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Abstract
This paper is on arbitrary high order fully discrete one-step ADER discontinuous Galerkin
schemes with subcell finite volume limiters applied to a new class of first order hyperbolic
reformulations of nonlinear dispersive systems based on an extended Lagrangian approach
introduced by Dhaouadi et al. (Stud Appl Math 207:1–20, 2018), Favrie and Gavrilyuk
(Nonlinearity 30:2718–2736, 2017). We consider the hyperbolic reformulations of two dif-
ferent nonlinear dispersive systems, namely the Serre–Green–Naghdi model of dispersive
water waves and the defocusing nonlinear Schrödinger equation. The first order hyperbolic
reformulation of the Schrödinger equation is endowed with a curl involution constraint that
needs to be properly accounted for in multiple space dimensions. We show that the original
model proposed in Dhaouadi et al. (2018) is onlyweakly hyperbolic in the multi-dimensional
case and that strong hyperbolicity can be restored at the aid of a novel thermodynamically
compatible GLM curl cleaning approach that accounts for the curl involution constraint in
the PDE system. We show one and two-dimensional numerical results applied to both sys-
tems and compare themwith available exact, numerical and experimental reference solutions
whenever possible.
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1 Introduction

Nonlinear dispersive systems can be found in many different areas of computational mechan-
ics, ranging from large scale dispersive free surface shallow water flows [12,28,62,87,93,94]
over multi-phase flows with surface tension [13,39] down to quantum fluid mechanics
[14,15,65,75]. A common difficulty in the above applications is that the nonlinear time-
dependent governing partial differential equations (PDE) typically contain either higher order
spatial and temporal derivatives, or a subset of elliptic equations, and therefore the integra-
tion with simple explicit finite volume and discontinuous Galerkin finite element schemes
becomes unfeasible.

Therefore, very recently, there has been an increasing interest in rewriting nonlinear PDE
systems with higher order derivatives under the form of nonlinear hyperbolic relaxation
systems, which contain at most first order derivatives in space and time, in conjunction with
potentially stiff algebraic relaxation source terms. The idea goes back to the seminal work of
Cattaneo [25], who proposed a hyperbolic reformulation of the parabolic heat equation.More
recent work on the topic also regards the hyperbolic reformulation of advection-diffusion
equations [80,84,85,99], of the compressible Navier-Stokes equations [17,47,88] as well as
hyperbolic reformulations of nonlinear dispersive systems [3,4,26,51,52,63,64,79,90]. We
would like to point out a particularity of the hyperbolic dispersive system proposed in [3],
since it can be derived from the depth averaged compressible Euler equations, while most
depth-averaged shallowwater systems are usually derived from the governing equations of an
incompressible fluid. Also the well-known theory of rational extended thermodynamics [82]
makes use of hyperbolic relaxation systems to model the effects of higher order derivative
terms.

In this paper we focus in particular on the hyperbolic reformulation of the Serre–Green–
Naghdi model introduced by Favrie and Gavrilyuk in [56], as well as on the hyperbolic
reformulation of the nonlinear defocusing Schrödinger equation proposed by Dhaouadi et
al. in [38]. Both systems were rigorously derived from an extended Lagrangian formalism
and therefore have a rather similar mathematical structure. The hyperbolic reformulation
of the nonlinear Schrödinger equation [38] has the additional difficulties that it is only
weakly hyperbolic in multiple space dimensions and that it is endowed with a curl invo-
lution constraint that needs to be properly accounted for. In this paper we will make use of
the hyperbolic generalized Lagrangian multiplier (GLM) curl cleaning approach of [27,46]
that goes back to the hyperbolic GLM divergence cleaning technique of Munz et al. for
Maxwell and MHD equations, see [35,83]. In alternative to the GLMmethod proposed here,
also exactly curl-preserving schemes could be used, see e.g. [1,11,27,66,67,71], but they
require an appropriately staggered mesh and are therefore not as easy to implement in an
existing general purpose DG solver as the simple GLM method, which only requires the
solution of additional PDEs for the cleaning quantities. The main novelty proposed in the
present paper is a new GLM curl cleaning that is also thermodynamically compatible with
the conservation of total energy.

To integrate the governing PDE systems under consideration in this paper we will make
use of high order accurate explicit discontinuous Galerkin (DG) finite element schemes.
The DG framework for hyperbolic conservation laws goes back to the seminal work of
Cockburn and Shu [29–32] and was later generalized to hyperbolic equations with parabolic
terms in [5,6,33,34]. The first extension of DG schemes to dispersive PDE of the Korteveg-
de-Vries (KdV) type with up to third order spatial derivatives was achieved in [106,107],
while DG schemes for PDE with even higher order spatial derivatives were first tackled in
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[70]. Discontinuous Galerkin finite element schemes for the solution of nonlinear dispersive
Boussinesq-type equations were forwarded in [50,54,55]. To overcome the very severe time
step restriction of explicit DG schemes applied to dispersive equations, which require the time
step to scale with the cube of the mesh spacing (Δt ∝ Δx3), see [106], fully implicit space-
time DG schemes for dispersive problems were introduced in [45]. However, although the
resulting schemes are unconditionally stable they are computationally very expensive due to
the ill-conditioned algebraic systems that must be solved in each time step. For this reason,
in this work we prefer the numerical solution of hyperbolic reformulations of nonlinear
dispersive systems, which allow the straightforward use of simple explicit DG schemes for
hyperbolic PDE with the usual CFL-type time step restriction, according to which the time
step must be chosen proportional to the mesh spacing (Δt ∝ Δx), rather than more complex
implicit DG schemes for PDE with higher order derivatives. In alternative to high order DG
methods, also high order residual distribution (RD) schemes can be applied to Boussinesq-
type equations, see [90].

The rest of this paper is structured as follows: in Sect. 2 we present the two nonlin-
ear dispersive models that we want to study, namely the hyperbolic reformulation of the
Serre–Green–Naghdi system of dispersive free surface water waves forwarded by Favrie and
Gavrilyuk in [56] and the hyperbolic reformulation of the nonlinear defocusing Schrödinger
equation proposed by Dhaouadi et al. in [38]. Compared to the original work on the hyper-
bolic reformulation of the Serre–Green–Naghdi system [56] in this paper we also add the
bottom slope term and design an exactly well-balanced numerical scheme for the resulting
system that is capable of preserving stationary lake at rest solutions exactly at the discrete
level for arbitrary bottom topography. Compared to the work on the hyperbolic reformulation
of the Schrödinger equation [38] in this paper an additional term is added to the system in
order to restore Galilean invariance and also the curl involution constraint of the system is
explicitly taken into account, which is necessary for the multi-dimensional case. As already
mentioned previously, in this paper we will make use of a hyperbolic generalized Lagrangian
multiplier (GLM) approach, see [27,35,46,83], which also restores strong hyperbolicity of
the system.

In Sect. 3 we present the framework of arbitrary high order derivative (ADER) discon-
tinuous Galerkin finite element schemes used for the numerical solution of the hyperbolic
governing PDE systems. Section 4 is devoted to the presentation and discussion of the numer-
ical results obtained for both systems. Wherever possible, we compare with exact, numerical
or experimental reference solutions. In Sect. 5 we draw some conclusions and give an outlook
to future research.

2 Governing Equations

Throughout this paper we will make use of the Einstein summation convention over two
repeated indices. We further denote the time with t and the Cartesian coordinate axes by xk
for k ∈ {1, ...d} with d the number of space dimensions. Sometimes we will also make use
of the notation x := x1, y := x2 and ∂x = ∂

∂x .

2.1 A Hyperbolic Reformulation of the Serre–Green–Naghdi Model

The governing PDE system generalizing that proposed in [56] to reformulate the Serre–
Green–Naghdi model as a first order hyperbolic system and derived from the extended
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Lagrangian variational principle reads as follows (see Appendix A for details):

∂h

∂t
+ ∂

∂xk
(hvk) = 0, (1)

∂hvi

∂t
+ ∂

∂xk

(
hvivk +

(
1

2
gh2 + hp

)
δik

)
+

(
gh + 3

2

h

η
p

)
∂b

∂xi
= 0, (2)

∂hη

∂t
+ ∂

∂xk
(hηvk) + 3

2
hvk

∂b

∂xk
= hw, (3)

∂hw

∂t
+ ∂

∂xk
(hwvk) = λ

(
1 − η

h

)
, (4)

∂b

∂t
= 0, (5)

with the nonhydrostatic pressure p(h, η) = λ

3

η

h

(
1 − η

h

)
, the gravity constant g =

9.81m2/s and where the parameter λ having the dimension m2/s2 is a large (compared
to the squared velocity of surface waves gh) free parameter which makes the system (1) -
(5) tend to the original Serre–Green–Naghdi model in the limit λ → ∞. The rigorous proof
of this fact has been established in [40] in the case of flat bottom. Note that for λ → ∞
the term (1 − η/h) → 0 since η → h, hence the product will remain finite. Compared to
[56] in system (1)–(5) the mild bottom slope terms are added (see Appendix A for details).
The system admits the energy conservation law which is a direct consequence of the Noether
theorem.

For a hyperbolic reformulation of the Serre–Green–Naghdi model without mild bottom
assumption and directly derived from the compressible Euler equations, the reader is referred
to [3]. The derivation from the compressible Euler equations presented in [3] can also be used
to establish a connection between the square of the sound speed in the compressible medium
and the penalty parameter λ used in the model (1)–(5). However, the model proposed in
[3] is non-conservative even for flat bottom (see also [51,52]). In the rest of this paper we
sometimes refer to the model (1)–(5) also as the Favrie–Gavrilyuk (FG) model, since it is the
extension of [56] to the case of mildly varying bottom.

2.1.1 Eigenstructure

The hyperbolicity of system (1)–(5) was already studied in [56] for the one dimensional
case with flat bottom, while here we show the results for the two-dimensional situation with
variable bottom. The eigenvalues of system (1)–(5) in x1 direction are

λ1 = v1 − a, λ2,3,4 = v1, λ5 = v1 + a, λ6 = 0, (6)

with the celerity a =
√
gh + 1

3λ
η2

h2
and the associated right eigenvectors

r1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
v1 − a

v2
η

w

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, r2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, r3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, r4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
v1
0
A
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, r5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
v1 + a

v2
η

w

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)
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and

r6 =
(

−3

2

B

T
, 0, −3

2
v2

B

T
, −3

2

C

T
, −3

2
w
B

T
, 1

)T

, (8)

with the auxiliary quantities A = − 3gh3−λhη+3λη2

λ(h−2η)
, T = 3gh3−3h2v21+η2λ, B = h(2gh2+

ηλ) and C = h(2ηgh2 + 3gh3 − 3h2v21 + 2η2λ).

2.1.2 Linear Dispersion Analysis and Comparison with Other Hyperbolic Models

Following [3,51,73,77], we carry out a linear dispersion analysis of the system (1)–(5) for
flat bottom, ignoring all terms involving b. To simplify the expressions, we consider only
the one-dimensional case and introduce the vector of primitive variables V = (h, u, η,w)T .
Rewriting of the governing PDE system in terms of the primitive variables leads to

∂tV + C (V) ∂xV = S (V) (9)

with

C (V) = ∂V
∂U

∂F
∂V

, and
∂V
∂U

=
(

∂U
∂V

)−1

. (10)

After decomposition of the primitive variables into a stationary component V0 plus a small
time-dependent fluctuation V′ and assuming that S(V0) = 0, we get the linearised system

∂tV′ + C (V0) ∂xV′ = E (V0)V′, E = ∂S
∂V

(11)

that can be studied using standard Fourier analysis. The ansatz V′ (x, t) = V̂ei(κx−ωt) with
i2 = −1 leads to

∂tV′ = −iωV′, ∂xV′ = iκV′. (12)

Hence, from (11), we obtain

(−ωI + κC (V0) + E (V0) i)V′ = 0. (13)

In particular, taking the rest state V0 = (H , 0, H , 0) the linearised matrix related to system
(1)–(5) in primitive variables reads

M0 = κC (V0) + E (V0) i =

⎛
⎜⎜⎝
0 κH 0 0
κ g + 1

3
kλ
H 0 − 1

3
kλ
H 0

0 0 0 i
iλ
H2 0 − iλ

H2 0

⎞
⎟⎟⎠ . (14)

The eigenvalue problem M0V′ = ωV′ can be solved numerically, thus obtaining the phase

velocity Cp = ω

κ
. For comparison with other available models in the bibliography, it is

important to note that the parameter λ is chosen as λ = 3c2 = 3α2gH with c an artificial
sound speed, see [3,51]. The relative error against the phase velocity given by the linear theory

of Stokes, Cs =
√
gH tanh(κH)

κH , is depicted in Fig. 1 for κH ∈ [0, 3]. The errors obtained for
the system in [56] given by (1)–(5) and the hyperbolic Serre–Green–Naghdimodel for general
bottom topographies proposed in [3] match pretty well, as expected, since both systems are
hyperbolic reformulations of the Serre–Green–Naghdi model. The relative errors for the
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Fig. 1 Relative error of the phase velocity with respect to the linear theory of Stokes for k ∈ [0, 3]. Left: results
obtained for λ = 1200, H = 1, g = 9.81, c2 = α2gH : black line: Madsen and Sørensen model (MS), see
[76,77]; red line: the Favrie–Gavrilyuk (FG) model [56] studied in this paper; green line: hyperbolic SGN
model of Bassi et al. with 6 equations [3]. Right: comparison of the results obtained with the Favrie–Gavrilyuk
(FG) model for λ ∈ {300, 600, 1200, 2400, 3600, 4800} (Color figure online)

Madsen and Sørensen model [76,77], which has improved dispersion characteristics, are
also included for comparison. Moreover, the right plot in Fig. 1, shows the sensitiveness of
the model to variations of λ. We observe that the error decreases when increasing the value
of the parameter and the error curves almost overlap for large enough values of λ.

2.2 Hyperbolic Reformulation of the Nonlinear Schrödinger Equation

The first order hyperbolic reformulation of the nonlinear Schrödinger equation according to
[38] reads

∂ρ

∂t
+ ∂

∂xk
(ρvk) = 0, (15)

∂ρvi

∂t
+ ∂

∂xk

(
ρvivk + Pδik + 1

4ρ
pi pk

)
= 0, (16)

∂ρη

∂t
+ ∂

∂xk
(ρηvk) = ρw, (17)

∂ρw

∂t
+ ∂

∂xk

(
ρwvk − 1

4ρβ
pk

)
= λ

β

(
1 − η

ρ

)
, (18)

∂ pk
∂t

+ ∂

∂xk
(pmvm − w) + vm

(
∂ pk
∂xm

− ∂ pm
∂xk

)
= 0, (19)

with the total pressure P = 1
2ρ

2 − 1
4ρ pm pm + λ η

(
1 − η

ρ

)
and where λ � 1 and β � 1

are two free parameters which make the system (15)–(19) tend to the original hydrodynamic
model of the Schrödinger equation in the limit λ → ∞ andβ → 0. Please note that compared

to [38] the governing equation for p is different in this paper, since the term vm

(
∂ pk
∂xm

− ∂ pm
∂xk

)
has been added in order to restore the Galilean invariance of the system, see [27,47,60,92].
We note that the mathematical structure of system (15) is very similar to the one of (1)–(5),
apart from the additional field pk that was not present in the hyperbolic reformulation of the
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Serre–Green–Naghdi model. We stress that system (15) is endowed with the curl involution
constraint ∇ × p = 0, which is a direct consequence of (15) if the constraint is satisfied by
the initial data. Recall that with p = (p1, p2, p3)T we denote the vector with components
pk . In [38] the hyperbolicity of (15) was only studied in the one-dimensional case. In this
paper we present a complete study in three space dimensions, which yields some interesting
findings.

2.2.1 Eigenstructure of the Original Weakly Hyperbolic System

The eigenvalues of system (15)–(19) in x1 direction are

λ1 = v1 − cλ, λ2 = v1 − cβ, λ3,4,5,6,7 = v1, λ8 = v1 + cβ, λ9 = v1 + cλ (20)

with the celerities cλ =
√

ρ + 1
4
p22+p23

ρ2 + λ
η2

ρ2 and cβ =
√

1
4
p22+p23

ρ2 + 1
4βρ2 . The associated

right eigenvectors read

r1,9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v1 ∓ cλ

v2
v3
η

w
p1
ρ

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r2,8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
p2
p3
0

−β−1

∓4ρcβ

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v1
0
0
A
B
p1
ρ

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
p2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
p3
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

with the auxiliary quantities

A = 4ληρ − 4ρ3 − (p2 + p3) − 12λη2

4λ(ρ − 2η)
, B = w − v2 p2 − v3 p3.

As one can easily see, two eigenvectors are missing, hence the system (15)–(19) based on
[38] is only weakly hyperbolic in the multi-dimensional case. The reason behind this is that
the curl involution constraint has not yet been taken into account. In order to fix this issue, in
Sect. 2.2.3 we will introduce an augmented system that accounts for the curl involution on
p via a hyperbolic generalized Lagrangian multiplied (GLM) curl cleaning approach, which
goes back to the ideas forwarded by Munz et al. [35,83] for divergence-type constraints and
in [27,46] for curl-type constraints.

2.2.2 Stationary Equilibrium Solution in Cylindrical Coordinates

In this section, we derive a two-dimensional stationary equilibrium solution of system (15)–
(19). For this purpose, the equations are first rewritten more conveniently in cylindrical
coordinates r − φ − z, with the velocity vector written as v = (vr , vφ, vz) and the vector
field p = (pr , pφ, pz). A substantially simplified system in radial direction is obtained by
assuming ∂φ = ∂z = 0 and vz = pz = 0. The final system in radial direction reads as
follows:

∂tρ + 1

r
∂r (rρvr ) = 0, (22)
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∂t (ρvr ) + ∂r

(
ρv2r + p2r

4ρ
+ P

)
+ ρ(v2r − v2φ)

r
+ p2r − p2φ

4ρr
= 0, (23)

∂t
(
ρvφ

) + ∂r

(
ρvrvφ + pr pφ

4ρ

)
+ 2

r

(
ρvrvφ + pr pφ

4ρ

)
= 0, (24)

∂t (ρη) + 1

r
∂r (rρηvr ) = ρw, (25)

∂t (ρw) + 1

r
∂r

(
rρwvr − r

4ρβ
pr

)
= λ

β

(
1 − η

ρ

)
, (26)

∂t pr + ∂r (v · p − w) = 0, (27)

∂t pφ = 0, (28)

where in the last two equations the constraint ∇ × p = 0 has been used. We are now looking
for a stationary solution, hence ∂t = 0. We furthermore assume a vortex-type solution with
vr = 0 and pφ = 0 so that v · p = 0. With these hypothesis from (25) we obtain w = 0. The
above system (22)–(28) thus reduces to the following ODE system in radial direction:

∂r

(
p2r
4ρ

+ P

)
− ρv2φ

r
+ p2r

4ρr
= 0, (29)

−1

r
∂r

(
r

4ρβ
pr

)
= λ

β

(
1 − η

ρ

)
. (30)

We now prescribe a radial profile for the densityρ and for the radial component pr as follows:

ρ(r) = ρ0 + ρ̂ erf (L(r − R)) , (31)

and

pr (r) = p0 exp

(
−1

2

(r − R)2

σ 2

)
. (32)

From (30) one then directly obtains the profile η(r) as

η(r) = ρ(r)

(
1 + β

λr
∂r

(
r

4ρβ
pr (r)

))
, (33)

while the angular velocity profile vφ(r) is obtained from (29) and reads

vφ(r) =
√

p2r
4ρ2 + r

ρ
∂r

(
p2r
4ρ

+ P

)
. (34)

The exact expressions for the profiles of η(r) and vφ(r) can be easily obtained via a computer
algebra system and are thus not explicitly reported here.

2.2.3 Augmented GLM Curl Cleaning System

Following the original ideas ofMunz et al. [35,83] concerning hyperbolic divergence cleaning
for the Maxwell and MHD equations and their extension to curl involutions in [27,46],
we propose the following augmented system, where eventual curl errors produced by the
numerical scheme are transported away by a Maxwell-type subsystem:

∂ρ

∂t
+ ∂

∂xk
(ρvk) = 0, (35)
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∂ρvi

∂t
+ ∂

∂xk

(
ρvivk + Pδik + 1

4ρ
pi pk

)
= 0, (36)

∂ρη

∂t
+ ∂

∂xk
(ρηvk) = ρw, (37)

∂ρw

∂t
+ ∂

∂xk

(
ρwvk − pk

4ρβ

)
= λ

β

(
1 − η

ρ

)
, (38)

∂ pk
∂t

+ ∂ (pmvm − w)

∂xk
+ vm

(
∂ pk
∂xm

− ∂ pm
∂xk

)
+2ρacεklm

∂ψm

∂xl
= 0, (39)

∂ψk

∂t
+ vm

∂ψk

∂xm
− ac

2ρ
εklm

∂ pm
∂xl

= 0, (40)

with the curl cleaning speed ac = const > 0. The additional GLM curl cleaning terms
have been highlighted in blue, for convenience. From the last two equations we recover the
involution constraint ∇ × p → 0 in the limit ac → ∞. The equations are also compatible
with the energy conservation law (see Appendix B), hence the hyperbolic GLM cleaning
proposed in this paper is a thermodynamically compatible one, in contrast to the previous
hyperbolic GLM cleaning approaches proposed in [27,35,37,46] that were not compatible
with the conservation of total energy. Note, however, that the GLM divergence cleaning for
MHD proposed in [37] was compatible with the conservation of mathematical entropy.

2.2.4 Eigenstructure of the Augmented GLM System

The eigenvalues of the thermodynamically compatible augmentedGLMcurl cleaning system
(35)–(40) in x1 direction are

λ1,12 = v1 ∓ cλ, λ2,11 = v1 ∓ cβ, λ3,10 = v1 ∓ ac,

λ4,9 = v1 ∓ ac, λ5,6,7,8 = v1. (41)

The associated right eigenvectors are

r1,12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v1 ∓ cλ

v2
v3
η

w
p1
ρ

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r2,11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
p2
p3
0

−β−1

∓4ρcβ

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v1
0
0
A
B
p1
ρ

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
p2
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
p3
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

r8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)T ,

r3,10 =
(
0, 0, −1

2
p1 p3,

1

2
p1 p2, 0, 0, 0, ±2 ac ρ p3, ∓2 ac ρ p2, 0, ac p2, ac p3

)T

,

r4,9 = (p3, p3(v1 ∓ ac), R3, R4, p3η, R6, R7, 0, R9, 0, R11, 0)
T , (43)
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with the auxiliary quantities

A = 4ληρ − 4ρ3 − (p2 + p3) − 12λη2

4λ(ρ − 2η)
, B = w − v2 p2 − v3 p3,

T = 4βa2cρ
2 − β p22 − β p23 − 1, α = ρ3 + η2λ,

and

R3 = ∓1

8
p3

∓8Tacρ2v2 + 4αβ p1 p2 − T p1 p2 − p1 p2
ρ2acT

,

R4 = ∓1

8

−4Ta2c p1ρ
2 ∓ 8Tac p3ρ2v3 + 4αβ p1 p23 + T p1 p22 + 4Tα p1 − p1 p23

ρ2acT
,

R6 = ∓1

8
p3

∓8Tacρ2w + 4c20 p1ρ
2 − p1 p22 − p1 p23 − 4α p1

ρ2acT
,

R7 = 1

2

p1 p3
ρT

(4αβ + T − 1) ,

R9 = 1

2

−4a2cρ
2 + p22 + p23 + 4α

ρ
,

R11 = ∓1

4

−4a2cρ
2 + p22 + p23 + 4α

ρ2 .

For p2 �= 0 or p3 �= 0 the eigenvectors r3,10 are linearly independent of the others and thus
the system is strongly hyperbolic. It becomes weakly hyperbolic only for p2 = p3 = 0. One
immediately realizes that the eigenvectors r1,12, r2,11 and r5,6,7 coincide exactly with those
of the original system without GLM curl cleaning.

3 Numerical Method

Both dispersive models (1)–(5) and (35)–(40) can be cast into the following general form

∂Q
∂t

+ ∇ · F(Q) + B(Q) · ∇Q = S(Q), (44)

with the state vector Q ∈ ΩQ ⊂ R
m , the state space ΩQ , the flux tensor F(Q) = (f, g,h),

the nonconservative product B(Q) · ∇Q = B1(Q)∂xQ + B2(Q)∂yQ + B3(Q)∂zQ and the
algebraic source term S(Q).

For the numerical simulation of the hyperbolic reformulations of the nonlinear disper-
sive systems introduced in the previous section, and which can all be cast into the general
form (44), we employ the family of high order accurate fully-discrete one-step ADER
discontinuous Galerkin schemes with a posteriori subcell finite volume limiter, see e.g.
[17,42,43,49,108]. In the following we provide a brief description of the method. For further
details the reader is referred to the above references.

3.1 Fully Discrete One-Step ADER-DG Schemes

The governing PDE systems (1)–(5) and (35)–(40) are discretized on a computational
domain Ω employing a uniform Cartesian grid with elements Ωi = [

xi − Δx
2 , xi + Δx

2

] ×[
yi − Δy

2 , yi + Δy
2

]
with xi = (xi , yi ) the barycenter of Ωi and Δx , Δy the mesh spacing
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in x and y direction, respectively. Denoting by uh(x, tn) the discrete solution of (44) written
in the space of piecewise polynomials of degree N , the discrete solution within Ωi is sought
under the form

uh(x, tn) = φl(x) ûnl,i , x ∈ Ωi . (45)

Here, φl(x) = ϕl1(ξ)ϕl2(η) are the basis functions, which are tensor products of one-
dimensional basis functions ϕlm (χ) on the unit intervalχ ∈ Ωref = [0, 1]. Themapping from
the reference coordinates 0 ≤ ξ, η ≤ 1 to the physical coordinates reads x = xi− 1

2Δx+ξΔx
and y = yi − 1

2Δy + ηΔy. Here, l is a multi-index, referring to the one-dimensional basis
functions ϕlm to be used in the tensor product. We employ Lagrange interpolation polynomi-
als passing through the Gauss-Legendre quadrature points of a Gaussian quadrature formula
with N + 1 nodes. This leads by construction to an orthogonal basis. Due to the nodal
tensor-product basis, the scheme can be written in a dimension-by-dimension fashion and all
operators can be decomposed into products of one-dimensional operators. Multiplication of
the governing PDE system (44) by test functionsφk , which are identical to the basis functions,
and integration over a space-time control volume Ωi × [tn, tn+1] leads to

tn+1∫
tn

∫
Ωi

φk (∂tQ + ∇ · F(Q) + B(Q) · ∇Q) dx dt =
tn+1∫
tn

∫
Ωi

φk S (Q) dx dt . (46)

Using (45) and integrating the flux divergence term by parts in space and the time derivative
by parts in time the above weak problem becomes⎛

⎜⎝
∫
Ωi

φkφl dx

⎞
⎟⎠

(
ûn+1
l,i − ûnl,i

)
+

tn+1∫
tn

∫
∂Ωi

φk
(G (

q−
h ,q+

h

) + D (
q−
h ,q+

h

)) · n dSdt

−
tn+1∫
tn

∫
Ωi

∇φk · F(qh) dx dt +
tn+1∫
tn

∫
Ω◦

i

φkB(qh) · ∇qh dx dt =
∫
Ωi

φkS(qh) dx dt

(47)

where n is the outward unit normal vector at the cell boundary ∂Ωi , and qh is a local space-
time predictor whose computation will be explained in the next section. As usual, in the
discontinuous Galerkin finite element method the discrete solution may jump across the cell
boundaries, which requires the use of Riemann solvers, see e.g. [98] for a broad overview of
exact and approximate Riemann solvers. In this paper, we use either the simple Rusanov-type
flux

G (
q−
h ,q+

h

) · n = 1

2

(
F(q+

h ) + F(q−
h )

) · n − 1

2
smax Iwb

(
q+
h − q−

h

)
, (48)

with the maximum wavespeed at the interface smax = max(|λk(q−
h )|, |λk(q+

h )|) and the
matrix Iwb > 0. For the hyperbolic reformulation of the Schrödinger equation Iwb = I is
simply chosen equal to the identity matrix, while for the hyperbolic Serre–Green–Naghdi
model (1)–(5) Iwb needs to be chosen in a special manner in order to make the numerical
schemewell-balanced for the lake at rest solution [10,59,69], see Sect. 3.3. In alternative, also
the more sophisticated generalized Osher-type scheme forwarded in [48] can be used instead
of (48). Here, q−

h and q+
h denote the boundary-extrapolated values of the space-time predictor

fromwithin the element and its neighbor, respectively. The jump terms in the non conservative
products at the boundaries are treated via a path conservative scheme as forwarded by Castro,
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Parés and collaborators in [21,22,24,81,86], which are based on the theory of Dal Maso, Le
Floch and Murat [78] on nonconservative hyperbolic PDE systems. For a more detailed
discussion on the topic, see also [23] and references therein. Path-conservative schemes were
generalized to higher order DG schemes for the first time in [43,89]. Based on the path-
conservative framework, the construction of so-called well-balanced schemes for shallow
water type models is rather straightforward. The jump term in the non-conservative product
is computed via a path integral between the two boundary extrapolated values related to the
face, q−

h and q+
h as

D (
q−
h ,q+

h

) · n = 1

2

⎛
⎝

1∫
0

B
(
ψ(q−

h ,q+
h , s)

) · n ds
⎞
⎠ · (

q+
h − q−

h

)
(49)

where we use the simple straight line segment path

ψ = α(q−
h ,q+

h , s) = q−
h + s

(
q+
h − q−

h

)
, s ∈ [0, 1]. (50)

In this paper, the path integral (49) is approximated via a simple trapezoidal quadrature rule,
which is enough to obtain a well-balanced scheme, as we will see later in Sect. 3.3. In order
to achieve an essentially non-oscillatory behaviour at discontinuities and in the regions of
strong gradients, the ADER-DG schemes used in this paper are supplemented with an a
posteriori subcell finite volume limiter, as detailed in [49,108].

3.2 Local Space-Time Predictor

The local space-time predictor qh(x, t) is obtained via a weak formulation of the governing
PDE system in space-time, as proposed in [42,44]. This allows to avoid the cumbersome
Cauchy-Kovalewskaya procedure used in the original ADER finite volume schemes of Toro
et al. [20,96,97,100,101]. The element-local space-time predictor solution is introduced as
follows:

qh(x, t) = θl(x, t) q̂l , (51)

with the space-time basis functions θl = θl(x, t) = ϕl0(τ )ϕl1(ξ)ϕl2(η), which are tensor
products of the spatial basis functions already introduced before and an additional nodal
basis function for the time dependency, and with t = tn + τΔt . Multiplying (44) by a
space-time test function θk and integrating over Ωi × [

tn, tn+1
]
, one obtains

tn+1∫
tn

∫
Ωi

θk ∂tqh dx dt +
tn+1∫
tn

∫
Ωi

θk ∇ · F(qh) dx dt

+
tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =
∫
Ωi

θkS(qh) dx dt .

(52)

Integration by parts of the first term in time yields

∫
Ωi

θk(x, tn+1)qh(x, tn+1) dx −
∫
Ωi

θk(x, tn)uh(x, tn) dx −
tn+1∫
tn

∫
Ωi

∂tθk qh dx dt
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+
tn+1∫
tn

∫
Ωi

θk ∇ · F(qh) dx dt +
tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =
∫
Ωi

θkS(qh) dx dt, (53)

which is an element-local system for the unknown degrees of freedom q̂k of the space-
time predictor qh(x, t) and which can be computed in terms of the known spatial degrees
of freedom ûnl,i of the discrete solution uh(x, tn). The solution of (53) can be found via a
fast-converging iterative fixed point scheme, the convergence of which was proven in [17].
As any explicit numerical method for hyperbolic systems, our scheme is subject to a usual
CFL-type time step restriction, requiring

Δt ≤ C

2N + 1

Δx

max
k,l,i

∣∣∣λk
(
ûnl,i

)∣∣∣ (54)

with C < 1, see [42], and where the maximum is taken over all cells and degrees of freedom
in the computational domain. It is clear that (54) contains the parameter λ, but the time step
scales only linearly in Δx and not cubically. Furthermore, the proposed explicit DG scheme
does not require the solution of big linear systems, unlike the fully implicit space-time DG
scheme for dispersive systems proposed in [45].

3.3 Well-Balanced Property for the Favrie–GavrilyukModel with Variable Bottom
Topography

In this section we prove the well-balanced property [69,104] of the first order version of
our ADER-DG schemes in one space-dimension, i.e. for N = 0 and d = 1, which remains
the key ingredient of the well-balancing also for higher order schemes since it involves
the numerical flux and the jump terms. For high order well-balanced reconstructions see
[21,22,57,58]. Later in this section, we also study the well-balanced behavior of the actual
implementation of the numerical scheme.

For N = 0 we have only one single test and basis function φ1 = θ1 = 1 and one single
degree of freedom in space and time q̂n1,i = ûn1,i = Qn

i per cell, which corresponds to the
usual cell averageQn

i . The scheme (47) then reduces to the following path-conservative finite
volume method:

Qn+1
i = Qn

i − Δt

Δx

(G (
Qn

i ,Q
n
i+1

) − G (
Qn

i−1,Q
n
i

))

− Δt

Δx

(D (
Qn

i ,Q
n
i+1

) + D (
Qn

i−1,Q
n
i

)) + ΔtS
(
Qn

i

)
, (55)

with the numerical flux and the path-conservative jump term that in one space dimension
(d = 1) reduce to

G (
q−
h ,q+

h

) = 1

2

(
f(q+

h ) + f(q−
h )

) − 1

2
smax Iwb

(
q+
h − q−

h

)
, (56)

and

D (
q−
h ,q+

h

) = 1

2

(
1

2
B1

(
q−
h

) + 1

2
B1

(
q−
h

)) · (
q+
h − q−

h

)
. (57)
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Recall that the non-hydrostatic pressure is given by p = λ
3

η
h

(
1 − η

h

)
and that

f (Q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

hv1
hv21 + hp
hv1v2
hv1η

hv1w

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B1 (Q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
gh 0 0 0 0 gh + 3

2
h
η
p

0 0 0 0 0 0
0 0 0 0 0 3

2hv1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (58)

For the system (1)–(5) the following well-balanced identity matrix has been chosen through-
out this paper:

Iwb =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 h̃
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, with h̃ = h− + h+. (59)

Lake at rest solutions for system (1)–(5) are characterized by

ζ = h + b = const ., v1 = v2 = 0, η = h, w = 0, (60)

and are stationary solutions of (1)–(5) for arbitrary bottom b. We now prove that the scheme
(55) maintains solutions of the type (60) exactly at the discrete level for all times. Since η = h
and w = 0, it is obvious that the discrete source term S

(
Qn

i

)
vanishes. We now analyze

the numerical flux G (
Qn

i ,Q
n
i+1

)
and the path-conservative jump term D (

Qn
i ,Q

n
i+1

)
. For

ζ = const . and η = h we have p = 0 and the following relations for the jumps in h, η and
b:

Δζ = ζ+ − ζ− = Δh + Δb = 0, Δh = h+ − h−, Δb = b+ − b−, (61)

Δh = −Δb, Δη = Δh. (62)

From these relations and η = h we can compute the jump in the conservative variable hη as

Δ(hη) = h+η+ − h−η− = η−Δh + h−Δη + ΔhΔη = −2h−Δb + Δb2. (63)

We thus obtain for the jump in the state vector

q+
h − q−

h =

⎛
⎜⎜⎜⎜⎜⎜⎝

−Δb
0
0

−2h−Δb + Δb2

0
Δb

⎞
⎟⎟⎟⎟⎟⎟⎠

(64)

and with p− = p+ = 0 and v−
1 = v+

1 = 0 the path integral of B1 becomes

1

2
B1

(
q−
h

) + 1

2
B1

(
q−
h

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
g 1
2 (h

− + h+) 0 0 0 0 g 1
2 (h

− + h+)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (65)
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Table 1 Numerical verification of the well-balanced property for a first order DG scheme, N = 0, applied
to the hyperbolic reformulation of the SGN model (1)–(5). The reported errors refer to the L∞ errors for the
variables h, v1, η and w at a final time of t = 2

Machine precision L∞(h) L∞(v1) L∞(η) L∞(w)

Single precision 5.3644 × 10−7 7.6682 × 10−6 4.7684 × 10−7 1.6719 × 10−5

Double precision 1.5543 × 10−15 3.9948 × 10−14 1.2212 × 10−15 9.0634 × 10−14

Quadruple precision 6.7408 × 10−34 2.4366 × 10−32 4.8148 × 10−34 3.7267 × 10−32

From (65) and (64) it follows that

D (
q−
h ,q+

h

) · n = 1

2

(
1

2
B1

(
q−
h

) + 1

2
B1

(
q−
h

)) · (
q+
h − q−

h

) = 0, (66)

hence the path-conservative jump term vanishes. Next, we analyze the numerical flux (56).
Since v−

1 = v+
1 = 0 and p− = p+ = 0 it follows immediately that f

(
q−
h

) = f
(
q+
h

) = 0.
The last term to analyze is the numerical viscosity, for which we obtain

Iwb · (
q+
h − q−

h

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 h̃
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

−Δb
0
0

−2h−Δb + Δb2

0
Δb

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (67)

since h̃ = h− + h+ = 2h− − Δb and thus −2h−Δb + Δb2 + h̃Δb = 0. Therefore, also
the numerical flux G (

q−
h ,q+

h

) = 0 vanishes at each element interface. Hence, for lake at rest
solutions (60) the scheme (55) reduces to

Qn+1
i = Qn

i , (68)

i.e. lake at rest solutions are exactly preserved at the discrete level, or, in other words, the
scheme is well-balanced.

To verify the well-balanced property also numerically, we carry out the following simple
test. In a 1D domain Ω = [−5,+5] we define the following initial condition, with H(x)
being the Heaviside function:

ζ = 1, b = 1

2
exp

(
−1

2

(x + 2.5)2

0.52

)
+ 1

2
H(x − 2.5), (69)

h = ζ − b, η = h, v1 = v2 = w = 0, (70)

which is a lake at rest solution (60) of system (1)–(5). The domain Ω is discretized by 200
equidistant control volumes and simulations are run with the first order scheme (55) using
(56) with (59) and (57) until a final time of t = 2 using a CFL number of CFL= 0.5 and
setting λ = 1200. We report the L∞ errors for the variables h, v1, η and w at time t = 2
in Table 1 using single, double and quadruple precision. The computational results clearly
show that the method is well-balanced up to machine precision, as expected.
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4 Numerical Results

4.1 Hyperbolic Reformulation of the Serre–Green–Naghdi Model

4.1.1 Numerical Convergence Study

In this section, we simulate the propagation of a solitary wave over a flat bottom in the
computational domain Ω = [−50,+50] × [0,+25] with final simulation time t = 2.
Periodic boundary conditions have been imposed everywhere. The amplitude of the soliton
is A = 0.1, the still water depth is H = 1 and initially the soliton is centered in x = 0. For all
simulations of this section λ = 6000 has been chosen. Since the exact solution for a solitary
wave of the original SGN model, see e.g. [56], is not an exact solution of the hyperbolic
model (1)–(5) we proceed as suggested in [3], i.e. by finding a travelling wave solution in x
direction for the hyperbolic model (1)–(5) of the form

Q(x, t) = Q(ξ), with ξ = x − V t, (71)

where V = √
g(H + A) is the velocity of the soliton and the similarity variable is denoted

by ξ . Under these assumptions we get ∂tQ = −V Q′ and ∂xQ = Q′. Hence, the PDE system
(44) can be rewritten as

− V Q′ + A(Q)Q′ = S(Q) (72)

with the matrix A(Q) = ∂f/∂Q + B1(Q) containing the flux Jacobian and the non-
conservative product. For flat bottom, as considered here, the latter does not contribute.
The PDE system (44) finally reduces to the following nonlinear ODE system

Q′ = (A(Q) − V I)−1 S(Q), (73)

with initial condition Q(ξ0) = (H , 0, 0, H − ε, 0, 0) and with I the identity matrix. For our
numerical tests we set g = 9.81, H = 1, A = 0.1 and the perturbation ε = 10−10. The ODE
system (73) is solved with a 6th order DG scheme in time, see [41], in order to provide a
highly accurate initial condition for the solitary wave of the hyperbolic SGN system (1)–(5).

We now simulate the propagation of the solitary wave until t = 2 using ADER-DG
schemes of polynomial approximation degrees N = 2, 3, 4, 5 on a sequence of successively
refined meshes. The L2 errors and corresponding numerical convergence rates are shown in
Table 2. Overall we find the expected convergence order N + 1 of our high order ADER-DG
schemes.

In order to investigate the dependenceof the solutions of themodel (1)–(5) on the parameter
λ more thoroughly, we use the high order ODE solver [41] in order to calculate the shape of
a solitary wave moving with velocity V = 4 in still water of depth H0 = 1 as a function of
λ ∈ [75, 6000], i.e. with λ varying over about two orders of magnitude. The dependence of
the shape of the resulting solitary waves on λ is depicted in Fig. 2. One can observe that the
shapes for λ = 1200 and λ = 6000 match very well. For this reason, if not stated otherwise,
in the following numerical experiments we will set λ = 1200, since λ = 6000 does not give
visible improvements for practical simulations, but due to the CFL condition reduces the
time step by more than a factor of 2 compared to the choice λ = 1200.

To give an idea of the computational cost of the approach presented in this paper, we
compare itwith the cost of a fully implicit space-timeDGscheme [45] applied to the dispersive
system of Madsen and Sørensen [76] with third order derivatives. The computational setup
is the following: we consider the 1D domain Ω = [−20,+20] with periodic boundary
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Table 2 Numerical convergence results for high order ADER-DG schemes of polynomial approximation
degree N ∈ {2, 3, 4, 5} for the hyperbolic reformulation of the Serre–Green–Naghdi model (1)–(5) according
to [56]. A uniform Cartesian mesh composed of Nx × 4 elements has been used. The L2 error norms and
corresponding orders os convergence (in bold) refer to the variables v1, η and w at a final time of t = 2

Nx L2(v1) O(v1) L2(η) O(η) L2(w) O(w)

ADER-DG N = 2

64 3.6522E−02 3.0976E−02 1.0777E−01

128 3.2086E−03 3.5 5.5742E−03 2.5 1.9539E−02 2.5

256 3.3057E−04 3.3 9.9164E−04 2.5 3.5658E−03 2.5

512 3.9409E−05 3.1 1.6786E−04 2.6 6.5569E−04 2.4

ADER-DG N = 3

32 3.2963E−02 1.8827E−02 7.3790E−02

64 2.2957E−03 3.8 2.8810E−03 2.7 8.1905E−03 3.2

128 1.8157E−04 3.7 2.6749E−04 3.4 1.2853E−03 2.7

256 4.9323E−06 5.2 1.3652E−05 4.3 7.3061E−05 4.1

ADER-DG N = 4

16 3.3731E−01 1.9062E−01 5.1416E−01

32 4.6940E−03 6.2 4.3726E−03 5.4 1.4092E−02 5.2

64 3.4619E−04 3.8 4.0245E−04 3.4 2.2843E−03 2.6

128 7.0624E−06 5.6 1.3174E−05 4.9 7.4341E−05 4.9

ADER-DG N = 5

16 3.9790E−02 1.8485E−02 8.1569E−02

32 1.2395E−03 5.0 1.0505E−03 4.1 5.4111E−03 3.9

64 2.0243E−05 5.9 3.1764E−05 5.0 1.3082E−04 5.4

128 3.1760E−07 6.0 6.0393E−07 5.7 2.4188E−06 5.8

conditions in which a solitary wave with H0 = 1 and V = 4 is moving, see also Fig. 2 for a
graphical representation of the shape of the wave. At time t = 10 the exact solution of the
problem is given again by the initial condition. We apply the explicit ADER-DG scheme to
the hyperbolic model (1)–(5) with λ = 1200 and the implicit space-time DG scheme [45] to
the Madsen and Sørensen model [76], which contains higher order derivatives. In both cases
solitary waves with the same parameters are considered (H0 = 1, V = 4). Both schemes
are nominally fourth order accurate, i.e. with polynomial approximation degree N = 3 and
the computational mesh used in both simulations is composed of Nx = 200 elements. In
Table 3 we report the obtained L2 error norms for h and hv1 at time t = 10 for both schemes,
as well as the necessary CPU time and the time per degree of freedom update (TDU). The
TDU metric is computed as TDU = WCT/(Nt Nx (N + 1)), where WCT is the total wall
clock time needed for the simulation, Nx is the number of elements in space, N + 1 is the
number of degrees of freedom per element and Nt is the total number of timesteps needed to
reach the final time. Both simulations were run in serial on one single CPU core of an Intel
i9-7900X workstation with 32 GB of RAM. From the results shown in Table 3 one can see
that both methods reach comparable errors in the variable hv1, but the explicit ADER-DG
scheme applied to the hyperbolic model (1)–(5) is about three times faster compared to the
fully implicit space-time DG scheme applied to the dispersive model [76]. The cost per single
degree of freedom update (TDU) is three orders of magnitude larger for the fully-implicit
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Fig. 2 Shape of a solitary wave of the model (1)–(5) moving with velocity V = 4 in still water of depth
H0 = 1 as a function of the parameter λ

Table 3 Comparison of errors and CPU times for the propagation of a solitary wave with H0 = 1 and V = 4
at time t = 10 using the explicit ADER-DG scheme applied to the hyperbolic system (1)–(5) with the fully
implicit space-time DG scheme described in [45] applied to the Madsen and Sørensen model [76]. We also
report the time needed to update a single degree of freedom for one time step (TDU)

Method L2(h) L2(hv1) CPU time [s] TDU [s]

Explicit ADER-DG 1.6703 × 10−6 3.7603 × 10−6 125.7 1.1 × 10−6

Implicit STDG 1.7189 × 10−7 2.0561 × 10−6 476.9 3.7 × 10−3

space-time DG scheme. We expect that in multiple space dimensions and in the context of
a parallel implementation on distributed memory machines, the comparison may be even
more in favor of the explicit scheme applied to the hyperbolic reformulation of the dispersive
system.

4.1.2 Solitary Wave

As second part of the previous test, we now analyse the propagation of a solitary wave of
the original Serre–Green–Naghdi system over a flat bottom for a longer simulation time
t = 100/

√
g(H + A). The exact solution of a solitary wave for the original Serre–Green–

Naghdi equation reads

h(ξ) = H + A sech2
(

ξ

2

√
3A

H2(H + A)

)
, (74)
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Fig. 3 Exact (solid line) and numerical solution (squares) for the solitary wave at time t = 100/
√
g(H + A).

Water depth h (top left), velocity component v1 (top right), η (bottom left) and w (bottom right)

v1(ξ) = V

(
1 − H

h(ξ)

)
, (75)

with ξ = x − V t and V = √
g(H + A), see e.g. [56]. As suggested in [38], the remaining

variables of the system are set as

η(ξ) = h(ξ), w = −h∂xv1, v2 = 0, b = 0, (76)

i.e. with η = h the system is initialized so that p = 0. For this test we set H = 1, A = 0.2
and λ = 1200. The domain is again Ω = [−50,+50] × [0,+25] and periodic boundary
conditions are defined everywhere. The results obtained with an ADER-DG scheme of poly-
nomial approximation degree N = 4 on a uniform Cartesian mesh composed of 1080 × 4
elements after one complete revolution of the soliton are depicted in Fig. 3 and are compared
against the exact solution given by (74)–(76). As expected, the shape of the soliton has been
well preserved, showing only some small spurious oscillations away from the soliton.

4.1.3 Solitary Wave Over a Step

The solitarywave over a step benchmark proposed in [93] and also used in [3,4] is employed as
afirst testwith nontrivial bottom topography aiming to compare the numerical results obtained
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Fig. 4 1D cut along y = 0 of the free surface (blue line) and the bottom bathymetry (black line) at times
t ∈ {0, 2.148, 4.296, 6.444, 8.592, 10.74} (from left top to right bottom) for the solitary wave over a step test
case (Color figure online)

with experimental data.We consider the computational domainΩ = [−16,+16]×[−1,+1]
and a bathymetry characterized by a step shaped obstacle of height Hobs = 0.1 positioned at
xobs = 0. The obstacle has been smoothed employing the error function

zb = 0.05 (erf(8x) + 1) . (77)

The still water depth is H = 0.2 and λ = 1200 is chosen. A soliton of amplitude A = 0.0365
is initially located at xsol = −3. To generate the initial conditions for the different variables
the corresponding ODE system (73) is solved using a 10th order DG scheme in time. Periodic
boundary conditions are defined in y direction while on the left and right boundaries we set
the initial data as Dirichlet boundary conditions.

The domain is discretizedwith 2000 elements in the horizontal direction and the simulation
is run with polynomial degree N = 3. A 1D cut of the free surface obtained at times
t ∈ {0, 2.148, 4.296, 6.444, 8.592, 10.74} is depicted in Fig. 4. As expected, the soliton
initially propagates smoothly growing when approaching the bottom step. Then, it splits
into two transmitted waves in forward direction. A secondary reflecting wave, followed by a
train of small dispersive waves, is generated and propagated in the opposite direction to the
incoming soliton. The use of the a posteriori FV limiter results in the damping of the small
spurious oscillations appearing in correspondence to the obstacle that could be seen for the
hyperbolic dispersive models used in [3,4]. Figure 5 reports the time evolution of the ratio
between the wave amplitude and the still water depth, A

H = h+b−H
H , at the fixed observation

points x ∈ {−9,−3, 0, 3, 6, 9}. The numerical solution of the model (1)–(5) obtained in this
paper agrees well with the results obtained using the alternative hyperbolic reformulations
of the SGN model employed in [3,4,51]. Moreover, we also observe a good agreement with
experimental data.
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Fig. 5 Comparison of the time evolution of numerical results obtained for the soliton over a step test case using
the ADER-DG N = 3 scheme for the Favrie–Gavrilyuk (FG) model (blue dotted line) against the solution
obtained with the hyperbolic SGN model for mild bottom bathymetry (red dashed line), [3,51,56], and the
experimental data given in [93] (black line) at locations x ∈ {−9,−3, 0, 3, 6, 9} (from left top to right bottom)
(Color figure online)
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Fig. 6 Computational domain and locations of thewave gauges for the periodicwaves over a submerged bar test
case. Computational domain: Ω = [−10, +40]. Relaxation zones: Ωrel

L = [−20,−10], Ωrel
R = [+40,+50].

Submerged bar: xa = 6, xb = 12, xc = 14, xd = 17. Locations of the wave gauges: S0 = 6.0, S1 = 10.8,
S2 = 12.8, S3 = 13.8, S4 = 14.8, S5 = 16.0, S6 = 17.6

4.1.4 Periodic Waves Over a Submerged Bar

We now study the results obtained for the periodic waves over a submerged bar benchmark
presented in [7,8,72]. The computational domain is depicted in Fig. 6. The physical domain
is enlarged in x-direction to introduce damping zones of length L rel = 10 allowing to define a
wavemaker and an absorbing boundary condition guaranteeing a smooth transition between
the target solution u∗ and the solution uh inside the computational domain. To define the
periodic signal at the left boundary a sinusoidal function is employed,

h∗(t) = H + A∞ sin(ωt), v∗
1(t) = A∞ sin(ωt)

√
g(H + A∞),

v∗
2(t) = 0, η∗(t) = h∗(t), w∗(t) = 0,

(78)

where the amplitude, A∞, is selected to match the initial amplitude of the periodic waves
given by the experimental data at the wave gauge S0 = 0 and ω = 2π/T is the angular
frequency, T the wave period, also fixed attending to the experimental data. Regarding the
absorbing boundary condition we define, as target solution,

h∗(t) = η∗(t) = H , u∗(t) = w∗(t) = 0, (79)

preventing wave reflection. Inside the relaxation zones the solution in an element Ωi is
computed as

ũh = miuh + (1 − mi )u∗ (80)

with

mi =
√
1 −

(
di
Lrel

)2

, (81)

di the distance between the barycentre of Ωi and the corresponding boundary, xL or xR .
Periodic boundary conditions are defined in y direction.

The experimental data available corresponds to two different settings. The first of them,
a low frequency test (LF), is characterized by A∞ = 0.01, T = 2.0205. Meanwhile, for the
high frequency case (HF) we have A∞ = 1.286E − 2, T = 1.2624. The polynomial degree
in both simulations is N = 3. The a posteriori subcell finite volume limiter is employed to
prevent spurious oscillations, see [17,49,108]. The parameter λ is chosen as λ = 1200.

To analyse the results obtained, we consider six wave gauges located in S1 = 10.8,
S2 = 12.8, S3 = 13.8, S4 = 14.8, S5 = 16.0, S6 = 17.6, where the experimental solution
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Fig. 7 Time evolution of the wave amplitude A(t) for the low frequency periodic waves over a submerged bar
test at wave gauges S1 − S6. Black dots correspond to experimental data [8], blue solid lines are the numerical
results obtained for the model (1)–(5) using an ADER-DG scheme with N = 3, a mesh of 2100 elements and
parameter λ = 1800; the red dashed lines represent the solution for a mesh of 2800 elements and λ = 2400
(Color figure online)

is available. The numerical results for the wave amplitude, A = h + b − ζ0, are reported
in Fig. 7 for the low frequency case and in Fig. 8 for the high frequency test. For the low
frequency case, two different mesh resolutions and two different values of λ have been used,
in order to show that the obtained numerical results have already reached a good level of
independence in terms of mesh spacing and λ. For the high frequency testcase, two different
values of λ have been used in order to show that the chosen values of λ are large enough
for practical simulations. The results are quite satisfactory and comparable with the ones
obtained in [3]. The discrepancies, with respect to the experimental data, observed for S5 and
S6 in LWmay be due to the suboptimal linear dispersive properties of the model considered,
see Sect. 2.1.2. To improve these results, models with better dispersion characteristics, like
the Madsen & Sørensen model [77], may be employed in a future work.
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Fig. 8 Time evolution of the wave amplitude A(t) for the high frequency periodic waves over a submerged bar
test at wave gauges S1 − S6. Black dots correspond to experimental data [8], blue solid lines are the numerical
results obtained for model [56] with variable bottom (1)–(5) using an ADER-DG scheme with N = 3, a mesh
of 2800 elements and parameter λ = 1200; red dashed lines are the solution for λ = 2400 (Color figure
online)

4.1.5 Favre Waves

In this section we consider the numerical simulation of so-called Favre waves, which are
dispersive shock waves or undular bores developing when a fluid layer with a free surface
hits against a wall, see [51,56] for numerical investigations and [102] for the corresponding
experimental studies. The computational domain is Ω = [−180, 0] × [−1,+1] and it is
covered by 1200× 4 ADER-DG elements of polynomial approximation degree N = 3. The
initial condition for this test is

h = H , η = H , v1 = √
gH

(
F − 1 + √

1 + 8F2

4F

)
, v2 = w = b = 0 (82)
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where F is the relative Froude number of the impact velocity. As suggested in [56], instead
of a wall at x = 0 an alternative symmetric impact problem can also be considered. For
the subsequent tests we choose the still water depth H = 1 and the parameter λ is set to
λ = 1200.

In order to capture the effect of wave breaking, only in this section the following simple
wave breakingmechanism is employed, see [3,51]. For this purpose wemodify the governing
PDE for hw by adding a source term as follows:

∂hw

∂t
+ ∂

∂xk
(hwvk) = λ

(
1 − η

h

)
− 2 ξ B hw, (83)

with

B = max

(
0, 1 − ∂x (hv1) + ∂y(hv2)

U1

) ∣∣∂x (hv1) + ∂y(hv2)
∣∣ , (84)

U1 = b1
√
gh, U2 = b2

√
gh, (85)

and the switch function

ξ =
{
0 if

∣∣∂x (hv1) + ∂y(hv2)
∣∣ < U2,

1 if
∣∣∂x (hv1) + ∂y(hv2)

∣∣ ≥ U2.
(86)

For our numerical tests we set b1 = 0.5 and b2 = 0.25. In Fig. 9 we show the computational
results obtained for Froude F = 1.15 at a final time of t = 54 using two different meshes,
one with 1200 elements in x direction and a finer one with 2400 elements in x direction.
We can note an excellent agreement of the two solutions with each other, showing that mesh
convergence has been reached for this test. In Fig. 10 we compare our numerical results
with the experimental data reported in [56,102]. The upper symbols refer to the amplitude
of the first wave, while the lower symbols refer to the amplitude of the trough after the first
wave. The agreement between numerical simulations and experimental data is very good
up to F = 1.35, which is already in the range of Froude numbers where wave breaking
occurs. This means that the simple wave breaking mechanism adopted here is valid at least
for moderate Froude number flows with breaking waves.

4.1.6 Solitary Wave Run-Up onto a Plane Beach

Synolakis [95] carried out laboratory experiments for solitary incident waves to study prop-
agation, breaking and run-up over a planar beach with a slope 1 : 19.85. Since then, many
researchers used his data to validate numerical models, as in [3,51–53,68,90,91], among
others. Accordingly, this test case is here used to assess the capability of the proposedmethod-
ology to describe shoreline motions and wave breaking when it occurs. The bathymetry of
the problem is described in Fig. 11. As initial condition we use the solitary wave solution of
the genuinely SGN system given by (74)–(75) with

v1 = 0, w = −h∂xv1, and η = 1

2
h

(
1 +

√
1 − 12

λ
p

)
(87)

where p is the non-hydrostatic pressure known for the SGN model. Note that for practical
purposes, this analytical solution of the elliptic SGN model can be used as an approximate
solution for the hyperbolised system.

The solitary wave of amplitude A = 0.3 and H = 1 is placed at the location xsol = 25.
The computational domain Ω = [−10,+40] × [−1, 1] is covered by 200 × 3 ADER-DG
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Fig. 9 Favre waves at time t = 54 for Froude number F = 1.15. Numerical results obtained for model (1)–(5)
using an ADER-DG scheme with N = 3 on a mesh composed of 1200 elements (dashed red line) and on a
mesh composed of 2400 elements (solid black line) in x direction (Color figure online)
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Fig. 10 Favre waves. Comparison of the numerical results obtained with an ADER-DG scheme of polynomial
approximation degree N = 3 with the experimental data of [56,102]. For this test the simple wave breaking
mechanism (83) has been employed

123



Journal of Scientific Computing (2021) 87 :48 Page 27 of 47 48

Fig. 11 Sketch of the bathymetry used for the solitary wave run-up onto a plane beach test

elements of polynomial approximation degree N = 3. For this test the simple wave breaking
mechanism (83)–(85), with the same parameters b1 = 0.5, b2 = 0.25 has been employed.
The relaxation speed λ is set to 1200. In order to take into account the glass surface roughness,
the usual and simple bottom friction model used for the standard shallow-water equations is
adopted via a usualManning-type friction formula. For this purpose,wemodify the governing
equation for hvi by adding a source term as follows:

∂hvi

∂t
+ ∂

∂x

(
hvivk +

(
1

2
gh2 + hp

)
δik

)
+

(
gh + 3

2

h

η
p

)
∂b

∂xi
= −τi ,

with

τi = n2mg

√
v21 + v22

h4/3
vi , nm = 4 × 10−3.

The a posteriori subcell finite volume limiter is activated in the presence of spurious
oscillations as well as for small values of the total water depth h < 10−2. Following [103],
we employ a second-order scheme by using a TVD polynomial reconstruction procedure
using the MUSCL slope limiter, which takes into account the positivity of the water height,
[53], and the well-balancing for equilibrium. The time evolution stage to the half time level
is then computed via a standard second-order TVD Runge-Kutta method, [61]. Finally, free-
outflow boundary conditions are considered and the CFL number is set to 0.9.

Figure 12 depicts the snapshots at times t ∈ {4.7, 6.3, 7.9, 9.5}. Excellent results are
obtained for the arrival time and the amplitude of the wave and for the maximum wave
run-up, where the friction terms play an important role. This test shows that the proposed
hyperbolic strategy, the chosen breaking mechanism, and the standard friction term from
classical shallow water equations perform adequately for the proposed hyperbolic system.

4.1.7 Solitary Wave Over a Gaussian Obstacle

This test run using the FG model is a solitary wave over a Gaussian obstacle in Ω =
[−5,+35] × [−10,+10]. We consider the bathymetry given by

zb(x, y) = Ag exp

(
− x2 + y2

2σ 2
g

)
, (88)

where Ag = 0.1 and σg = 1. The initial soliton is taken from Test 4.1.3, xsol = −3,
Ai = 0.0365, H = 0.2. We run a simulation on a mesh, M1, of 200 × 100 elements
with N = 3, final integration time t = 12 and periodic boundary conditions everywhere.
Since neither the exact solution nor experimental data is available, a mesh convergence study
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Fig. 12 Comparison of the experimental data (dots) and the numerical results (solid blue line) obtained during
the run-up at times t ∈ {4.7, 6.3, 7.9, 9.5} (from top to bottom) (Color figure online)

has been carried out by considering a refined mesh, M2, made of 400 × 200 elements,
using again N = 3. The 1D cut for the water depth at t = 12 is reported in Fig. 13. The
numerical solutions obtained on both meshes match perfectly, hence mesh convergence has
been reached for this test. Figure 14 shows the snapshots of the free-surface A = h + b at
different times, t ∈ {0, 2, 5, 12}. As expected, the soliton is propagated growing in amplitude
in correspondence to the obstacle and generating a set of transmissive waves behind the main
wave.

4.1.8 Solitary Wave Impinging on a Conical Island

A set of 2D experiments with solitary waves was carried out at the Coastal and Hydraulics
Laboratory, Engineer Research and Development Center of the U.S. Army Corps of Engi-
neers, [16]. The laboratory experiment consisted on an idealized representation of Babi Island
in the Flores Sea, Indonesia. It should be mentioned that the waves generated in the labora-
tory are dispersive; hence, as many authors have already done, [51,74,105], it constitutes an
almost ideal problem to test the accuracy of the model.

The computational domain Ω = [−5,+25] × [0,+30] is covered by 150× 150 ADER-
DG elements of polynomial approximation degree N = 3. The still water depth is H = 0.32
and a smoothed conical island centred at xobs = (12.96, 13.8) and base diameter dobs = 7.2
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Fig. 13 Solitary wave over a 2D Gaussian obstacle test. One-dimensional cut of the water depth, h, at t = 12.
Mesh M1:Δx = Δy = 0.2 (red dash-dotted line). Mesh M2:Δx = Δy = 0.1 (black solid line) (Color figure
online)

Fig. 14 Snapshots of the free-surface A = h + b for the solitary wave over a 2D Gaussian obstacle test at
times t ∈ {0, 2, 5, 12} with mesh M2. The bathymetry is represented in grey
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given by

b(x, y) = 0.33(1 + tanh(d(x, y)/ς)) − H0, ς = 2.65, H0 = 0.32,

d(x, y) = R1 −
√
3(x − x0)2 + 3(y − y0)2, R1 = 3.6.

(89)

Four wave gauges S1 = (9.36, 13.8), S2 = (10.36, 13.8), S3 = (12.96, 11.22), S4 =
(15.56, 13.8), are distributed around the island in order to measure the free surface elevation.

As done in Sect. 4.1.6, the initial condition for ρ, vi , w and η, is a solitary wave of
amplitude A = 0.06, H = 0.32 computed for the original SGNmodel and centred at xsol = 0.
The wave propagates until t = 15 and the breaking mechanism is automatically activated
with the same parameters than in all the previous numerical test, b1 = 0.5, b2 = 0.25. The
relaxation speed λ is set to 300. Since the model is constructed with smooth concrete, the
frictionwith the topography is not considered here. Finally, free-outflow boundary conditions
are considered and the CFL number is set to 0.9.

Similarly to the test in Sect. 4.1.6, the a posteriori subcell finite volume limiter is employed
in the presence of spurious oscillations as well as for values of the total water depth smaller
than 10−1. During the entire simulation, the subcell finite volume limiter was active for less
than the 4 % of total elements of the computational domain. That ensures using a robust
second-order scheme in a tiny part of the computational domain.

As expected, the approximated solution, Fig. 15, shows twowavefronts splitting in front of
the island and colliding behind it. In Fig. 16, it can be found that, overall, the simulated water
surface fluctuations agree well with the measured data for both the maximum amplitudes
and the arrival time of the waves. Therefore, the proposed methodology seems to be able to
reproduce measured wave propagation over an uneven 3D bottom accurately.

4.2 Hyperbolic Reformulation of the Nonlinear Schrödinger Equation

4.2.1 Numerical Convergence Study and Evolution of Curl Errors

In this section we use the stationary radial solution found in Sect. 2.2.2 in order to carry out
a numerical convergence study of the high order ADER schemes proposed in this paper and
in order to measure the errors in the involution constraint ∇ × p as a function of the GLM
curl cleaning speed ac.

The computational domain is given by Ω = [−5,+5]× [−5,+5] and is discretized with
a uniform Cartesian mesh of Nx × Ny DG elements of polynomial approximation degree
N ∈ {2, 3, 4, 5}. All boundary conditions are periodic. The free parameters for the definition
of the stationary vortex-type solution of Sect. 2.2.2 are defined as follows: ρ0 = 2, ρ̂ = 1,
L = 2, p0 = 0.1, σ = 0.2 and R = 1.5. The remaining parameters of the model are set
to β = 1, λ = 500 and ac = 20. Simulations are run until a final time of t = 0.25 and
the L2 errors of the numerical solution with respect to the exact one are reported in Table 4,
together with the observed order of accuracy. From the obtained results we can conclude
that, on sufficiently fine meshes, our high order ADER-DG schemes achieve a numerical
convergence order of N to N + 1 for all quantities.

We now run this test problem again for a longer time until t = 2 using an ADER-DG
scheme with N = 4 on a uniform Cartesian mesh of Nx = Ny = 32 elements and report
the time series of the L2 error in the curl constraint ∇ × p for the original system (15)–(19)
and of the augmented GLM system (35)–(40) as a function of the GLM cleaning speed ac.
From the results shown in Fig. 17 we can deduce that the curl errors decrease with increasing
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Fig. 15 Snapshots of the free surface and bathymetry profile at times t ∈ {4.5, 6.5, 8, 10} (from top left to
bottom right)

cleaning speed, as expected. A set of radial cuts through this stationary vortex-type problem
is shown in Fig. 18, where the numerical solution obtained with the high order ADER-DG
scheme is compared against the exact solution of the problem at time t = 2. We can note an
excellent agreement between numerical and exact solution.

4.2.2 Gray Soliton

In this section we solve the gray soliton test problem, which was introduced and solved with
second order TVD finite volume schemes in [38]. In this paper we employ very high order
ADER-DG schemes instead. The initial condition is given by

ρ(x, 0) = b1 − b1 − b3
cosh2

(√
b1 − b3 x

) , v1(x, 0) = U − b1
√
b3

ρ(x, 0)
, (90)

η(x, 0) = ρ(x, 0), w(x, 0) = −ρ(x, 0)∂xv1(x, 0), p1(x, 0) = ∂xρ(x, 0)

and v2 = v3 = p2 = p3 = 0. The computational domain is Ω = [−20,+20] × [0,+0.5]
with periodic boundary conditions in all directions. The domain is discretized at the aid of
1080×10 elements using anADER-DG scheme of polynomial approximation degree N = 4.
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Fig. 16 Comparison of the time evolution of the amplitude, A(t), at wave gauges S1 −S4 computed using the
ADER-DG P3 scheme (solid blue line) against the experimental data (dashed red line) for the solitary wave
impinging on a conical island test (Color figure online)

According to [38] the parameters of the test problem are chosen as follows: b1 = 1.5, b3 = 1,
U = 2, while the parameters of the hyperbolic model are set to β = 10−3, λ = 2000 and
ac = 0, since the test problem is one-dimensional. Simulations are run until a final time
of t = 20, when the solitary wave has traveled one period through the domain and has
returned to its initial location, so that the exact solution is given by the initial condition. A
comparison of the high order ADER-DG solution and the exact solution is shown in Fig. 19.
For all depicted variables, which are representative for the system, we can note an excellent
agreement between the numerical solution and the exact one. Note that the nominally fifth
order ADER-DG scheme with N = 4 used in this paper needed only 5,400 degrees of
freedom to resolve the solitary wave in x direction, while for the second order TVD scheme
employed in [38] a very fine mesh composed of 200,000 elements in x direction was needed.
The following L2 errors were measured at the final time t = 20: for the density, ρ, the error
was 6.0462 · 10−3, for the first velocity component, v1, it was 6.3848 · 10−3, for η it was
6.0337 · 10−3 and for p1 it was 7.3374 · 10−3. These results clearly illustrate the benefit
of very high order DG schemes for the numerical solution of hyperbolic reformulations of
nonlinear dispersive systems over classical second order TVD finite volume schemes.
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Table 4 Numerical convergence results for high order ADER-DG schemes of polynomial approximation
degree N ∈ {2, 3, 4, 5} for the hyperbolic reformulation of the Schrödinger equation (35)–(40) with a fixed
cleaning speed of ac = 20 on a uniform Cartesian mesh composed of Nx = Ny elements. The L2 error norms
and orders (in bold) refer to the variables η, w and p1 at a final time of t = 0.25

Nx = Ny L2(η) O(η) L2(w) O(w) L2(p1) O(p1)

ADER-DG N = 2

16 7.5272E−02 2.7475E−01 1.2864E−01

32 1.9211E−02 2.0 3.6952E−02 2.9 3.6686E−02 1.8

64 4.2150E−03 2.2 3.7878E−03 3.3 5.6467E−03 2.7

128 8.4925E−04 2.3 3.5474E−04 3.4 6.2646E−04 3.2

ADER-DG N = 3

16 3.2089E−02 4.6461E−02 1.8055E−02

32 2.9819E−03 3.4 2.3751E−03 4.3 3.6845E−03 2.3

64 1.1181E−04 4.7 7.7650E−05 4.9 2.0072E−04 4.2

128 4.5336E−06 4.6 2.0139E−06 5.3 4.6210E−06 5.4

ADER-DG N = 4

16 4.0841E−03 6.1623E−03 5.7759E−03

32 1.9832E−04 4.4 2.1044E−04 4.9 4.5919E−04 3.7

64 1.1167E−05 4.2 7.3094E−06 4.8 1.7988E−05 4.7

128 5.2303E−07 4.4 2.1548E−07 5.1 5.6020E−07 5.0

ADER-DG N = 5

8 2.3465E−02 6.6136E−02 2.1526E−02

16 1.1654E−03 4.3 1.5479E−03 5.4 2.1122E−03 3.3

32 4.5498E−05 4.7 3.0915E−05 5.6 4.7821E−05 5.5

64 4.3160E−07 6.7 3.3627E−07 6.5 7.2628E−07 6.0

4.2.3 Dispersive Shock in One Space Dimension

In order to verify our proposednumerical approach and its implementation also in the presence
of dispersive shock waves, we first compare the numerical solution obtained with a fourth
orderADER-DG scheme (N = 3) in the domainΩ = [−250,+250]×[0,+25] on a uniform
Cartesian mesh composed of 10080 × 4 elements with the exact solution of the Whitham
modulation equations that describe the temporal evolution of the envelope of the dispersive
shockwave, see [38]. The parameters of the hyperbolicmodel are set toβ = 2·10−5, λ = 300
and ac = 0, since the test problem is one-dimensional. In Fig. 20 we show a comparison of
numerical and exact solution for the fluid density ρ and for the velocity component v1 at a
final time of t = 70. For both variables, an excellent agreement between the exact and the
numerical solution can be observed for the envelope.

4.2.4 Dispersive Shock in Two Space Dimensions

Last but not least, we also carry out a qualitative comparison against experimental results in
two dimensions. We start from a fluid initially at rest with vk = 0, pk = ∂kρ, w = 0 and
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Fig. 17 Time series of the L2 norm of the curl error in the vector field p as a function of the GLM cleaning
speed ac

η = ρ. The initial density profile is given in terms of the radius r = √
x2 + y2 by

ρ(r , 0) = 1

2
(ρR + ρL) + 1

2
(ρR − ρL) tanh

(
r − R

σ

)
, (91)

with ρL = 2, ρR = 1, R = 3 and the smoothing parameter σ = 0.05. The computational
domain Ω = [−8,+8]2 is discretized with 256 × 256 uniform Cartesian elements with
polynomial approximation degree N = 3 and simulations are run until a final time of t =
0.24. Also for this test case the parameters of the hyperbolic model with GLM curl cleaning
are set to β = 2 · 10−5, λ = 300 and ac = 20. In Fig. 21 we compare our numerical results
against experimental observations published in [65] for a two-dimensional dispersive shock
wave developing in a quantum fluid (Bose–Einstein Condensate—BEC). We can observe a
good qualitative match between the two solutions.

5 Conclusion

In this paper we have focused on the solution of first order hyperbolic reformulations of
nonlinear dispersive systems using a high order fully discrete one-step ADER discontiu-
ous Galerkin methodology. Two different models derived from an extended Lagrangian
variational principle have been considered. The hyperbolic reformulation of theSerre–Green–
Naghdi model with flat bottom [56] has been extended to the 2D framework with variable
bottom topography. The linear dispersion analysis reported in the present paper allows an
easy comparison with other hyperbolic models of nonlinear dispersive water waves. As sec-
ond system we have selected the defocusing nonlinear Schrödinger equation rewritten in the
hyperbolic reformulation proposed in [38]. The extension of the original 1D model to the

123



Journal of Scientific Computing (2021) 87 :48 Page 35 of 47 48

x

rh
o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4
Exact solution
ADER-DG (N=4)

x

v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3
Exact solution
ADER-DG (N=4)

x

et
a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4
Exact solution
ADER-DG (N=4)

x

p
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Exact solution
ADER-DG (N=4)

Fig. 18 Radial cut through the numerical solution obtained with an ADER-DG scheme (N = 4) on 32 × 32
elements along the line y = 0 and comparison with the exact solution at time t = 2 for density ρ (top left),
velocity component v2 (top right), η (bottom left) and p1 (bottom right)

multi-dimensional framework has shown the necessity of including a new term to restore
the Galilean invariance of the system. Moreover, in this paper the model has also been aug-
mented by a hyperbolicGLMcurl cleaning approach so thatwe arrive at a structure preserving
scheme that reduces the curl errors that are produced by the underlying numerical method.
Let us note that, as an additional benefit of including the curl cleaning terms, the augmented
system becomes strongly hyperbolic when the second and third components of the vector
field p are non zero, reverting to the eigenstructure of the original system in [38], which
was only weakly hyperbolic in the multi-dimensional case in the absence of the GLM curl
cleaning terms. The path-conservative ADER-DGmethodology has been briefly recalled and
combined with an a posteriori subcell finite volume limiter to avoid spurious oscillations in
the numerical solution in the presence of discontinuities or strong gradients. For the hyper-
bolic model of nonlinear dispersive water waves (1)–(5) the well-balanced property of the
employed path-conservative scheme has been rigorously proven for the case N = 0 for arbi-
trary bottom topographies. A careful validation of the schemes has been carried out for both
systems of equations showing numerical convergence tables of up to sixth order of accuracy.
A set of numerical test has been run for each system including a comparison with exact
and numerical reference solutions, as well as with available experimental data. The obtained
results confirm the effectiveness of using very high order accurate numerical schemes against
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Fig. 19 Exact and numerical solution for the gray soliton at time t = 20. Density ρ (top left), velocity
component v1 (top right), η (bottom left) and p1 (bottom right)
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Fig. 21 Density contours at t = 0.24 for a dispersive shock wave in 2D. Simulation of the hyperbolic
reformulation of the Schrödinger equation with a fourth order ADER-DG scheme (left) and experimental
results of [65] obtained for a dispersive shock wave in a Bose–Einstein condensate (right)

classical low order finite volume methods which, even in the one-dimensional case, require
a very fine grid leading to a prohibitive computational cost in higher space dimensions.

In the future, we plan to apply the numerical method developed in this paper also to
other nonlinear dispersive systems, such as the Navier-Stokes-Korteweg system, for which a
hyperbolic reformulation is possible by combining the GPR model of continuum mechanics
[17,47,88] with the hyperbolic reformulation of the nonlinear Schrödinger equation intro-
duced in [38] and studied in the present paper. As further research, we also plan to develop
novel structure-preserving semi-implicit schemes on staggered meshes to solve the systems
under investigation in this paper, following the ideas outlined in [9,11,18,19], with the aim
to preserve the curl constraint exactly at the discrete level.
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Fig. 22 A sketch of the flow over topography

A Appendix

The hyperbolic version of the Serre–Green–Naghdi equations was derived in [56] only in the
case of a flat bottom. Here we present the model derivation for the flows over topography.
Consider the Euler equations of incompressible fluids between the rigid bottom described by
z = b(t, x1, x2) and the free surface z = h(t, x1, x2) + b(t, x1, x2) :

div2v + ∂v3

∂z
= 0, ρ

Dv
Dt

+ ∇2 p = 0, ρ
Dv3

Dt
+ ∂ p

∂z
= −ρg (92)

where (v, v3)T is the velocity field, v = (v1, v2)
T is the horizontal velocity, v3 is the vertical

component of the velocity, g is the gravity acceleration, the divergence and the gradient
are taken with respect to x1, x2 (this is denoted with index 2); ρ is the fluid density, p is

the pressure,
D

Dt
= ∂

∂t
+ v · ∇2 + v3

∂

∂z
is the material derivative. The standard boundary

conditions are fulfilled at the free surface:

(h + b)t + v · ∇2(h + b) = v3, p = 0, (93)

and at the bottom

bt + v · ∇2b = v3. (94)

In the shallow water approximation the dimensionless equations become (we will use the
same notations for dimensionless variables):

div2v + ∂v3

∂z
= 0,

Dv
Dt

+ ∇2 p = 0, ε2
Dv3

Dt
+ ∂ p

∂z
= −1. (95)

Here the small parameter ε = H/L represents the ratio of the vertical and horizontal scales
(see Fig. 22).

The corresponding total energy of the flow can be written as

E =
∫ +∞

−∞

∫ +∞

−∞

∫ b+h

b

(
|v|2 + ε2v23

2
+ z + C

)
dzdx1dx2 (96)

where the constant C is added to have a finite total energy in the class of solutions having the
same constant values at infinity (v → 0, h → h∞, b → 0). Obviously, this constant C does
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not influence the corresponding Euler-Lagrange equations. The incompressibility equation
and kinematic boundary conditions imply the mass conservation law in the form

ht + div(hv) = 0, hv =
∫ b+h

b
vdz. (97)

In the following, ‘dot’ means the material derivative along the average velocity. For example,

ḣ = ∂h

∂t
+ v · ∇2 h. (98)

Under additional assumption –the vorticity is of order εβ , with β > 1– one can easily obtain
(see [2] for details)

v3 ≈ ḃ − (z − b)divv = ḃ + z − b

h
ḣ. (99)

Then, up to ε2 order terms one has [2]:

∫ b+h

b

(
|v|2 + ε2v23

2
+ z

)
dz ≈ h

(
|v|2
2

+ ε2

6

(
ḣ + 3

2
ḃ

)2

+ ε2

8
ḃ2

)

+h

2
(2b + h). (100)

It allows us to write the Lagrangian in the form (we return back to the dimension variables):

L =
∫ +∞

−∞

∫ +∞

−∞
L dx1dx2,

with

L(v, h, ḣ, b, ḃ) =
(
h

(
|v|2
2

+ 1

6

(
ḣ + 3

2
ḃ

)2

+ 1

8
ḃ2

)
− gh

2
(h + 2b) − Ch

)
.

The corresponding Hamilton’s action between the time instant t0 and t1 is then

a =
∫ t1

t0
Ldt . (101)

The Euler-Lagrange equations for (101) are obtained under the mass conservation constraint
(97). Following [56], the extended Lagrangian is defined as

L̂ =
∫ +∞

−∞

∫ +∞

−∞
L̂dx1dx2,

with

L̂(v, h, η, η̇, b, ḃ) =
(
h

(
|v|2
2

+ 1

6

(
η̇ + 3

2
ḃ

)2

+ 1

8
ḃ2

)
− gh

2
(h + 2b)

−λh

6

(η

h
− 1

)2 − Ch

)
. (102)

Here λ is a large constant having the dimension of squared velocity. The corresponding
variational technique to find the Euler–Lagrange equations can be found in [36], [38]. The
obtained governing equations are yet quite complicated for the numerical study and contain
non-conservative products. We simplify now the Lagrangian (102) under the hypothesis that
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the bottom is immobile, b = b(x1, x2), hence ḃ = v · ∇2b, and the gradients of b are small
(‘mild’ bottom approximation). So, a family of equivalent Lagrangians, defined up to ḃ2

terms, can be considered. We take the Lagrangian in the form

L̂ ≈ L̂m = h

(
|v|2
2

+ 1

6

(
η̇ + 3

2
ḃ

)2

− g

2
(h + 2b) − λ

6

(η

h
− 1

)2 − C

)
. (103)

The variation of L̂m with respect to η gives us a second order equation which can be
re-written as a system of two first order equations

η̇ = w − 3

2
ḃ, ẇ = λ

h

(
1 − η

h

)
. (104)

The momentum equation requires a little bit longer but straightforward calculations, [36],
[38]:

∂ (hv)
∂t

+ div2 (hv ⊗ v) + ∇P +
(
gh + λ

2

(
1 − η

h

))
∇b = 0, (105)

with

P = gh2

2
+ λ

3
η

(
1 − η

h

)
.

The system (104), (105) complemented by the mass equation (97) obviously admits the
energy conservation law (Noether theorem):

∂

∂t

(
h

( |v|2
2

+ e

))
+ div2

(
hv

( |v|2
2

+ e

)
+ Pv

)
= 0, (106)

with

e = 1

6

(
η̇ + 3

2
ḃ

)2

+ g

2
(h + 2b) + λ

6

(η

h
− 1

)2
. (107)

Indeed, (106)–(107) imply

h(v · v̇ + ė) + ∇P · v − P
ḣ

h

= −
(
gh + λ

2

(
1 − η

h

))
ḃ + hė − P

ḣ

h

=−
(
gh + λ

2

(
1 − η

h

))
ḃ

+h

(
1

3

(
η̇ + 3

2
ḃ

)(
η̈ + 3

2
b̈

)
+ g

2
(ḣ + 2ḃ)+ λ

3

(η

h
− 1

)(
η̇

h
− ηḣ

h2

))
− P

ḣ

h

=−
(
gh + λ

2

(
1 − η

h

))
ḃ

+h

(
λ

3h

(
η̇ + 3

2
ḃ

)(
1 − η

h

)
+ g

2
(ḣ + 2ḃ)+ λ

3

(η

h
− 1

)(
η̇

h
− ηḣ

h2

))
− P

ḣ

h

= h

(
λ

3h
η̇

(
1 − η

h

)
+ g

2
ḣ + λ

3

(η

h
− 1

) (
η̇

h
− ηḣ

h2

))
− P

ḣ

h

= gh

2
ḣ − λ

3

(η

h
− 1

) ηḣ

h
−

(
gh2

2
+ λ

3
η

(
1 − η

h

))
ḣ

h
= 0.
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To simplify notations, we will further suppress ‘bar’ in the definition of the average
velocity. For convenience, the total ‘pressure’ P will be presented as the sumof the hydrostatic
and non-hydrostatic part:

P = gh2

2
+ hp(h, η), p(h, η) = λ

3

η

h

(
1 − η

h

)
.

B Appendix

The hyperbolic reformulation of the nonlinear Schrödinger equation obtained by the extended
Lagrangian method, [38], reads

∂ρ

∂t
+ div (ρv) = 0, (108)

∂ρv
∂t

+ div

(
ρv ⊗ v + PI + 1

4ρ
p ⊗ p

)
= 0, (109)

∂ρη

∂t
+ div (ρηv) = ρw, (110)

∂ρw

∂t
+ div

(
ρwv − 1

4ρβ
p
)

= λ

β

(
1 − η

ρ

)
, (111)

∂p
∂t

+ ∇ (p · v − w) +
(

∂p
∂x

−
(

∂p
∂x

)T
)
v = 0, (112)

∇ × p = 0, (113)

with the pressure

P = 1

2
ρ2 − 1

4ρ
|p|2 + λ η

(
1 − η

ρ

)
.

Here λ � 1 and β � 1 are two free parameters which make the system (108)–(113) tend
to the original hydrodynamic model of the Schrödinger equation in the limit λ → ∞ and
β → 0. Compared to [38] the governing equation for p is different in this paper, in order
to restore the Galilean invariance of the system, see [27,47,60,92]. Obviously, if initially
∇ × p = 0, it will be zero for any time. The equations for w, η and p can also be written in
non-conservative form:

η̇ = w, ρβẇ = div

(
p
4ρ

)
+ λ

(
1 − η

ρ

)
, ṗ +

(
∂v
∂x

)T

p − ∇w = 0, (114)

where the ‘dot’ denotes the material time derivative. Equations (108)–(113) admit the energy
conservation law:

E = ∂

∂t

(
ρ

(
e + |v|2

2

))
+ div

(
ρv

(
e + |v|2

2

)
+ Πv − 1

4ρ
wp

)
= 0,

with Π = PI + 1

4ρ
p ⊗ p and e = β

2
η̇2 + ρ

2
+ 1

4ρ2

|p|2
2

+ λ

2

(
η

ρ
− 1

)2

.

Indeed,

E = ρ (ė + v · v̇) + divΠ v + tr

(
Π

∂v
∂x

)
− p

4ρ
· ∇w − div

(
p
4ρ

)
w
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= ρė + tr

(
Π

∂v
∂x

)
− p

4ρ
· ∇w − div

(
p
4ρ

)
w

= ρė + Pdivv + 1

4ρ
pT

∂v
∂x

p − p
4ρ

· ∇w − div

(
p
4ρ

)
w

= ρ

(
βη̇η̈ + ρ̇

2
+ 1

4

p
ρ

·
(
ṗ
ρ

− p
ρ2 ρ̇

)
+ λ

(
η

ρ
− 1

) (
η̇

ρ
− η

ρ2 ρ̇

))

−
(
1

2
ρ2 − 1

4ρ
|p|2 + λ η

(
1 − η

ρ

))
ρ̇

ρ
+ 1

4ρ
pT

∂v
∂x

p − p
4ρ

· ∇w − div

(
p
4ρ

)
w.

Using (114), one can see that E identically vanishes.
Now, let us add additional ‘blue terms’ into our system for the curl-cleaning:

∂ρ

∂t
+ div (ρv) = 0, (115)

∂ρv
∂t

+ div

(
ρv ⊗ v + PI + 1

4ρ
p ⊗ p

)
= 0, (116)

∂ρη

∂t
+ div (ρηv) = ρw, (117)

∂ρw

∂t
+ div

(
ρwv − 1

4ρβ
p
)

= λ

β

(
1 − η

ρ

)
, (118)

∂p
∂t

+ ∇ (p · v − w) +
(

∂p
∂x

−
(

∂p
∂x

)T
)
v + Ap ∇ × ψ = 0, (119)

ψ̇ − Aψ ∇ × p = 0 (120)

where the coefficients Ap and Aψ should be chosen in such a way that the energy equation
is satisfied. The equations for w, η and p can be rewritten again in non-conservative form:

η̇ = w, ρβẇ = div

(
p
4ρ

)
+ λ

(
1 − η

ρ

)
,

ṗ +
(

∂v
∂x

)T

p − ∇w + Ap ∇ × ψ = 0. (121)

Equations (115)–(120) admit the energy conservation law in the form:

Eψ = ∂

∂t

(
ρ

(
e + |v|2

2
+ |ψ |2

2

))
+ div

(
ρv

(
e + |v|2

2
+ |ψ |2

2

)
+ Πv − 1

4ρ
wp + A

)

= 0.

The vector A will be found later. Indeed,

Eψ = ρ
(
ė + v · v̇ + ψ · ψ̇

)
+ divΠ v + tr

(
Π

∂v
∂x

)
− p

4ρ
· ∇w − div

(
p
4ρ

)
w + divA

= ρ
(
ė + ψ · ψ̇

) + tr

(
Π

∂v
∂x

)
− p

4ρ
· ∇w − div

(
p
4ρ

)
w + divA

= ρ
(
ė + ψ · ψ̇

) + Pdivv + 1

4ρ
pT

∂v
∂x

p − p
4ρ

· ∇w − div

(
p
4ρ

)
w + divA

= ρ

(
βη̇η̈ + ρ̇

2
+ 1

4

p
ρ

·
(
ṗ
ρ

− p
ρ2 ρ̇

)
+ λ

(
η

ρ
− 1

) (
η̇

ρ
− η

ρ2 ρ̇

))
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−
(
1

2
ρ2 − 1

4ρ
|p|2 + λ η

(
1 − η

ρ

))
ρ̇

ρ
+ 1

4ρ
pT

∂v
∂x

p − p
4ρ

· ∇w − div

(
p
4ρ

)
w

+ρAψψ · ∇ × p + divA

= ρAψψ · ∇ × p − Ap

4ρ
p · ∇ × ψ + divA.

Let us now take

ρAψ = Ap

4ρ
= ac

2
= const > 0.

Then

ρAψψ · ∇ × p − Ap

4ρ
p · ∇ × ψ + divA

= ac
2

(ψ · ∇ × p − p · ∇ × ψ) + divA

= ac
2

div(p × ψ) + divA.

Hence, it is sufficient to takeA = 1
2ac ψ × p to have the energy conservation. Finally, in the

thermodynamically compatible GLM cleaning procedure we must take

Ap = 2 ac ρ, Aψ = ac
2ρ

, ac > 0.

In the main text we present this model also in coordinate form.
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