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Abstract
This work deals with the efficient iterative solution of the system of equations stemming
from mimetic finite difference discretization of a hybrid-dimensional mixed Darcy problem
modeling flow in fractured porous media. We investigate the spectral properties of a mixed
discrete formulation based on mimetic finite differences for flow in the bulk matrix and finite
volumes for the fractures, and present an approximation of the factors in a set of approximate
block factorization preconditioners that accelerates convergence of iterative solvers applied
to the resulting discrete system. Numerical tests on significant three-dimensional cases have
assessed the properties of the proposed preconditioners.

Keywords Porous media flow · Fractured media · Preconditioners

Introduction

The simulation of underground flows in fractured porous media is of great interest for a large
number of geophysical applications, such as oil production, CO2 storage, and groundwater
contamination and remediation. It is well-known that the presence of fractures and/or faults
strongly influence subsurface flows. The major challenges from the numerical viewpoint
are represented by (i) geometric complexity, and (ii) strong heterogeneity of materials at
different space scales. While micro-fractures can be accounted for by means of homogeniza-
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tion/upscaling techniques, large fractures and faults play amore complex role, acting as paths
or barriers for the flow, and therefore they have to be included in the model explicitly. Frac-
tures are characterized by a small aperture compared to their typical length and the size of the
domain, thus a widely employed approach consists in modeling them as (d−1)-dimensional
interfaces immersed in a d-dimensional porous medium (indicated in the following as the
bulk). A reduced (d − 1)-dimensional problem is then solved on the surfaces representing
the fractures, with physically-consistent coupling conditions accounting for the exchange of
fluid between fractures and porous medium.

From the computational viewpoint, this dimensionally-hybrid setting avoids the need for
extremely fine grids to resolve the fracture’s scales. Assuming that the fractures are filled
by a porous medium with its own porosity and permeability, Darcy’s law can be used for
modeling both d-dimensional bulk and the (d − 1)-dimensional fracture flow problems. The
first dimensionally-hybrid model for flow in fractured porous media has been proposed in
[4] in the case of a very permeable fracture. Later on, in [51] it has been generalized to
fractures featuring low permeability. These models were derived based on the assumption
that there is one single fracture cutting the bulk domain in exactly two non-overlapping
subdomains; the extension to the case of a fully immersed fracture has been analyzed in [6].
This dimensionally-hybrid model has also been extended to the case of a two-phase flow in
[43,47]. One of the main issues concerning discretization of the flow in heterogeneous media
is mesh generation. Indeed, the grid has to be conformingwith the fractures, but whenever the
number of fractures is very large such a constraint can result in a unaffordable computational
burden, particularly whenever fractures feature small intersection angles, or they are nearly
coincident. Indeed, in such cases, the conformity constraint can lead either to very fine grids,
or to low-quality elements (small angles, high aspect ratios). To overcome this difficulty a
possible strategy consists in the use of numerical schemes that can support arbitrarily shaped
polygonal and polyhedral meshes, and that guarantee good approximation properties also in
presence of low-quality mesh elements.

Indeed, in recent years, the exploitation of computational meshes composed of polygonal
and polyhedral elements has become very popular in the field of numericalmethods for partial
differential equations because the flexibility they offer allows for the design of efficient com-
putational grids when the underlying problem is characterized by a strong complexity of the
physical domain. Several conforming and non-conforming numerical discretization methods
which admit polygonal/polyhedral meshes have been proposed in recent literature; here, we
mention, for example, Mimetic Finite Differences (MFD) [12,18,28,30], high-order poly-
hedral Discontinuous Galerkin (PolyDG) methods, [10,11,13,32], Virtual Element methods
(VEM), [15,16], and the Hybrid High-Order (HHO) method, [33,36].

In this paper, continuing thework initiated in [12] we focus onMimetic Finite Differences,
which in the last years have been successfully applied to a wide range of problems, as for
example diffusion-type problems [7,17,28,29], electromagnetism [27], plate equations [19],
non-linear and control problems [8,9], and tomodel two-phase flows [48].We refer to [14,18]
for a comprehensive review onMFD schemes. In the context of numerical modeling of flows
in fractured porous media, MFD have been successfully used in [3,12,42]. Several other
numerical techniques have been proposed in recent years for fractured media flow, reflecting
the importance of the subject for various applications. With no claim of completeness, in
addition to the already cited literature wemention here some recent works by several research
groups [2,24–26,56].

We will consider the formulation proposed in [12], where a mixed MFD approximation
for the coupled Darcy’s model is analyzed for a fully immersed fracture network. The linear
system of equations stemming from the discretization has the form of a generalized saddle-
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point system, sometimes referred to as a double saddle-point problem [5], reading

⎡
⎣
Mc BT CT

B 0 0
C 0 −T

⎤
⎦
⎡
⎣

u
p
pΓ

⎤
⎦ =

⎡
⎣

g
h
hΓ

⎤
⎦ ,

for suitable matrices that will be defined in Sect. 1, and where u, p and pΓ contain the
approximate solution for the bulk velocity, bulk pressure, and fracture pressure, respectively,
while the vectors g, h and hΓ contain the terms arising from the forcing and boundary data.

In this paper we analyze the spectral properties of the system of equations stemming
from the considered MFD-FV discretization. More precisely, we prove that, as expected,
the condition number of the double saddle-point system depends on the contrast of the
permeability in the bulk and in the fractures, and, asymptotically, it grows as O(h−3), h
being the characteristic mesh size. To reach this result we extended the work of [50] and we
make use of a conjecture, so far verified only numerically.

We then address the problem of efficiently solving the above linear system of equations
by devising suitable preconditioning algorithms to accelerate the convergence of iterative
schemes. We have chosen classical approximate block factorization (ABF) preconditioners
because they can be readily implemented in existing codes since they make use of quantities
directly available. We propose a technique to construct the approximation of the factors,
which, despite its simplicity, has proved to be rather effective.

In the context of preconditioners for fractured porous media simulations, we mention the
recent work [31], where a set of norm-equivalent preconditioners [49] are presented, though
for a different approximation scheme than the one adopted in this work, some of which show
some analogies to the ones proposed here. In the context of saddle-point problems arising
in geomechanics, we mention also block preconditioners based on the use of approximate
inverses, like the ones adopted in [22]. However, in this work we decided to focus on simpler
factorized block approximations straightforwardly implementable in an existing code for
flow in fractured porous media.

The paper is structured as follows. In Sect. 1, we introduce the hybrid-dimensional math-
ematical model and its numerical approximation based on the approach of [12]. In Sect. 2
we discuss the spectral properties of the resulting system matrix. In Sect. 3, we then present
some techniques for preconditioning the linear system of equations. The performance of the
proposed preconditioners is then assessed in Sect. 4 on three-dimensional test cases. Finally,
in Sect. 5 we draw some conclusions.

1 Mathematical Model and Its Numerical Approximation

The mathematical model we consider in this work follows [42] and [12]. We will recall it
briefly, for the sake of completeness. Let Ω ⊂ R

3 be an open, convex polyhedral domain
representing a porousmedium saturated by a fluid. Themedium is fractured, and the fractures
are modeled as a collection of planar surfaces. More precisely, with Γ we denote the fracture
network given by the union of MΓ fractures γk , for k = 1, . . . , MΓ , where γk is a 2-
dimensional planar open domain embedded in R

3, i.e. Γ =⋃MΓ

k=1 γk .
We indicate with ii j = ∂γi ∩ ∂γ j the intersection between fracture γi and fracture γ j ,

possibly being the empty set, and with I the set of all intersections ii j with non-zero 1-
measure. Finally, ΩΓ = Ω \ Γ denotes the part of the domain occupied by the rock matrix,
which in the following we will indicate as bulk.
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Flow in the bulk and in the fractures is assumed to be governed byDarcy’s law.We are thus
assuming that fractures are filled by a porousmediumwith different porosity and permeability
with respect to the surrounding porousmatrix.We denote with K a symmetric positive definite
permeability tensor, which we assume to be piecewise constant inΩΓ , and with f a possible
source term.We assume also that the fluid and themedium are incompressible and we neglect
gravitational effects. Note that, since the fluid viscosity μ is considered constant, we have
defined K = μ−1

K, with K being the actual material permeability tensor.
As for the fractures, we use the reduced model originally developed in [51] for a single

fracture, extended to fracture networks as explained in [42]. In particular, we assume that on
each γk we can identify a normal vector nk and that we can decompose the permeability K̂k
of the material in the fracture into a normal component K̂nk and a symmetric semi-definite
tensor K̂τk so that K̂k = K̂nknk ⊗ nk + K̂τk , with K̂nk > 0 and vT K̂τkv > 0 if v × nk �= 0,
while K̂τknk = 0. Following [51], we may define on each fracture the fracture aperture lk > 0
(assumed constant in each γk), effective tangential and normal permeability Kτk = lk K̂τk , and
Knk = l−1

k
K̂nk , as well as the normal effective resistivity ηk = K−1

nk = lk K̂−1
nk . For all

functions defined on each γk we will use normally the subscript Γ to denote their direct
product on the whole Γ ,

ηΓ =
⊗
γk∈Γ

ηk, KΓ =
⊗
γk∈Γ

Kτk , and Kn,Γ =
⊗
γk∈Γ

Knk .

Following [12], we employ a mixed formulation in the bulk, where the unknowns are the
Darcy velocity u and pressure p, while in the fracture network we use a primal formulation
where the only unknown is the pressure, indicated by pΓ : Γ → R.

To describe the equations and the coupling terms we need to define the jump and average
operator across the fractures. Let v : ΩΓ → R be a regular function so that on each γk ∈ Γ

we can define v±(x) = limh→0+ v(x ± hnk), for x ∈ γk . On Γ , we set �v� = v+ − v− and

{v} = 1

2
(v+ + v−). Note that we can identify a positive and negative side, γ +

k γ −
k , of each

γk , so that v+ and v− are in fact the traces of v on γ +
k and γ −

k , respectively.
We partition ∂ΩΓ into ∂ΩN and ∂ΩD , where we impose conditions on the normal fluid

velocity and pressure, respectively. We assume that |∂ΩD| > 0, where |∂ΩD| here indicates
the 2-measure of ΩD . As for the fracture network, we can identify three parts of ∂Γ : ∂ΓN

and ∂ΓD are the portions of ∂Γ ∩∂Ω where we impose the flux or the pressure, respectively,
while ∂Γ0 is the part of the boundary of the fracture network fully immersed in the bulk.
Here, we follow the usual practice of imposing zero flux.

We can now write the differential problems in the bulk and in the fracture networks,
complemented by the coupling conditions which will be detailed later on:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ p + K−1u = 0 in ΩΓ

∇ · u = f in ΩΓ

p = g on ∂ΩD

u · n = φ on ∂ΩN

(1a)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇Γ · (KΓ ∇Γ pΓ ) − �u · nΓ � = lΓ fΓ in Γ

pΓ = gΓ on ∂ΓD

−KΓ ∇Γ pΓ · τΓ = φΓ on ∂ΓN

−KΓ ∇Γ pΓ · τΓ = 0 on ∂Γ0.

(1b)
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Here, ∇Γ · and ∇Γ denote the tangential divergence and gradient operators, while τΓ is
the unitary normal to ∂Γ parallel to the fracture tangent plane.

We now provide the interface conditions that couple the model for flow in the bulk, cf.
(1a), with that in the fractures, cf. (1b). For a ξ0 ∈ (0, 1/4], they are given by

{
ξ0ηΓ �u · nΓ � = {p} − pΓ on Γ

ηΓ {u · nΓ } = �p� on Γ .
(2)

The derivation can be found in the cited references. The closure parameter ξ0 > 0 depends on
the assumption made on the variation of pressure across the fracture aperture when deriving
the reduced model.1 For what concerns the conditions at the intersection between fractures,
several solutions are possible. For instance, in [54] and in [41] special conditions were
studied to account for possible strong variations of permeability between fractures (however
limited to the two-dimensional case). Here, for the sake of simplicity, we assume continuity of
pressure and flux balance at each intersection, a common choice for discrete fracture network
simulations.

1.1 Weak Formulation

To define the functional setting of the problem we first note that for all p ∈ [1,∞], an
element of L p(ΩΓ )may be identified with an element of L p(Ω), since Γ is of zero measure.
Furthermore, we state some regularity assumptions on the data. To this purpose we indicate
with ∗ and ∗ positive upper and lower bounds of the corresponding quantity. We then require
K∗ ≤ ζ TKζ ≤ K ∗ for all ζ ∈ R

d \ {0} and a.e. in ΩΓ , while η∗ ≤ ηΓ ≤ η∗, KΓ ∗ ≤
ζ T KΓ ζ ≤ K ∗

Γ , for all ζ ∈ R
d with ζ · nΓ �= 0 and a.e. on Γ .

We introduce the following functional spaces for pressure and Darcy velocity in the bulk,

Q = L2(ΩΓ ), W = {v ∈ Hdiv(ΩΓ ) : �v · nΓ � ∈ L2(Γ ), {v · nΓ } ∈ L2(Γ )},
equipped with the norms ||q||Q = ||q||L2(ΩΓ ), and ||v||2W = ||div v||2

L2(ΩΓ )
+ ||v||2

L2(ΩΓ )
+

||{v · nΓ }||2
L2(Γ )

+ ||�v · nΓ �||2
L2(Γ )

. They are Hilbert spaces with scalar products inducing
the stated norms.

To account for boundary conditions, we define W0,∂ΩN = {v ∈ W : v · n = 0 on ∂ΩN },
where n is the unit outward normal to Ω and v · n is intended in the sense of traces of
elements of Hdiv(ΩΓ ). For the forcing term and the boundary data we take f ∈ L2(ΩΓ ),
φ ∈ L2(∂ΩD) and g regular enough such that there exists an element of H1(ΩΓ ) whose
trace on ∂ΩN coincides with g.

As for the model of the fracture, on each γk we define Zk = {q : q ∈ L2(γk), ∇τq ∈
L2(γk)}, and

ZΓ = {qΓ ∈
⊗
γk∈Γ

Zk : qΓ |γk = qΓ |γ j on ik j , ∀ik j ∈ I},

while Z0,ΓD = {qΓ ∈ ZΓ : qΓ = 0 on ΓD}.We take φΓ ∈ L2(∂ΓN ) and gΓ regular enough
to be a trace on ΓD of functions in ZΓ .

We define the following bilinear forms: for u, v ∈ W , q ∈ Q and qΓ , zΓ ∈ ZΓ ,

1 The optimal value, corresponding to a parabolic variation, can be either ξ0 = 1/8 or ξ0 = 1/12, depending
on the measure used for the model error, for a recent discussion on the matter see also [46].
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aξ (u, v) =
∫

ΩΓ

(K−1u) · v +
∫

Γ

ηΓ {u · nΓ }{v · nΓ } + ξ0

∫
Γ

ηΓ �u · nΓ ��v · nΓ �,

b(v, q) = −
∫

ΩΓ

q divv, c(v, qΓ ) =
∫

Γ

qΓ �v · nΓ �,

d(qΓ , zΓ ) =
∫

Γ

(KΓ ∇qΓ ) · ∇zΓ ,

and, to write the weak formulation of the problem in a more compact form, we define Q =
Q×Z ,Q0 = Q×Z0,ΓD and the form B : W×Q → R : B(v, (q, qΓ )) = b(v, q)+c(v, qΓ ).
We introduce also rφ ∈ W and rφΓ ∈ ZΓ that represent the lifting of the boundary data on
∂ΩN and ∂ΓD respectively. Following the steps illustrated in [12,42], we can write the
following weak formulation of our problem

Problem 1 Find u ∈ W0,∂ΩN , (p, pΓ ) ∈ Q0 such that
{
aξ (u, v) + B

(
v, (p, pΓ )

) = F(v) ∀ v ∈ W0,∂ΩN

B
(
u, (q, qΓ )

)−d(pΓ , qΓ ) = FΓ

(
(q, qΓ )

) ∀(q, qΓ ) ∈ Q0,
(3)

where

F(v) = −
∫

ΓD

gv · n − aξ (rφ, v),

FΓ

(
(q, qΓ )

) = −
∫

Γ

fΓ qΓ −
∫

∂ΓN

φΓ qΓ + d(rφΓ , qΓ ) −
∫

ΩΓ

f q. (4)

Theorem 1 Problem 1 is well posed.

Proof Well posedness may be proven by exploiting the results in [42]. Since |∂ΩD| > 0, in
the cited work it is shown that aξ is continuous and coercive inW0,∂ΩN , and B is continuous
and satisfies an inf-sup condition. The continuity of the functionals at the right hand side can
be assessed by standard techniques, while d is clearly a semi-positive definite form. Well
posedness then follows, see also [23]. �

1.2 Numerical Scheme

Let Ωh be a partition of ΩΓ into non-overlapping polyhedra (bulk cells) P, conforming to
the fracture Γ . We define the mesh spacing as h = maxP∈Ωh hP, where hP is the diameter of
cell P. Let Fh be the set of facets of the cells in Ωh , i.e. any f ∈ Fh is a facet of a P ∈ Ωh . To
be able to represent jumps and average values, the facets laying on Γ will be doubled. More
precisely, FΓ

h = Γ ∩ Fh is formed by pairs of geometrically identical facets (f+, f−) that
cover Γ . This also implies that Ωh induces a natural partition of Γ , that we indicate by Γh ,
into planar facets f̂, called fracture cells, and for any f̂ ∈ Γh there is a couple of bulk facets
f+(f̂), f −(f̂) ∈ Fh that coincide geometrically with f̂. The set Fh may then be partitioned as

Fh = F0
h ∪ FΓ

h,+ ∪ FΓ
h,− ∪ F

ΓD
h ∪ F

ΓN
h = F0

h ∪ FΓ
h ∪ F∂Ω

h ,

where F∂Ω
h = F

∂ΩD
h ∪F

∂ΩN
h collects the boundary facets, i.e. Dirichlet and Neumann facets,

F0
h collects the internal facets and F

Γ
h = FΓ

h,+ ∪ FΓ
h,− is the union of the decoupled fracture

facets. We denote by Fh(P) ⊂ Fh the facets of a P ∈ Ωh and N f
P = card(Fh(P)). For the

cells in Ωh we make the following assumptions [18].
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Assumption 1 There exist two positive real numbers Ns and ρs independent of h such that
Ωh admits a conforming sub-partition Th made of tetrahedra such that:

– each polyhedron P is star-shaped with respect to a point xP ∈ P and each facet f is
star-shaped with respect to a point xf ∈ f.

– every polyhedron P ∈ Ωh admits a decomposition Th |P of at most Ns tetrahedra. More-
over, the sub-partition Th is simple, i.e., it is built in the following way. Firstly, each
facet f is subdivided into triangles by connecting each vertex of f with xf. Secondly, each
element P is decomposed into tetrahedra by connecting each vertex of P and each point
xf, with f ∈ Fh(P), to the point xP;

– every tetrahedron T ∈ Th is regular, i.e. the ratio between the radius rT of the inscribed
sphere and the diameter hT is bounded from below by ρs , i.e.

r T
hT

≥ ρs > 0.

These assumptions impose some limitations on the shape of the admissible elements, which
however are not too restrictive. Indeed, the grid Ωh may contain rather generally shaped
elements, like non-convex cells. For the forthcoming analysis,wemake the following assump-
tion.

Assumption 2 The meshes Ωh and Γh are aligned with the discontinuities of the piecewise
constant permeability tensorsK andKΓ , respectively.Moreover,Γh satisfies aK-orthogonality
property in the sense of [1], i.e. there exists a set of control points {xf}f∈Fh

such that for any

f ∈ Fh , xf ∈ f̊ and, for any pair of neighboring elements facets f, f′ ∈ Fh sharing an edge σ

of normal n, it holds that Kn is parallel to the segment joining the control points xf and xf′ .
2

We refer to the recent paper [20] for details on effective strategies for mesh generation
and implementation aspects in the context of Virtual Element approximations of coupled
multi-dimensional flow problems.

We denote by |P| and |f| the volume of the polyhedron P and the area of the facet f,
respectively. For every facet f ∈ Fh we consider a unit normal vector nf, and in particular,
for every couple of fracture facets f+, f− ∈ FΓ

h , we set nf+ = nf− = nΓ , while we denote by
nP,f the unit normal vector on a facet f ∈ Fh(P) of cell P, and we set αP,f = nf · nP,f, while
we indicate with xP and xf the barycentres of P and f, respectively.

To simplify the set-up of the algebraic system stemming from the discretization of (1), we
restrict ourselves to the case ∂ΩN = ∅. The more general case may be treated by standard
techniques that do not alter the properties of the numerical scheme (as long as |∂ΩD| > 0).

We approximate the discrete pressure fields with piecewise constant values on each cell,
and the bulk velocity with constant normal values on each facet. Let NP = card(Ωh), NΓ =
card(Γh), and Nf = card(Fh). We set QΩ

h = R
NP , QΓ

h = R
NΓ and Wh = R

Nf and we
denote with ph ∈ QΩ

h , and pΓ ,h ∈ QΓ
h the vectors of discrete pressure in the bulk and in

the fracture network, respectively. We will indicate the global space of discrete pressures as
Qh = QΩ

h × QΓ
h . With pP, respectively pf̂, we indicate the approximation of the pressure

on bulk cell P and on the fracture network facet f̂, that is

pP � 1

|P|
∫
P
p, and pf̂ � 1

|f̂|
∫
f̂
pΓ . (5)

2 We point out that the term K-orthogonality is common in the context of flows in fractured porous media
and that is used (thought stated differently) in the framework of the discretization of the diffusion operator
with finite volumes, see [39]. If K is isotropic, it coincides with the so-called orthogonality condition [37,40],
which is purely geometrical.
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Fig. 1 Degrees of freedom: velocity (left), pressure (right)

As standard in MFDmethods the degrees of freedom for velocity in the bulk approximate
with a constant value the normal velocity across each cell facet. Therefore, if uh ∈ Wh is the
vector of velocity degrees of freedom, we indicate with

uf � 1

|f|
∫
f
u · nf (6)

its component of uh associated to facet f.
In the following, whenever convenient, we will use the notation Pi , f̂i and fi to indicate

the i th bulk cell, fracture cell and bulk facet in QΩ
h , QΓ

h and Wh , respectively.
The derivation of the mimetic discretization is based on the definition of inner products

on QΩ
h and Wh . More precisely, we have

[qh, rh]QΩ
h

=
∑
P∈Ωh

|P|qPrP, ∀qh, rh ∈ QΩ
h , (7)

and, for vh and wh in Wh ,

[vh,wh]Wh = wT
h Mcvh = wT

h Mvh + wT
h Evh

=
∑
P∈Ωh

wPMPvP

+
∑

f̂ ∈Γh

ηf̂|f̂|
({wh · nΓ }f̂{vh · nΓ }f̂ + ξ0�wh · nΓ �f̂�vh · nΓ �f̂

)
. (8)

Here,

�vh · nΓ �f̂ = vf+(f̂) − vf−(f̂), {vh · nΓ }f̂ =
vf+(f̂) + vf−(f̂)

2
, (9)

are the jumps and averages of vh across the facet f̂, ηf̂ is the value of ηΓ on facet f̂, while M
and E are the matrices that contribute to the mimetic inner product matrix Mc = M + E.

Matrix M is the classical MFD inner product matrix, which is built by assembling the
cell-wise contributions MP, while E accounts for the contribution due to the coupling condi-
tions (2), and is defined implicitly by

wT
h Evh =

∑

f̂ ∈Γh

ηf̂|f̂|
({wh · nΓ }f̂{vh · nΓ }f̂ + ξ0�wh · nΓ �f̂�vh · nΓ �f̂

)
. (10)
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As forMP its construction follows [18], and is briefly described. Let P ∈ Ωh and f1, . . . , fN f
P

be the facets in Fh(P). We define the matrices ZP ∈ R
N f
P×d and RP ∈ R

N f
P×d as

ZP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nTf1
...

nTfi
...

nTf
N f
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
KP, RP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αP,f1 |f1|(cf1 − cP)
...

αP,fi |fi |(cfi − cP)
...

αP,f
N f
P

|fN f
P
|(cf

N f
P

− cP)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Here, KP is the value of the permeability K on cell P, cfi , and cP are the barycenters of fi and
P, respectively.

The elemental mimetic inner product matrix is then given by

MP = RP
( 1

|P|K
−1
P

)
RTP + γP

(
I − ZP(Z

T
PZP)

−1ZTP
)

, (12)

with

γP = 2

N f
P|P|

tr(RPK
−1
P RTP).

It can be proven, see [42], that Mc is symmetric positive definite and that the inner product
in (8) satisfies the requirements of consistency and stability necessary for a proper MFD
discretization.Another step in aMFDdiscretization is the definition of the discrete divergence
operator. For the case of fractured media, it has to represent the discretization of both the
divergence operator and the flux exchange term appearing in the equation governing flow in
the fractures. We thus define DIVh : Wh → Qh and an inner product on Qh so that, for any
vh ∈ Wh and (qh, q̂h) ∈ Qh ,

[DIVhvh, (qh, q̂h)]Qh = [divhvh,qh]QΩ
h

+
∑

f̂∈Γ h

|f̂|q̂f̂�vh · nΓ �f̂, (13)

where the i th component of divhvh ∈ QΩ
h is given by

[divhvh]i = 1

|Pi |
∑

f∈Fh(Pi )

αPi ,f|f|vf.

The latter relation, together with (13) and (7), allows us to construct the matrices B ∈ R
Nf×NP

and C ∈ R
Nf×NΓ such that

− [DIVhvh, (qh, q̂h)]Qh = qTh Bvh + q̂Th Cvh . (14)

Details may be found in [12,42].
As for the equations in the fracture network, we have employed the finite volume scheme

with the two point flux approximation described in [45]. For each fracture cell f̂i ∈ Γh , we
identify the set of edges of f̂i as J (i) = {ei : ei edge of f̂i , ei �⊂ ∂ΓN }, and ei j will indicate
the j th element of J (i). Clearly, j ranges from 1 to a maximum of 3 if the facet has no edges
on the Neumann boundary. For each ei j �⊂ ∂ΓD we indicate with p̂f̂(ei j ) the approximated

fracture pressure in the only cell f̂(ei j ) such that f̂i ∩ f̂(ei j ) = ei j . While, if ei j ⊂ ∂ΓD , p̂f̂(ei j )
indicates the average value of the Dirichlet datum on ei , and eventually it contributes to the
right hand side.
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The approximation of−∇Γ ·(KΓ ∇Γ pΓ ) by the finite volume schememay then be written
as

−
∑

ei j∈J (i)

Ti j ( p̂f̂(ei j ) − p̂f̂i ), i = 1, . . . NΓ . (15)

Matrix T, of components Ti j , is the so called transmissibility matrix, whose computation
is explained in details in the given references. It is symmetric and positive semi-definite
(positive definite if ∂ΓD �= ∅).

1.3 The Algebraic System

From now on, to simplify the notation, we omit the subscript h to indicate the vectors of
degrees of freedom. Thanks to the definitions in (8), (14) and (15), we may write the linear
system governing the discrete problem as

⎧⎪⎨
⎪⎩

Mcu + BT p + CT pΓ = g

Bu = h,

Cu − T pΓ = hΓ ,

(16)

or, equivalently, ⎡
⎣
Mc BT CT

B 0 0
C 0 −T

⎤
⎦
⎡
⎣

u
p
pΓ

⎤
⎦ =

⎡
⎣

g
h
hΓ

⎤
⎦ ,

where we recall that the vectors u, p and pΓ contain the approximate solution for the bulk
velocity, bulk pressure, and fracture pressure, respectively, while the vectors g, h and hΓ

contain the terms arising from the forcing and boundary data.

Theorem 2 System (16) is well posed.

Proof Let us first note that we can reduce the linear system to a classic saddle-point
algebraic problem. We define the following block matrices B̃ ∈ R

(NP+NΓ )×Nf and T̃ ∈
R

(NP+NΓ )×(NP+NΓ ) as

B̃ =
[
B
C

]
, T̃ =

[
0 0
0 T

]
, (17)

and the vectors π = [ p, pΓ ]T and h̃ = [h,hΓ ]T. The system can be rewritten as

[
Mc B̃

T

B̃ −̃T

][
u
π

]
=
[
g
h̃

]
. (18)

Following the steps illustrated in [42], we may prove that Mc is symmetric positive definite

and ker(̃B
T
) = ∅. Since T̃ is positive semi-definite, well posedness follows from standard

results on saddle-point systems, see for instance [21,23]. A similar result may be found also
in [12].3 �

3 We also note that the problem is well posed even if T̃ = 0. In this case, if also hΓ = 0we have �u ·nΓ � f̂ = 0

for all f̂ ∈ Γh , and pΓ is the vector of Lagrange multipliers imposing this condition.
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2 Spectral Properties of the Governing System of Equations

In this work wewill mainly focus on three-dimensional test cases, since their solution is more
challenging. That is why the numerical scheme has been introduced for that setting. However
in this section, for the sake of generality, we report the results for a generic space dimension
d , with d = 2 or d = 3. It is understood that for the two-dimensional case the assumptions
made on the mesh have to be reinterpreted appropriately. Moreover, we will keep the notation
used for the three-dimensional setting. In the following, with a � b (respectively, a � b) we
indicate the existence of a positive constantC , independent of h, such that a ≤ Cb (a ≥ Cb),
while a � b means b � a � b. We also recall that for any family of meshes {Ωh, h > 0}
that satisfy Assumption 1 we have

|P| � hd , |f| � hd−1 and card(Fh(P)) ≤ N∗, (19)

for all P ∈ Ωh and f ∈ Γh , and where N∗ is a positive integer independent of h. In all the
following derivations, we assume that the mesh satisfies Assumption 1, and consequently the
inequalities in (19).

We first introduce some norms and norm equivalence results. For all vh ∈ Wh we define

|||vh |||2Wh
=
∑
P∈Ωh

|P|
∑

f∈Fh(P)

v2f , (20)

‖vh‖2Wh
= |||vh |||2Wh

+
∑

f̂∈Γh

|f̂|(�vh�2f̂ + {vh}2f̂ ), (21)

‖vh‖2Mc
= [vh, vh]Wh = vTh Mcvh, (22)

‖q‖2
QΩ
h

= [qh, rh]QΩ
h

=
∑
P∈Ωh

|P|q2P , (23)

and
‖q‖2

QΓ
h

=
∑

f̂∈Γh

|f̂|q2
f̂
, (24)

while with ‖ · ‖ we indicate the standard Euclidean norm.

Lemma 1 We have the following inequalities:

‖p‖2
QΩ
h

� hd‖p‖2, ‖pΓ ‖2
QΓ
h

� hd−1‖pΓ ‖2, (25)

C∗||vh ||2Wh
� ||vh ||2Mc

� C∗||vh ||2Wh
∀ vh ∈ Wh, (26)

where C∗ = min( 1
K ∗ , ξ0η∗) and C∗ = max( 1

K∗ , η∗). Moreover, it holds that

|||vh |||Wh ≤ ‖vh‖Wh ≤
√
1 + C

h
|||vh |||Wh ∀ vh ∈ Wh, (27)

for a C > 0, and, for h sufficiently small,

hd ||vh ||2 � ‖vh‖2Wh
� hd−1‖vh‖2 ∀ vh ∈ Wh . (28)

Proof The equivalence relations in (25) is an immediate application of the definition (23)
and (24), and of the inequalities in (19).

123



2 Page 12 of 32 Journal of Scientific Computing (2021) 86 :2

The proof of (26) and (27) may be found in [42, Lemma 3.4] and [42, Lemma 3.1]. As
for (28), we clearly have

‖vh‖2Wh
≥ min

P∈Ωh

∑
P∈Ωh

∑
f∈Fh(P)

|f|v2f �hd‖vh‖2,

while,
∑

f̂∈Γh

�vh�2f̂ + {vh}2f̂ ≤ 2
∑

f̂∈Γh

(v2
f+(f̂)

+ v2
f−(f̂)

) ≤ 2‖vh‖2

and
∑
P∈Ωh

∑
f∈Fh(P)

v2f ≤ 2
∑
f∈Fh

v2f −
∑

f∈F∂Ω
h

v2f ≤ 2‖vh‖2.

Thus,

‖vh‖2Wh
≤ 2max(max

P∈Ωh

|P|,max
f̂∈Γh

|f̂|))‖vh‖2 � hd−1‖vh‖2,

for a sufficiently small h. �
In the following we will indicate by A the global matrix,

A =
⎡
⎣
Mc BT CT

B 0 0
C 0 −T

⎤
⎦ =

[
Mc B̃

T

B̃ −̃T

]
. (29)

It is well known, see for instance [38,57], thatA has Nf positive and NB = NΓ +NP negative
eigenvalues. We will indicate by 0 < λ

Mc
min ≤ λ

Mc
max the minimum and maximum eigenvalue

of Mc, by 0 < μB̃
min ≤ μB̃

max the minimum and maximum singular value of B̃
T
, and by

λ̃Tmax > 0 the maximum eigenvalue of T̃, which clearly corresponds also to the maximum
eigenvalue of T. Finally, we define

ζ = NB
max
k=1

‖pΓ ,k‖2
‖πk‖2 , (30)

where πk = [pk,pΓ ,k]T ∈ Qh is the pressure component of the eigenvector corresponding
to the kth negative eigenvalue of A. Clearly ζ ≤ 1.

We have the following

Lemma 2 The spectrum of A satisfies

σ(A) ⊆ I− ∪ I+,

where

I− =
[
1

2

(
λ
Mc
min − ζ λ̃Tmax −

√
(λ

Mc
min + ζ λ̃Tmax )

2 + 4(μB̃
max )

2

)
,

1

2

(
λMc
max −

√
(λ

Mc
max )

2 + 4(μB̃
min)

2

)]
⊂ R

−,

I+ =
[
λ
Mc
min,

1

2

(
λMc
max +

√
(λ

Mc
max )

2 + 4(μB̃
max )

2

)]
⊂ R

+.
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Proof The result is an extension of the one given in [55]. For the sake of brevity, we report
only the part that differs from the cited reference. We indicate with

λ
−,A
min = λA−NB

≤ · · · ≤ λA−1 = λ−,A
max < 0 < λ

+,A
min = λA1 ≤ · · · λANf

= λ+,A
max

the eigenvalues of A and with (λ, [u,π ]T ) = (λ, [u,p,pΓ ]T ) a generic eigenpair of A. It
means that

Mcu + B̃
T
π = λu, (31)

B̃u − T̃π = λπ . (32)

In particular, we consider here a λ < 0. In this case,Mc − λI is non-singular and we may
build the Schur complement of block Mc, by which we can write

πT
[̃
B (Mc − λI)−1 B̃

T + T̃
]
π = −λ‖π‖2 ≥ 0, (33)

The part of the proof that differs from that in [55] concerns the estimate of λ
−,A
min , where

we exploit the special structure of T̃. More precisely, from (33) we may derive that

πT
[̃
B (Mc − λI)−1 B̃

T + T̃
]
π

‖π‖2 = −λ =

πT
[̃
B (Mc − λI)−1 B̃

T
]
π

‖π‖2 + ‖pΓ ‖2
‖π‖2

pTΓ TpΓ

‖pΓ ‖2 ≥ 0,

by which we deduce that

(λ
Mc
min − λ)−1(μB̃

max )
2 + ζ λ̃Tmax + λ ≥ 0,

i.e.

λ2 + (ζ λ̃Tmax − λ
Mc
min)λ − (μB̃

max )
2 − ζ λ̃Tmaxλ

Mc
min ≤ 0,

and thus,

λ
−,A
min ≥ 1

2

(
λ
Mc
min − ζ λ̃Tmax −

√
(λ

Mc
min + ζ λ̃Tmax )

2 + 4(μB̃
max )

2

)
. (34)

The proof is concluded by integrating this result with the other bounds provided in the cited
reference. �
We can now proceed to specialize to our problem the various terms in Lemma 2.

Lemma 3 The eigenvalues of Mc satisfy asymptotically, i.e for h sufficiently small, the fol-
lowing bounds

K−1∗ hd � λ
Mc
min � C∗hd , and ξ0η∗hd−1 � λMc

max � C∗hd−1. (35)

Proof To obtain λ
Mc
min � C∗hd and λ

Mc
max � C∗hd−1 it is sufficient to bound the Rayleigh

quotient

vTMcv
‖v‖2 = ‖v‖2Mc

‖v‖2
by exploiting inequalities (26)–(28) of Lemma 1. The other inequalities are again obtained
by considering the same Rayleigh quotient and using the definition ofMc in (8). If we choose
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v ∈ Wh such that v �= 0 and vf = 0 if f ∈ Fh \FΓ
h we have vTMcv � maxf∈FΓ

h
(|f|)ξ0η∗‖v‖2,

by which we obtain ξ0η∗hd−1 � λ
Mc
max . If instead v is such that vf = 0 if f ∈ FΓ

h , we can

obtain vTMcv � K−1∗ minP∈Ωh (|P|)‖v‖2, by which λ
Mc
min � K−1∗ hd . �

Lemma 4 If Γh is K -orthogonal on each fracture, then

λ̃Tmax = λTmax � K ∗
Γ h

d−3. (36)

Proof If the grid is K -orthogonal T̃ is symmetric positive semidefinite and diagonally dom-
inant, and the estimate is then easily obtained by bounding the Rayleigh quotient and by the
fact that the fracture equations are posed on d − 1 dimensional surfaces embedded in Rd . �
Numerical experiments in Sect. 4.3 have verified the validity of this estimate, also in cases
where the grid is not strictly K -orthogonal.

We state now the following conjecture.

Conjecture 1 The coefficient ζ defined in (30) satisfies

ζ � h. (37)

This conjecture has been verified indirectly by examining the behavior of the spectrum of
A experimentally. It can be justified by the fact the pressure component π = (p,pΓ ) of
an eigenvector of A is an approximation of the pressure component of an eigenfunction
(p, pΓ ) ∈ Q × ZΓ of our differential problem, thus, ‖p‖QΩ

h
� ‖p‖L2(Ω), while ‖pΓ ‖QΓ

h
�

‖pΓ ‖L2(Γ ). We can now consider π as the pressure eigenvector for which the ratio in (30)
reaches its maximal value. Thanks to (25), ‖p‖2 � h−d‖p‖2

QΩ
h
and ‖pΓ ‖2 � h1−d‖pΓ ‖2

QΓ
h
,

we can then infer that ζ = ‖pΓ ‖2
‖pΓ ‖2+‖p‖2 � h. However, no rigorous proof is currently available.

To estimate the singular values of B̃
T
we extend the work in [50] to the case of fractured

domains. To this aim, we have to make an additional assumption on the mesh. It is a technical
assumptionwhich is satisfied if themesh does not exhibit “pathological situations”.We define
the total grid Λh = Ωh ∪ Γh , which contains both bulk and fracture polygonal cells. So a
generic cell c ∈ Λh may be a bulk cell or a fracture cell. Let us consider the undirected graph
G where the elements of Λh are the graph nodes and the set of graph edges Lh ⊆ Λh × Λh

are defined by:

– For any P1, P2 ∈ Ωh , (P1, P2) ∈ Lh if and only if ∃f ∈ F0
h such that f = P1 ∩ P2,

– For any P ∈ Ωh and f̂ ∈ Γh , (P, f̂) ∈ Lh if and only if f̂ ∩ ∂P = f̂.

Assumption 3 The global mesh Λh satisfies the following assumption: there exists a family
of elementary paths Ψ = {ζi }i=1,...,Nγ which are connected subgraphs of G with nodes of
maximal degree 2, such that

– for every cell c ∈ Λh there exists one and only one path ζi ∈ Ψ with c ∈ ζi , i.e. the
family of paths Ψ defines a partition of Λh ;

– the first and last node, cs,i and ce,i , of any ζi ∈ Ψ have a facet in F∂Ω
h ;

– there exists a constant L∗ independent from h such that

Li ≤ L∗h−1, i = 1, . . . , Nγ ,

where Li is the number of cells in ζi .

We can now state the following.
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Lemma 5 For h sufficiently small, the singular values of B̃
T
satisfy the following bounds

μB̃
min � hd , μB̃

max � hd−1. (38)

Since the proof is rather technical and lengthy, we have postponed it to the Appendix.

Theorem 3 Let h be sufficiently small, and assume that Assumptions 1, 3 and Conjecture 1
hold. Then, the spectrum of A satisfies

I− ∪ I+ = [λ−,A
min , λ−,A

max ] ∪ [λ+,A
min , λ+,A

max ] ⊆ [−k1h
d−2, −k2h

d+1] ∪ [k3hd , k4h
d−1], (39)

where ki are positive constants independent from h but depending on the bounds on the per-
meability in the bulk and in the fractures. Consequently, the condition number is characterized
by the following bound,4

K2(A) ≤ k1
k2

h−3. (40)

Proof The bounds to characterize the intervals I− and I+ are obtained by applying estimates
(36), (35), (38) and (37) to Lemma 2. Indeed, by considering only the leading terms for h
sufficiently small we have

λ
−,A
min � −K∗

Γ h
d−2, (41)

and

λ−,A
max=

1

2

(
λMc
max −

√
(λ

Mc
max )

2 + 4(μB
min)

2

)
≤ 1

2
λMc
max

(
1 −

√
1 + 4

(μB
min)

2

(λ
Mc
max )

2

)
. (42)

Since
(μB

min)
2

(λ
Mc
max )

2
� h2 and 1 − √

1 + kh2 � −kh2, we deduce

λ−,A
max � − (μB

min)
2

λ
Mc
max

� − 1

C∗ h
d+1. (43)

Concerning the interval of positive eigenvalues we immediately have

λ
+,A
min � λ

Mc
min � C∗hd (44)

and, finally

λ+,A
max � λ

Mc
max

2

(
1 +

√
1 + 4

(μB
max )

2

(λ
Mc
max )

2

)
� C∗hd−1. (45)

Defining the following constants,

k1 = K ∗
Γ , k2 = 1

C∗ , k3 = C∗ and k4 = C∗,

we recover the asymptotic spectrum estimate (39) and we can conclude that

||A||2 ≤ k1h
d−2, ||A−1||2 ≤ 1

k2
h−d−1,

by which we obtain the estimate of the condition number (40). �
4 We may note that without Conjecture 1 we will have in (34) that for λ

−,A
min the term ζ λ̃Tmax is of order hd−3.

This will imply a condition number K2(A) of the order h−4, much more restrictive.
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Concerning the asymptotic behavior of the condition number in function of the problem
parameters, we may note that the most relevant term is proportional to

k1/k2 = K ∗
Γ C

∗ = max(K ∗
Γ /K∗, K ∗

Γ η∗). (46)

Therefore, as expected, an important role is played by the permeability contrast between bulk
and fractures.

We remark that the results here presented are asymptotic, i.e. they hold for an h sufficiently
small. The dependence on the problem parameters shows that the leading term of O(h−3)

in the condition number is more relevant when fractures are much more permeable than the
bulk. This has been confirmed in the numerical experiments.

The next result is important for the derivation of suitable preconditioners for the system.
We define Mc

D = diag(Mc), the diagonal part of the mimetic inner product matrix. We have
the following

Theorem 4 MatrixMc
D is asymptotically spectrally equivalent toMc. That is, if h ≤ h0, then

λ
Mc

D
max � λMc

max and λ
Mc

D
min � λ

Mc
min, (47)

where λ
Mc

D
max and λ

Mc
D

min are the maximum and minimum eigenvalue of Mc
D, respectively, and

the hidden constants depend on the problem parameters but not on h.

Proof We first note that both Mc and Mc
D can be built cell-wise,

Mc =
∑
P∈Ωh

Mc
P Mc =

∑
P∈Ωh

MD,P.

Consequently, see [58], the Rayleigh quotient satisfies

min
P∈Ωh

vTP M
c
PvP

vTP M
c
D,PvP

≤ vTMcv
vTMc

Dv
≤ max

P∈Ωh

vTP M
c
PvP

vTP M
c
D,PvP

, (48)

where vTP and vPΓ
are the restriction of the vector of velocity degrees of freedom v ∈ Wh

on the velocity degrees of freedom of P and to the velocity degrees of freedom of P that lies
on Γ , respectively. We have that vTP M

c
PvP = vTP MPvP + vTPΓ

EPvPΓ
, where MP and EP are

the elemental contributions to the matrices M and E, respectively. Coercivity and stability
results for Mc

P, reported in [42], together with the quasi-uniformity assumption (19) and the
definition of E, lead to

vTP MPvP � hd‖vP‖2, and vTPΓ
EPvPΓ

� hd−1‖vPΓ
‖2. (49)

Let us now indicate with mc
j j the j th diagonal element of Mc

P and we set mc
j j = m j j + e j j ,

where m j j and e j j are the elements of MD,P and ED,P, the diagonal part of MP and EP
respectively, and we indicate with e j the j th canonical vector with all components zero apart
from [e j ] j = 1. With simple algebraic manipulations, from (11) and (12) we find that

m j j = eTj MPe j = |f j |2
|P| (c f j − cP)K

−1
P (c f j − cP) + γPeTj

(
I − ZP(Z

T
PZP)

−1ZTP
)
e j .

Since γP � hd ,
|f j |2
|P| � hd−2, (c f j −cP)K

−1
P (c f j −cP) � h2, and noting that I−ZP(ZTPZP)

−1ZTP
is a projection matrix, we can claim that

m j j � hd , ∀ j . (50)
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While, considering the definition of E given in (10), and indicating with FΓ
h (P) ⊂ FΓ

h the set

of facets of P that lay on Γh and f̂ the fracture cell corresponding to a f ∈ FΓ
h (P), we may

infer
vTP ED,PvP � ‖vPΓ

‖2
∑

f∈FΓ
h (P)

ηf̂|f| � hd−1‖vPΓ
‖2, (51)

since ξ0 > 0.
In conclusion, by exploiting (49), (50) and (51) we have

vTP M
c
PvP

vTP MD,PvP
� hd‖vP‖2 + hd−1‖vPΓ

‖2
hd‖vP‖2 + hd−1‖vPΓ

‖2 ,

by which the quotient is asymptotically a constant. �

3 Preconditioning Techniques for the Discrete Generalized
Saddle-Point System

In this section we present several ABF preconditioners applied to the problem at hand. For an
overviewof preconditioning techniques the readermay refer to [59], and [21] for the particular
case of saddle-point problems. For an illustration of iterative methods for problems arising
from the discretization of partial differential equations the reader may refer to [38].

The objective is to verify the effectiveness of a diagonal approximation of the matrixMc.
Indeed, the result of Theorem 4 suggests that approximating Mc with its diagonal,

M̂c = diag([mc]i i ). i = 1, 2, . . . , (52)

could be an interesting and simple choice.
To be computationally effective, the block preconditionerswe are going to consider require

also an approximation for the Schur complement S = −̃T − B̃M−1
c B̃

T
. For Mixed Finite

Elements for the Stokes problem there is a wide strand of literature on the topic of finding
good approximations of S, see for instance [21]. On the other hand, in the context of MFD
discretizations we are not aware of any effective strategy.We propose here the approximation
simply given by

Ŝ = −̃T − B̃M̂cB̃
T
. (53)

Matrix −̂S is s.p.d. and rather sparse, so it is easily factored with a sparse Cholesky factor-
ization [34].

In a first set of test cases we will consider also the approximation of Mc with its lumped
form

M̃c = diag

⎛
⎝∑

j

[mc]i j
⎞
⎠ , i = 1, 2, . . . , (54)

a technique widely used in low-order finite elements. We will show that this choice is com-
pletely inadequate for our class of problems.

We have chosen two iterative schemes, MINRES [52] and GMRES [53]. The former
is in principle the method of choice for indefinite symmetric systems. However it restricts
the choice of preconditioners to symmetric positive definite ones. Therefore, the reduced
constraints on the possible preconditioners of GMRES makes it particularly interesting,
despite its larger memory requirement. For GMRES we have chosen the left-preconditioned
formulation.
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3.1 Block Diagonal Preconditioner

The first ABF preconditioner we have considered is given by

P =
[
M̂c

0 −̂S

]
, (55)

where Ŝ if computed according to (53) and M̂c using (52) or, alternatively, (54). The applica-
tion of the preconditioner is straightforward, and recalled in Algorithm 1. At each iteration,
we compute the preconditioned residual z = [z1, z2]T given by Pz = r, where r = [r1, r2]T
is the current residual.

Algorithm 1 Block diagonal preconditioner. Computation of z = P−1r.
Solve M̂cz1 = r1
Solve −̂Sz2 = r2

This preconditioner is symmetric positive definite, therefore it may be used for both
GMRES andMINRES. The most demanding part of Algorithm 1 is solving the linear system
−̂Sz2 = r2, which is however made effective by the Cholesky factorization (a possible
alternative, not considered in this work, is to use multigrid techniques).

3.2 Block Triangular Preconditioner

In this case, we set

P =
[
M̂c B̃

T

0 Ŝ

]
. (56)

Given the above definitions, the solution of Pz = r can be obtained by employing the
following factorization of its inverse

P−1 =
[
M̂

−1
c 0
0 I

][
I B̃

T

0 −I

][
I 0

0 −̂S
−1

]
.

More precisely, at each iteration, computing the preconditioned residual is attained by
Algorithm 2. Again, the most demanding part of Algorithm 2 is solving the linear system

Algorithm 2 Block triangular preconditioner. Computation of z = P−1r.
Solve −̂Sz2 = r2
Compute γ = r1 − B̃Tz2
Solve M̂cz1 = γ

−̂Sz2 = r2. The additional computational effort compared with the diagonal block precon-
ditioner is minimal. However, this preconditioner is not s.p.d. and therefore it has been tested
only with GMRES.
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3.3 Block LU Preconditioner

Now we introduce a preconditioner based on an approximate block LU factorization. For the
matrix A the following block LU factorization holds:

A =
[
Mc B̃

T

B̃ −̃T

]
=
[
Mc 0
B̃ S

][
I M−1

c B̃
T

0 I

]
. (57)

The idea is again to replace Mc and S with the proposed approximations M̂c and Ŝ, so that
the preconditioner is now

P =
[
M̂c 0
B̃ Ŝ

][
I M̂

−1
c B̃

T

0 I

]
. (58)

Multiplying the factors we get

P =
[
M̂c B̃

T

B̃ −̃T

]
, (59)

which shows that P has the classical form of an indefinite preconditioner.5 Computing the
preconditioned residual z = [z1, z2]T = P−1r requires the steps illustrated in Algorithm 3.

The computational costs are slightly higher than the ones ofAlgorithm2,with an additional

multiplication by M̂
−1
c and B̃.6

Algorithm 3 Block LU preconditioner. Computation of z = P−1r.
Solve M̂cy1 = r1
Solve Ŝz2 = r2 − B̃y1
Solve M̂cγ = B̃Tz2
Compute z1 = y1 − γ

4 Numerical Tests

In this section we present some numerical experiments. The first illustrates some solutions
obtained with the proposed model on two test cases, one with a single fracture cutting the
domain and the second one with a more complex network. We then use the set-up of the
first test case to verify the spectral properties of the matrices with respect to the theoretical
estimates. Finally, we test the performance of the proposed preconditioners using thematrices
stemming from the discretization of the two test cases.

5 More precisely it falls under the class of constraint preconditioners, see [21] for more details. A con-
straint preconditioner has the same block structure of the original matrix. Therefore, a saddle-point matrix is
preconditioned by another saddle-point matrix that can be inverted in an easier way.
6 We observe that the approximate block LU preconditioner based on employing the diagonal part of Mc
mimics the well-known SIMPLE preconditioning (see [38]) used in computational fluid dynamics.
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Fig. 2 Pressure field in the bulk domain for different values of Kτ and Kn , setup A (single fracture)

4.1 Setup A: Single Fracture Case

In the first test we have considered a domain Ω = (−1, 1) × (−1, 1) × (0, 1) and a fracture
Γ = (−1, 1) × {0} × (0, 1). On the left and right boundary sides we consider Dirichlet
conditions, in particular we fix p = 1 on {y = −1} and p = 0 on {y = 1}, while on the
top, bottom, front and back sides we impose homogeneous Neumann boundary conditions,
whereas for the fracture we consider full Dirichlet boundary conditions setting p = 1 on the
top and p = 0 on the bottom side: in this way we are simulating two orthogonal flows, one
in the bulk and one in the fracture, and, by varying the fracture parameters, see Fig. 2, we
vary their interaction. We have considered 3 cases: a “sealed” fracture Kτ = 10−2, Kn = 1,
where the low normal permeability hinders the flow across the fracture; a “neutral case” with
Kτ = 10−2, Kn = 102, where the material filling the fracture has the same permeability
as the bulk and we expect negligible pressure and velocity jumps; and a highly conductive
fracture, Kτ = 1, Kn = 102.

Note the jump of pressure across the fracture obtained in the case of the “sealed” fracture,
Fig. 2-left, and the linear pressure profile in Fig. 2-center, where the fracture has a negligible
effect on the bulk flow. More interesting is the case of the conductive fracture in Fig. 2-right,
where we have a strong interaction between the fracture and bulk flow, and the fracture
becomes a preferential path for the fluid.

4.2 Setup B: Fracture Network

We here consider a more realistic case, i.e. a network of fractures. The bulk domain is now
Ω = (0, 2) × (0, 1) × (0, 1) and the network Γ consists of seven fractures with several
intersections shown in Fig. 3. On the left and right boundary sides of the domain we consider
Dirichlet conditions, in particular we fix p = 1 on {x = 0} and p = 0 on {x = 2}, while
on the top, bottom, front and back boundary sides of the domain we impose homogeneous
Neumann boundary conditions. A polyhedral mesh of diameter h = 0.193 is employed and
the resulting dimension of the system is 43,834.

In this test we consider larger contrasts between the equivalent permeability Kτ and Kn

and the bulk permeability with respect to the previous test. In the case of sealed fractures we
set Kτ = 10−3, Kn = 10−1. As shown in Fig. 4 the action of the fractures as barriers implies
a strong discontinuity of the pressure across the fractures. The case of conductive fractures,
with Kτ = 10, Kn = 103 is shown in Fig. 5: note that in this case the distribution of pressure
in the bulk follows the main network direction, since the fractures attract the bulk flow.

123



Journal of Scientific Computing (2021) 86 :2 Page 21 of 32 2

Fig. 3 Porous medium with network of fractures
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Fig. 4 Pressure distribution in the fractures network—sealed network case: Kτ = 10−3, Kn = 10−1
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Fig. 5 Pressure distribution in the porous medium—conductive network case: Kτ = 10, Kn = 103

4.3 Spectral Properties of theMatrix

We consider the geometrical configuration of Setup A, illustrated in Sect. 4.1. First, we
study experimentally the maximum eigenvalue of the transmissibility matrix T to verify (36).
Then, we estimate the condition number of the global matrix of the problem A to verify
the theoretical estimate of Theorem 3. The maximum and minimum eigenvalues have been
estimated with the eigs function of MATLAB®.

We wanted to assess that the theoretical bound (36) on the maximal eigenvalue of T holds
(at least approximately) also for more general grids. Since d = 3 the bound states that λTmax
should be bounded by a quantity invariant with h.

In Table 1 we have reported the estimated values for different grids and K̂Γ = k f I, with
k f = 10−3. We may note that for regular hexahedral grids, which induce a rather regular
mesh onΓ , the eigenvalue is in fact constant with a value that respects the bound very closely.
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Table 1 Maximum eigenvalue of
matrix T for different types of
grids

h 0.25 0.125 0.0625 0.0313

Hexahedral grid

λTmax 8.00e−05 8.00e−05 8.00e−05 8.00e−05

h 1.118 0.563 0.314 0.144

Tetrahedral grid

λTmax 9.74e−05 1.02e−04 1.02e−04 1.02e−04

h 0.559 0.265 0.137 0.067

Polyhedral grid

λTmax 9.10e−05 9.75e−05 1.00e−04 1.03e−04

Table 2 Condition number of A
by varying the mesh size and the
fracture permeability for different
types of grids

h 0.25 0.125 0.0625 0.0313

Hexahedral grid

k f = 1e−3 4.31e+01 8.54e+01 1.69e+02 3.41e+02

k f = 1 2.77e+01 8.79e+01 6.58e+02 2.64e+03

k f = 1e3 1.02e+04 8.20e+04 6.55e+05 5.32e+06

h 1.118 0.563 0.314 0.144

Tetrahedral grid

k f = 1e−3 3.38e+02 7.04e+02 1.35e+03 2.76e+03

k f = 1 3.38e+02 6.91e+02 2.54e+03 1.01e+04

k f = 1e3 3.74e+04 3.14e+05 2.51e+06 2.21e+07

h 0.559 0.265 0.137 0.067

Polyhedral grid

k f = 1e−3 1.12e+03 4.17e+03 8.69e+03 2.52e+04

k f = 1 1.11e+03 4.18e+03 1.47e+04 5.85e+04

k f = 1e3 2.09e+05 1.78e+06 1.47e+07 1.15e+08

However, even for more general meshes, the value of λTmax is scarcely affected by h, with
higher values that probably reflects the lower mesh regularity.

We focus now on the numerical validation of the estimate of the condition number of the
system matrix A stated in Theorem 3.

We can observe in Table 2 that the h-dependence of the condition number changes with
the fracture permeability and with h, as expected. Yet, the theoretical bound in (40), with
K2(A) = O(h−3) is reached only for the highest value of k f , when the coefficient in (46)
has the highest value of 10. In the other cases, for the values of h here considered, a less
restrictive variation with h has been found. This is probably due to the fact that the meshes
are not refined enough. Indeed, the theoretical estimate is asymptotic, and with a mesh size
not sufficiently small the other terms defining the intervals I− and I+ in (39) may have a
greater impact on the condition number. The case of high fracture permeability is indeed
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the most challenging because of the strong effect of the coupling terms. These results also
confirm Conjecture 1, without which the condition number would be O(h−4).

4.4 Testing the Preconditioners

We now present tests to assess the performance of the preconditioners illustrated in Sect. 3.
To make a fair comparison all tests have been made by constructing the matrices, building
a random vector w, constructing the left hand side as b = Aw and solving Ax = b. The
stopping tolerance has been set so that on each test the final relative error in the 2-norm,
i.e ‖x̂ − w‖2/‖w‖2 with x̂ being the approximated solution, is of the order of 10−6. To
assess the performance in terms of CPU times, whenever possible we compare with the time
needed for the solution with the multifrontal direct solver UMFPACK [35]. UMFPACK is a
very efficient tool for solving sparse linear systems, so it provides a valuable reference. It is
memory demanding though, so we could not use it for the largest examples. The tests were
performed on an 2.7 Ghz i7 Intel processor with 16 GBytes RAM.

For the initial tests we also considered a simple diagonal preconditioner, which corre-
sponds to a rescaling of the equations. Since our matrix A has a diagonal block of zeroes,
for the corresponding rows no scaling has been performed, i.e. the block has been replaced
with the identity. This comparison has been set up only to show the performance gained by
the ABF preconditioners versus a trivial preconditioner.

In the following we will denote with Diag the simple diagonal preconditioner, with
ABFD_D, ABFTr_D and ABFLU_D the approximate block factorization preconditioners
based on block diagonal, block triangular and the block LU factorization with Mc approx-
imated by its diagonal part, respectively. When we use the lumped inner-product matrix to
approximate Mc, we use the subscript L: ABFD_L, ABFTr_L and ABFLU_L.

The first set of tests still considers a single fracture that cuts the whole domain as described
in Sect. 4.1, whereas the second deals with the network of fractures presented in Sect. 4.2, and
is more realistic and challenging. For GMRES the restart level is set to 100 in all simulations
(a value that is never reached if we choose an effective preconditioner).

The fundamental goal of the analyses is the study of the effectiveness of the preconditioners
for different parameter values and mesh sizes. In all tests, the bulk permeability is assumed
to be K = I, the fracture aperture lΓ = 10−2.

4.4.1 Setup A: Single Fracture Case

Here we present the case with a single fracture that cuts the whole domain with the geometric
configuration shown in Fig. 2.

We consider first how the different preconditioners behave with respect to the mesh size
h in the case of neutral fracture, i.e. Kτ = 10−2 and Kn = 102. The number of iterations
to reach convergence, along with the corresponding computing time, are shown in Table 3.
Note that solving the system with a trivial diagonal preconditioner is extremely inefficient,
as expected, and will not be considered in the next tests. We have contemplated it here only
to show that the linear system stemming from our problem cannot be solved in practice by an
iterative method without resorting to a good preconditioner. Indeed, ABFD_D, ABFTr_D,
ABFLU_D provide a significant improvement in performance with timings comparable to
the direct solver, particularly in the most refined cases.

The first thing we can note is that the approximation with inner-product lumping is highly
ineffective. Therefore, it will not be considered in the next tests. The good results obtained
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Table 3 Setup A: number of iterations to reach convergence with different preconditioners, and computing
times by varying the mesh size

h = 0.559 (4100 dof) h = 0.282 (17,220 dof) h = 0.157 (87,500 dof)
It RelTime It RelTime It RelTime

GMRES

Diag 471 68.5 2158 147 3460 193.0

ABFD_D 42 3.0 114 2.9 118 2.6

ABFTr_D 23 2.3 56 1.5 54 1.2

ABFLU_D 15 2.0 31 1.0 30 0.8

ABFD_L 1240 211.0 X X X X

ABFTr_L 790 140.0 X X X X

ABFLU_L 87 6.9 619 30.9 1910 113.0

MINRES

Diag 520 19.0 1614 36.7 2915 54.0

ABFD_D 42 2.0 101 2.7 112 2.4

RelTime is the ratio between the actual computing time and the one required for a global solve with the direct
method implemented in UMFPACK: note that a small RelTime indicates a good performance of the iterative
solver. X means that the iterative solver has not reached convergence in the prescribed number of iterations
(20000). We have used polyhedral meshes

Table 4 Memory requirement for
the different method. For the
iterative solvers we have
considered the block diagonal
preconditioner

Memory (in Mbytes)
Dof MINRES GMRES UMFPACK

4100 1.1 2.3 5.8

17,220 6.5 15.6 114

87,500 41.6 63.3 1800

with the diagonal approximation are in line with the finding of Theorem 4. Indeed, it is well
known that approximate block triangular and approximate LU preconditioners perform well
if the (1, 1)-block matrix and the Schur complement are replaced by spectrally equivalent
matrices [38,55].

GMRES with ABFLU_D outperforms all the other techniques, with a number of iteration
rather low and computational time that outperforms UMFPACK for the larger matrix. With
the ABFD_D we obtain a slightly better performance with MINRES than with GMRES,
as expected. Since memory is also a possible bottleneck we report in Table 4 the memory
requirement of UMFPACK, MINRES and GMRES for the cases of Table 3, limited to the
block diagonal preconditioner (memory requirement of GMRES with block triangular or LU
preconditioners is of the same order). We may note that GMRES is more demanding in terms
of memory (as expected) and the memory requested by the direct solver is much higher and
grows approximately quadratically with the number of degrees of freedom.

We now examine the robustness of the preconditioner with respect to the parameters of the
fracture model Kτ and Kn . We consider the permeability values corresponding to the three
cases of Fig. 2: Kτ = 10−2, Kn = 1 (sealing fracture); Kτ = 10−2, Kn = 102 (”neutral”
fracture); Kτ = 1, Kn = 102 (conductive fracture). Hereafter, we do not consider the two
preconditioners based on the lumping ofMc, nor the Diag preconditioner, which have shown
a poor performance. For this test a polyhedral mesh of size h = 0.208 has been employed
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Table 5 Setup A: number of iterations to reach convergence with different preconditioners and computing
times obtained by varying the model parameters

Kτ = 10−2, Kn = 1 Kτ = 10−2, Kn = 102 Kτ = 1, Kn = 102

It RelTime It RelTime It RelTime

GMRES

ABFD_D 119 2.6 112 2.4 121 2.7

ABFTr_D 51 1.2 50 1.2 50 1.2

ABFLU_D 31 0.7 31 0.8 31 0.7

MINRES

ABFDiag_D 116 1.9 112 1.9 119 2.1

RelTime is the ratio of the actual computing time to the one of a global solve with UMFPACK

Table 6 Setup A: number of
iterations to reach convergence
with different preconditioners
and computing times on three
different grids of relatively large
size

300K 600K 1.2M
It R1 R2 It R1 R2 It R1 R2

GMRES

ABFD_D 70 3.0 1.0 73 3.1 2.7 74 3.3 8.6

ABFTr_D 39 1.7 1.0 41 1.9 2.83 41 1.8 8.2

ABFLU_D 22 1.0 1.0 22 1.0 2.66 22 1.0 8.0

MINRES

ABFD_D 71 2.7 1.0 73 2.8 2.8 75 3.0 8.7

R1 is the ratio between the time taken for the solution on a given grid
and GMRES with ABFLU_D on the same grid. R2 indicates the ratio of
the time taken on a given grid and that for the same method on the 300K
grid

and the corresponding dimension of the linear system is of size 43031. The results, presented
in Table 5, show a substantial invariance with respect to parameter changes.

To complete this first analysis we considered also more demanding problems in terms
of number of degrees of freedom, namely 318,209, 615,793 and 1,216,061, denoted in
the following as 300K, 600K and 1.2M respectively. The value of the permeability in the
rock matrix is unitary and in the fracture the effective permeabilities are Kτ = 10−2 and
Kn = 102. For practical reasons, we are using here grids made of tetrahedra. In this case
UMFPACK is not able to solve the problem because of memory constraints. Therefore, we
report two different relative times. The first (indicated by R1) is the ratio between the time
taken on a given grid and the time taken by GMRES+ABFLU_D on the same grid. The
second (indicated by R2) is the ratio between the time taken on a given grid and the one for
the same method on grid 300K.

The results are reported in Table 6. We may note that the results in terms of number of
iterations are rather invariant with respect to the mesh size, showing the good scalability of
all preconditioners. Moreover, the numbers of iterations are smaller than the ones reported
in Table 5. This is explained by the fact that with tetrahedral grids the Mc matrix is much
sparser. Indeed, while the number of elements per row is of the order of 26 for the polyhedral
grids we have considered, it drops to 7 for the tetrahedral grids. We have not investigated this
behavior further, but it is consistent with similar findings for the 2D case reported in [44],
even if for a different discretization scheme. The choice GMRES with ABFLU_D is also in
this case the one performing best in terms of both number of iterations and computing time.
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Table 7 Setup B: number of iterations and computing time for the different preconditioners and by varying
the model parameters

Kτ = 10−3, Kn = 10−1 Kτ = 10−3, Kn = 103 Kτ = 10, Kn = 103

It RelTime It RelTime It RelTime

GMRES

ABFD_D 136 4.8 159 4.5 170 4.7

ABFTr_D 63 1.8 70 2.0 70 2.0

ABFLU_D 31 1.0 32 1.0 32 1.0

MINRES

ABFD_D 136 3.1 127 2.9 145 3.2

RelTime is the ratio of the actual computing time with the one of a global solve with UMFPACK. We have
used polyhedral meshes

We can also observe for all preconditioners a power dependence of the computing time on
the total number of degrees of freedom with an exponent of about 1.6.

4.4.2 Setup B: Fracture Network Case

We consider now the configuration illustrated in Sect. 4.2. The larger contrasts between
the equivalent fracture permeabilities Kτ and Kn and the bulk permeability with respect to
the previous set-up and the presence of a full network makes the effect of fractures more
important.

Also in this case, illustrated in Table 7, we can confirm the good performance of GMRES
with ABFLU_D which has proved to be robust also with respect to variations of the model
parameter. The other techniques show a slight degradation of performance compared with
the results of the previous, simpler, setup.

Finally, to verify the robustness with respect to parameter contrast, we performed two
further tests with high contrast. In particular, we have set a unitary permeability in the bulk,
whereas in the fractures permeability is 8 orders of magnitude smaller or larger, leading to
effective permeabilities of Kτ = 10−11, Kn = 10−5 for the impermeable case, Kτ = 105,
Kn = 1011 for the permeable case. We note that for these values, the estimated condition
number of the full matrix is approximately 2 × 109 and 3 × 1011, respectively. We are then
dealing with rather ill-conditioned problems. The results, shown in Table 8, show that all the
proposed ABF preconditioners behaves reasonably well even for large contrast problems, in
particular GMRES with ABFLU_D is particularly robust and consistently better performing
than the direct solver.Wepoint out that in the test cases of this section,GMRESwithABFD_D
has restarted, and this explains the higher number of iterations compared to MINRES (which
does not apply restart).

5 Conclusions

In this work we have assessed the spectral properties of the linear system arising from
the mimetic finite differences discretization of a hybrid-dimensional Darcy problem in a
fractured porous media. We have then implemented and tested a set of ABF preconditioning
techniques for the iterative solution of the discrete problem, proposing a strategy to build the
approximation of the factors.
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Table 8 Setup B: number of iterations and computing time for the different preconditioners and by varying
the model parameters

Kτ = 10−11, Kn = 10−5 Kτ = 105, Kn = 1011

It RelTime It RelTime

GMRES

ABFD_D 176 3.9 167 3.7

ABFTr_D 62 1.4 59 1.4

ABFLU_D 34 0.8 32 0.8

MINRES

ABFD_D 138 3.4 137 3.3

RelTime is the ratio of the actual computing time with the one of a global solve with UMFPACK. We have
used polyhedral meshes

For what concerns the spectral analysis the technique adopted is an extension of that
proposed in [50] to take into account the hybrid dimensional nature of the problem. The
main finding is that the condition number scales asymptotically as O(h−3), a more restrictive
result with respect to mimetic finite differences applied to the standard Darcy equation. The
reason lays in the hybrid-dimensional nature of the problem, in particular the presence of
the coupling term in the mimetic inner product matrix Mc. To reach this result we had to
make an assumption to control the contribution to the spectral estimate coming from the term
deriving from the discretization of the problem in the fractures. The conjecture is based on the
fact that this term operates only on the 1-codimensional manifold representing the fracture
network. We note that this situation is different from that of the standard stabilised Stokes
problem, where the (2, 2) block in the Stokes matrix is the discretization of an operator acting
on the whole domain. Further work will be needed to prove the conjecture, but numerical
experiments seem to confirm it.

We have investigated numerically the effect of different grid size and type, and different
values of contrast between bulk and fracture permeability. We have found that rather classic
block-diagonal and block-triangular and LU ABF preconditioners, where the mimetic inner
product matrixMc is replaced by its diagonal and the same technique is adopted to construct
the approximation of the Schur complement, work extremely well, showing

– a good scalability with respect to the mesh size h, despite the non-favorable scaling of
the condition number,

– and robustness also with respect to variations of the problem parameters, in particular
GMRES with ABFLU_D.

Further analysis may study the effect of heterogeneity and anisotropy in the permeability
tensor. Another line of research would be to test our approximation strategy with the precon-
ditioners for double saddle-point problems recently proposed in [5].
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A Proof of Lemma 5

Proof Any singular values B̃
T
is the square root of an eigenvalue of

B̃̃B
T =

[
B
C

] [
BT CT

] =
[
BBT BCT

CBT CCT

]
,

which is a full rank matrix, thanks to the discrete inf-sup condition, as proven in [42]. Let
us consider each block more closely in order to characterize the elements of the matrix in
detail. The block (1, 1) is BBT ∈ R

NP×NP and we have

[BBT]i j =

⎧⎪⎨
⎪⎩

∑
f∈Fh(Pi )

|f|2 if i = j

− ∑
fi∈Fh(Pi )∩Fh(P j )

|fi |2 if i �= j .
(60)

Now we focus on block (1, 2), i.e. BCT ∈ R
NP×NΓ . We have

[BCT]i j =
{

−|f̂ j |2 if Fh(Pi ) ∩ (f+(f̂ j ) ∪ f−(f̂ j )) �= ∅
0 otherwise.

(61)

Block (2, 1) is just the transpose of the block (1, 2), while block (2, 2), given by CCT ∈
R

NΓ ×NΓ , is diagonal, with elements

[CCT]i j =
{
2|f̂i |2 if i = j

0 if i �= j .
(62)

We start by seeking an upper bound for the eigenvalues λ(̃B̃B
T
) of B̃̃B

T
. Thanks to Gersh-

gorin’s Theorem, we have

σ (̃B̃B
T
) ⊆

NP+NΓ⋃
i=1

Ri ,

where Ri are the row circles. From (60)–(62), we note that we have two types of row circles.
Indicating by xic and r

i the center and the radius of circle Ri , respectively, we have

xic =
∑

f∈Fh(Pi )

|f|2, r i =
∑

f∈Fh(Pi )\F∂Ω
h

|f|2, for i = 1, . . . , NP,

xic =2|f̂i−NP |2, r i = 2|f̂i−NP |2, for i = NP, . . . , NP + NΓ .
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We can then derive that

λmax (̃B̃B
T
) ≤ max

{
max
P∈Ωh

( ∑
f∈Fh(P)

|f|2 +
∑

f∈Fh(P)\F∂Ω
h

|f|2
)

, 4max
f̂∈Γh

|f̂|2
}

≤ max

{
2N∗ max

f∈Fh

|f|2, 4max
f̂∈Γh

|f̂|2
}
= 2N∗ max

f∈Fh

|f|2 � h2(d−1),

(63)

since N∗ ≥ 2. The estimate of the smallest eigenvalue requires the additional mesh Assump-

tion 3. To do so we first consider the elements of the vector B̃
T
π ∈ R

Nf . For each f ∈ F0
h we

can identify the two adjacent cells Pf1 and Pf2 so that αPf1,f
= 1 and αPf2,f

= −1. For f ∈ F∂Ω
h

we can identify the cell Pf of which f is a boundary facet and for f ∈ FΓ
h also the correspond-

ing f̂ ∈ Γh , i.e the fracture cell that coincides geometrically with f. So, for 1 ≤ i ≤ N f and
indicating with fi the i th bulk facet, we have

[̃BTp̃]i =

⎧⎪⎪⎨
⎪⎪⎩

−αPfi ,fi
|fi |pPfi , if fi ∈ F∂Ω

h ,

|fi |(pPfi2 − p
P
fi
1
), if fi ∈ F0

h,

αPfi ,fi
|fi |(pf̂ − pPfi ), if fi ∈ FΓ

h .

If we now consider the Rayleigh quotient of B̃̃B
T
we may rearrange the terms to get

πTB̃̃B
T
π

‖π‖2 =
∑

f∈F∂Ω
h

|f|2 p2
Pf

+∑f∈F0
h
|f|2(pPf2 − pPf1

)2 +∑f∈FΓ
h

|f|2(pf̂ − pPf)
2

∑
P∈Ωh

p2P +∑f̂∈Γh
p2
f̂

.

We can characterize the smallest eigenvalue as

λmin (̃B̃B
T
) = min

π �=0

∑
f∈F∂Ω

h
|f|2 p2

Pf
+∑f∈F0

h
|f|2(pPf2 − pPf1

)2 +∑f∈FΓ
h

|f|2(pf̂ − pPf)
2

∑
P∈Ωh

p2P +∑f̂∈Γh
p2
f̂

≥ minf∈Fh |f|2 min
π �=0

∑
f∈F∂Ω

h
p2
Pf

+∑f∈F0
h
(pPf2

− pPf1
)2 +∑f∈FΓ

h
(pf̂ − pPf)

2

∑
P∈Ωh

p2P +∑f̂∈Γh
p2
f̂

.

We now order the elements of Λh path by path. Therefore, π = [p,pΓ ]T may be partitioned
in [π1, . . . ,πNζi

]T, where π i = [πcs,i , . . . , πce,i ]T are the pressure values (either in the bulk
or in the fracture) associated to the cells in path ζi . For each graph edge e of ζi we indicatewith
πe1,i and πe2,i the elements of π i associated to the cells at end of the edge. Since |f| � hd−1,
we have

λmin (̃B̃B
T
) � h2(d−1) min

π �=0

∑Nγ

i=1

(
π2
cs,i +∑e∈ζi

(πe2,i − πe1,i )
2 + π2

ce,i

)

∑
c∈Λh

π2
c

.

The last term is equivalent to the Rayleigh coefficient of the block diagonal matrix

Σ = diag(E1, E2, . . . , ENγ−1 , ENγ ) ∈ R
(NP+NΓ )×(NP+NΓ ),

where Ei = tridiag(−1, 2,−1) ∈ R
Li×Li . The eigenvalues of Ei can be computed explicitly

as

λ j (Ei ) = 2

(
1 − cos

Li + 1 − j

Li + 1

)
, j = 1, . . . , Li .

123



2 Page 30 of 32 Journal of Scientific Computing (2021) 86 :2

Therefore, λmin(Ei ) = 2

(
1−cos

1

Li + 1

)
, and, fromAssumption 3 on the maximum length

of the paths,

λmin(Σ) ≥ min
i=1,...,Nγ

λLi (Ei ) = 2 min
i=1,...,Nγ

(
1 − cos

1

Li + 1

)
≥
(
1 − cos

1

L∗h−1 + 1

)
.

Finally,

λmin (̃B̃B
T
) � h2(d−1)λmin(Σ) � h2(d−1)

(
1 − cos

h

L∗ + h

)
.

For sufficiently small h it holds that 1 − cos h
L∗+h ≤ h2

2L2∗
, by which we can conclude that

μB̃
min =

√
λmin (̃B̃B

T
) � hd . (64)

�
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