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Abstract
Battery performance is strongly correlated with electrode microstructure. Electrode materi-
als for lithium-ion batteries have complex microstructure geometries that require millions
of degrees of freedom to solve the electrochemical system at the microstructure scale. A
fast-iterative solver with an appropriate preconditioner is then required to simulate large rep-
resentative volume in a reasonable time. In thiswork, a finite element electrochemicalmodel is
developed to resolve the concentration and potential within the electrode active materials and
the electrolyte domains at the microstructure scale, with an emphasis on numerical stability
and scaling performances. The block Gauss-Seidel (BGS) numerical method is implemented
because the system of equations within the electrodes is coupled only through the nonlinear
Butler–Volmer equation, which governs the electrochemical reaction at the interface between
the domains. The best solution strategy found in this work consists of splitting the system
into two blocks—one for the concentration and one for the potential field—and then perform-
ing block generalized minimal residual preconditioned with algebraic multigrid, using the
FEniCS and the Portable, Extensible Toolkit for Scientific Computation libraries. Significant
improvements in terms of time to solution (six times faster) and memory usage (halving) are
achieved compared with the MUltifrontal Massively Parallel sparse direct Solver. Addition-
ally, BGS experiences decent strong parallel scaling within the electrode domains. Last, the
system of equations is modified to specifically address numerical instability induced by elec-
trolyte depletion, which is particularly valuable for simulating fast-charge scenarios relevant
for automotive application.
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1 Introduction

With the increased interest in electric vehicles, there is a focus on increasing the perfor-
mance of lithium-ion (Li-ion) batteries, especially their volumetric and gravimetric capacity
and their ability to charge faster without degradation and safety issues. Electrode materials
for Li-ion batteries are porous microstructures, with active material particles blended with
conductive additives and binder being the typical solid matrix while an electrolyte solution
fills the pores. During operation, conductivity enables electron transport through the con-
nected solid phase of each electrode up to the current collectors, while ion migration and ion
diffusion transport Li ions through the continuous electrolyte solution phase all along the
cell thickness. Batteries are ideally designed to maximize migration and minimize diffusion.
Electrons and Li ions react at the interface between active material and electrolyte and form
Li-ion complexes that diffuse within the solid particles. The impact of the microstructure
geometry, or topology, on these transport and reaction mechanisms, and on the overall cell
electrochemical performances, has been considered by the battery modeling community at
different scales.

A first family of Li-ion battery electrochemical models uses porous electrode theory and
thus abstract microstructural heterogeneity of composite electrodes using effective macro-
scopic properties [14,15,23,28,40–43]. In porous electrode theory [15,16,33–35], electrodes
are treated as homogeneous media with superimposed solid and electrolyte phases. This
macro-homogeneous approach encompasses models that consider either uniform or nonuni-
form effectivemacroscopic properties throughout the electrode domain. Because the complex
microstructure topology is not directly resolved, only a small number of degrees of free-
dom (DOF) is required, thus allowing fast computation. Such a method is then particularly
suitable to investigate large electrode volumes—for instance, to investigate the impact of
microstructural mesoscale heterogeneity or to perform sensitivity analyses that require a
large number of calculations [10,32]. These models, however, are intrinsically limited by
their macroscale approach. (i) First, equations are derived assuming particle morphology is
spherical [14,15,23,28,40–43], which is not relevant for every electrode material, such as
flake-like graphite [46]. (ii) Second, even though effective macroscopic parameter hetero-
geneity can be introduced in these models, the heterogeneity grid size is limited because a
minimum volume is required to locally characterize and define macroscopic parameters. (iii)
Third, homogenization induces a loss of information because it consists of a reduction in
the microstructure DOFs. Indeed, typical macroscale models consider only four microstruc-
ture parameters [40]: (i) the porosity, which represents the available volume for the Li-ion
diffusion; (ii) the electrochemically active specific surface area used to scale the reaction cur-
rent; (iii) the particle diameter that controls the maximum diffusion length of the solid-phase
diffusion; (iv) and, last, the factor of tortuosity, which characterizes the effect of the convo-
luted, tortuous path of the pores that hinders the Li-ion diffusion. This set of four parameters
drastically simplifies the actual geometry and does not necessarily identify it uniquely. (iv)
Fourth, determination of these microstructure parameters is challenging, especially for parti-
cle sizes for which numerical results are method-dependent [24,47] and for tortuosity factor
for which the impact of the conductive additive and binder is difficult to precisely quan-
tify [46]. Microstructure parameter errors are then propagated to the macro-homogenous
electrochemical model, resulting in increased uncertainty. In addition, even though a cor-
rect agreement can be achieved between macroscale homogeneous electrochemical model
predictions and experimental data [10,46], this could be the result of an overfitting of the
microstructure parameters, which could lead to an overinterpretation of the results and to an
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inaccurately assessment of the validity of the model. Indeed, as for every model, discrepancy
between experimental and numerical results can be reduced by either refining the model, i.e.,
reducing the number of model assumptions and introducing new parameters, or (over-)fitting
existing parameters. (v) Fifth, the impact of local geometric features (e.g., cracks) on the
electrochemical response is only partially considered because their contribution is quantified
through their impact on the effective microstructure parameters, which might not be notice-
able because of the volume averaging, whereas they might have a strong local impact on the
electrochemical response and on degradation mechanisms.

Limitations on microstructure homogenization (limited number of microstructure param-
eters and partial representation of geometric features) and on microstructure homogenization
heterogeneity (minimum grid size) provide a biased description of the microstructure. In-
plane heterogeneity (defined as the solution variations within slices normal to the electrode
thickness) and local heterogeneity (defined as the solution variations in the vicinity of geo-
metric features) is controlled by the microstructure heterogeneity. At a low charge rate and/or
for thin electrodes, a partial representation of transport-related parameters is of limited impor-
tance because solutions will be quite homogenous. Contrariwise, at high charge rate and/or
for thick electrodes, both in-plane and local heterogeneities are expected to be significant and
can trigger earlier degradation mechanisms. Therefore, macro-homogenous electrochemical
models are particularly well suited for a low charge rate and/or for thin electrodes, but their
limited heterogeneity description could lead to an underestimation of degradation mech-
anisms at a high charge rate and/or for thick electrodes even though they might capture
the average response. The latter case corresponds to transport-limited scenarios critical for
automotive application.

A second family of Li-ion battery electrochemical models has been developed recently
to remedy these limitations and work at the microstructure scale. It consists of applying
the governing equations on a mesh that represents the electrode microstructure geometry.
This mesh is obtained through experimental observation [13,23,25,27,30,38,48,49], gener-
ally usingX-ray tomography or Focus ionBeamScanning ElectronMicroscopes (FIB-SEM).
Some authors numerically generate the electrode microstructure either with ideal geometries
[17,19,20] (such as packed spheres) or with ones that try to mimic the actual microstructure
[21]. Because the microstructure geometry is used, some of the inconvenience of macro-
homogenous electrochemical models are relieved: (i) no spherical assumptions; (ii) higher
image resolution, typically in the order of 100 nm, which provides a much more refined
description of the microstructure heterogeneity; (iii, iv) no effective microstructure param-
eters are required by definition; and (v) the impact of submicron geometric features on
electrochemical performances can be evaluated locally. Microscale electrochemical models
require extensive CPU capabilities because of the very large number of DOF, resulting in
significant calculation times [20]. Therefore, to both achieve reasonable calculation times
and model the full electrode thickness (essential to investigate transport-limited scenario),
the authors used a relatively small in-plane section area of the electrode [23]. These trade-
offs could induce inaccurate results because the investigated volumes are too small to be
representative [23]. The current limitation in terms of simulated volume size is a signifi-
cant bottleneck that limits microscale model predictability. Some larger volumes have been
reported in the literature but at the price of an image resolution downscaling, resulting in a
coarse description of the microstructure [13], which might result in the loss of small details
and in a change of the surface area and roughness. In addition, even though micromodels
exhibit a fine description of the active material, the scale difference between the diameter of
the active material particles and those of the conductive additives and binder [50] prevents
the latter from being accurately represented (i.e.,meshed) at the nanoscale while preserving

123



42 Page 4 of 32 Journal of Scientific Computing (2021) 86 :42

a field of view large enough to be representative of the active material spatial distribution.
Further, X-ray tomography typically does not distinguish the conductive additives and binder
from the pores [46]. Two numerical approaches have been reported to partially capture the
effect of this phase on the electrochemical response: (i) considering the electrolyte, con-
ductive additives, and binder as a unique phase with effective transport properties [17,23];
and (ii) meshing the conductive additives and binder phase as a uniform thin layer coated
at the surface of the active material particles with a high electronic conductivity [13,38].
Last, microstructure models suffer from numerical stability and meshing issues not present
in macro-homogeneous models, both leading to simulation inaccuracy and divergence [23].

To provide quantitative, predictive results, microstructure-scale electrochemical models
must first address computation time and numerical stability issues, even before considering
additional physics. This work focuses on these two areas. Sect. 2 develops the mathematical
model used for simulating Li-ion batteries, which is solved using the segregated domain
scheme discussed in Sect. 3.3. Various linear solver methods are presented in Sect. 4, which
are then compared in the numerical results in Sect. 5. Finally, the concluding remarks are
found in Sect. 6.

2 Li-Ion Electrochemical Model

This section will describe the development of the electrochemical model used to simulate
the flow of Li+ ions. It should be noted that there are two types of simulations: full-cell and
half-cell. In a full-cell simulation, both the cathode and anode are simulated along with the
electrolyte. However, a half-cell simulation replaces one of the electrodes with a reference
domain which provides a source (or sink) of Li ions. No simulation needs to take place in the
reference domain, which makes a half-cell simulation less computationally complex. In this
paper, we will only be running half-cell simulation. However, for completeness, this section
will describe a full-cell simulation as that is the eventual goal of this project.

We will start by describing the physical domain we wish model followed by the system of
equations and boundary conditions that describe the development of Li+ concentration and
potential fields. Next is a discussion of the interface conditions, which is vital to the coupling
between concentration and potential within electrode domains as well as between the elec-
trode and electrolyte domains. Once the model is fully developed, a nondimensionalization
is presented to help with numerical performance. In order to simulate the electrochemistry
properly, the appropriate initial conditions must be set up, which is described in Sect. 2.6.
Finally, this section ends with a description of a optional modification that helps numerical
performance when the cell is in a state called “electrolyte depletion.”

2.1 Domain Setup

In this work, we consider the following domains for a Li-ion cell, �, represented in Fig. 1:
the positive (cathode) electrode active, �c; the negative (anode) electrode active material,
�a ; the electrolyte that fill the electrode pores, �e; and the separator, �sep , a thin electron-
blocking layer that prevents direct contact and sort-circuits between the two electrodes, such
that:

� = �a ∪ �c ∪ �e ∪ �sep.
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Fig. 1 Sketch of a Li-ion battery

The various additives [46] and the negative and positive current collector volumes are not
represented in the domain for this model. When charging, Li ions (noted Li+) inside of
solid positive particles diffuse to the surface, where they react (de-intercalation) and transfer
from the solid phase into the electrolyte phase. The positively charged ions travel through
the electrolyte and the separator to the negative electrode, where they react and insert
(intercalation) into solid negative particles. Electrons follow an opposite path through the
electron-conductive solid particles, the current collectors, and the external circuit. More
information on the construction of a Li-ion battery can be found in [36].

Figure 1 shows the various domains, boundaries, and interfaces that comprise a cell.
Separating electrodes and electrolyte are the interfaces denoted as Iae and Ice. The boundary
comprises four parts as well:

� = �a ∪ �c ∪ �e ∪ �0,

where �a is the boundary between the negative current collector and the anode, �c is the
boundary between the positive current collector and the cathode, �e is where the electrolyte
contacts either current collector, and �0 corresponds to all the in-plane boundaries.

Note that the separator is a porous material filled with electrolyte that allows Li+ to
diffuse through but blocks electrons. In our model, the separator is homogenized. For this
reason, the electrolyte and separator subdomains are treated as a single domain, �e ∪ �sep ,
with different transport properties. This results in only three computational subdomains. For
simplicity, unless otherwise specified, the electrolyte domain is considered to incorporate the
separator domain.

2.2 Governing Equations

In this work, the mathematical model of a Li-ion cell is restricted to the Li+ concentration, c,
and the electric potential, φ, in all domains. Both the concentration and potential depend on
space, x , and time t . The system of equations used to describe the flow of Li+ is also separated
into three parts. To condense notation, when used as a subscript, let s = {a, c}, which
indicates a property belongs to the anode and cathode domains, respectively. Additionally, let
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i = {a, e, c} is the same as s but applies to all three computational domains. This way, instead
of having to present similar sets of equations for each domain where the only difference
is the use of ca versus cc, the notation can be simplified to cs to refer to both equations
simultaneously.

Starting with the electrode active materials, define the ionic and potential fluxes:

Ns = −Ds∇cs, (1)

js = −κs∇φs, (2)

These two depend on the diffusivity of Li+, Ds , and the conductivity, κs both of which depend
on cs . As previously noted, the subscript s is the notation to indicate that these values apply
to an electrode (solid) domain. When specifically talking about the anode or cathode, the
subscript will be a or c, respectively. For example, cc would refer to the Li+ concentration
in the cathode, and ca would refer to the concentration in the anode. Later, the subscript e
will refer to the electrolyte. The flow of Li+ in the electrodes is described by:

∂cs
∂t

= −∇ · Ns,

0 = −∇ · js,
for x ∈ �s for s = a, c.

Next, consider the system of equations in the electrolyte domain. The main difference is
in the definition of the ionic and potential fluxes:

Ne = −De∇ce + t+

F
je, (3)

je = −κe∇φe + κD∇ ln(ce), (4)

where t+ is the transference number for Li+, F is Faraday’s constant, De is the electrolyte
ionic diffusivity, κe is the electrolyte ionic conductivity, and κD is the diffusional conductivity.
The diffusional conductivity is defined as:

κD = (1 − t+)(1 + Ac)
2κe RT

F
,

where Ac is the activity coefficient, R is the gas constant, and T is temperature. The flow of
Li+ in the electrolyte is described by:

∂ceε

∂t
= −∇ · Ne,

0 = −∇ · je,
for x ∈ �e∪�sep , where ε is a measure of the porosity. Because of the large pore scale differ-
ence between the electrolyte domain,�e, and the separator domain,�sep , meshing both pores
would result in a significant increase in DOF. To overcome this issue, the separator domain
is considered as a homogeneous electrolyte domain, i.e., the separator is treated similarly
with the electrolyte except for effective transport properties. To ensure mass conservation,
an additional porosity term, ε, is introduced in the mass conservation equation with:

ε =
{

εsep x ∈ �sep

1 x ∈ �e
,

where εsep is the bulk porosity of the separator. This form ofmass conservation (with a poros-
ity term) is used in macroscale electrochemical models [40]. As described, the present model
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is then a multiscale electrochemical model because the homogenized medium (separator)
and dense mediums (electrolyte and active materials) are solved concurrently.

2.3 Boundary Conditions

At the two current collectors, a non-permeability condition is applied to enforce that Li+
cannot escape. This condition is represented as:

Ni · n = 0, for x ∈ �i .

Additionally, along the in-plane boundaries, �0, an identical no-flux boundary condition is
enforced, represented as:

Ni · n = 0, for x ∈ �i ∩ �0.

This condition results from the fact that the computational domain is a small portion of the
full Li-ion battery.

Next, a current flux is applied to the two current collectors:

ja · n = ga, for x ∈ �a,

jc · n = gc, for x ∈ �c,

where ga and gc are the current densities, constrained by:∫∫
�a

ja · n =
∫∫

�c

jc · n.

This constraint essentially enforces that the current flowing into the anode equals the current
flowing out of the cathode. Also, notice that the sign of ga should have the opposite sign of
gc because the outward normals are facing opposite directions. The current integral balance
equation is not explicitly enforced because it is a natural extension of the physics solved with
the boundary conditions applied. These boundary conditions drive the entire simulation. The
final boundary condition enforces that current does not flow through the sides of the cell:

ji · n = 0, for x ∈ �i ∩ �0.

Here, �i ∩ �0 refers to the external boundary associated with each subdomain but excludes
the current collectors. Additionally, where the electrolyte meets the current collectors:

je · n = 0, for x ∈ �e,

is enforced. A final boundary condition arises from a need to pin down the potential field.
The only boundary conditions enforced on the potential are Neumann type, which allow for
a valid solution to be shifted by a constant and remain valid. To combat this, a point within
one of the electrode domains is set to a fixed potential value, thus removing the constant from
the null space. This is not required for the concentration because it already depends on an
initial condition.

2.4 The Interface Condition

The last aspect of the model is the interface condition. This condition communicates how the
Li+ is (de)intercalating at the electrochemically active interface between the solid particles
and the electrolyte. The active interface is defined as the interface between the pore and
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the solid particles, which is connected with the current collector. This condition is modeled
using the Butler–Volmer equations [36]. First, define the exchange current density for each
electrode:

is = Fkscs
αa ce

αa (cs max − cs)
αc ,

where ks is the kinetic constant, and cs max is the maximum Li+ concentration in the
electrode. Additionally, αa and αc are the anodic and cathodic charge transfer exponent,
respectively. Considering the symmetry factor (αa + αc = 1) and assuming that the reac-
tion is equally reactant-like and product-like, then αa = αc = 0.5, so the exchange current
density reduces to:

is = Fks
√
csce(cs − cs max).

Additionally, define the overpotential as:

ηs = φs − φe −Us,

where Us is the open circuit potential. Combining the exchange current density and overpo-
tential according the Butler–Volmer equation results in the Faraday current:

ise = is
(
e

αa F
RT ηs − e− αc F

RT ηs
)

,

which can be simplfied to:

= 2is sinh

(
F

2RT
ηs

)
, (5)

if αa = αc = 0.5. The interface conditions can now be represented as:

Na · n = Ne · n = iae
F

, and ja · n = je · n = iae for x ∈ Iae,

Nc · n = Ne · n = ice
F

, and jc · n = je · n = ice for x ∈ Ice.

Following is a summary of all the equations, boundary conditions, and interface conditions.
System of equations:

−∇ · Ns = ∂cs
∂t

, on x ∈ �s, (6)

−∇ · Ne = ∂ceε

∂t
, on x ∈ �e ∪ �sep, (7)

−∇ · ji = 0, on x ∈ �i , (8)

Boundary conditions:

ja · n = ga, on x ∈ �a, (9)

jc · n = gc, on x ∈ �c, (10)

je · n = 0, on x ∈ �e, (11)

Ni · n = 0, on x ∈ �i , (12)

Ni · n = 0, on x ∈ �0, (13)

ji · n = 0, on x ∈ �0, (14)
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Interface conditions:

Na · n = Ne · n = iae
F

, ja · n = je · n = iae, on x ∈ Iae, (15)

Nc · n = Ne · n = ice
F

, jc · n = je · n = ice, on x ∈ Ice, (16)∫∫
Iae

iae · n = −
∫∫

Ice
ice · n. (17)

The current integral balance equation, (17), is not explicitly enforced because it is a natural
consequence of the physics solved with the boundary conditions applied. A table of all the
parameters used in this model with a short description can be found in Table 1. Pay particular
attention to which coefficients depend on concentration

2.5 Nondimensionalization

The electrochemical model includes coefficients spanning several order of magnitude and
as a result will have a large condition number and will be difficult to solve efficiently and
accurately. This numerical issue can be resolved by determining a set scaling coefficients
so that the resulting modified system is dimensionless and its solutions are close to being
unity. Problem nondimensionalization can be performed using various methods, and the
scaling coefficients are not necessarily unique. This section presents one such method for the
electrochemical model.

To help improve solver convergence, (6)–(17) is scaled to produce a nondimensional
system of equations. To find this scaling, start with the electrolyte domain because it is the
most complex. Plugging the definition je from (4) into the potential balance equation, (8),
yields:

0 = κe
φe − (1 − t+)(1 + Ac)
2κe RT

F

 ln(ce). (18)

Now, for the moment, assume all coefficients are constant with respect to concentration, and
define:

C0 = (1 − t+)(1 + Ac)
2RT

F
,

and let φe = C0φ
∗
e . Using these definitions, (18) becomes:

0 = C0κe
φ∗
e − C0κe
 ln(ce).

Dividing out κeC0 results in:

0 = 
φ∗
e − 
 ln(ce),

and the potential flux simplifies to:

je = −∇ · φ∗
e + ∇ · ln(ce). (19)

Thenext step is to plug thenew representationof je, (19), and Ne, (3), into the concentration
balance equation, (7), which yields:

∂ce
∂t

= De
ce − C1C0κe
φ∗
e − C1C0κe
 ln(ce), (20)
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Table 1 Table of symbols

Symbol Units Description

Equations

Ni mol s−1 m−1 Ionic flux

ji A m−2 Potential flux

is A m−2 Exchange current density

ηs V Overpotential

ise A m−2 Faraday current density at Iae or Ice
Variables

ci mol m−3 Li+ concentration

φi V Potential

t s Time

Symbol Units f (c) Description

Parameters

Di m2 s−1 � Diffusion coefficient

κi S m−1 � Electric conductivity

κD A m−1 � Diffusional conductivity

t+ - � Transference number of Li+

R J K−1 mol−1 Universal gas constant

T K Temperature

F A s mol−1 Faraday constant

Ac - � Activity coefficient

αs - Charge transfer exponent (αa + αc = 1)

ks m4−3α molα−1 s−1 Reaction rate

cs,max mol m−3 Maximum concentration in active material

Us V � Open circuit potential

gs A m−2 Applied current density applied to �a or �c

n - Outward unit normal

In the “units” column, a dash, ‘-’, indicates a unitless quantity. The f (c) column indicateswhether the parameter
can be a function of concentration

where C1 = t+
F . Using, ce = C1C0κe

De
c∗
e , (20) becomes:

C1C0κe

De

∂c∗
e

∂t
= C1C0κe
c∗

e − C1C0κe
φ∗
e − C1C0κe
 ln(c∗

e ),

which reduces to:

1

De

∂c∗
e

∂t
= 
c∗

e − 
φ∗
e − 
 ln(c∗

e ). (21)

Note that:


 ln

(
C1C0κe

De
c∗
e

)
= 
 ln

(
C1C0κe

De

)
+ 
 ln(c∗

e ) = 
 ln(c∗
e )

because the coefficients are assumed constant.
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Next, the length scale, x, is nondimensionalized using x = Lx∗, where L is in the charac-
teristic length scale (such as 1e-6 for micrometers). This results in new derivative operators
defined by:

∇ = 1

L
∇∗ and 
 = 1

L2 
∗.

Using these operators in (21) and moving the L2 to the left-hand side yields:

L2

De

∂c∗
e

∂t
= 
∗c∗

e − 
∗φ∗
e − 
∗ ln(c∗

e ). (22)

Finally, redefine the timescale to t = L2

De
t∗. Differentiating this results in:

d

dt
= De

L2

d

dt∗
,

which when used in (22) reduces to:

∂c∗
e

∂t∗
= 
∗c∗

e − 
∗φ∗
e − 
∗ ln(c∗

e ).

The full scaled system for the electrolyte domain is:

∂c∗
e

∂t∗
= 
∗c∗

e − 
∗φ∗
e − 
∗ ln(c∗

e ), (23)

0 = 
∗φ∗
e − 
∗ ln(c∗

e ), (24)

with:

x = Lx∗, t = L2

De
t∗, ce = C1C0κe

De
c∗
e , φe = C0φ

∗
e . (25)

Performing dimensional analysis on x∗, t∗, c∗
e , and φ∗

e reveals that they are all unitless.
These same scalings could also be used in the solid electrode domain; however, because the
segregated-domain scheme solves each domain separately, a different scaling could be used
that was specifically designed for the anode and cathode independently. The only guideline
is that the timescale and length scale remain the same among all domains. Although this is
not strictly necessary, having the same timescale among all domains keeps them from getting
out of sync with each other. Additionally, keeping the same length scale makes the transfer
of information between domains simpler.

Using the definitions of Ns and js from (1) and (2) in the concentration and potential
balance equations, (6) and (8), with the new length and timescales results in the system:

dcs
dt∗

= Ds

De

∗cs, (26)

0 = 
∗φs . (27)

Again, this assumes that all coefficients are constant. Not much can be done about the Ds
De

, so
the best scaling is to let cs = cs,maxc∗

s , which will keep c
∗
s around order one. The scaling for

the potential term is in a similar situation. A decent choice would be φs = C0φ
∗
s to mimic

the electrolyte potential. Another possibility would be to use the maximum voltage if known
such that φs = φ maxφ∗

s .
Also note that this scaling does not take the interface condition, (5), into account. This

means that before applying the Butler–Volmer condition, ci and φi need to be in their dimen-
sional form.

123



42 Page 12 of 32 Journal of Scientific Computing (2021) 86 :42

2.6 Initial Conditions

To perform a simulation, a few quantities must first be calculated. The first quantity is the
current flux, gs , which will be used to drive the electrochemical reaction in the Li-ion battery.
This flux is dependent on a parameter known as the C-rate. The C-rate is a measure of how
fast a battery is charging or discharging relative to its total theoretical capacity. By definition,
1C corresponds to the current required to fully discharge or charge a battery in 1 hour. For
example, with a 4 Ah battery, a 1C charge will take an hour and require 4 A, but a 6C charge
will take 10 minutes and 24 A. Because a main focus of this research is to use the model
described in Eqs. (6)–(17) to simulate the charge/discharge cycles of various batteries at
several C-rates, current flux, g, needs to be written in terms of C-rate, Crate:

gs = ca,maxFV�a

shrCrate A�s

,

where V is the volume of the corresponding domain, A is the area of the corresponding
boundary, and shr is the number of seconds in an hour. This flux uses the anode to calculate
the maximum lithium at full charge. To use the cathode, replace ca and V�a with cc and V�c .

The next set of quantities that needs to be specified to run a simulation is the initial condi-
tions. The initial concentrations, ci0 , are relatively easy to compute. For the two electrodes, an
initial state of charge (SOC) is chosen between 0 and 1, where 0 represents fully depleted, and
1 is fully charged. Then, multiplying the SOC by the corresponding cs,max gives the initial
concentration within the two electrode domains. For the electrolyte, the initial concentration
is simply set as a constant value.

The initial potentials are a bit more difficult to calculate. Because of the high nonlinearity
in the Butler–Volmer equation, (5), a good initial guess is required to get Newton’s method to
converge. Luckily, with the initial concentrations already known, the Butler–Volmer equation
can be inverted to calculate the required initial potentials, φi0 . Recall that one of the boundary
conditions requires that the potential of one point of the cathode is fixed to an arbitrary value
that will provide the reference potential for the whole domain. This reference value is then
subtracted (only during post-processing) for all the potentials calculated. Because of this, the
initial potential in the cathode is set to this base value, φ0:

φc0 = φ0.

Next, calculate the initial potential in the electrolyte using:

φe0 = φc0 − ηc −Uc,

ηc = 2RT

F
asinh

(
ice
2ic

)
. (28)

Finally, the initial potential in the anode is:

φa0 = ηa + φe0 +Ua,

ηa = 2RT

F
asinh

(
iae
2ia

)
. (29)

As a final note, all of the simulations in this paper are known as half-cell simulations.
This is because one of the electrodes is used as a reference domain, and all of its parameters
are held fixed. This means that only the electrolyte and one electrode are simulated. For
these simulations, the cathode is used as the reference and is considered as a lithium plate,
with Uc = 0 V and ic = 100 A m−2, which is simply an arbitrary high value. This method
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to determine sequentially the potential from a domain to its neighbors is only valid for the
initialization step because it requires all fields (concentration and potential) of all domains
(solid and electrolyte) to be uniform.

2.7 Electrolyte DepletionModification

This section describes a potential modification to Eq. 4 can help mitigate issues with numer-
ical convergence associate with a state known as electrolyte depletion. This modification is
optional and its effects are examined in Sect. 5.3.

Thick electrodes and/or fast charging induce a significant electrolyte concentration gra-
dient all along the cell thickness that could lead to local electrolyte depletion (i.e., ce → 0)
[10]. This is an undesirable situation because part of the electrode is then no more electro-
chemically active (ios → 0 when ce → 0), whereas the remaining part is overused (the
integral current density is constant), which in turn triggers a degradation mechanism that will
decrease the cell calendar life [10]. Thick electrodes and fast charging however, are desired
features for electric automotive application because they reduce cost and charging time,
respectively. Therefore, the ability to simulate electrolyte depletion is especially valuable;
however, numerical instabilities arise when approaching electrolyte depletion.

The most obvious problem occurs in (4), with the κD∇ ln(ce), which approaches infinity
when ce → 0. This singularity can actually be removed by manipulating the definition of
κD . First, use the chain rule:

κD∇ ln(ce) = κD
∇ce
ce

,

= κD

ce
∇ce. (30)

Next, expand with the current definition of κD :

= (1 − t+)(1 + Ac)
2κe RT

F

ce
∇ce,

= κe

ce

(
(1 − t+)(1 + Ac)

2RT

F
∇ce

)
. (31)

Now, take a closer look at the term κe
ce
. In this model of Li+ transport, the conductivity in the

electrolyte, κe, is approximated as an nth-degree polynomial:

κe ≈ a0 +
n∑

k=1

akce
k (32)

Next, assume that the conductivity, κe, is zero when ce is zero, which is the case for the
electrolyte presented in this paper. This results in a0 = 0 and κe

ce
can be simplified to:

κe

ce
≈ a0 + ∑n

k=1 akce
k

ce
,

≈
n∑

k=1

akce
k−1. (33)
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Fig. 2 Depiction of the domain
splitting illustrated for a half-cell,
with packed spheres for the
anode

Full domain

Split into three subdomains

Cathode Electrolyte Anode

Now define:

κ∗
e =

n∑
k=1

akce
k−1, (34)

and, as a result:

κD∇ ln(ce) = κ∗
D∇ce, (35)

such that:

κ∗
D = κ∗

e (1 − t+)(1 + Ac). (36)

This modification can be used to overcome some of the numerical difficulties associated with
electrolyte depletion.

3 Numerical Methods

This section discusses the various numerical methods used to address the electrochemical
system for Li-ion batteries. Because the system of partial differential equations in (6)–(17)
is set up with respect to three separate domains, a possible approach consists in solving
this system in a computationally similar way. This results in the segregated-domain scheme.
Instead of solving a single system over the whole domain, �, the segregated-domain scheme
solves three independent systems on the three subdomains:�a ,�e, and�c, which is depicted
in Fig. 2.

In this paper, we discretize the set of partial differential equations within each subdomain
using continuous piecewise linear Galerkin finite elements implemented through the FEniCS
Project [1,29]. To solve in one subdomain independently of the others, it must be assumed
that the Li+ concentration and potential fields in the other subdomains is fixed. Notice that the
only communications between subdomains occur at the interface. This results in converting
the interface conditions, (15) and (16), to boundary conditions, where either (cs , φs) or (ce,
φe) are fixed, depending on which subdomain is currently being solved. Unless the fixed
values of concentration and potential are the exact solutions to (6)–(17), the solution on the
independently solved subdomainwill not satisfy (6)–(17). This can be resolved by performing
a Picard-like iteration between the three subdomains. Picard iteration is used for resolving
a nonlinear system of equations by linearizing around a fixed value and then calculating an
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update. The segregated-domain scheme is similar except values on two domains are fixed
while calculating an update to the third.

3.1 Variational Form

Let Wi for i = a, e, c be the continuous finite element space comprising piecewise linear
functions defined on each computational domain. Additionally, let vi ∈ Wi for i = a, e, c
be the test function for concentration and qi ∈ Wi for i = a, e, c be the test functions for
potential. Backward (i.e., implicit) Euler is used to handle the time discretization, where τ

is the time step, k is the time index, and T is the final time. Additionally, let ĉe and φ̂e be the
fixed approximations to ce and φe from the electrolyte domain. Then, within the solid active
materials, the concentration functional is:

Fcs =
∫

�s

(
ck+1
s − cks

)
τ

vs dx −
∫

�s

Ns · ∇v dx −
∫

�se

ise(cs, ĉe, φs, φ̂e)

F
v ds,

and the potential functional is:

Fφs =
∫

�a

ja · ∇q dx +
∫

�ae

iae(ca, ĉe, φa, φ̂e)q ds −
∫

�a

gaq ds.

The nonlinear variational problem on the solid active material domains is to find (cs, φs) ∈
Ws × Ws such that:

Fcs + Fφs = 0, ∀(vs, qs) ∈ Ws × Ws . (37)

The functionals for the electrolyte domain are slightly different where the concentration
functional is:

Fce =
∫

�e

(
ck+1
e − cke

)
τ

v dx −
∫

�e

Ne · ∇v dx −
∫

�ae

iae(ĉa, ce, φ̂a, φe)

F
v ds

−
∫

�ce

ice(ĉa, ce, φ̂a, φe)

F
v ds,

and the potential functional is:

Fφe =
∫

�e

je · ∇q dx +
∫

�ae

iae(ĉa, ce, φ̂a, φe)q ds +
∫

�ce

ice(ĉa, ce, φ̂a, φe)q ds.

Similarly, the nonlinear variational problem on the electrolyte is to find (cs, φs) ∈ Ws × Ws

such that:

Fcs + Fφs = 0, ∀(vs, qs) ∈ Ws × Ws . (38)

The segregated-domain scheme iterates between these variational problems using the
solutions on one domain to improve the variational form on the other two. Iterating among
the three domains is the consistency iteration. The domains are considered consistent when:

||ci − ĉi ||
||ci0 ||

≤ εc and
||φi − φ̂i ||

||φi0 ||
≤ εφ,

for some tolerances εc and εφ .
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3.2 Newton’s Method

Newton’s method in each of the segregated domains can be described as:

u(n+1) = u(n) − δu, (39a)

J · δu = r(n), (39b)

where the superscript (n) denotes the Newton step, u(n) is a solution vector of potentials
and concentrations, δu is the update vector, r(n) is the residual vector evaluated at u(n), and
J = F ′(u(n))[δu] is the Jacobian matrix of the functional F evaluated at u(n). The relative
Newton convergence criterion is defined as:

||r(n)||
||r(0)|| ≤ εn,

where εn is some tolerance. The linear system of equations could also be represented in
block form. Let u(n) be rewritten as a vector of potentials, φ(n), and concentrations, c(n).
Thus, Eq. (39) could also be rewritten as:(

φ(n+1)

c(n+1)

)
=

(
φ(n)

c(n)

)
−

(
δφ

δc

)
, (40a)

(
Jφφ Jφc

Jcφ Jcc

)(
δφ

δc

)
=

(
r(n)
φ

r(n)
c

)
. (40b)

The subscripts φ and c found in r(n) and J correspond to the potential and concentration
blocks, respectively.

3.2.1 Constant Coefficients

Assuming all coefficients listed in Table 1, the residual functions for each of the solid domains
in block form are:

r(n)
φ = −∇ · κs∇φ(n)

s − îse
∣∣∣
Ise

,

r(n)
c = c(n)

s − cs0


t
− ∇ · Ds∇c(n)

s − îse
F

∣∣∣
Ise

,

where cs0 is the initial condition or solution from the previous time step,
t is the discrete time
increment, and îse is the Butler–Volmer equation evaluated at ĉe and φ̂e along the interface
Ise. The corresponding Jacobian blocks are:

Jφφ = −∇ · κs∇ − ∂ îse
∂us

∣∣∣
Ise

,

Jφc = −∂ise
∂cs

∣∣∣
Ise

,

Jcφ = −
(
1

F

)
∂ îse
∂us

∣∣∣
Ise

,

Jcc = I

t

− ∇ · Ds∇ −
(
1

F

)
∂ îse
∂cs

∣∣∣
Ise

,
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where I is the identity matrix. The residual functions for the electrolyte domain in block
form are:

r(n)
φ = −∇ · κe∇φ(n)

e + ∇ · κD∇ ln(c(n)
e ) − îse

∣∣∣
Ise

, (41a)

r(n)
c = c(n)

e − ce0


t
− ∇ · De∇c(n)

e − ∇ · t
+

F
κe∇φ(n)

e + ∇ · t
+

F
κD∇ ln(c(n)

e ) − îse
F

∣∣∣
Ise

,

(41b)

where îse is now evaluated at ĉs and φ̂s along the interface Ise. The corresponding Jacobian
is:

Jφφ = −∇ · κe∇ − ∂ îse
∂ue

∣∣∣
Ise

,

Jφc = ∇ · κD

c(n)
e

∇ − ∇ · κD

c(n)2
e

∇c(n)
e − ∂ îse

∂ce

∣∣∣
Ise

,

Jcφ = −∇ · t
+

F
κe∇ −

(
1

F

)
∂ îse
∂ue

∣∣∣
Ise

,

Jcc = I

t

− ∇ · De∇ + ∇ · t
+κD

Fc(n)
e

∇ − ∇ · t+κD

Fc(n)2
e

∇c(n)
e −

(
1

F

)
∂ îse
∂ce

∣∣∣
Ise

.

3.2.2 Nonconstant Coefficients

When any of the coefficients from Table 1 are functions of concentration, the Jacobian blocks
become more complex, especially for the electrolyte domain. Assuming that both κs and Ds

are functions of cs , the Jacobian for the solid domains would be written as:

Jφφ = −∇ · κs∇ − ∂ îse
∂us

∣∣∣
Ise

,

Jφc = −∇ · ∂κs

∂cs
∇φ(n)

s − ∂ise
∂cs

∣∣∣
Ise

,

Jcφ = −
(
1

F

)
∂ îse
∂us

∣∣∣
Ise

,

Jcc = I

t

− ∇ · Ds∇ − ∇ · ∂Ds

∂cs
∇c(n)

s −
(
1

F

)
∂ îse
∂cs

∣∣∣
Ise

.

For the electrolyte, under the assumptions outlined in Sect. 2.7, Eq. (41) can be simplified
to:

r(n)
φ = −∇ · κe∇φ(n)

e + ∇ · κ∗
D∇c(n)

e − îse
∣∣∣
Ise

,

r(n)
c = c(n)

e − ce0


t
− ∇ · De∇c(n)

e − ∇ · t
+

F
κe∇φ(n)

e + ∇ · t
+

F
κ∗
D∇c(n)

e − îse
F

∣∣∣
Ise

.

Now, assuming that κe, κ∗
D , and De are all functions of ce, the corresponding Jacobian

becomes:

Jφφ = −∇ · κe∇ − ∂ îse
∂ue

∣∣∣
Ise

,
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Jφc = −∇ · ∂κe

∂ce
∇φ(n)

e + ∇ · κ∗
D∇ + ∇ · ∂κ∗

D

∂ce
∇c(n)

e − ∂ îse
∂ce

∣∣∣
Ise

,

Jcφ = −∇ · t
+

F
κe∇ −

(
1

F

)
∂ îse
∂ue

∣∣∣
Ise

,

Jcc = I

t

− ∇ · De∇ − ∇ · ∂De

∂ce
∇c(n)

e − ∇ · t
+

F
κ∗
D∇ − ∇ ·

(
t+

F

)
∂κ∗

D

∂ce
∇c(n)

e

− ∇ ·
(

κ∗
D

F

)
∂t+

∂ce
∇c(n)

e −
(
1

F

)
∂ îse
∂ce

∣∣∣
Ise

.

3.3 Segregated-Domain Scheme Algorithm

Now that all the parts are in place, we present the algorithm used for the segregated-domain
scheme displayed in Algorithm 1.

Algorithm 1: Segregated-Domain Scheme

t ← 0;
while t ≤ T do

while ||ci−ĉi ||||ci0 || ≥ εc and
||φi−φ̂i ||||φi0 || ≥ εc do // Consistency Iteration

for i in (a,e,c) do
(ĉ j , φ̂ j ) ← (c j , φ j ) for j �= i ;
F ← Fci + Fφi ;
u0 ← (ci , φi ) ;
n ← 0;

while ||r(n)||
||r(0)|| ≥ εn do // Newton Iteration

J ← F ′(u(n))[δu];
r(n) ← F(u(n));
solve // Linear Solve Iteration

J · δu = r(n); // Using MUMPS or BGS
end
u(n+1) ← u(n) − δu;
n ← n + 1

end
end

end
t ← t + τ ;

end

Within each time step, the segregated-domain scheme starts by solving for concentration,
ca , and potential, φa , within the anode domain while assuming ce and φe are fixed, which
results in enforcing the interface conditions as the boundary condition depending on:

iae(ca, ĉe, φa, φ̂e) = ia(ca, ĉe)
(
e

αa F
RT ηa(φa ,φ̂e) − e− αc F

RT ηa(φa ,φ̂e)
)

, (42)

where:

ia(ca, ĉe) = ka
√
caĉe(ca − ca max),

ηa(φa, φ̂e) = φa − φ̂e −Ua,
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and ĉe, φ̂e are the fixed approximations to ce and φe in the electrolyte. Once Newton’s method
has converged and produced approximations to ca and φa , it is time to update the electrolyte
fields based on fixed values from the anode and cathode using an equation similar to (42).
Finally, the fields in the cathode are updated. One cycle of solves on the anode, electrolyte,
cathode is referred to as a consistency iteration and is labeled as such in Algorithm 1. The
consistency iteration is repeated until the difference between the newly computed values,
(c, φ), and the fixed values, (ĉ, φ̂), reach some tolerance.

Because the coupling between domains only occurs at the interfaces, Iae and Ice, the fixed
values, (ĉ, φ̂), from the previous domain’s solve only needs to be interpolated to the next
domain at the common interface. In FEniCS, this is achieved by first constructing the mesh
to that the DOFs at the interface are shared between the relevant domains(the solid mesh
and the electrolyte mesh are then conforming meshes). In other words, the anodes DOFs that
lie in Iae are duplicated in the electrolytes copy of Iae. Then, during the setup phase of the
simulation, a map can be constructed that takes the values at the interface from the anode’s
function space to the electrolyte’s functions space. This allows for communication between
domains without the need for interpolation.

For the tests within this paper, the relative tolerance for the consistency iteration, εc, was
set to 5 × 10−4 and the relative tolerance for the Newton iteration, εn was set to 1 × 10−7.
As for the linear solver, When using block Gauss-Seidel, relative tolerance was 1× 10−7. A
possible way to reduced the solve time for the segregated-domain scheme would be to loosen
the tolerances for theNewton and linear solve iterations.However, the linear solver’s tolerance
was chosen to reach a similar level of accuracy as the direct solver. Further simulation would
be needed to find optimal values for these tolerances that balance speed and accuracy.

One advantage to using the segregated-domain scheme is that the solve on each subdomain
requires less memory than solving a single large system. This means that for a fixed memory
limit, the segregated-domain scheme can be applied to larger meshes.

The trade-off is the consistency iteration loop. If there is a large change in concentration
or potential between times steps, more consistency iteration is expected. These large changes
tend to occur at the beginning of the simulation or where the charge rate varies. Note that
proof of the convergence of the consistency iteration is an open question, but in practice we
find it converges reliably in 3–10 iterations depending on the time step size.

4 Linear Solvers

Solving the linear system from Eq. (39b) is computationally the most expensive step in our
proposed segregated framework. The key to accelerating the overall time to solution is to solve
the linear systems of equations in a scalable and efficient way. For notational convenience,
let us rewrite Eq. (39b), which solves a linear system of N equations in N variables as:

Ax = b, (43)

where A ∈ R
N×N is the coefficient matrix, b ∈ R

N is the right-hand side vector, and x ∈ R
N

is the vector of variable unknowns. If all N equations are linearly independent, then there
exists a unique solution x = A−1b. Instead of explicitly computing and storing the inverted
A matrix, one can apply the action of A−1 through either direct or iterative solvers.
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4.1 Background on Direct and Iterative Solvers

One way to directly solve the system of equations is to first perform a lower-upper (LU)
decomposition of A. That is:

A = LU,

where L and U are the lower and upper triangular matrices, respectively. The diagonal ele-
ments should be all ones for one matrix and all zeros for the other. Using this decomposition,
Eq. (43) can be rewritten as:

LUx = b,

which is solved by solving these two systems of equations consecutively:

Ly = b,

Ux = y.

These systems are solved using forward and backward sweeps, respectively, and have an
algorithmic complexity proportional to the number of nonzeros in A; however, the L and U
matrices are computationally expensive to analyze and factorize; the algorithmic complexity
can be as high asO(N 3) [45]. Several research efforts over the years have attempted to miti-
gate the cost by exploiting the sparsity patterns through techniques such as matrix reordering,
but even with these improvements, direct approaches still do not scale well with N in terms
of both algorithmic complexity and memory consumption [5,11,44].

An alternative is to use an iterative approach to compute the action of A−1. An initial guess,
x0, is used to calculate an eventual sequence of iterates {x0, x1, x2, ...}. The idea of an iterative
scheme is that at some iterate k, the solution xk will be close enough to the true solution to be
used as the approximate solution. To determine whether the approximate solution at iterate
k is accurate enough, we evaluate the distance in error between the approximate and exact
solutions with the residual vector:

rk = b − Axk .

The iterative approach employed in this work is the Krylov subspace (KSP) method. The
KSP of dimension k belonging to A and r0 is defined as:

Kk (A, rk) = span
{
r0, Ar0, ..., Ak−1r0

}
.

KSP methods generate iterates in the following way:

xk ∈ x0 + Kk (A, rk) .

For example, the simplest form of the KSP solver can be written as:

xk+1 = xk + rk,

but in this work, we use the more complex generalized minimum residual (GMRES) method
[39],which generates orthonormal vectors {v0, v1, v2, ...} through theGram-Schmidt process
to formabasis forKk . Each iterationofGMRESrequires the followingmatrix-vector product:

w = Avk, (44)

where w is the resulting vector used to update the solution. Krylov methods such as GMRES
are said to have the optimality property if in each iteration the computed iterate is the best
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possible approximation of the solution within the current KSP; however, the convergence
rate of the iterates produced by GMRES is limited by the Krylov subspace itself. That is,
if the matrix A is either ill-conditioned or very large and complex, GMRES will converge
slowly or in some cases not converge at all.

To improve the convergence rate of the iterative solvers,we need to supply a preconditioner
matrix P to modify the KSP. In this work, we consider only left-preconditioning. The linear
system of equations in (43) with left-preconditioning becomes:

P−1A = P−1b.

The preconditioned residual for this is:

rk = P−1 (b − Axk) .

The KSP for this new linear system of equations is:

Kk
(
P−1A, P−1rk

)
.

In the preconditioned GMRES approach, the action of P−1 alters the spectrum of the linear
system by transforming w from Eq. (44) into a new vector z. That is:

z = P−1w. (45)

Choosing the right preconditioner such that P−1A ≈ I is the task at hand. For elliptic PDEs
such as the diffusion or heat equations, the algebraic multigrid (AMG) approach is a good
way to construct and apply the action of P−1.

4.2 Block Preconditioning

If Eq. (43) contains multiple physics or domains, applying GMRES with algebraic multi-
grid preconditioning to the entire linear system will not always yield a convergent solution.
Such systems require careful preconditioning techniques where the preconditioning matrix
is decomposed into individual blocks. First, let us rewrite Eq. (45) in block form:(

Pφφ Pφc

Pcφ Pcc

) (
zφ
zc

)
=

(
wφ

wc

)
, (46)

where the subscriptsφ and c correspond to the potential and concentration blocks in Eq. (40b),
respectively. We now highlight two common block preconditioning approaches for Eq. (46):

1. Block Jacobi (BJacobi) In the BJacobi approach, we set all the blocks in P equal to
their corresponding blocks in J . We set the initial guess for both zφ and zc to 0 so their
solutions under this approach are obtained by solving these two inner linear systems of
equations:

Pφφ zφ = wφ,

Pcc zc = wc.

The inverses of the diagonal Jacobian blocks are approximated using GMRES coupled
with algebraic multigrid preconditioning. Alternatively, one could choose to apply only a
single sweep of algebraicmultigrid preconditioning to these two equations. This will save
computational costs associated with fully solving the two inner systems of equations, but
more outer GMRES iterations might be required.
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2. Block Gauss-Seidel (BGS) The BGS approach is the method of successive displacement.
That is, the block equations for zφ and zc are solved sequentially. The solution vector
obtained from the first block solve is used to obtain the second solution vector. We again
set all the blocks in P equal to their corresponding blocks in J and set the initial guesses
to 0, resulting in the following two inner linear systems of equations:

Pφφ zφ = wφ,

Pcc zc = wc − Pcφ zφ.

These two blocks can also be solved for either through GMRES with algebraic multigrid
preconditioning or through a single algebraic multigrid preconditioning sweep. One can
alternatively rearrange the block system so that the concentration block is solved first.
That is:

Pcc zc = wc,

Pφφ zφ = wφ − Pφc zc.

In this paper, we employ the BGS approach to solve the linear system of equations asso-
ciated with all three domains. Both the concentration and potential blocks are approximated
using GMRES that is preconditioned with AMG. This setup was chosen because the system
of equation within the solid domains, �s . If the interface condition is ignored, then (6) and
(8) are completely decoupled. These two independent systems are similar to a nonlinear
heat equation and a nonlinear Poisson equation. Both of these systems are easily handled by
GMRES that is preconditioned with AMG. As for the electrolyte domain, we are still inves-
tigating potentially better solvers. To this end, part of our future work is to derive a Schur
complement approximation to handle nonlinear coupling within the electrolyte domain.

4.3 Parallel Implementation

To accelerate our proposed block preconditioning approach even further, we need to use
parallelism. Specifically, we leverage the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) library [3,4,12], a numerical linear algebra library built on top of the message
passing interface (MPI). It not only has scalable nonlinear and optimization-based solvers
(see [7,8]), but it can interface to other important math libraries such as HYPRE [18]. To
handle the block system in Eq. (40b), we use PETSc’s composable linear solver capabilities
(referred to as PCFieldsplit) to approximate the inverse of the Jφφ and Jcc blocks individually
using the BGS approach discussed previously. This is achieved by setting up a multiplicative
FieldSplit within PETSc. The solve is decomposed into two levels of iterations. The outer
iteration is simply GMRES, which relies on the inner iteration consisting of a single applica-
tion of HYPRE’s algebraic multigrid BoomerAMG [22] solver on the separate potential and
concentration blocks. In the next section, we compare the performance of the BGS solver
with that of a popular parallel LU solver, the MUltifrontal Massively Parallel sparse direct
Solver (MUMPS) package [2]. All numerical experiments are carried out on Dual Intel Xeon
Gold Skylake 6154 (3.0-GHz, 18-core) server nodes with 96, 192, or 768 GB of memory

5 Numerical Results

This section discusses the numerical results of two simulated batteries to explore how the
block solver performs. First, a simple generated battery domain is used to compare the solver
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Fig. 3 The 7-particle test domain for examining the performance of BGS

performance of BGS and MUMPS as well as investigate the parallel performance of BGS.
Second, a more complex and real battery domain is used to investigate how BGS performs
under electrolyte depletion conditions.

5.1 Solver Comparison

To compare MUMPS and BGS, a simple battery geometry was generated. This domain
consisted of seven particles in line with the x-direction (electrode thickness) and repeated
in the y- and z-directions, which is represented in Fig. 3. The mesh was created using the
MATLAB-based mesh generation Iso2mesh toolbox [37]. The initial concentrations for
this problem were:

c0a = 0.05ca,max,

c0e = 1200 mol m−3,

c0c = 0.5cc,max,

with:

ca,max = 30000.0 mol m−3

cc,max = 9 × 109 mol m−3

For this simulation, the cathode is used as the reference domain, so no actual calculation
will occur within it. A reference voltage, φ0, of 5 V is arbitrarily chosen and set as the
cathode potential for the whole calculation. The initial concentration of the cathode is of
no importance because its overcharge potential (OCP) is set constant equal to 0 V, and its
exchange current density, ioc, is set to a high constant value (100 Am−2) because the cathode
is considered to be a lithium plate. The remaining potentials were calculated using Eqs. (28)
and (29). The simulation persisted until the intercalation fraction in the anode was 0.95.

The first series of tests performed involve increasing the number of DOFs while recording
memory requirements and time to solution. Because these are 3-D simulations, uniform
refinement of an initial mesh would increase the number of DOFs by a factor of around 8. In
other words, it would take only a few uniform refinements before themeshes grew beyond the
limitations of the hardware. To prevent this while still having comparable results, three initial
meshes were chosen that resulted in approximately 0.5, 1.0, 2.0 million DOFs for the entire
domain. These meshes were then uniformly refined three times to provide nine experimental
meshes. All of these tests were performed on a single node with 16 processes.

For each mesh, the simulation was performed to completion or until it ran out of allocated
time with a maximum of 10 days. During a simulation, anytime a solve occurred in the
electrolyte or anode, the maximum memory and wall clock time were recorded. Keep in
mind that a single solve on a domain will happen multiple times because the Newton and
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Table 2 The raw data used to compare MUMPS and BGS on the Anode solve

Test DOFs in Memory usage (GB) Solve time (s)

Index Millions MUMPS BGS Ratio MUMPS BGS Speedup

Anode

1 0.26 9.99 7.41 1.35 2.66 0.53 5.00

2 0.51 13.46 10.24 1.31 5.65 1.06 5.32

3 1.02 23.33 16.02 1.46 12.62 2.22 5.68

4 1.74 37.75 24.31 1.55 24.74 3.48 7.10

5 3.52 75.83 44.39 1.71 58.20 7.50 7.76

6 7.15 163.65 78.95 2.07 143.64 15.49 9.27

7 12.58 323.84 130.76 2.48 333.40 29.20 11.42

8 25.76 730.90 263.83 2.77 1042.77 61.42 16.98

9 52.90 OOM 492.61 – OOM 171.21 –

All simulations use the 7-particle domain on a single node with 16 processors. The mesh from the italic row
was used to perform the strong scaling study in Fig. 9

Table 3 The raw data used to compare MUMPS and BGS on the Electrolyte solve

Test DOFs in Memory usage (GB) Solve time (s)

Index Millions MUMPS BGS Ratio MUMPS BGS Speedup

Electrolyte

1 0.22 10.02 7.46 1.34 2.51 0.88 2.85

2 0.45 13.91 10.35 1.34 5.75 1.81 3.17

3 0.90 25.83 16.26 1.59 14.21 4.03 3.53

4 1.53 37.96 24.50 1.54 25.42 6.15 4.13

5 3.14 85.54 44.83 1.91 69.68 13.95 4.99

6 6.46 201.23 79.39 2.53 214.12 33.57 6.38

7 11.22 341.71 130.48 2.62 394.13 65.72 6.00

8 23.26 OOM 263.37 – OOM 152.36 –

9 48.33 OOM 490.31 – OOM 340.25 –

All simulations use the 7-particle domain on a single node with 16 processors. The mesh from the italic row
was used to perform the strong scaling study in Fig. 9

Consistency loops discussed in Algorithm 1. The average memory usage and wall clock time
for each domain and all meshes are found in Tables 2 and 3. Some simulations ran out of
memory, which is denoted as OOM. As a note, The “Test Index” indicates which meshes
were being used in the same simulation. For example, Test 4 contained the electrolyte mesh
with 1.53 M DOFs and the anode mesh with 1.74 M DOFs. The full simulation for Test 4
involved solving on those two meshes independently and sharing information across their
interface, �ae.

The data in Tables 2 and 3 is also presented in Figs. 4 and 5. Figure 4 show how the time
to complete a single solve on a specific domain grows with increasing DOFs. The iterative
solver, BGS, is between 5.00 to 16.98 times faster than MUMPS when solving in the anode
domain, and between 2.85 to 6.38 times faster than MUMPS in the electrolyte domain. The
speed advantage of BGS is expected to increase as the number of DOFs increases. The
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Fig. 4 The bottom set of plots are a comparison of the time to solution for one linear solve of each solver
method: MUMPS or BGS. The timing data was collected by taking the average of every domain specific solve
for an entire simulation. Additionally, the top set of plots show the ratio of MUMPS computational time to
BGS computational time

Fig. 5 The bottom set of plots are a comparison of the peak memory usage used by each solver method:
MUMPS or BGS. This data was collected using the Python package memory_profiler. Additionally, the
top set of plots show the ratio of MUMPS memory usage to BGS memory usage

smaller speedup in the electrolyte domain is expected because the system is more difficult
because of the additional off-diagonal terms. It is expected that a better preconditioner using
Schur complements could be constructed to increase the performance within the electrolyte
domain. This Schur complement method is still in development.

The memory usage information is summarized in Figs. 5 and 6. On average, a solve
using BGS takes about half the memory required by MUMPS; however, the ratio of memory
required by MUMPS vs. BGS continues to increase as the number of DOFs increases. It is
interesting to note that even though the anode domain generally has more DOFs, it requires
lessmemory to solve. This is because the coefficientmatrix for the electrolyte system contains
more nonzeros resulting from the off-diagonal terms. This is why Test 8 ran out of memory
while solving the electrolyte but succeeded in solving the anode. In short, the BGSmethod is
much better suited for solving larger scale problems than MUMPS. This is not only because
BGS is faster; it also uses less memory. From looking at the number of bytes per DOF in
Fig. 6, the clear trend is that MUMPS becomes less efficient at larger problems sizes, while
BGS become more efficient
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Fig. 6 Comparison of the bytes used per DOF for each solver method: MUMPS or BGS

Table 4 A summary of the
various methods for measuring
parallel performance

Scaling Type problem size Number of processes

Strong Fixed Increasing

Weak Increasing Increasing

Static Increasing Fixed

Fig. 7 An example of ideal static
scaling

5.2 Parallel Scaling

In the previous section, it was shown that the BGS method is more computationally efficient
than the direct solver, MUMPS; however these tests were performed on a single node with 16
processes. This section examines the BGS method’s parallel scalability. Traditional methods
for testing an algorithm’s parallel performance involve strong and weak scaling studies. In a
strong scaling study, the problem size is held constant and the number of processes increases.
A weak scaling study attempts to keep the ratio of problem size and processes constant by
increasing both DOFs and processes at the same rate using a DOF per process constraint. A
third option, however, holds the number of processes constant while increasing the problem
size. This method is known as static scaling and is used to asses the ideal problem size for a
given parallel framework. A summary of all the scaling metrics is found in Table 4.

An example of ideal static scaling is found in Fig. 7. In this figure, there are three dominant
regions: communication limited, optimal scaling, memory limited. In the communication
limited region, the problem size is very small compared to the number of processes. This
results in the solve slowing down because of the extensive communication overhead. The
memory limited region results from the problem size growing out so large that the number
of processes is insufficient, resulting in a slowdown because of transferring information in
memory from suboptimal locations. In the final region, the problem size is a perfect match
for the number of processes, whichminimizes solve time and results in optimal scaling.More
about static scaling can be found in [6,9,26,31].
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Fig. 8 Static scaling for both MUMPS and BGS. All simulations use the 7-particle domain on a single node
with 16 processors. The boxed point is the problem chosen in the strong scaling study in Fig. 9

Fig. 9 Strong scaling plot generated using the 3.52MDOFmesh for the electrode domain and the 3.14MDOF
mesh for the electrolyte domain and 16 processes per node. These meshes correspond to the highlighted rows
in Tables 2 and 3

The static scaling result for BGS andMUMPSon the system in (16)–(17) is found in Fig. 8.
As expected, this figure shows that the BGSmethod can process more DOFs/s thanMUMPS,
which is only a different way of presenting the information from Fig. 4. Additionally, for
both solution methods the anode problem is more efficient, which is expected because of the
difficulty in solving the electrolyte problem. The main point of this figure is to show that the
BGS method remains within the optimal scaling region longer than MUMPS. This means
the BGS method should exhibit good scaling performance.

The strong scaling study is found in Fig. 9. The initial mesh used for this set of experiments
comes from the gray rows in Tables 2 and 3, which also corresponds to the boxed points in
Fig. 8. This series of tests used 16 processes per node and double the number of nodes with
each successive test. Using BGS to solve the anode problem results in nearly ideal scaling;
however, the solve within the electrolyte domain starts to see diminishing returns after using
4 nodes (64 processes).

One possible cause for the suboptimal scaling within the electrolyte is an increase of
Krylov iterations required to solve the problem as the number of MPI processes increases.
As shown in Fig. 10, however, the average number of Krylov iterations remains relatively
constant. Another possible cause has to do with the sparsity patterns of the two domains.
Unlike in the solid domains, the electrolyte problem contains coupling on more than just
the interface boundary. This could lead to a degradation in parallel performance because
sparse matrix-vector multiplications have very low arithmetic intensities and can present as
serial bottlenecks at the memory levels of each server node (see [9] for further discussion).
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Fig. 10 The average number of
Krylov iterations required to
solve each domain for the
specified number of nodes

Cathode Separator Electrolyte Anode
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Fig. 11 The tomography-based mesh generated from a sample of SLC1506T Round 2 electrode used for
testing electrolyte depletion. This electrode has a porosity of 37.4%

Currently, the inverse of each block, Jφφ and Jcc, is approximated using algebraic multigrid;
however, a better approximation to Jcc−1 could be constructed using the Schur complement.
This is the topic of future research.

5.3 Electrolyte Depletion

The final experiment involves the modification discussed in Sect. 2.7. When charging at high
C-rates, real Li-ion batteries can experience electrolyte depletion, which makes solving the
electrolyte problem significantly more difficult. The mesh used to test electrolyte depletion
was generated from a real SLC1506T Round 2 Electrode fabricated by the Cell Analysis,
Modeling and Prototyping facility at Argonne National Laboratory and imaged byUniversity
College London with nano-CT, which is shown in Fig. 11. The complex geometry of this
mesh will make diffusing Li+ through the electrolyte more difficult. Further, to artificially
induce electrolyte depletion, several simulations are performed by decreasing the initial
concentration of Li+ within the electrolyte.

Figure 12 shows the performance of BGS with the original and modified version of the
system in Eqs. (6)–(17). Because electrolyte depletion occurs as the concentration gradient
develops over timewithin the electrode, the time required to increase the SOC of the anode by
0.003555 was used instead of the time to perform an individual BGS solve. This took about
5 full time steps or about 2.88 simulated minutes. Including all five time steps incorporates
the effects of electrolyte depletion on the Newton and consistency iterations as well as the
linear solve.

In general, as the initial Li+ concentration decreases, the time to solution increases, which
is expected; however, without the modification, BGS begins to diverge as the concentration
decreases, to the point where the simulation crashes with an initial concentration of 40 mol
m−3. The modified version was able to simulate down to 10 mol m−3. In addition to this, the
modified version is generally faster. This has to do with the fact that the unmodified case is
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Fig. 12 The effect of electrolyte
depletion on solve time. This data
was collected by summing the
time to completion of the first
five time steps. The modified
system refers to the modification
discussed in Sect. 2.7. In a typical
Li-ion battery, the electrolyte
concentration is around 1200 mol
m−3

closer to singular when concentration approaches zero, which requires more linear iterations
to get to the same level of accuracy as the modified case. On average, the modified case was
1.7 times faster than the unmodified problem.

6 Conclusion

In this paper, we presented a segregated-domain scheme to solve the electrochemistry of the
Li-ion battery with FEniCS and a block preconditioning approach that significantly acceler-
ates the linear solver. By simply leveraging the state-of-the-art preconditioned Krylov solvers
available in the PETSc library, we achieved a nearly 6 times speedup over traditionally used
direct solvers, and we expect this speedup to increase when we examine larger domains.
Further, our block solver approach is scalable both in the algorithmic and parallel sense.
Additionally, with a small modification to the off-diagonal term within the electrolyte, the
solver was able to handle simulations with significantly smaller Li+ concentrations. Contin-
uing research will include the development of a better Schur-based block preconditioner for
the electrolyte to overcome the issue of off-diagonal dominance associated with electrolyte
depletion.
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