on the discrete level they exhibit different behavior. Most notably, the solution
energy u2/2 is bounded for the nodal skew-symmetric DG discretization whereas no such
bound exists for the discrete conservative form [4, Sect. 4]. If the underlyingnumerical scheme
is provably stable, and the filtering is contractive, it will remove energy from the solution
in a stable controlled way. However, if the underlying scheme is unstable the filtering still
removes energy and the approximation might seem stable.

To illustrate this we consider the domain � = [0, 2] with periodic boundary conditions
and the initial condition uini(x) = 1

5 [1 + cos(πx)]. We run the simulation with polynomial
order N = 128 up to T = 2.25 and filter the solution at 16 equally spaced times. We run four
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(a) (b)

(c) (d)

Fig. 2 a Solution energy evolution of four nodal DG variants for Burgers’ equation. The approximate solution
(N = 128) and a reference finite volume solution are given at T = 2.25 for the b filtered conservative form,
c unfiltered skew-symmetric form and d filtered skew-symmetric form

variants of the nodal DG scheme: Conservative formulation; unfiltered and filtered as well
as skew-symmetric formulation; unfiltered and filtered. In Fig. 2a we present the evolution
of the solution energy, normalized with its initial value. Figure 2b–d present the approximate
solution at the final time produced by the filtered conservative, unfiltered skew-symmetric
and filtered skew-symmetric DG schemes, respectively. The reference solution is created
with a standard finite volume scheme on 10,000 grid cells.

The simulation is well resolved and the four variants are nearly indistinguishable for
most of the simulation time. However, as the gradients steepen we see that the conservative
formulation, for which no energy stability exists, behave erratically. The unfiltered conserva-
tive simulation crashes at T ≈ 1.8. The filtered conservative simulation runs as the filtering
keeps the solution energy “under control.” In Fig. 2awe observe growth in the solution energy
between the filter applications because the underlying spatial discretization is unstable. The
solution energy of unfiltered and filtered skew-symmetric simulations both remain bounded
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because the underlying spatial discretization possesses an energy bound. Comparing Fig. 2b,
d, we see at the final time the filtered conservative and skew-symmetric DG schemes pro-
duce nearly identical results. As previously noted, the unfiltered conservative DG scheme
crashes while the skew-symmetric DG scheme runs. The solution energy u2/2 for Burg-
ers’ equation is a conserved quantity for smooth solution and should only dissipate in the
presence of discontinuous solutions [4, Sect. 4]. The skew-symmetric DG approximation is
constructed to conserve the solution energy u2/2. So, in the absence of dissipation spurious
oscillations develop near the discontinuity and propagate throughout the domain as energy
is redistributed at the smallest resolvable scale [15, Sect. 6]. Thus, as shown in Fig. 2c, we
see that the unfiltered skew-symmetric scheme is stable but the solution quality is extremely
poor due to unphysical ringing.

5 Closing Remarks

We proved that the commonly used nodal DG filter matrix F satisfied a contractivity condi-
tion. This result implied that the explicit filtering procedure for nodal DG methods is stable.
Numerical results verified that the filtering was efficient and stable if the underlying spatial
discretization of the method had a semi-discrete bound.
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