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Abstract
Non-uniform, dynamically adaptive meshes are a useful tool for reducing computational
complexities for geophysical simulations that exhibit strongly localised features such as is
the case for tsunami, hurricane or typhoon prediction. Using the example of a shallow water
solver, this study explores a set of metrics as a tool to distinguish the performance of numer-
ical methods using adaptively refined versus uniform meshes independent of computational
architecture or implementation. These metrics allow us to quantify how a numerical simula-
tion benefits from the use of adaptive mesh refinement. The type of meshes we are focusing
on are adaptive triangular meshes that are non-uniform and structured. Refinement is con-
trolled by physics-based indicators that capture relevant physical processes and determine
the areas of mesh refinement and coarsening. The proposed performance metrics take into
account a number of characteristics of numerical simulations such as numerical errors, spa-
tial resolution, as well as computing time. Using a number of test cases we demonstrate that
correlating different quantities offers insight into computational overhead, the distribution of
numerical error across various mesh resolutions as well as the evolution of numerical error
and run-time per degree of freedom.
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1 Introduction

A large part of today’s research depends on computer simulations that are used to predict or
simulate experiments that would be too difficult, costly, dangerous or, straight out, impos-
sible to carry out in the real world. The complexity of these experiments requires solving
mathematical equations to a very high level of detail. Increasing the level of detail in uniform
mesh simulations, however, requires exponentiation in the number of unknowns and thus
computational resources, which ultimately limits the number and type of experiments that
are practically feasible.

For over two decades element-based models have been studied e.g. to solve equations
describing geophysical phenomena. These models include continuous and discontinuous
finite elements, see for example [8,17] as well as finite volumes, see for example [9,21]. They
are based on polygonal cells in which quantities of interest are approximated. For flooding
and drying, for example, these quantities could be the water height D and the horizontal
momentum Du = (Du1, Du2)�. Detailed simulations require large numbers of (smaller)
cells, which add to the computational expense. As described in [3] this does not mean that
smaller scale processes are necessarily resolved. The quality of the resolution of underlying
physics heavily depends on the numerical model that is used.

One approach to reduce computational cost is that of non-uniform resolution. Static,
locally refined meshes have been successfully used in applications involving advection and
storm surge (see [14,22]) and have been continuously improved. In contrast, adaptive meshes
are dynamic and can capture evolving features as presented in [3]. Especially suited for the
simulation of spatially localised and moving phenomena, these non-uniform meshes can
take the form of nested meshes as in [24] for the simulation of hurricane storm surge, or of
unstructured meshes, see for example [26]. The general goal of adaptive mesh refinement
(AMR) is to reduce the number of degrees of freedom, while locally retaining high resolution
in relevant areas. Methods for AMR, however, cause additional computational overhead for
grid management and manipulation.

In this paper we aim to fill a gap in performance description and assessment of AMR
methods.While parallel or computational performance in termsof run-time, efficiencyor scal-
ability is awell-introduced and understood concept, the performance behaviour for adaptively
dynamically changing problem sizes is more difficult to assess. Furthermore, we contribute
to the understanding of the performance gain from AMR compared to uniform meshes, con-
sidering the overhead of dynamic mesh manipulations. Using the set of proposed metrics,
we observe an improvement of the asymptotic behaviour of AMR methods compared to
uniform refinement, which we strive to assess quantitatively. This complements the under-
standing of AMR methods in terms of asymptotic error minimisation, mesh optimality, or
numerical approximation properties of the underlying meshes. Mesh optimisation is nicely
covered in [1,10], whereas mesh quality metrics can be found in [15], in which a focus is on
the derivation of a posteriori estimates for simulation accuracy.

The performance of an AMRmethod depends on refinement indicators ητi on elements τi
that determine the areas to be refined. These will require insight into the physical problem,
are closely related to model sensitivities, and are needed for automated mesh manipulation
as we will describe in more detail in Sect. 3.1. Automatic mesh refinement has been shown
to improve simulation accuracy [11] for idealised meteorological applications even when
disjoint areas of high resolution are used. Furthermore it was shown in [18] that for advection
problems, they can reduce diffusive and phase errors. Three different types of refinement
indicators have been discussed in the literature: (a) heuristic/ physics-based error indicators,
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see for example [25]; (b) adjoint-based refinement indicators as in [2,13], and (c) error-based
indicators in the presence of analytical solutions. It is not in the scope of this work to evaluate
the best refinement criterion. The performance of AMRmethods is influenced by the quality
of refinement, but does not depend on an optimal error estimator.

The remainder of this manuscript is organised as follows. In Sect. 2 we define a set of
metrics for performancemeasurement of AMRmethods, Sect. 3 then describes the numerical
2D shallow water model. We will furthermore consider AMR using structured adaptive
triangular meshes as described in [5] and discuss the used refinement strategy in more detail.

In Sect. 4 we then apply the performance metrics to a number of test cases. Section 4.1
discusses a localised travelling vortex with an almost constant relative local area that is
refined until the smallest mesh width. This allows to discuss relative error distribution on the
mesh levels and how AMR can influence the relationship of resolution to degrees of freedom
depending on mesh parameters. In Sect. 4.2 we then study the mesh metrics for a test case
that involves wetting and drying and a very sensitive refinement indicator. In this case the
relative area of refinement changes during evolution, hencemaking itmore challenging for the
automated AMR. In Sect. 4.3 we apply the metrics to a centred impulse at time t = 0 which
evolves and produceswaves throughout the entire domain. Those are captured by the adaptive
mesh andwecanuse themetrics to quantify an increase in computation efficiency for the entire
simulation. Section 4.4 applies the metrics to a simulation of the 1993 Okushiri Tsunami.
Overall, we find that the use of the adaptive mesh improves computational efficiency. Finally
Sect. 5 summarises the findings of the paper and discusses how the presentedmetricswill be of
use for numerical modellers who seek to assess the computational efficiency of AMR-based
models.

2 Metrics of Adaptivity

In order to set the scope for the performance assessment of adaptive mesh refinement (AMR)
methods, we introduce a number of evaluation criteria—metrics—especially selected for
AMR methods. Note, we use the term metric to mean a quantitative measure of certain
aspects of AMR performance. This is in contrast to mesh metrics as used in e.g. [1,10] as a
quality measure of numerical properties. While in principle all accuracy metrics applied to
uniform grid methods are available for AMR methods, our focus is on performance evalua-
tion, with each metric introducing a different viewpoint of performance measurement. This
approach is independent of computational implementation and ensures a fair comparison as
the same method implemented in two different ways can expose very different performance
characteristics.

Performance of AMRmethods can be assessed based on criteria such as accuracy, resolu-
tion, or computational requirements such as memory or run time. The latter allows to further
asses the overhead imposed by the adaptive mesh capability. In the remainder of this section,
we will introduce three groups of metrics and relate them to common evaluation hypotheses.

2.1 Metrics Focusing on Accuracy

Accuracy or numerical error, can be measured in appropriate norms. Commonly the �1, �2

and �∞ error which we denote with e1, e2, and e∞ respectively is used, defined as follows:

e1 := ‖u − uh‖1 =
∫

Ω

|u − uh | dx, e22 := ‖u − uh‖22 =
∫

Ω

(u − uh)
2 dx,
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e∞ := ‖u − uh‖∞ = max
x∈Ω

|u(x) − uh(x)|, (1)

where u and uh are the exact/reference and computed solution respectively, andΩ represents
the computational domain. Exact solutions presume that an analytical solution exists. In
case of unknown analytical solutions, convergence behaviour can be used as a replacement,
assuming that the algorithm is correct and converges to the exact solution. In that case a
(costly) high resolution uniformly computed solution can serve as a reference. In any case,
u needs to be projected appropriately to the discrete space to be able to compare it with uh .

For problems that require a certain accuracy and the minimisation of the cost for achieving
it, one might be interested in how many degrees of freedom (DOF)—which we denote with
nΩ , a given algorithmneeds for a fixed error. Inversely, this corresponds to the error amethods
generates for a fixed nΩ . Since in most cases the number of DOF proportionately relates to
the computational cost, these considerations are closely related to measuring the run time or
memory requirements with respect to the error. In summary, we consider ratios of certain
values:

– The ratio of error over DOF: rdfixed = eρ
nΩ

for ρ ∈ {1, 2,∞},
– The ratio of time over error: rt−to−sol = t

eρ
, which corresponds to a time-to-solution with

given accuracy and ρ ∈ {1, 2,∞}.

The errors are as defined in Eq. 1. In the naming of the metrics dfixed stands for number of
DOF fixed which stresses that numerical errors can differ for equal (or fixed) numbers of
DOF depending on the location of DOFs, while t − to − sol stands for time to solution.

2.2 Metrics Focusing on Resolution

In many practical applications, for which accuracy is hard to determine, resolution, i.e. the
(local) mesh size or shortest wave length resolvable, plays an important role. Since in this
manuscript triangular meshes are considered, we use the measures shortest edge length and
radius of inscribed circle. Note, these are equivalent in case of quasi-uniform meshes (i.e.
meshes in which the smallest angles are bounded away from zero). In both cases we will use
the expression h = min(hτ ), where hτ denotes either the length of edge τ or the radius of the
inscribed circle in cell τ . The minimum is taken globally over all edges or cells, respectively.
Note that in higher order methods, hτ needs to consider the distance between DOF and not
the shortest edge length of cells, since waves can be resolved within cells.

In [15], an attempt was made to quantify how well the simulated flow was resolved.
Their approach focused on grid quality measures - a different view point from what we will
investigate as we are concerned with how many DOF are needed in order to resolve certain
features. This leads to another question of, given a certain number of DOF (limited e.g. by
the given computing infrastructure), how fine can the (local) resolution be and therefore the
size of the physical model. An interesting question for method inter-comparison is what error
can be achieved by which resolution; a question that can only be answered if a converging
reference solution is known. Then we can define the following metrics, again as ratios:

– The ratio of resolution over error: reff−res = h
eρ

for ρ ∈ {1, 2,∞},
– The ratio of resolution over DOF: rres = h

nΩ
.
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2.3 Metrics Focusing on Computational Resources

Trying to assess computational demands is a highly challenging task, since inefficient imple-
mentations can hamper an objective assessment of such characteristics for different methods.
Quantifying those computational demands, however, is vital in practical applications as
solution accuracy is constrained by minimising computational effort. Naturally, the above
mentioned metric rt−to−sol is relevant here as is the time an implementation needs per DOF.
By this, an efficient implementation can be characterised and computational overheads quan-
tified which are often only assessable by rigorous profiling of a running program. It is also
interesting to look at this aspect for changing problem sizes. Optimally, the ratio should keep
constant for increasing problem sizes, but often cache effects or non-optimal algorithmic
complexity inhibits this. Interesting questions arise also from memory requirements. The
amount of memory necessary to achieve a certain error or resolution is an important measure
for AMR methods. This may include memory used for handling DOFs or mesh as well as
other implementational aspects. The following ratios may be helpful to assess computational
efficiency of adaptive algorithms:

– The ratio of time over error: rt−to−sol (see above),
– The ratio of time over DOF: rt−per−DOF = t

nΩ
,

– The ratio of memory required for resolution: rmem−res = MB
h , where MB is the memory

in bytes.

2.4 Further Remarks

An important prerequisite for a rigorous assessment of AMR methods is an accurate and
robust error estimator or refinement criterion. An adaptation strategy that selects a wrong (or
insufficient) area for better resolution can corrupt comparisons and render the error-based
metrics presented in Sects. 2.1 and 2.2 useless as in this case the error will always be high
due to the refinement strategy failing to capture relevant features. It is therefore paramount
to compare a uniform grid solution to an equally resolved adaptive solution first and to make
sure the difference with respect to solution error is not dominating. A description of our
refinement strategy can be found in Sect. 3.1.

In the test cases presented in Sect. 4 we have access to some useful error norms and
our error indicators refine relevant areas. However, in many application fields the numerical
error might not be the most relevant quality measure or might not be accessible at all. When
considering multi-physics applications the source of the error might even be unclear. Hence,
in the assessment of performance one may as well replace the numerical error by some
other adequate norm for solution quality. As an example, in geoscientific applications, the
resolvable wave length or frequency may be more relevant than the obscure mathematical
error.

3 The Numerical Model and Adaptive Mesh Refinement

As an example numerical model for this study we chose a discontinuous Galerkin (DG)
model that solves the depth-integrated shallow water equations in two dimensions which can
be written in flux form

∂U
∂t

+ ∇ · F(U) = S(U) in Ω × T ,
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where the prognostic variables areU = (D, Du)�: the water depth D and the 2Dmomentum
Du defined on a spatial domain of interest Ω ⊂ R

2. Spatial coordinates are denoted as
x = (x, y)� ∈ Ω . ∂U

∂t =: Ut denotes the temporal derivative and ∇· = ∂
∂x · + ∂

∂ y · is the
divergence operator. F is a flux function and S a source term defined as

F(U) =
[

Du
Du ⊗ u + g

2 D
2I2

]
, S(U) = −

[
0

gD∇b

]

where g = 9.81m s−2 is the acceleration due to gravity, ⊗ a vector product in R
2, and I2 is

the 2 × 2 identity matrix. For the reader familiar with shallow water models, we note that
we chose to denote the water height with D instead of the more commonly used h, which
in this manuscript, we have reserved for the resolution as we think it improves readability.
The source term models a temporally constant bathymetry b = b(x). Throughout this paper
vector valued quantities are indicated by a bold print while all other quantities are assumed
to be scalar.

The discretisation that we are using is a discontinuous Galerkin (DG) discretisation
obtained through three steps: (a) decomposing the computational domain Ω = ∑

i τi into
conforming triangles with i the index of the triangles; (b) approximating the prognostic vari-
ables U = ∑

k Uk(t)φk(x) by linear Lagrange polynomials with k the corresponding index
for the basis functions; and (c) integrating the resulting equations in space against test func-
tions. In the present model the test functions coincide with the basis functions φk used for
the approximation, so that the resulting semi-discrete system reads∫

τi

Utφ jdx +
∫

τi

∇ · F(U) φ jdx +
∫

∂τi

(
F∗(U) − F(U)

) · n φ jdS =
∫

τi

S(U)φ jdx, (2)

for all triangles τi and j = 1, 2, 3 leading to a second order accurate spatial discretisation.
Here, F∗ is a numerical approximation of the flux at the cell interfaces. In our model, we used
Rusanov’s flux (see for example [29]). Note that we integrated the flux term by parts twice
to obtain the strong form of the equations as in [17]. In this form, we integrate the jump over
the edges which has desirable properties with respect to wellbalancing as shown in [6] and
more recently in [31]. After numerical integration and re-organisation, the system (2) can be
written as

dUk

dt
= H(Uk), (3)

where H denotes the discretised version of the right hand side which includes the fluxes as
well as the source terms. As this model is used for flood simulations, slope limiting is required
to prevent spurious velocities at wet/dry interfaces. The slope limiter we are using is velocity-
based and described in detail in [31]. In the latter study we show that it can be successfully
applied to tsunami benchmarks and to model flood scenarios. It is almost parameter-free and
robust when applied to unstructured meshes. The system (3) can be solved using a strong
stability preserving (SSP) multi-stage Runge Kutta method. We used Heun’s method (RK22)
for this study.

3.1 Computational Efficiency and Adaptive Meshes

The main focus of this study is on performance characteristics of the underlying adaptive
mesh independent of the numerical discretisation. The model described above and in more
detail in [7] uses the grid generator amatos (see [5]) to create dynamically adaptive and
conforming triangularmeshes. Finer triangles are obtained by bisecting coarse triangles along
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a marked (longest) edge as suggested in [27]. The dynamic mesh adaptation process involves
problem-dependent refinement indicators ητi , such as the absolute value of the gradient of
fluid height at time t :

ητi (t) = max
x∈τi

‖∇D(x, t)‖∞

for each element τi as in [3], to control the element-wise refinement and coarsening. Using
problem dependent and user-defined tolerances 0 ≤ θcrs < θre f ≤ 1 the mesh manipulation
is then carried out as follows:

if ητi ≤ θcrs ηmax → coarsen element τi
if ητi ≥ θre f ηmax → refine element τi ,

(4)

with ηmax = ηmax (t) := maxτi⊂Ω ητi (t) the maximum value of the refinement indicator
over all elements. The values 0 ≤ θcrs < θre f ≤ 1 mark the fraction of the maximum error
below/above which an element is considered for coarsening/refinement. After this mesh
manipulation step, the computation of the dynamics are then repeated on the new mesh.
The size of the smallest and largest element of the mesh is determined through mesh levels
λcrs, λre f ∈ N with λcrs ≤ λre f . Starting from an initial (coarse) triangular mesh, the mesh
generator will uniformly refine λcrs times to establish the coarsest mesh level and then, using
the refinement indicator, refine areas of interest until the desired finest mesh level is reached
using the tolerances as described in Eq. (4).

Mesh modification requires modification of nodal values. New mesh nodes are interpo-
lated using the known Lagrange basis functions φk in each element to determine values of
prognostic variables.When source terms are interpolated this might not give the desired accu-
racy. Hence, if data or parameterisations are available, source terms are updated by reloading
data onto the new mesh nodes. To retain well-balancing, prognostic variables are then modi-
fied accordingly. After coarsening, nodal values along coarsened edges need to be updated to
achieve mass conservation. For linear Lagrange functions this can be achieved by replacing
them with interpolated mean values of the old (finer) edges. Higher order generalisations of
this procedure are beyond the focus of this study.

The amatos mesh, created as described above, has the further advantage of using a
cache-efficient space-filling curve-ordering of elements (see [4]), which allows fast access
of neighbouring elements: A feature that is particularly beneficial for localised numerical
methods such as the presented discontinuous Galerkin since elements only communicate
over edges. However, it comes at the cost of not allowing for unstructured meshes.

For convenience, the meshes are kept conforming, i.e. free of hanging nodes, throughout
the simulation. We stress that this is not required by the method itself. Hanging nodes would
require to combine two or more Riemann solutions over one (coarse) edge as is for example
recently done in [20] and [16].

4 Application of Metrics and Numerical Tests

The mesh metrics defined in Sect. 2 are a computational tool for quantifying simulation
performance. Applying them to four dynamically different test cases, we show that and how
the metrics provide inside into the efficiency and performance gain of AMR methods. In the
following, we consider

– a quasi-stationary travelling vortex in Sect. 4.1, with a constant high resolution area,
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– long wave resonance in Sect. 4.2, that comprises wetting and drying and changing size
of high resolution areas,

– a centred impulse in Sect. 4.3 that only initially exhibits a localised feature,
– a simulation of a more realistic testcase, the 1993 Okushiri tsunami, in Sect. 4.4.

4.1 A Strongly Localised Feature: A Quasi-Stationary Vortex

In a domain Ω = [0, 4] × [0, 2] with a flat bathymetry b ≡ 0, periodic boundaries at
{x |x = 0 ∨ x = 4} and reflecting boundaries at {x |y = 0 ∨ y = 2}, a vortex around
c = (1, 1)� is defined with tangential velocity vϑ(r)

vϑ(r) =

⎧⎪⎨
⎪⎩

vmax
s · r

r2m − r2
·
√
2 exp

(
1

r2 − r2m

)
for 0 ≤ r < rm

0 otherwise

where r = ‖x − c‖2 is the radial distance from c, the parameters vmax = 0.5 and rm = 0.45
are maximum tangential velocity and the vortex radius respectively and the scaling factor s
is defined as

s = |r2vm − r2m |
rvm

√
2 exp(1/(r2vm − r2m))

, where rvm = 1

2

√
−2 + 2

√
1 + 4r4m

is the radius of maximum winds. With a background height, Dbg = 1, and a background
velocity, ubg = (ubg, vbg)� = (1, 0)�, the initial conditions are

D(x, 0) =

⎧⎪⎨
⎪⎩
Dbg − v2maxs

2

g
exp

(
1

r2 − r2m

)
for 0 ≤ r < rm

Dbg otherwise

u(x, 0) = ubg − vϑ(r)(sin ϑ, cosϑ)�, with ϑ = arctan ((y − 2)/(x − 1)) ,

where x and y are the spatial coordinates x = (x, y)�. The final time of the simulation is
Tend = 4s, i.e. until the vortex reaches its starting position again. The analytical solution for
this test can be found in [30].

4.1.1 Discussion of Simulation Results

We ran a number of uniform and adaptive simulations with 6 ≤ λre f ≤ 14 and a time step of
Δt = 0.1s for the finest resolution h = 3.2 ·10−3m (equivalent to λre f = 14) and larger time
steps for coarser resolutions such that the CFL stability condition was fulfilled. A decrease of
λre f by 2 allows an increase ofΔt by a factor of 2. The vortex is captured by the adaptivemesh
refinement using ητi = maxx∈τi ‖∇D(x, t)‖∞ with mesh parameters θcrs = 0.1, θre f = 0.2.
We studied two systematic ways to select λcrs for a given and increasing λre f :

(A) A constant mesh level difference dλ := λre f − λcrs = 3. Higher resolved simulations
were obtained by increasing λcrs and λre f simultaneously.

(B) A fixed coarse mesh level λcrs = 4. Higher resolved simulations were obtained by
increasing λre f ;

The numerical water depth at t = 1s with a corresponding adaptive mesh is depicted in
Fig. 1. We observe that after an initial calibration period, the mesh follows the vortex and
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Fig. 1 Quasi-stationary vortex: simulated water depth at time t = 1s (left) and corresponding adaptive mesh
(right)

refines only the area of interest. The calibration period is needed because the initial conditions
are not exactly balanced on a discrete level, so that gravity waves are emitted which vanish
as soon as the model reaches a balanced state. Over time, the percentage of elements on a
given mesh level do not show a lot of fluctuation as shown in Fig. 2. Since the vortex is not
changing in size over time, this is an indication that it is well captured by the adaptive mesh
and internal iteration to flag elements for refinement and coarsening are kept minimal which
adds to the computational efficiency of the mesh manipulation.

4.1.2 Performance Metrics Evaluation

The proposed mesh metrics have been plotted in Fig. 3. The solid line corresponds to results
obtained on a uniform mesh while the two non-solid lines correspond to adaptively refined
meshes: The dashed line represents strategy (A) and the dashed-dotted line represents strategy
(B). The adaptive simulations both used the same refinement indicator ητi as stated above.

We observe that both sets of adaptive simulations, using strategy (A) and (B), overall, give
better results than the set of uniform simulations. In particular, the top left panel shows rdfixed
for all three sets of simulations and indicates an accelerated convergence with respect to the
number of degrees of freedom (DOF) nΩ . Using nΩ instead of the traditional mesh width h
improves the comparability of adaptive and uniform simulations. Note furthermore that both
definitions of convergence lead to equivalent results for uniform simulations. Using linear
least squares regression analysis, we find that the mean slope of the solid line for rdfixed is
1.04 while the mean slope of the dashed dotted is 1.41 - an increase of over 40%.

An increase in computational efficiency can be deduced from the topmiddle panel of Fig. 3
that plots the metric rt−to−sol and visualises that using AMR, we consistently achieve the
same L2-error with less CPU time. Per degree of freedom, however, AMR is computationally
more expensive as the metric rt−per−DOF (bottom middle panel in Fig. 3) shows. There, we
show that for a given number of DOFs nΩ , the uniform simulation (solid line) requires less
CPU time per DOF because of the computational overhead caused by mesh manipulation
and management. This overhead is almost constant (the plotted lines are merely shifted by
a constant) and approximately does not increase with increasing nΩ . For a decreasing mesh
width h, i.e. increasing λre f , AMR yields a higher effective resolution as is shown by reff−res

in the top right panel of Fig. 3. Hence, given a fixed number of DOF, nΩ , AMR resolves finer
features if the underlying equations model them. As an example [3] mentions that even fine
resolution fails to resolve fine scale features if model equations don’t model them. Finally
metric rres shows how the local resolution changes by increasing the number of DOF (bottom
left panel of Fig. 3). Since this depends on the systematic ways in which λcrs and λre f are
chosen, we elaborate on this in the following subsection.
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Fig. 2 Quasi-stationary vortex: percentage of elements on mesh levels over time for an adaptive simulation
with λre f = 12, λcrs = 4, and parameters θre f = 0.2, and θcrs = 0.1

4.1.3 A Note on Refinement Strategies

Considering mainly rres allows us to compare the refinement strategies (A) and (B) more
rigorously. As opposed to uniform mesh methods AMR methods comprise elements on a
number of mesh levels between λcrs and λre f . The total number of elements is an indicator
for the number of DOF and the computational work load. The exact number of unknowns
can be determined by Euler’s formula for plane graphs that relates the number of vertices,
edges and cells by #vertices − #edges + #cells = 2, considering the location of unknowns.
For the method in Sect. 3, nΩ is directly related to the number of cells. The refinement
strategy implemented by the grid generator amatos bisects elements, thus a refinement step
generates two elements out of the elements marked for refinement. This allows us to study
the effect of the different refinement strategies.

Uniform refinement will increase the mesh level by one (i.e. λre f → λre f + 1, note that
for uniformmeshes λcrs = λre f ) and will double the number of elements (i.e. nΩ → 2 ·nΩ ).
Refinement strategy (A)will increase both, λcrs and λre f by one, but will leave dλ unchanged.
This means all elements of levels λcrs through λre f will be refined, which is all elements
altogether. Therefore, nΩ → 2 · nΩ as in the uniform case. This is confirmed by the metric
rres as it shows the dashed line (adaptive strategy A) being parallel to the solid line (uniform
simulation) - the number of DOF nΩ evolve in the same way. In contrast to this, refinement
strategy (B) will only increase λre f , in other words λcrs → λcrs , λre f → λre f + 1, and
dλ → dλ + 1. Note that only those elements found by the refinement indicator will be
refined. Most likely, these will be only those that are already on the (previous) finest level.
Therefore, the additional number of elements depends on the fraction of the domain found
relevant by the error indicator. Let us assume that we start with a uniform mesh in which
about 10% of the elements are flagged for refinement. Then only those 10% elements are
refined which means the number of unknowns is doubled only for those 10% (i.e. nΩ →
nΩ +0.1·nΩ = 1.1·nΩ ). Using this formula recursively for increasing numbers of refinement
levels shows how dramatic the reduction of complexity can be.

To conclude our investigation of the refinement strategies, we consider the spatial distri-
bution of numerical error as capturing it within the fine resolution area minimises it. Overall,
it is expected that AMR leads to a more uniform distribution of the numerical error com-
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Fig. 3 Quasi-stationary vortex: plots of metrics rdfixed , rt−to−sol, reff−res, rres, and rt−per−DOF from top left
to bottom right for uniform simulations (solid line), dynamically adaptive simulations following strategy A
(dashed line), and dynamically adaptive simulations using strategy B (dashed dotted line)

Fig. 4 Quasi-stationary vortex: difference between numerical and analytical solution of adaptive (left) and
uniform (right) simulation at time t = 1s

pared to uniform meshes if the refinement indicator sufficiently captures model sensitivities.
We show examples of the distribution of the numerical error in Fig. 4 and observe that the
majority of the error is captured in the high resolution area of both simulations. We note that
the uniform simulation used 131072 elements as opposed to the adaptive simulation which
used on average 9476 elements, or less than 10% the number of elements compared to the
uniform one.

Our results using the two adaptive strategies (A) and (B) confirm the hypothesis that
keepingλcrs as small as possible increases efficiency. Tables 2 and 1 show the distribution (per
cent) of elements on a certainmesh level (left) aswell as the distribution of numerical L2 errors
per mesh level (right). The columns of the tables correspond to one simulation with mesh
levels as stated, e.g. the first column in Table 2 corresponds to an adaptive simulation with
mesh parameters λcrs = 4 and λre f = 6. Using θcrs = 0.1, θre f = 0.2 for all simulations,
we observe that the majority of elements resulting from refinement strategy (B), are on the
finest mesh level in comparison to configuration (A), where the majority of elements are
both on the finest and coarsest mesh level. We furthermore see that for configuration (B),
the largest part of the error is also to be found on the finest mesh level while the error on
level 4 is decreasing with increasing λre f and all intermediate mesh levels λcrs ≤ λ ≤ λre f
only contain small errors. For configuration (A) we obtain the majority of errors on the finest
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Table 1 Quasi-stationary vortex: percentage of number of elements (left) and numerical error (right) on
different mesh levels λ for adaptive simulations using strategy A with λcrs − λre f = 3 and λcrs = 4, λre f as
stated and parameters θcrs = 0.1, θre f = 0.2

λre f = 6 8 9 10 11 12 λre f = 6 8 9 10 11 12

λ = 4 9.6 λ = 4 6.4

λ = 5 8.0 34.1 λ = 5 7.7 15.5

λ = 6 15.1 6.7 43.3 λ = 6 8.8 6.3 18.6

λ = 7 67.4 8.1 4.7 51.9 λ = 7 77.1 5.8 6.7 22.6

λ = 8 51.2 6.6 3.2 58.6 λ = 8 72.3 6.8 9.1 25.4

λ = 9 45.4 4.1 1.8 61.6 λ = 9 68.0 9.4 8.3 28.6

λ = 10 40.9 3.1 1.8 λ = 10 59.0 9.5 11.7

λ = 11 36.5 2.6 λ = 11 56.9 13.3

λ = 12 34.0 λ = 12 46.5

Table 2 Quasi-stationary vortex: percentage of number of elements (left) and numerical error (right) on
different mesh levels λ for adaptive simulations using strategy B and θcrs = 0.1, θre f = 0.2

λre f = 6 8 9 10 11 12 λre f = 6 8 9 10 11 12

λ = 4 3.5 15.6 11.0 8.1 5.1 2.8 λ = 4 0.1 11.9 11.1 11.9 10.8 9.2

λ = 5 1.6 5.6 3.6 2.7 1.6 0.9 λ = 5 1.6 5.9 5.4 6.9 5.3 5.9

λ = 6 94.9 7.9 5.6 3.6 2.3 1.3 λ = 6 98.6 6.3 6.0 7.5 5.7 6.9

λ = 7 9.5 6.1 3.8 2.3 1.4 λ = 7 6.1 5.9 7.1 5.5 6.3

λ = 8 61.3 8.5 5.1 2.8 1.7 λ = 8 69.8 6.4 7.7 5.7 6.6

λ = 9 65.2 7.0 4.1 2.4 λ = 9 65.3 8.4 6.9 7.2

λ = 10 69.6 6.6 3.9 λ = 10 50.5 8.1 8.5

λ = 11 72.5 5.6 λ = 11 51.9 9.5

λ = 12 79.9 λ = 12 39.7

mesh level as well. The error on the coarsest level, however, is increasing with increasing the
overall resolution.

4.2 A Dynamically Changing Area of Maximum Refinement: LongWave Resonance
in a Paraboloid Basin

This nonlinear problem can be found in [23] in a scaled version and its original analytical
solution was first determined in [28]. In a domainΩ = [0, 8000]2, a parabolic basin of shape
b(x) = h0(1 − r2

a2
) with h0 = 1 the centre of the basin, a = 2500 the distance from the

centre to the shoreline and r = ‖x‖2 the radius, the initial water depth is described as

D(x, 0) = h0

(
(1 − A2)1/2

1 − A
− 1 − r2

a2

(
1 − A2

(1 − A2)2
− 1

))

u(x, 0) = 0
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where the constants are determined as

A = a4 − r40
a4 + r40

with r0 = 2000.

4.2.1 Discussion of Simulation Results

We ran sets of simulations with uniform and adaptive mesh refinement with mesh parameters
ranging from 8 ≤ λcrs, λre f ≤ 17, θre f = 0.05, and θcrs = 0.001 with a time step of
Δt = 16s for h = 207.11m which corresponds to λre f = 8 and smaller Δt for larger mesh
levels in a way that the CFL condition is still fulfilled.

For the adaptive simulations, we chose the refinement strategy labelled strategy (A) in
the previous Sect. 4.1 with dλ = 3 to ensure that the wet area of the domain is completely
captured within the high resolution area of the adaptive mesh. A more detailed description
of this can be found in Sect. 4.2.3.

We chose ητi = D
∣∣∣
τi
, the mean value of the fluid depths over each element τi ⊂ Ω as a

refinement indicator. Present high-order information, when not controlled properly through
ητi , will propagate into coarser mesh regions and possibly cause large numerical error. This is
partially due to the non-optimality of the marking strategy that we employ. As shown in [12]
for Poisson’s equation, using the L2-norm instead of the maximum norm in the definition of
ητi , we obtain the least amount of refined triangles at the cost of a possibly larger number of
iterations for the mesh manipulation. We remark that the computational model described in
Sect. 3 is capable of simulating wetting and drying using slope limiters to prevent spurious
velocities close to the wet/dry interface. The fluid depth D will not be set to zero in these
areas unless below a small cut off tolerance ε = 10−K with K ∈ N which may lead to small
water films remaining in dry areas - an effect that makes the wetting and drying very sensitive
to adaptive mesh refinement of the wet area of the domain Ω . High-resolution information
propagating into coarse mesh cells can be particularly problematic in wet/dry areas where
refinement and interpolation of partially dry cells can affect model stability. For this reason,
we ensure surrounding elements of partially dry elements are refined too, hence restricting
mesh manipulation to wet cells only.

Figure 5 shows an example of the simulated fluid depth D and a corresponding adaptive
mesh at time t = 2000s. We observe that the fluid is well captured by the adaptive mesh
and the dry area is kept coarse throughout the simulation, hence minimising computations in
areas which do not influence model dynamics. Figure 7 furthermore shows that the adaptive
mesh captures the majority of the numerical error in the high resolution part of the mesh
(right display) and that compared to the uniform simulation, the point wise error is smaller.

4.2.2 Performance Metrics Evaluation

Applying the metrics defined in Sect. 2 to all simulations of this test case, we obtain Fig. 6.
Depicted are results obtained on a uniformmesh (solid line) and on an adaptive mesh (dashed
line). We observe that the adaptive simulation consistently achieves a lower numerical error
for a given number of DOF nΩ as demonstrated by the metric rdfixed in the top left panel
of Fig. 6. Using the modified definition of convergence based on nΩ we see a convergence
acceleration by about 10% in this case which is significantly lower than the result reported
in Sect. 4.1, but can be attributed to the lacking smoothness of the solution at the wet/dry
interface. In line with the findings in Sect. 4.1, the mesh refinement using strategy (A) makes
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Fig. 5 Longwave resonance in a paraboloid basin: plot of fluid depth at time t=2000[s] (left) and corresponding
adaptive mesh (right) with mesh parameters λre f = 12, λcrs = 9, θre f = 0.05, and θcrs = 0.001

Fig. 6 Long wave resonance in a paraboloid basin: lots of metrics rdfixed , rt−to−sol, reff−res, rres, and
rt−per−DOF from top left to bottom right for uniform simulations (solid line), and dynamically adaptive
simulations (dashed line)

it possible to achieve a finer spatial resolution for a given number of DOF as indicated by rres
in the bottom left panel of Fig. 6. This plot furthermore shows that the corresponding dashed
line is a linear translate of the uniform simulation as expected from the use of strategy (A)
(see also 4.1.3). Furthermore, reff−res in the top right panel of Fig. 6, shows that the effective
resolution is consistently higher for a given numerical error.

The rapid speed of change of the wet/dry interface and with that the high resolution part
of the mesh are challenging for this physics-based, automated type of AMR. Changing the
relative size of the high resolution area requires a large number ofmeshmanipulations. This is
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Fig. 7 Long wave resonance in a paraboloid basin: plot of absolute deviation of numerical fluid depth D from
exact solution at time t = 2000[s] on a uniform mesh (left) with λre f = 12 and adaptive mesh (right) with
mesh parameters λre f = 12, λcrs = 9, θre f = 0.05, and θcrs = 0.001

in contrast to the test case in Sect. 4.1 that comprised a propagating feature of constant relative
size over time. Although there is a significant amount of time spent on mesh manipulation
and management, the metric rt−to−sol (top middle display of Fig. 6) shows that the time to
solution is smaller for the adaptive simulations while the time per degree of freedom (see
rt−per−DOF in bottom middle display of Fig. 6) is slightly larger for the adaptive simulation.
Confirming the findings from the previous subsection.

4.2.3 A Note on Grid Parameters

The AMR used in this study heavily relies on a good choice of the refinement indicator ητi

(see also Sect. 3.1) as it drives the automated mesh manipulation process. This stresses the
importance for ητi to be a good proxy for numerical error. For example, in the presence of
wetting and drying (see previous Sect. 4.2), the (even only partially) wet area of the domain
has to be finely resolved in order to prevent artificial waves close to the wet/dry interface as
those might not be completely filtered out by the slope limiter in the sense of D ≡ 0, and,
hence, might be artificially amplified if energy from high-order modes is propagated into
lower-order modes without additional filtering and with that causing numerical error.

Moreover, the automated AMR described in Sect. 3.1 and with that the simulation quality
depends on four key parameters λcrs, λre f , θcrs, θre f . Our observations confirm that themesh
refinement is sensitive towards the choice of the λs which determine the range of spatial
resolution of the simulation, or in other words the length of the waves that are resolved in the
simulation, and of the θs as shown in Fig. 8, which determine the fraction of the maximum
error below/above which an element is considered for coarsening/refinement.

In general, a higher resolution is achieved by increasing the number of DOF nΩ which can
be initiated bymesh refinement (h-refinement) as in this study or through increasing the order
of the used polynomials (p-refinement). We note that it was found in [19] that the number
of points needed for a fixed numerical error is not constant with respect to the order of the
numerical scheme - in our case the order of the polynomials φk - but rather declines with
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Fig. 8 Sketch of influence of grid parameters θcrs and θre f on the mesh manipulation process

increasing order. In theory, dλ can be arbitrarily large. However, sufficient physical space
surrounding the feature of interest is required such that elements on all mesh levels from λcrs
to λre f may envelop it. This is because mesh levels continuously increase from coarse to
fine and in the absence of the required space, the feature of interest either will not be refined
with the desired high resolution or the coarse area will be refined more than desired, hence
the maximum benefit from AMR might not be obtained. For that reason, we solely chose
strategy (A) in Sect. 4.2.

The choice of the θs can be particularly crucial where the refinement indicator is sensitive
towards small perturbations as the one described in Sect. 4.2. In this case an increase of the
resolution (an increase of θre f ) can lead to an increase of numerical error as small errors at
the wet/dry are amplified when they are higher resolved by the finer mesh. This supports that
the adaptive mesh refinement can only be as good as the underlying refinement indicator.

4.3 An Only Initially Localised Feature: A Centred Impulse

In this subsectionwe investigate the performance of theAMRmethod for a problem involving
an initially localised impulse that develops into distinct fronts travelling throughout the
domain. To illustrate this further, let us consider the following: Let Ω = [2, 2]2 be a square
domain with periodic boundary conditions. The initial water height is defined by D(x, 0) =
1.5 ·e−‖x−xc‖22

α with a shape parameter α = 0.001, and xc = (1, 1)�, the centre of the domain.
The bathymetry is flat b(x) = 0 and velocities are assumed to be zero, i.e. u = 0.

4.3.1 Discussion of Simulation Results

Figure 9 shows two snapshots of the numerical solution of the fluid height D on a uniformly
refined grid with λre f = 13 demonstrating the dynamics of the problem. We have run
simulations with a number of varying spatial resolutions with corresponding mesh levels
6 ≤ λre f ≤ 13. In the absence of an analytical solution we compute the numerical error eρ

defined in Eq. 1 using the numerical solution on a uniformly fine mesh with λre f = 13 as a
reference solution. Figure 10 shows an example of such a comparison with an adaptive mesh
simulation with λcrs = 6 and λre f = 12. The adaptive mesh as plotted in the third row of
Fig. 10 captures the emerging waves. The overall numerical error is increasing over time as
can be seen in the bottom row in Fig. 10 where we show the absolute point-wise difference
between the adaptive simulation and the numerical reference solution.

4.3.2 Performance Metrics Evaluation

Using the L2-norm at the final time step to compute the numerical error as described above,
we can compute the metrics defined in Sect. 2. The result can be found in Fig. 11 and
allows for many of the same conclusions as the previous sections. Using rdfixed , we can see
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Fig. 9 Centred impulse: plots of fluid height D at times t = 0s (left) and t = 0.75s (right) on a uniform mesh.
The colour scales have been adjusted in both plots to increase readability

Fig. 10 Centred impulse: snapshots of numerical solution for D at times t = 0, 0.5, 1, 2s (from left to right).
Depicted are the simulation result on the uniform reference mesh (top), an adaptive simulation (second row)
using λre f = 12 and λcrs = 6with the correspondingmesh below and the point wise numerical error (bottom)
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Fig. 11 Centred impulse: plots of metrics rdfixed , rt−to−sol, reff−res, rres, and rt−per−DOF from top left to
bottom right for uniform simulations (solid line), adaptive simulations (dashed line)

that consequently in the �2 norm, the same error can be achieved with a lower number of
degrees of freedom using the adaptive mesh capabilities. Furthermore, rres allows for the
conclusion that a smaller mesh width is achieved with less DOF (nΩ ). Both metrics, rt−to−sol

and reff−res however show an interesting behaviour. Below an error threshold of about 10−4,
the AMR simulation is computationally more expensive. This is directly caused by the high
average number of DOFs and the costs of constant mesh manipulation. Overall, this can
be seen as due to the problem dynamics and the relatively large area of the domain that is
covered by wave features at this later time. The effective resolution metric correspondingly
shows an analogous behaviour. The reason for this can be seen from rt−per−DOF: Since the
refined area (area of the mesh, where the mesh level is λre f ) increases over time, additional
computational overhead is created. This overhead increases with increased number of DOF
because additional elements are flagged for refinement and manipulated. We remark that
overall the metrics do not lead to the conclusion that AMR is not useful for this type of
application as some benefits are still achieved. The cost per DOF slightly increases over
time with increasing area of maximum refinement as can be seen from Fig. 12. It shows that
towards the end of the simulation the cost per DOF increases by a factor of 2 at certain time
points. We conclude that especially for highly time sensitive applications such as tsunami
propagation adaptive simulations do lead to an increased efficiency especially during the
important first moments of the simulation. This is furthermore supported by Fig. 13 which
shows (left display) that the number of elements is increasing over time in order to capture
the occurring waves. Moreover, as can be seen from the right display, we observe that the
CPU time is not linearly increasing over time. This is an indication that AMR is still useful
even if only temporarily the feature of interest is spatially localised.

4.4 A Realistic Test Case: The Okushiri Tsunami

Finally, we will apply the metrics to a realistic test case. This test case has already been
presented on a uniformmesh in [31] and is reproduced here using the aforementioned adaptive
mesh capabilities. We have run the simulation with adaptive mesh refinement and refined
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Fig. 12 Centred impulse: time spent per DOF over time until t = 0.8s for an adaptive simulation with
λre f = 10 and λcrs = 7

Fig. 13 Centred impulse: number of elements over time (left) and cpu time over time (right) until t = 0.8s
for an adaptive simulation with λre f = 10 and λcrs = 7

according to total height divergence:

ηΩ(t) = ∇ · (D(x, t) + b(x)) for x ∈ Ω.

This indicator ensures that areas are refined where total height gradients occur, i.e. coastal
features in shallow water where D is small as well as travelling waves on the open ocean
where the effect of b is dwarfed by variations of D. A highly resolved coastline is important
for this test case to ensure that the numerical solution is not affected by artificial waves
stemming from interpolation errors impacting well-balancing or mass conservation.

The numerical solution on a uniform and adaptive mesh at times t = 0, 8.6, 17s can be
seen in the first and second row of Fig. 14. The associated adaptive mesh is shown in the
third row and shows that the mesh is refined to capture the waves. Finally, the bottom row
shows the point-wise difference between the numerical solutions and shows good agreement
between the two. The numerical model used in this study has been verified using discrete data
at several wave gauges. Simulation results using different meshes at three of these gauges
are shown in Fig. 15. We can see that all model resolutions reproduce the peaked wave well
and only differ in the reproduction of a second wave after t = 26s.
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Fig. 14 Okushiri Tsunami: comparison of uniform (top), and adaptive simulation (second row) with corre-
sponding adaptive mesh (third row) and point-wise numerical error (bottom)

Fig. 15 Okushiri Tsunami: gauge data comparison

4.4.1 Performance Metrics Evaluation

Applying the metrics defined in Sect. 2 to this test case, we obtain Fig. 16. For the error, we
computed the mean maximum error over all three gauges

e∞ = 1

3

∑
k

max
t≤26

|Dh(t) − Dref (t)|

where k = 1, 2, 3 are the three wave gauges as shown in Fig. 15 and Dref is a high-resolution
numerical solution with λre f = 14. The metric rd f i xed shows us that the AMR simulations
achieve a smaller error at these wave gauges given a fixed number of DOF which is in line
with the previous test cases. Furthermore, we can see from rres in the bottom left of Fig. 16
that for a given number of DOF, we achieve a finer resolution with the AMRmethod. This is
important when we are interested in effects that we know require a certain (fine) resolution.

123



Journal of Scientific Computing (2021) 87 :36 Page 21 of 24 36

Fig. 16 Okushiri Tsunami: plots of metrics rd f i xed , rt−to−sol , re f f −res , rres , and rt−per−DOF from top
left to bottom right for uniform simulations (solid line), and adaptive simulations (dashed line)

Fig. 17 Okushiri Tsunami: number of elements over time (left) and CPU time spent per DOF over time (right)
until t = 40s for an adaptive simulation with λre f = 14 and λcrs = 6

One drawback for this realistic test case can be seen through the metrics rt−to−sol and
rt−per−DOF : The computational overhead for a realistic test case is significant and outweighs
the reduction in DOF if an error below a certain threshold (in our case approximately 10−2

is to be achieved. An explanation can be found in the number of mesh levels that are present
in high-resolution simulations in combination with the very fast moving dynamics of the
problem. Similar to Sect. 4.3, this does not indicate that the AMRmethod does not yield any
advantage. A look at Fig. 17 shows that the number of elements increases by a factor of five
during the simulation time which leads to an increase in CPU time spent per DOF as mesh
manipulation becomes more involved. Overall, this points towards the AMR method being
useful especially for the first 10–15s where its advantages are not outweighed by the model
dynamics demanding high resolution almost everywhere.

5 Discussion and Concluding Remarks

In this study we have introduced a set of metrics that measures the computational efficiency
of adaptive mesh refinement (AMR). Our focus then was on dynamically adaptive triangular
meshes that were refined by bisection along longest edges using physics-based refinement
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indicators ητi as described in Sect. 3.1. Insight into the dynamics of the numerical test
problems allowed us to find indicators that were good proxies for numerical errors. Using
the Discontinuous Galerkin model described in [7] as an example, we studied a set of four
test cases:

(1) A spatially localised quasi-stationary travelling vortex;
(2) a challenging long wave resonance in a paraboloid basin with wetting and drying;
(3) a centred impulse that is only initially spatially localised; and
(4) a realistic simulation of the Okushiri tsunami.

The test cases cover a range of different aspects, from the size of the area of high resolution,
degrees of localisation of features of interest as well as realism of the simulation. Using the
metrics in Sect. 2, we then compared a number of uniform simulations with AMR simulations
using the same numerical model. The metrics correlate numerical error to numbers of DOF
nΩ and CPU time as well as local (minimal) resolution h and offered insights into AMR
performance.

Overall, using the metric rd f i xed = e2/nΩ , we consistently find that simulations using
AMR achieve the same numerical �2 error with significantly fewer DOFs. Re-defining con-
vergence by using nΩ instead of mesh width h, the metric rd f i xed can furthermore be used to
compare convergence properties of uniform and adaptive simulations. For all test cases we
find that the dynamically adaptive mesh leads to an accelerated convergence, in case of the
stationary vortex in Sect. 4.1 even by up to 40%.

This can have an impact on the total run time of the solution as well. For fairly localised
and well controlled features of interest as in test cases (1) and (2), the metric rt−to−sol = t/e2
shows that the same simulation accuracy can be achievedwith less computational effort when
using AMR.

A different behaviour can be seen for test cases (3) and (4) which after being initially
localised exhibit more complicated and dynamically changing wave structures that need to
be resolved. For lower resolutions, the comparison with uniform simulations matches test
cases (1) and (2). However, the higher the resolution (and the lower the error), the more
computational overhead is created through mesh manipulation, ultimately increasing the
overall cost of the AMR simulation above the uniform simulation. Two conclusions can be
drawn from this. For one, depending on the numerical error that one is interested in achieving,
a uniform simulation might be cheaper. On the other hand, using information on the number
of DOF over time as in Fig. 17, one could also use an AMR simulation for as long as it is
computationally advantageous and then, switch to a uniform simulation for times after this.
In any case, the metrics presented allow for an accurate quantitative assessment of whether
to use AMR or uniform computations.

One of the major arguments against AMR is that mesh manipulation and management
add additional computational overhead to the overall cost of the simulation. Using the metric
rt−per−DOF = t/nΩ we studied the computational cost per DOF and find that although
adaptive simulations are more expensive per DOF, the additional cost is widely independent
of nΩ . In fact, we find that the overhead appears to be constant per DOF for bounded areas
of high resolution. These advantages vanish when the dynamics of the problem exhibit not
localised phenomena with growing areas of high resolution such as was the case in Sects. 4.3
and 4.4 .

Since AMR is known as a tool that allows for the consistent simulation of multi-scale
phenomena where small scale features interact with larger scales, we studied local resolution
h using the twomeshmetrics rres = h/nΩ and re f f −res = e2/h. These show that usingAMR
achieves the same �2 error with a smaller spatial resolution, i.e. at a given error, you will
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resolve finer scale phenomena. Furthermore, as rres shows, AMR achieves a higher spatial
resolution given a fixed number of DOF. In a comparison of two different mesh refinement
strategies for the quasi-stationary vortex in Sect. 4.1, we furthermore found that AMR is
most efficient if the coarse mesh level λcrs is kept as small (i.e. as coarse) as possible. This is
because for a set of adaptive simulations with constant dλ the metric rres evolves in a same
way as for the uniform simulations. Finally, we demonstrated in Sects. 4.3 and 4.4 that for
even only initially localised phenomena, we can achieve a computationally more efficient
simulation using AMR at least for an initial period of time. In practice we expect this to be
especially important for highly time critical applications such as tsunami propagation.

The presentedmetricsmay in future help to investigate computational and numerical prop-
erties of AMRmethods more rigorously. It was our intention to demonstrate their usefulness
along one example code. It would now be interesting to see other AMR code developers
adopt these metrics and see how different numerical schemes and different implementations
expose their characteristic properties.
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