
Journal of Scientific Computing (2021) 87:41
https://doi.org/10.1007/s10915-021-01432-z

Adaptive Radial Basis Function Partition of Unity
Interpolation: A Bivariate Algorithm for Unstructured Data

Roberto Cavoretto1

Received: 28 October 2020 / Revised: 16 January 2021 / Accepted: 9 February 2021 /
Published online: 18 March 2021
© The Author(s) 2021

Abstract
In this article we present a new adaptive algorithm for solving 2D interpolation problems of
large scattered data sets through the radial basis function partition of unity method. Unlike
other time-consuming schemes this adaptive method is able to efficiently deal with scattered
data points with highly varying density in the domain. This target is obtained by decom-
posing the underlying domain in subdomains of variable size so as to guarantee a suitable
number of points within each of them. The localization of such points is done by means
of an efficient search procedure that depends on a partition of the domain in square cells.
For each subdomain the adaptive process identifies a predefined neighborhood consisting of
one or more levels of neighboring cells, which allows us to quickly find all the subdomain
points. The algorithm is further devised for an optimal selection of the local shape parameters
associated with radial basis function interpolants via leave-one-out cross validation and max-
imum likelihood estimation techniques. Numerical experiments show good performance of
this adaptive algorithm on some test examples with different data distributions. The efficacy
of our interpolation scheme is also pointed out by solving real world applications.

Keywords Meshless approximation · Partition of unity methods · Radial basis functions ·
Scattered data interpolation · Adaptive algorithms

Mathematics Subject Classification 65D05 · 65D15 · 41A05

1 Introduction

In kernel based approximation radial basis function (RBF) methods are effective meshfree
techniques, which can be implemented to numerically solve various types of science and
engineering problems. Over the last years the use of RBFmethods has gained much attention
in several interdisciplinary fields. Indeed, while many traditional numerical methods such as
finite differences, finite elements or finite volumes have troubles with high-dimensional prob-

B Roberto Cavoretto
roberto.cavoretto@unito.it

1 Department of Mathematics “Giuseppe Peano”, University of Torino, via Carlo Alberto 10, 10123
Torino, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01432-z&domain=pdf
http://orcid.org/0000-0001-6076-4115

41 Page 2 of 24 Journal of Scientific Computing (2021) 87 :41

lems, meshfree methods can often handle changes in the geometry of the domain of interest
(e.g., free surfaces, moving particles and large deformations) better. Moreover, independence
from a mesh is a great advantage since mesh generation is one of the most time-consuming
parts of any mesh-based numerical simulation (see e.g. [16,17,20]). All these issues deserve
to be considered not only when one has to model (systems of) partial differential equations
(PDEs), but also when a multivariate problem of scattered data fitting needs to be faced
and solved appropriately. This problem is particularly relevant in several situations in which
surface reconstruction involves unstructured large data sets, requiring in some way the con-
struction of adaptive interpolation or approximation methods. Approximating scattered data
of high complexity arises in various areas of applied sciences, ranging from scanner acqui-
sitions to geographic benchmarks, as well as for industrial and medical purposes where the
processing of large random data configurations is usually carried out. In such cases scattered
data can have significantly different distributions, e.g. data with highly varying density or
data with voids, which demand adaptive algorithms (see e.g. [8,13]).

In this articlewe present a new adaptive algorithm for solving 2D interpolation problems of
large scattered data sets. In doing that, though some adaptive strategies have been developed,
for example, in [15,38], a global RBF interpolation method is not definitely suitable for
our purposes, since it seldom turns out to be usable in practice. Indeed, a global scheme
is characterized by a big interpolation matrix, and this results in a two-fold issue: first, a
severe ill-conditioning of the matrix with a consequent high level of instability; second, a
high computational cost when such a matrix has to be inverted (and the method applied in its
entirety). For this reason, in this work, we focus on a local RBF method, such as the radial
basis function partition of unity method (RBF-PUM), which allows us to decompose a big
problem into several small subproblems. This interpolationmethod relies on a decomposition
of the domain into several subdomains forming a cover of it, and constructing a local RBF
interpolant on each subdomain. The original idea of PUMcomes from the context of PDEs [3,
27], but later it also gainedmuch popularity in the field of numerical approximation [10,11,13]
and, more in general, in various areas of applied mathematics and scientific computing (see
e.g. [4,5,12,19,22,23,25,28]). However, although the RBF-PUM has some specific features
that makes it particularly suitable for processing large scattered data sets, the problem of
interpolating very irregularly distributed data points has been addressed only partly in [13].
In fact, the numerical method in [13] is accurate, but at the same time it is also quite costly
from the computational point of view. Here we therefore propose a new adaptive scheme
that allows us to define subdomains of variable size so as to guarantee in any case a suitable
number of points within each of them. Such points are localized by considering a cell based
structure, which preliminary partitions the underlying domain and its points in a suitable
number of cells, thus enabling the use of an efficient search procedure. After completing this
phase, the algorithm identifies for each subdomain optimal values of the local RBF shape
parameters via leave-one-out cross validation (LOOCV) or maximum likelihood estimation
(MLE). Both techniques have a statistical background and can be combined with efficient
optimization routines to quickly achieve reliable predictions of the RBF shape parameters
(see [16,30,31]). In our extensive numerical experimentswe show the performance of this new
adaptive algorithm, also comparing our results with non-adaptive and adaptive—but existing
or standard routine based—algorithms. Finally, the efficacy of our scheme is also pointed
out by solving interpolation problems with data sets coming from real world applications.

The paper is organized as follows. In Sect. 2 we give a brief overview on the basic notions
regarding the RBF based interpolation. In Sect. 3 we focus on the construction of the RBF-
PUM selecting local RBF shape parameters via either LOOCV or MLE. Section 4 is devoted
to describe our adaptive algorithm, then discussing computational issues and providing a

123

Journal of Scientific Computing (2021) 87 :41 Page 3 of 24 41

complexity analysis. In Sect. 5we present several numerical results designed on test examples
in order to illustrate the performance of our interpolation algorithm. Section 6 shows some
applications to real world data sets. Finally, Sect. 7 deals with conclusions and future work.

2 Preliminaries on RBF Based Interpolation

In this section we give a brief overview on the basic notions of RBF methods, which are
powerful and flexible tools for scattered data interpolation. To have more details on the
theoretical background, we refer the reader to [9,16,36].

Given a domain Ω ⊆ R
s , a set X N = {x1, . . . , xN } ⊆ Ω of N distinct data points or

nodes and the corresponding data or function values f (xi) ∈ R, i = 1, . . . , N , obtained
by possibly sampling any (unknown) function f : Ω → R, we want to find a function
s : Ω → R that satisfies the interpolation conditions

s(xi) = f (xi), i = 1, . . . , N . (1)

We express a RBF interpolant s : Ω → R as a linear combination of RBFs, i.e.,

s(x) =
N∑

i=1

ciφε(||x − xi ||2), x ∈ Ω,

where ci , i = 1, . . . , N , are unknown real coefficients, || · ||2 denotes the Euclidean norm,
and φ : R≥0 → R is a strictly positive definite (SPD) RBF depending on a shape parameter
ε > 0 such that

φε(||x − y||2) = φ(ε||x − y||2), ∀ x, y ∈ Ω.

In the following, for the sake of simplicity, we refer to φε as φ. In Table 1 we report a list
of some SPD RBFs together with their degrees of smoothness. Note that Gaussian, Inverse
MultiQuadric and Matérn functions are globally supported and SPD in R

s for any s, while
Wendland functions are compactly supported—with support [0, 1/ε]—and SPD in R

s for
s ≤ 3 [36].

Since φ is a SPD function, the matrix A = (Aki) with the entries Aki = φ(||xk −
xi ||2), k, i = 1, . . . , N , is positive definite for all possible sets of nodes. In this case, the
coefficients ck are uniquely determined by enforcing the interpolation conditions in (1) and
can be obtained by solving the symmetric linear system

Ac = f , (2)

where c = (c1, . . . , cN)T , and f = (f1, . . . , fN)T . Therefore, the interpolation problem is
well-posed and, hence, its solution exists uniquely [17].

Moreover, for any SPD RBF φ we can define a symmetric and SPD kernel Φ : Ω ×Ω →
R, i.e.,

Φ(x, y) = φ(||x − y||2), ∀x, y ∈ Ω.

For the kernel Φ there exists the so-called native space, that is a Hilbert space NΦ(Ω) with
inner product (·, ·)NΦ(Ω) in which the kernel Φ is reproducing, i.e., for any f ∈ NΦ(Ω)

we have the identity f (x) = (f , Φ(·, x))NΦ(Ω), for x ∈ Ω . Thus, the space HΦ(Ω) =
span{Φ(·, x), x ∈ Ω}, equipped with the bilinear form (·, ·)HΦ(Ω), is an inner product space
with reproducing kernel Φ. The native space NΦ(Ω) of the kernel Φ is then defined as the

123

41 Page 4 of 24 Journal of Scientific Computing (2021) 87 :41

Table 1 Some examples of popular SPD RBFs

RBF φε(r)

Gaussian C∞ (GA) exp(−ε2r2)

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

Matérn C6 (M6) exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15)

Matérn C4 (M4) exp(−εr)(ε2r2 + 3εr + 3)

Matérn C2 (M2) exp(−εr)(εr + 1)

Wendland C6 (W6) max (1 − εr , 0)8 (32ε3r3 + 25ε2r2 + 8εr + 1)

Wendland C4 (W4) max (1 − εr , 0)6 (35ε2r2 + 18εr + 3)

Wendland C2 (W2) max (1 − εr , 0)4 (4εr + 1)

completion of HΦ(Ω) with respect to the norm || · ||HΦ(Ω), i.e. || f ||HΦ(Ω) = || f ||NΦ(Ω),
for any f ∈ HΦ(Ω) (see [17,36]).

3 RBF-PUM Based Interpolation

In this section we focus on the construction of the method, describing the LOOCV and MLE
based approaches that can be used to select optimal values of the RBF shape parameters.
Moreover, we present the main theoretical results concerning the RBF-PUM interpolation.

3.1 Construction of RBF-PUM Interpolants

Let Ω ⊆ R
s be an open and bounded domain, and let {Ω j }d

j=1 be an open and bounded
cover of Ω that fulfills some mild overlap condition among the subdomains Ω j . Indeed, the
subdomains Ω j need to form a cover of the domain such that

⋃d
j=1 Ω j ⊇ Ω . Moreover, a

given point x ∈ Ω must belong at most to K (independent of d) overlapping subdomains.
A typical example of partition of unity (PU) subdomains using scattered data points in R

2

is shown in Fig. 1; in this case, for the sake of clarity, we show circular subdomains of fixed
radius.

Given the subdomains Ω j , we consider a partition of unity {w j }d
j=1 subordinated to the

cover {Ω j }d
j=1 such that

d∑

j=1

w j (x) = 1, x ∈ Ω,

where the weight w j : Ω j → R is a continuous, nonnegative and compactly supported
function with supp(w j) ⊆ Ω j . Then, we define the global RBF-PUM interpolant of the form

s(x) =
d∑

j=1

s j (x)w j (x), x ∈ Ω. (3)

123

Journal of Scientific Computing (2021) 87 :41 Page 5 of 24 41

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

Fig. 1 Example of PU subdomains of fixed radius δ (red circles) with scattered data points (blue dots) in R2.
Subdomain centers are denoted by red stars (Color figure online)

For each subdomain Ω j , in (3) we can thus express the local RBF interpolants s j : Ω j → R

as follows

s j (x) =
N j∑

i=1

c j
i φ(||x − x j

i ||2), (4)

where N j is the number of data points in Ω j (i.e. the nodes x
j
i ∈ X N j = X N ∩ Ω j), and we

construct PU functions w j using the well-known Shepard’s weight [1,33]

w j (x) = ϕ j (x)
∑d

k=1 ϕk(x)
, j = 1, . . . , d, (5)

where ϕ j (x) is a compactly supported function with support on Ω j such as the W2 function
(see Table 1). Such functions are scaled with a shape parameter σ to get ϕ j (x) = ϕ(σ ||x −
ξ j ||2), ξ j being the center of the weight function.

If the functions s j , j = 1, . . . , d , satisfy the interpolation conditions

s j (x
j
i) = f (x j

i), x j
i ∈ Ω j , i = 1, . . . , N j , (6)

the global interpolant (3) inherits the interpolation property of the local interpolants (4), i.e.,

s(x j
i) =

d∑

j=1

s j (x
j
i)w j (x

j
i) =

d∑

j=1

f (x j
i)w j (x

j
i) = f (x j

i).

123

41 Page 6 of 24 Journal of Scientific Computing (2021) 87 :41

Solving the j th interpolation problem (6) results in the linear system

⎛

⎜⎜⎝

φ(||x j
1 − x j

1||2) · · · φ(||x j
1 − x j

N j
||2)

...
...

...

φ(||x j
N j

− x j
1||2) · · · φ(||x j

N j
− x j

N j
||2)

⎞

⎟⎟⎠

⎛

⎜⎜⎝

c j
1
...

c j
N j

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

f j
1
...

f j
N j

⎞

⎟⎟⎠ ,

or simply

A j c j = f j . (7)

As for the global system (2), the use of SPD functions φ ensures (also in the local case) that
the solution of the local system (7) exists uniquely, since the matrix A j is nonsingular [17].

3.2 Selection of Local RBF Shape Parameters

Since the accuracy of the global interpolant (3) strongly depends upon the choice of shape
parameter ε associated with the local RBFs in (4), we need an effective approach that enables
us to find suitable values of ε (and, possibly, an optimal one for each of PU subdomains). The
RBF shape parameter is in fact responsible for the flatness of the basis functions. However,
in the flat limit ε → 0, i.e. when the best accuracy is typically achieved, the local matrix
in (7) might suffer from instability due to ill-conditioning (see [16]). As a consequence, the
selection of ε may highly influence the accuracy of the RBF-PUM based interpolation. It is
therefore paramount to optimally detect such values of the local RBF shape parameters.

3.2.1 Choice of " via LOOCV

A good way to select a shape parameter ε is to use locally the LOOCV technique [30]. The
idea behind LOOCV in the RBF-PUM interpolation is to split the data of each subdomain
Ω j , j = 1, . . . , d , into two distinct sets:

– a training set { f (x j
1), . . . , f (x j

k−1), f (x j
k+1), . . . , f (x j

N j
)},

– a validation set consisting of only the single value f (x j
k)whichwas left outwhen creating

the training set.

For a fixed index k ∈ {1, . . . , N j } and a fixed shape parameter ε, we define the partial RBF
interpolant

s[k]
j (x) =

N j∑

i=1, i �=k

c j
i φ(||x − x j

i ||2),

whose coefficients c j
i are found by interpolating the training data

s[k]
j (x j

i) = f (x j
i), i = 1, . . . , k − 1, k + 1, . . . , N j .

In order to measure the quality of this attempt, we define the error

e j
k (ε) = f (x j

k) − s[k]
j (x j

k) (8)

123

Journal of Scientific Computing (2021) 87 :41 Page 7 of 24 41

at the one validation point x j
k not used to determine the interpolant. The “optimal” value of

ε is found as

ε
opt
j = argminε||e j (ε)||, e j = (e j

1 , . . . , e j
N j

)T , (9)

where || · || is any norm used in the minimization problem, for instance, the ∞-norm.
The important aspect is that we can determine the error vector e j without solving N j

problems, each of size (N j − 1) × (N j − 1). In fact, instead of (8), the computation of the
error components can be expressed in terms of the interpolation matrix A j in (7), i.e.

e j
k (ε) = c j

k

(A−1
j)kk

, (10)

where c j
k is the kth coefficient in the full RBF interpolant (4) and (A−1

j)kk is the kth diagonal

element of the matrix A−1
j [18]. So from (9) and (10) it follows that the LOOCV cost function

to be minimized is

LOOCV(ε) = ||e j (ε)||∞ = max
k=1,...,N j

∣∣∣∣∣
c j

k

(A−1
j)kk

∣∣∣∣∣ . (11)

3.2.2 Choice of " via MLE

Another approach for selecting a shape parameter ε is given by the MLE, which relies on
solid probabilistic and statistical foundations [18]; for further details, see e.g. [16,31,32]. As
the LOOCV technique even aMLE based criterion can be applied to RBF-PUM interpolation
to locally find an optimal ε-value for each subdomain Ω j , j = 1, . . . , d .

In this stochastic context we introduce the concept of random field Y j = {Y j (x)}x∈Ω j

defined on the subdomain Ω j . In particular, we assume that the field Y j is a Gaussian ran-
dom field, i.e., the vectors Y j = (Y j (x1), . . . , Y j (xN j))

T of random variables have normal

distributions with mean μ j = E[Y j] and covariance matrix σ 2
j A j = Cov(Y j (xk, xi))

N j
k,i ,

where σ 2
j is the process variance. Here, for simplicity we assume that μ j = 0 and σ 2

j = 1.
Now, for a fixed shape parameter ε, if the probability density that occurs an event given the

data f j is expressed as p(f j |ε), then the function L(ε| f j) characterizes the likelihood of ε

given the existing data values f j . Therefore, the Gaussian joint probability density function
that refers to the vector Y j of N j random observations (belonging to the subdomain Ω j) can
be written as follows

p(Y j |ε) = 1√
(2π)N j det(A j)

exp

(
−1

2
Y T

j A
−1
j Y j

)
. (12)

When we evaluate the density function (12) by using the j th data vector f j =
(f j (x1), . . . , f j (xN j))

T , we obtain the log-likelihood function1

logL(ε| f j) = log

⎛

⎝
exp
(
− 1

2 f T
j A

−1
j f j

)

√
(2π)N j det(A j)

⎞

⎠

= −1

2
log(det(A j)) − 1

2
f T

j A
−1
j f j − N j

2
log(2π).

1 We use the logarithm since the likelihood function is usually subjected to underflow and overflow.

123

41 Page 8 of 24 Journal of Scientific Computing (2021) 87 :41

In order to find the optimal ε parametrization, we thus need to maximize the log-likelihood
function. Equivalently, we can multiply it by −2, and then—ignoring the constant term—
minimize the resulting negative function.

If we instead want a criterion dependent of the variance process, we can obtain the fol-
lowing MLE cost function

MLE(ε) = log(det(A j)) + N j log(f T
j A

−1
j f j), (13)

which can be minimized to determine the optimal value of ε (see [16]).

3.3 Convergence and Error Estimates

In order to formulate error bounds for RBF-PUM interpolation, we assume some addi-
tional regularity conditions on the subdomains Ω j . In particular, we require that the PU
weight functions w j are k-stable [35]. This property holds if—besides assumptions given in
Sect. 3.1—∀α ∈ N

s
0, with |α| ≤ k, there exists a constant Cα > 0 such that

∥∥Dαw j
∥∥

L∞(Ω j)
≤ Cα

δ
|α|
j

, j = 1, . . . , d,

where δ j = diam(Ω j) = supx, y∈Ω j
||x− y||2.Moreover, we need also to define the fill distance

h X N ,Ω = sup
x∈Ω

min
xi ∈X N

||x − xi ||2, (14)

and make some further assumptions to have a regular covering {Ω j }d
j=1 for (Ω, X N) [36].

This condition demands that every subdomain Ω j satisfies the so-called interior cone con-
dition, and the local fill distances h X N j ,Ω j are uniformly bounded by the global fill distance
(14).

After defining the space Ck
ν (Rs) of all functions f ∈ Ck whose derivatives of order

|α| = k satisfy Dα f (x) = O(||x||ν2) for ||x||2 → 0, we consider the following convergence
result, see [17, Theorem 29.1] and [36, Theorem 15.9].

Theorem 1 Let Ω ⊆ R
s be open and bounded and X N = {x1, . . . , xN } ⊆ Ω . Let φ ∈

Ck
ν (Rs) be a strictly conditionally positive definite function of order m. If {Ω j }d

j=1 is a

regular covering for (Ω, X N) and {w j }d
j=1 is k-stable for {Ω j }d

j=1, then the error between
f ∈ Nφ(Ω) and its PUM interpolant (3) is bounded by

|Dα f (x) − Dαs(x)| ≤ Ch(k+ν)/2−|α|
X N ,Ω | f |Nφ(Ω),

for all x ∈ Ω and all |α| ≤ k/2.

If we compare this convergence result with the global error estimates in [36], we see that
the PUM preserves the local approximation order for the global fit (3). So we can efficiently
compute large RBF interpolants by solving many small RBF interpolation problems and then
glue them together with the global PU weights {w j }d

j=1 (see [17]).

4 Adaptive Bivariate Algorithm and Computational Issues

In this section we present the adaptive algorithm for bivariate interpolation of large scattered
data sets. This adaptive approach is particularly useful when we are interested in solving

123

Journal of Scientific Computing (2021) 87 :41 Page 9 of 24 41

interpolation problems that are characterized by unstructured or very irregularly distributed
data. In this case, indeed, besides identifying suitable values of ε, in a PU framework it is
important to have the chance of constructing subdomains of variable size. Since in this work
we are considering radial kernels, it is natural to consider subdomains of circular shape. The
search process is therefore directed to find a sufficient (or minimum) number of points to
be able to define properly a local RBF interpolant. From a practical standpoint this means
first to select in an adaptive way the radii δ of our subdomains, and then determine for each
subdomain an optimal value of the shape parameter ε associated with the RBF. While the
choice of ε has been discussed widely in Sect. 3.2, here we focus on the selection of suitable
subdomain radii δ. This phase imposes to organize all given data in an efficient way so as to
be able to quickly identify all the points belonging to the given subdomains. Indeed, when
the initial radius of a subdomain is not large enough, i.e. the subdomain does not contain a
sufficient number of points, the subdomain size has to increased thus including more points.

Now, in the following we give a description of our adaptive algorithm that enables us to
find for each subdomainΩ j , j = 1, . . . , d , a couple of suitable values (ε j , δ j), also providing
an analysis of the computational cost.

4.1 Data Structures and Search Procedures

In this subsection we describe how the data are organized in the two-dimensional space to
select the nodes belonging to the various subdomains in the RBF-PUM based interpolation.
By doing so, for the sake of clarity we usually assume that the search of points is carried out
once (i.e., for a fixed index k), taking into account that an adaptive algorithm is obviously
characterized by an iterative process. Computational efficiency is indeed an essential aspect
to fast assembly the local matrix A j in (7) and determine the corresponding local RBF
interpolant (4). Hence here we present the search procedure used for the localization of
points that lie in the subdomains Ω j , j = 1, . . . , d . Such a technique relies on a suitable
partition of the domain Ω in square cells. Similar approaches have also been considered in
[11,13]. Even if our partitioning structure is applicable to a generic domain, in this work we
simply discuss the case of Ω = [0, 1]2 ⊆ R

2.
First of all, we start with considering a cover of the domain Ω in which each subdomain

Ω j , j = 1, . . . , d , has initially radius

δ := δ
(0)
j = 1

dPU
, (15)

where

dPU =
⌊
1

2

√
N

⌋
(16)

defines the number of PU centers along a single direction of Ω . The partition of the domain
Ω is thus formed by d = d2

PU subdomains, whose centers are given by a grid of points (see
the red stars in Fig. 1).

Remark 1 From the definition of dPU in (16) it follows that if we take a larger (smaller)
value of d , the partitioning structure becomes finer (coarser), i.e. less subdomains lead to
larger ones (and vice versa). This specific connection between the parameters δ and d always
ensures to be able to form a cover of Ω .

A choice as that given in (15) can be appropriate when we have a uniform or quite regular
node distribution, but in case of irregularly distributed data the value (15) must be updated. In

123

41 Page 10 of 24 Journal of Scientific Computing (2021) 87 :41

particular, we may iterate our adaptive process by computing the subdomain radii as follows

δ
(k)
j = tkδ, k = 1, 2, . . . , (17)

where tk ∈ R>1 is a value that increases with k until every subdomain Ω j , j = 1, . . . , d ,

contains a number N (k)
j of points, which is larger than or equal to a prescribed minimum

number Nmin
2.

Now, in order to localize all the nodes that lie in every subdomainΩ j , we need to generate
a data structure that enables us to partition suitably the domain Ω and the data points therein
contained. Such a partition turns out to be particularly effective if it is combined with an
efficient searching procedure. This search technique is based on a partition ofΩ in b2 square
cells, where

b =
⌈
1

δ

⌉
(18)

denotes the cell number along one side of the domain. Thus we assume that the side of
every square cell is equal to (or at most slightly less than) the initial subdomain radii. This
choice enables us to examine in the searching procedure only a reduced number of cells,
thus minimizing the computational effort w.r.t. the most advanced space-partitioning data
structures, such as kd-trees,which are commonly used for range andnearest neighbor searches
(see e.g. [2,6]). Acting in this way, given a generic point, say x = (x1, x2), we can compute
the indexes

ki =
⌈ x

δ

⌉
, i = 1, 2, (19)

which identify the cell

k = (k1 − 1) b + k2, (20)

in which the point x in (19) lies. Such a index is computed by taking into account the couple
of cell coordinates (k1,k2) in (20) that move along x1 and x2 axes, respectively. It is therefore
easy to assign to any point the corresponding cell k and partition a set of points in the domain
Ω , as for instance the set X N of data points. A sketch of the routine for building the cell
based structure is shown in Procedure 1.

Procedure 1: Cell based Structure

Step 1 For any point x ∈ X N
(a) Compute the indexes k1 and k2 as in (19)
(b) Find the cell k in which x is located applying (20), and associate the index of x to it

Step 2 Return the indexes belonging to each of the b2 cells, i.e., all points of X N are identified in their
own cell

Partitioning the domain Ω , we adopt a lexicographic order by proceeding from bottom to
top and from left to right, numbering the square cells from 1 to b2. Now, if a given subdomain
Ω j has radius (15) and its center lies in the kth cell, from (18) we deduce that the nodes
belonging to Ω j must be searched in the so-called square neighborhood consisted initially

2 The number N (k)
j represents the amount of data points present in the subdomain Ω j at the kth iteration; this

value updates the generic definition of N j introduced in (4), which has been used so far.

123

Journal of Scientific Computing (2021) 87 :41 Page 11 of 24 41

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

1

b2

b+1

b

cell k = 80

cell k = 160

2b

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

(k)
j

 = (0)
j

Fig. 2 Example of domain partition and search of points (blue dots) in the cell based structure. Left: cells
k = 80 and k = 160 (yellow) together with one or two levels of neighboring cells (cyan and green). Right:

square neighborhoods (orange) of various sizes including subdomains of radius δ = δ
(0)
j (red, top-right) and

δ
(k)
j (red, bottom-left), whose centers are denoted by the star * (Color figure online)

of nine cells, i.e. the kth square cell and its 32 − 1 neighboring cells. However, when the
number of points in Ω j is not enough, we enlarge the radius as outlined in (17) and so the
square neighborhood becomes larger as well. In so doing, in order to find all data points of
Ω j , we have to explore the kth cell and its (3+ 2n)2 − 1 neighboring cells, for n = 1, 2,
In other words, for n = 0 we consider the first level (or “crown”) of the neighborhood, for
n = 1 the second one, and so on. An example of domain partition in square cells associated
with the phase of localization and search of points within the adaptive subdomains is given
in Fig. 2, left to right.

After partitioning the points in b2 square cells, we have to answer the following inquiries,
known respectively as containing query and range search. These computational issues can
be briefly described as follows:

(i) given the center of a subdomain Ω j , return the index k of the square cell in which that
center is contained;

(ii) given a subdomain Ω j and the nodes belonging to the corresponding square neighbor-
hood, find all points that lie in that subdomain.

Therefore, the cell based containing query routine in item (i) provides the index k of the cell
containing the subdomain center. Here, unlike (19), the cell coordinates k1 and k2 in (20) are

ki =
⌈
xc

j

δ

⌉
, i = 1, 2, (21)

replacing the generic point x with the specific point xc
j = (xc

j1, xc
j2), which represents the

center of the subdomain Ω j (see [13]). As regards item (ii) we have to construct beforehand
the square neighborhoods, since we need to consider the points that are located in the given
neighborhood only, instead of all points of the domain Ω . In the above description we
observe that Ω j is a generic subdomain, so we should think the subscript j is fixed. A
practical example of the rule (20) for k = 80 (i.e., k1 = 6 and k2 = 5) and k = 160 (i.e.,
k1 = 11 and k2 = 10) is depicted in Fig. 2 (left). Then, after answering the first query, given
a subdomain Ω j the search routine enables us to determine all points that are contained

123

41 Page 12 of 24 Journal of Scientific Computing (2021) 87 :41

in Ω j . More precisely, since the center of such subdomain is located within the kth cell,
the associated search technique identifies all data points which are in the kth cell and in its
neighboring cells, see Fig. 2 (right). The algorithm also provides for the chance to reduce
the number of neighboring cells to be examined when a cell is placed close to the boundary
of the domain Ω . An outline of the routines for solving containing query and range search
problems is illustrated in Procedure 2 and Procedure 3, respectively, while a summary of the
whole adaptive algorithm for bivariate RBF-PUM interpolation is sketched in Algorithm 1.

Procedure 2: Containing Query

Step 1 Define the subdomain center of Ω j

Step 2 Compute the cell coordinates (k1, k2) given in (21)

Step 3 Apply the rule (20) and obtain the index k of the cell containing the center of Ω j

Procedure 3: Range Search

Step 1 Define the square neighborhood associated with a subdomainΩ j

Step 2 Compute theEuclidean distance between the center ofΩ j and all data points belong-
ing to the square neighborhood

Step 3 Sort all computed distances and return all points contained in the subdomain Ω j

4.2 Complexity Analysis

In this subsection we discuss computational complexity of the adaptive algorithm. To keep
the presentation easier, in the following we explicitly refer to the various steps of Algorithm
1. First of all, we observe that Steps 1, 2 and 3 are essentially preliminary phases, where
we define the basic setup for the RBF-PUM and the related partition in cells of the domain
Ω . This stage does not significantly influence the computational cost. Then, in Step 4 we
build and apply the cell based structure to assign the corresponding cell to each interpolation
point of X N . This step has aO(N) cost. In the assessment of the total complexity we should
however take into account the cost which derives from the storing of other points (e.g.,
evaluation points) or the number d of subdomains used to construct the PUM. In Step 5
for every subdomain Ω j , j = 1, . . . , d , we have to solve containing query and range search
problems; in this phase, the process also needs to compute a square neighborhood consisting
of nine cells, i.e. the ones at zero and one levels, respectively (see yellow and cyan cells in
Fig. 2, left). Now, applying the containing query and range search routines, the complexity is
of the orderO(N). The procedure is then iterated in Step 6 until the while-loop has reached
the minimum number of prescribed points in each subdomainΩ j . In an adaptive process this
could cause an increase of the computational cost, in particular when we have unstructured
or significantly different data distributions within the domain. In fact, this stage establishes to
update the subdomain size and, accordingly, to enlarge the square neighborhood.Here,we can
also observe that the call to the range search routine requires a sort of all computed distances

123

Journal of Scientific Computing (2021) 87 :41 Page 13 of 24 41

Algorithm 1: Adaptive RBF-PUM Algorithm

Step 1 Create a cover of the domain Ω with subdomains Ω j of radius (15)

Step 2 Define a partition of Ω in b2 square cells, where b is given in (18)

Step 3 Fix the minimum number Nmin of points required in each subdomain Ω j

Step 4 Apply the cell based structure for the identification of points in the b2 cells

Step 5 For each Ω j , find the cell containing the subdomain center (containing query)

and, generated the square neighborhoods formed by 32 cells,

determine all points that lie in Ω j (range search)

Step 6 While N (k)
j < Nmin, with iteration k = 1, 2, . . .

a) Compute the subdomain radii (17)

b) Enlarge the square neighborhoods consisted of (3 + 2n∗)2 cells,

n∗ ∈ {1, 2, . . .}, and find additional points of Ω j (range search)

Step 7 Select the local RBF shape parameter via LOOCV or MLE

Step 8 Compute local interpolants (4) and weight functions (5)

Step 9 Evaluate the global interpolant (3)

within the subdomains Ω j , j = 1, . . . , d (see Step 3 of Procedure 3). However, due to
local use of a quicksort routine whose complexity is O(N j log N j), the cost of this phase
is estimated to be O(1). In Step 7, the algorithm finds automatically the shape parameters
associated with the local RBF interpolants. As discussed in Sect. 3.2, the choice of ε can be
done, either using LOOCV orMLE. Both methods require computation of the inverse matrix
A−1

j , j = 1, . . . , d with a cost of O(N 3
j). Even so, the actual selection of the ε-parameter is

carried out in an efficient way by minimizing the cost functions (11) or (13) via theMatlab
fminbnd optimization routine. Finally, in Steps 7 and 8 we have to add up a constant
number of local interpolants and weight functions to evaluate the global fit (3). This last
stage can be completed with a complexity of O(1).

5 Numerical Results

In this section we illustrate the performance of our adaptive algorithm, which is implemented
in Matlab environment. All the numerical experiments have been carried out on a laptop
with an Intel(R) Core i7 6500UCPU 2.50GHz processor and 8.00GBRAM, while the results
are shown in tables and figures.

In the following we focus on a wide series of experiments carried out by running the
adaptive algorithm for 2D RBF-PUM interpolation. This study aims to analyze the algorithm
behavior when the use of an adaptive scheme is essential to get reliable results in broad sense.
In doing so, in our tests we consider four different sets of irregularly distributed (or scattered)
data points contained in the unit square Ω = [0, 1]2 ⊂ R

2. Each of these unstructured node
distributions exhibits distinct features. The latter have been chosen to stress the adaptive
method and see how the numerical algorithm works in various situations. For the sake of

123

41 Page 14 of 24 Journal of Scientific Computing (2021) 87 :41

simplicity, we denote these four data sets with the names “Halton”, “Ameoba”, “Starfish”
and “Strips”, which are defined as follows:

– “Halton” refers to a data set consisting of N = 4 096 low discrepancy Halton points [37]
generated through the Matlab command haltonset(2,’Skip’,1), see Fig. 3
top-left;

– “Ameoba” is a data set characterized by five different distributions, with N = 8 419. In
themiddle of the domain we have a node distribution with 4 460 nodes within an Ameoba
like shape region which is bounded by the parametric curve [34]

r(θ) = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ), θ ∈ [0, 2π),

while the remaining area is split into four small “incomplete” squares containing 165,
257, 438 and 3 099 points, respectively, see Fig. 3 top-right;

– “Starfish” identifies a data set containing four distributions of pointswith distinct densities
in the domain and on the whole N = 11 436 interpolation nodes. In the central part of the
domain we have a starfish like shape area with 2 547 points bounded by the parametric
curve [24]

r(θ) = 0.8 + 0.1(sin(6θ) + sin(3θ)), θ ∈ [0, 2π).

The other parts of Ω are characterized by three oblique bands in which, excluding the
starfish-like region, there are 1 287, 5 461 and2 141points, respectively, seeFig. 3 bottom-
left;

– “Strips” labels the last data set with N = 14 001 points. In this case we consider five
vertical strips, each of them having a different node distribution. More precisely, left-to-
right, we move going from a low density to a high density of points, which is proved
by the fact that strips of equal area contain 802, 1 800, 2 801, 3 800, and 4 798 points,
respectively, see Fig. 3 bottom-right.

Besides selecting suitable subdomains of variable size in the PUM as discussed in Sect. 4,
the adaptive algorithm also ensures dependable previsions of the RBF shape parameters via
LOOCVorMLE(seeSect. 3.2). Thedetectionof suchparameters is completely automatic and
the ε-computation is done by using theMatlab fminbndminimization routine. Moreover,
in (17) we assume that the value tk = 1 + k/8, with k = 1, 2, . . ., demanding that each
subdomain contains at least Nmin = 15 data points. We thus show the results obtained by
applying our adaptive PUM algorithm and using as local interpolants in (4) some of the SPD
RBFs contained in Table 1. As a matter of fact, since we are interested in studying in depth
howmuch our method is effective, the analysis is based on considering various local kernels,
thus involving radial functions of different smoothness such as GA, IMQ, W6, M6, M4 and
M2. In regard to Shepard’s weight in (5) we take the compactly supported function W2.

In these experiments we analyze the performance of our algorithm taking the data values
by three test functions. The former is known as Franke’s function [26], and its analytic
expression is

f1(x1, x2) = 3

4
e− (9x1−2)2+(9x2−2)2

4 + 3

4
e− (9x1+1)2

49 − 9x2+1
10

+ 1

2
e− (9x1−7)2+(9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2 .

The latter is a trigonometric function [29] of the form

f2(x1, x2) = 2 cos(10x1) sin(10x2) + sin(10x1x2),

123

Journal of Scientific Computing (2021) 87 :41 Page 15 of 24 41

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 2

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 2

Fig. 3 Graphical representation of data sets used for 2D interpolation: “Halton” (top-left), “Ameoba” (top-
right), “Starfish” (bottom-left) and “Strips” (bottom-right)

while the last one [7,21] is given by

f3(x1, x2) = 1

2
x2 cos

4 [4
(
x21 + x2 − 1

)]
.

In Fig. 4 we show a graphical representation of the above functions, which are commonly
used to test and validate new methods and algorithms, then making them usable in several
fields of applied sciences and engineering.

In order to investigate accuracy of the interpolation method, we compute the Root Mean
Square Error (RMSE), whose formula is given by

RMSE =
√√√√ 1

Neval

Neval∑

i=1

| f (ξ i) − s(ξ i)|2 = 1√
Neval

|| f − s||2, (22)

where the ξ i , i = 1, . . . , Neval, are a grid of evaluation points. Here, we assume Neval =
40 × 40.

123

41 Page 16 of 24 Journal of Scientific Computing (2021) 87 :41

Fig. 4 Graphical representation of test functions f1 (top, left), f2 (top, right) and f3 (bottom, center)

The target of our study is therefore two-fold: on the one hand, studying what is the level
of accuracy that this adaptive interpolation method can achieve; on the other, analyzing
the computational efficiency expressed in terms of CPU times (in seconds) of the proposed
algorithm. In order to emphasize the benefit deriving from this new numerical code, we
compare our implementationwith a non-adaptive algorithmand an adaptive one characterized
by the use of standard search procedures, i.e. without using the procedures discussed in
Sect. 4.1.

First of all, we start with an analysis on the accuracy of our adaptive RBF-PUM inter-
polation scheme. Thus, in Tables 2, 3, and 4, we report the computation errors obtained by
applying our algorithm on the four data sets and the three test functions previouslymentioned.
This study enables us to see how good the ε-predictions via LOOCV and MLE within our
local method are. From this comparison it is quite clear that LOOCV seems to be able to
provide a greater effectiveness, since its use usually leads to more accurate results thanMLE.
This fact is especially evident when a high regularity kernel such as GA is employed, instead
of a limited smoothness kernel like M4. However, we can also observe that in general the
LOOCV gives a slight improvement in term of precision, even if in some cases the benefit is
around a order of magnitude. For this reason, in our next tests we will mainly focus on use
of LOOCV technique.

Then, in Tables 5 and 6, our focus is to show the importance of our adaptive algorithm
with respect to a non-adaptive one. This relevance is undeniable in terms of accuracy of the

123

Journal of Scientific Computing (2021) 87 :41 Page 17 of 24 41

Table 2 RMSEs obtained by
applying the adaptive algorithm
for f1

Data set GA M4

LOOCV MLE LOOCV MLE

Halton 1.22e−6 3.57e−5 1.19e−5 6.47e−5

Ameoba 1.48e−5 2.93e−4 1.86e−4 4.27e−4

Starfish 6.35e−7 9.31e−6 3.72e−6 1.19e−5

Strips 4.27e−7 2.11e−5 1.26e−5 6.04e−5

Table 3 RMSEs obtained by
applying the adaptive algorithm
for f2

Data set GA M4

LOOCV MLE LOOCV MLE

Halton 1.68e−5 1.78e−4 4.03e−4 3.81e−4

Ameoba 1.47e−4 1.65e−3 1.93e−3 2.45e−3

Starfish 4.46e−6 4.23e−5 6.68e−5 9.36e−5

Strips 1.12e−5 1.37e−4 2.07e−4 2.02e−4

Table 4 RMSEs obtained by
applying the adaptive algorithm
for f3

Data set GA M4

LOOCV MLE LOOCV MLE

Halton 1.97e−5 3.04e−5 1.33e−4 1.36e−4

Ameoba 1.38e−5 6.26e−5 3.64e−5 4.48e−5

Starfish 2.07e−6 5.27e−6 2.10e−5 2.47e−5

Strips 8.20e−7 5.75e−6 1.80e−5 2.49e−5

numerical method (in these tests the PUM uses IMQ as local kernel). In fact, the benefit
deriving from adaptivity is noteworthy, not only when very irregularly distributed data sets
(e.g., Ameoba, Starfish and Strips) are considered but also in case of quasi-random data
points (Halton), see Fig. 3. In particular, from previous tables we highlight that the adaptive
algorithm gives results that—when they are computable—are about two or three orders of
magnitude more accurate than the non-adaptive one. Indeed, we note as the non-adaptive
interpolation algorithm can be applied successfully only in two cases (Halton and Starfish),
while in the other two situations (Ameoba and Strips) is not possible to get any result. This
drawback is essentially due to the fact that the non-adaptive method cannot find points in
every subdomain, thus making the interpolation process not practicable. In Tables 5 and 6 we
denote this computational issue with the symbol –. As regards the computational efficiency
expressed in CPU times, the adaptive implementation is obviously a little more costly than
the non-adaptive one. Nevertheless, as outlined from our experiments, this extra-work is quite
limited and fully compensated by high level of reliability of the new adaptive algorithm.

In Fig. 5 we study the behavior of interpolation errors (RMSEs) and execution times (CPU
times) by varying the minimum number Nmin of data points that is required to lie in each
subdomain. In this analysis, for shortness,we focus our attention on a specific case, comparing
the behavior of LOOCV and MLE techniques for fixed values of Nmin ∈ {10, 12, . . . , 30}.
Here the algorithm is tested on the “Strips” data set for f1, using M6 as a local kernel.
Figure 5 (left) confirms once more that LOOCV results in greater accuracy than MLE; at the
same time, these tests show that the highest level of precision due to LOOCV is obtained

123

41 Page 18 of 24 Journal of Scientific Computing (2021) 87 :41

Table 5 Interpolation errors and
execution times (in seconds)
obtained by comparing our new
adaptive algorithm with a
non-adaptive implementation for
f1. Both RBF-PUM algorithms
are tested by using IMQ and
selecting ε-values via LOOCV

Data set Adaptive algorithm Non-adaptive algorithm

RMSE CPU time RMSE CPU time

Halton 1.75e−6 3.45 9.33e−5 2.50

Ameoba 1.99e−5 7.09 – –

Starfish 7.06e−7 9.03 4.14e−4 6.96

Strips 4.64e−7 10.44 – –

Table 6 RMSEs obtained by
applying our new adaptive
algorithm and a non-adaptive
implementation. Both RBF-PUM
interpolation algorithms are
tested by using IMQ and
selecting ε-values via LOOCV

Data set f2 f3

adaptive non-adaptive adaptive non-adaptive

Halton 2.45e−5 1.74e−3 2.07e−5 4.87e−4

Ameoba 2.32e−4 – 1.25e−5 –

Starfish 7.80e−6 6.55e−3 2.19e−6 4.88e−4

Strips 1.90e−5 – 1.53e−6 –

for values of Nmin between 14 and 26, while we observe a quite uniform error behavior for
MLE. From Fig. 5 (right), as expected, we can also note that for both LOOCV and MLE
the CPU times grow as Nmin increases, thus making the algorithm computationally more
expensive. The given results are not immutable facts, because they are obviously influenced
by several variables present in these numerical experiments (e.g., local kernel, test function,
data set, etc.). However, this analysis offers useful information for the choice of appropriate
values of Nmin. Moreover, it points out that the selected value Nmin = 15 turns out to be
a good choice for our purposes. This statement is also true if we analyze results contained
in Fig. 6, where we use the LOOCV based estimator and compare M6 and W6 to see how
RMSEs and CPU times change by varying Nmin. In this case, we report graphs obtained by
running our algorithm on the “Halton” data set for f3. From these results we notice that the
accuracy of globally supportedM6 is slightly better than compactly supportedW6. The same
considerations can be extended—even in a more pronounced way—for the execution time.

Finally, in Tables 7 and 8 we further test our adaptive interpolation scheme on the test
function f1. More precisely, here we are interested in comparing execution times obtained
by running our new adaptive algorithm and a standard one characterized by the use of the
Matlab rangesearch routine, instead of the cell based procedures discussed in Sect. 4.
Both algorithms make use of LOOCV for the ε-selection. In Table 7 we report the results
computed with the M2 kernel and for the four data sets introduced at the beginning of this
section, while in Table 8 we consider the local kernel M4 and five sets of Halton data points
whose number N goes from 1 089 to 263 169. Especially looking at Table 8, wemay highlight
the great speed-up between the two algorithms, underlining as this gap tends to be more and
more remarkable when the number of interpolation nodes increases. These results show the
significant improvement in terms of computational efficiency that the use of our adaptive
algorithm produces.

123

Journal of Scientific Computing (2021) 87 :41 Page 19 of 24 41

Nmin

10-7

10-6

10-5

10-4
R

M
SE

LOOCV
MLE

10 15 20 25 30 10 15 20 25 30
Nmin

10

15

20

25

30

35
40
45
50
55

C
PU

 ti
m

e

LOOCV
MLE

Fig. 5 RMSEs (left) and CPU times (right) obtained by varying the value of Nmin; in this comparison between
LOOCV and MLE, our adaptive algorithm uses M6 as a local kernel and is applied on the “Strips” data set
for f1

Nmin

10-6

10-5

10-4

10-3

R
M

SE

M6
W6

10 15 20 25 30 10 15 20 25 30
Nmin

5

10

15

20

25

C
PU

 ti
m

e

M6
W6

Fig. 6 RMSEs (left) and CPU times (right) obtained by varying the value of Nmin; in this comparison between
M6 and W6, our adaptive algorithm uses LOOCV as an ε-estimator and is applied on the “Halton” data set
for f3

Table 7 RMSEs and CPU times (in seconds) computed by applying LOOCV and using M2 for f1

Data set RMSE CPU time Speed-up

New algorithm Standard algorithm

Halton 1.12e−4 5.03 22.20 4.41

Ameoba 5.02e−4 10.65 149.29 14.02

Starfish 3.01e−5 13.78 162.03 11.76

Strips 9.71e−5 16.15 316.82 19.57

Execution times are obtained by comparing our new adaptive algorithm with a standard implementation
characterized by the use of the Matlab rangesearch routine, instead of that discussed in Sect. 4; in the
latter case, the speed-up (ratio of execution times) between the standard algorithm and the new one is given

123

41 Page 20 of 24 Journal of Scientific Computing (2021) 87 :41

Table 8 RMSEs and CPU times (in seconds) computed on Halton points by applying LOOCV and using M4
for f1

N RMSE CPU time Speed-up

New algorithm Standard algorithm

1 089 1.04e−4 1.54 3.86 2.51

4 225 1.17e−5 5.11 21.00 4.11

16 641 1.33e−6 17.33 232.60 13.18

66 029 1.67e−7 63.24 3 635.12 57.48

263 169 1.90e−8 223.38 58 041.40 259.83

Execution times are obtained by comparing our new adaptive algorithm with a standard implementation
characterized by the use of the Matlab rangesearch routine, instead of that discussed in Sect. 4; in the
latter case, the speed-up (ratio of execution times) between the standard algorithm and the new one is given

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 2

Fig. 7 Graphical representation of Black Forest (left) and Gattinara (right) data sets

6 Applications

In this section we test our adaptive algorithm on two real world data sets. In the first example,
we consider an application oriented to approximate the Black Forest elevation data set [8,14],
which consists of 15 885 data points. This data set refers to a region in the neighborhood
of Freiburg (Germany). It represents a specific case of scattered data with highly varying
density as shown in Fig. 7 (left). In the second example, we focus on the approximation of
the so-calledGattinara topography data set, which is characterized by 10 671 data points. The
latter belong to the homonymous geographic area, close to the city of Gattinara in province
of Vercelli (Italy). Also in this situation, although the data set distribution is quite different
from the Black Forest one, we have a typical case of very irregularly distributed data points
as evident from Fig. 7 (right). Both regions are mountain areas: the differences in height are
1214 m and 309.87 m, respectively, while minimum and maximum heights for such data are
gathered in Table 9. In Fig. 8 we report a 3D view for the Black Forest (left) and Gattinara
(right) data sets.

Since we are working with real data (and therefore we do not have any exact or true
solution), we assess reliability of our results by considering a technique that is commonly

123

Journal of Scientific Computing (2021) 87 :41 Page 21 of 24 41

Table 9 Minimum and maximum
heights (in meters) in the real
world data sets

Data set Height
min max

Black Forest 172.875 1 386.9

Gattinara 247.38 557.25

Fig. 8 3D view of Black Forest (left) and Gattinara (right) data sets

Table 10 RMSEs (in meters) and
CPU times (in seconds) obtained
by applying our new adaptive
algorithm on real world data sets.
Tests have been done by using
M2 and Nmin = 25

Data set LOOCV MLE
RMSE CPU time RMSE CPU time

Black Forest 5.56 22.58 5.56 11.45

Gattinara 2.30 13.60 2.35 5.90

used in applications. For Black Forest data set we have 15 885 elevation data points, which
we split into two subsets: first, we randomly select N = 15 715 nodes for the RBF-PUM
interpolation process; second, we reserve the remaining Neval = 170 evaluation points for
the cross validation. Roughly in the same way, we act for Gattinara data set. We start from the
10 671 points, and then we subdivide this data set by taking N = 10 600 interpolation nodes
and Neval = 71 evaluation points. In Table 10, we report the numerical results obtained
by applying our adaptive algorithm. The latter are computed by using M2 as local RBF
interpolant and selecting the local shape parameters via LOOCV or MLE, with Nmin = 25.
From this table we can observe as LOOCV and MLE provide a very similar accuracy, with
a slight prevalence of LOOCV, while—as already outlined in numerical experiments of
Sect. 5—the MLE is about twice faster than LOOCV. Note that, although such errors are
larger than the ones shown in Sect. 5, they turn out to be consistent with the previous results;
in fact, in these real world situations, the error in (22) is measured in meters.

From more extensive tests we can also point out that in the Black Forest case LOOCV
and MLE seem to have a similar predictive capability because the same level of accuracy
is achieved, even when Nmin varies between 10 and 30 (see Fig. 9, left). For the Gattinara
data set we can observe that the MLE is more accurate than LOOCV for smaller values of
Nmin, whereas this behavior is reversed for larger ones (see Fig. 9, right). Instead, as regards

123

41 Page 22 of 24 Journal of Scientific Computing (2021) 87 :41

Nmin

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7
R

M
SE

LOOCV
MLE

10 15 20 25 30 10 15 20 25 30
Nmin

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

R
M

SE

LOOCV
MLE

Fig. 9 RMSEs obtained by using M2 and varying the value of Nmin for Black Forest (left) and Gattinara
(right) data sets

Nmin

5

10

15

20

25

30

35
40
45

C
PU

 ti
m

e

LOOCV
MLE

10 15 20 25 30 10 15 20 25 30
Nmin

5

10

15

20

25

30

C
PU

 ti
m

e

LOOCV
MLE

Fig. 10 CPU times obtained by using M2 and varying the value of Nmin for Black Forest (left) and Gattinara
(right) data sets

execution times (with equal parameters)MLE is constantly more efficient than LOOCV from
the computational standpoint (see Fig. 10).

7 Conclusions and FutureWork

In this paper we proposed a new adaptive algorithm for bivariate interpolation of large
scattered data points through the RBF-PUM. We showed performance and efficacy of our
numerical method by solving interpolation problems with artificial and real data sets, which
were very irregularly distributed or with highly varying density in the domain. Compared
to non-adaptive or standard RBF-PUM implementations, this adaptive algorithm enabled us
to achieve accurate solutions for problems which in some cases might be unsolvable, also

123

Journal of Scientific Computing (2021) 87 :41 Page 23 of 24 41

significantly reducing computational cost and execution time. All these results have been
obtained by mainly exploiting the meshfree nature of the RBF-PUM. We thus created an
adaptive scheme with subdomains of variable size, implementing an efficient search proce-
dure for the localization of data points. The adaptive algorithm has been devised to effectively
find optimal values of the RBF shape parameters by using LOOCV or MLE based criteria.
This choice makes the scheme entirely automatic.

As future work we propose to further enhance our adaptive algorithm, for example opti-
mizing the selection of the minimal number of points within each subdomain. Further studies
in this direction will be discussed in future works.

Acknowledgements The author sincerely thanks the editor and the anonymous referee for insightful comments
and suggestions, which gave the chance to significantly improve the quality of this paper. This work was
partially supported by the INdAM-GNCS 2020 research project “Multivariate approximation and functional
equations for numericalmodeling” and by the 2020 project “Mathematicalmethods in computational sciences”
funded by the Department of Mathematics “Giuseppe Peano” of the University of Torino. This research has
been accomplished within the RITA “Research ITalian network on Approximation” and the UMI Group TAA
“Approximation Theory and Applications”. The author is member of the INdAM Research group GNCS.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Allasia, G., Cavoretto, R., De Rossi, A.: Hermite-Birkhoff interpolation on scattered data on the sphere
and other manifolds. Appl. Math. Comput. 318, 35–50 (2018)

2. Arya, S., Mount, D., Netanyahu, N., Silverman, R.,Wu, A.: An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. J. ACM 45, 891–923 (1998)

3. Babuška, I., Melenk, J.M.: The partition of unitymethod. Int. J. Numer.Methods Eng. 40, 727–758 (1997)
4. Ben-Ahmed, E.H., Sadik, M., Wakrim, M.: Radial basis function partition of unity method for modelling

water flow in porous media. Comput. Math. Appl. 75, 2925–2941 (2018)
5. Ben-Ahmed, E.H., Sadik, M., Wakrim, M.: A stable radial basis function partition of unity method with

d-rectangular patches for modelling water flow in porous media. J. Sci. Comput. 84, 18 (2020)
6. de Berg,M., vanKreveld,M., Overmars,M., Schwarzkopf, O.: Computational Geometry. Springer, Berlin

(1997)
7. Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: An approximation method for noisy

scattered data of extra-large size. Appl. Math. Comput. 216, 317–331 (2010)
8. Bracco, C., Giannelli, C., Sestini, A.: Adaptive scattered data fitting by extension of local approximations

to hierarchical splines. Comput. Aided Geom. Design 52–53, 90–105 (2017)
9. Buhmann, M.D.: Radial Basis Functions: Theory and Implementation, Cambridge Monographs on

Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)
10. Cavoretto, R.: A numerical algorithm for multidimensional modeling of scattered data points. Comput.

Appl. Math. 34, 65–80 (2015)
11. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching proce-

dure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)
12. Cavoretto, R., De Rossi, A.: Adaptive meshless refinement schemes for RBF-PUM collocation. Appl.

Math. Lett. 90, 131–138 (2019)

123

http://creativecommons.org/licenses/by/4.0/

41 Page 24 of 24 Journal of Scientific Computing (2021) 87 :41

13. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU inter-
polation. J. Sci. Comput. 74, 1–22 (2018)

14. Davydov, O., Zeilfelder, F.: Scattered data fitting by direct extension of local polynomials to bivariate
splines. Adv. Comput. Math. 21, 223–271 (2004)

15. Driscoll, T., Heryudono,A.:Adaptive residual subsamplingmethods for radial basis function interpolation
and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)

16. Fasshauer, G.,McCourt,M.: Kernel-basedApproximationMethods usingMatlab, InterdisciplinaryMath-
ematical Sciences, vol. 19. World Scientific, Singapore (2015)

17. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sci-
ences, vol. 6. World Scientific, Singapore (2007)

18. Fasshauer, G.E.: Positive definite kernels: Past, present and future. Dolomites Res. Notes Approx. 4,
21–63 (2011)

19. Fereshtian, A., Mollapourasl, R., Avram, F.: RBF approximation by partition of unity for valuation of
options under exponential Lévy processes. J. Comput. Sci. 32, 44–55 (2019)

20. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM,
Philadelphia (2015)

21. Franke, R., Hagen, H.: Least squares surface approximation using multiquadrics and parametric domain
distorsion. Comput. Aided Geom. Design 16, 177–196 (1999)

22. Gholampour, F., Hesameddini, E., Taleei, A.: A stable RBF partition of unity local method for elliptic
interface problems in two dimensions. Eng. Anal. Bound. Elem. 123, 220–232 (2021)

23. Heryudono,A., Larsson, E., Ramage,A., vonSydow,L.: Preconditioning for radial basis function partition
of unity methods. J. Sci. Comput. 67, 1089–1109 (2016)

24. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and
scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 35, A2096–A2119
(2013)

25. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity
method for solving PDEs. SIAM J. Sci. Comput. 39, A2538–A2563 (2017)

26. Lazzaro, D., Montefusco, L.: Radial basis functions for the multivariate interpolation of large scattered
data sets. J. Comput. Appl. Math. 140, 521–536 (2002)

27. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications.
Comput. Methods. Appl. Mech. Eng. 139, 289–314 (1996)

28. Mollapourasl, R., Fereshtian, A., Li, H., Lu, X.: RBF-PU method for pricing options under the jump-
diffusion model with local volatility. J. Comput. Appl. Math. 337, 98–118 (2018)

29. Renka, R., Brown, R.: Algorithm 792: Accuracy tests of ACM algorithms for interpolation of scattered
data in the plane. ACM Trans. Math. Softw. 25, 78–94 (1999)

30. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation.
Adv. Comput. Math. 11, 193–210 (1999)

31. Scheuerer, M.: An alternative procedure for selecting a good value for the parameter c in RBF-
interpolation. Adv. Comput. Math. 34, 105–126 (2011)

32. Scheuerer, M., Schaback, R., Schlather, M.: Interpolation of spatial data: a stochastic or a deterministic
problem? Eur. J. Appl. Math. 24, 601–629 (2013)

33. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: ACM ’68: Pro-
ceedings of the 1968 – 23rd ACM national conference, pp. 517–524 (1968)

34. Uddin, M., Ali, H., Taufiq, M.: On the approximation of a nonlinear biological population model using
localized radial basis function method. Math. Comput. Appl. 24, 54 (2019)

35. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: C.K.
Chui, L.L. Schumaker, J. Stöckler (eds.) Approximation Theory X: Wavelets, Splines, and Applications,
pp. 473–483. Vanderbilt University Press (2002)

36. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational
Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

37. Wong, R., Luk, W., Heng, P.: Sampling with Hammersley and Halton points. J. Graph. Tools 2, 9–24
(1997)

38. Zhang, Q., Zhao, Y., Levesley, J.: Adaptive radial basis function interpolation using an error indicator.
Numer. Algorithms 76, 441–471 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Adaptive Radial Basis Function Partition of Unity Interpolation: A Bivariate Algorithm for Unstructured Data
	Abstract
	1 Introduction
	2 Preliminaries on RBF Based Interpolation
	3 RBF-PUM Based Interpolation
	3.1 Construction of RBF-PUM Interpolants
	3.2 Selection of Local RBF Shape Parameters
	3.2.1 Choice of ε via LOOCV
	3.2.2 Choice of ε via MLE

	3.3 Convergence and Error Estimates

	4 Adaptive Bivariate Algorithm and Computational Issues
	4.1 Data Structures and Search Procedures
	4.2 Complexity Analysis

	5 Numerical Results
	6 Applications
	7 Conclusions and Future Work
	Acknowledgements
	References

