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Abstract
For solving the regime switching utility maximization, Fu et al. (Eur J Oper Res 233:184–
192, 2014) derive a framework that reduce the coupled Hamilton–Jacobi–Bellman (HJB)
equations into a sequence of decoupled HJB equations through introducing a functional
operator. The aim of this paper is to develop the iterative finite difference methods (FDMs)
with iteration policy to the sequence of decoupled HJB equations derived by Fu et al. (2014).
The convergence of the approach is proved and in the proof a number of difficulties are
overcome, which are caused by the errors from the iterative FDMs and the policy iterations.
Numerical comparisons are made to show that it takes less time to solve the sequence of
decoupled HJB equations than the coupled ones.

Keywords Utility maximization · Stochastic control · Regime switching · HJB equations ·
Finite difference methods · Iteration policy

Mathematics Subject Classification 65C20 · 65C40 · 65M06 · 91G20 · 91G60

1 Introduction

The utility maximization is a kind of stochastic control problems. The dynamic programming
approach is often applied to the optimal value function and the so-called HJB equation is
derived (see the books [25,34] for the stochastic control and its applications). Since the
HJB equation is a fully nonlinear PDE, the closed-form classical solution cannot be found
except for some simple cases: a Black-Scholes complete market model with particular utility
functions, see [6,7]. For constrained market models it has to use numerical methods to solve
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the HJB equations. The standard approach to solve HJB equation by finite difference schemes
is to discretize the derivatives in HJB equation and to solve the resulting finite dimensional
control problem. The nonlinear discretized equations are often solved using policy iteration
schemes (see e.g., [1,2,10–15,20,21,26,27,30,31]). Among them, the work by [20,21] and [2]
outlines the theory and implementation of the schemes for solving the coupled HJB equations
arising in the American options under regime switching models. No detailed convergence
proofs are given therein.

In this paper we propose a different way to solve the problems of terminal wealth utility
maximization under regime switchingmodels. TheHJB system for the problems is composed
by d coupled HJB equations, where d is the number of regime states. Fu et al. [16] introduce a
functional operator to generate a sequence of value functions and show that the optimal value
function is the limit of this sequence. To get the value functions in the sequence, it needs to
solve d decoupled HJB equations in each iterative step. Thus the coupled HJB equations are
separated by d single HJB equations and henceforth it seems to be much simpler to solve
although the iterations are involved. We study the iterative FDMs with policy iterations for
solving the sequence of decoupled HJB equations in [16] and prove the convergence. We use
several examples to show that solving the decoupled HJB is more efficient than solving the
coupled ones.

The regime switching model allows parameters of asset price dynamics to depend on a
finite state Markov chain process. It provides good flexibility for characterizing macro mar-
ket uncertainties while preserves analytic tractability for underlying asset price dynamics.
Hamilton [17] introduces a regime switching model for nonstationary time series and busi-
ness cycles. Hardy [18] applies a two-regime model to provide a good fit to monthly stock
market returns. There has been active research in portfolio optimization with regime switch-
ing models. Zhang et al. [35] and Yin et al. [33] study the trading rules in a regime switching
market. Zhou and Yin [36] investigate the mean-variance portfolio optimization in regime
switching model. Canakog̈lu and Özekici [9] discuss the HARA utility maximization in a
regime switching model. Honda [19], Sass and Haussmann [29], and Rieder and Bäuerle [28]
solve portfolio optimization problems with partial information and regime switching drift
processes. Bäuerle and Rieder [5] and Fu et al. [16] show that the value function satisfies
the HJB system of fully coupled nonlinear PDEs and prove the verification theorem. For a
power or logarithmic utility function, the HJB equations can be reduced to a system of linear
ODEs which are then solved with matrix exponentials. For general utility functions, it seems
not possible to solve the system of HJB equations analytically. Ma et al. [23] develop the
dual control monte-carlo methods to compute the tight bounds of value function in regime
switching utility maximization, but it is not possible to guarantee the convergence in theory
and the computation of the lower bound is rather time-consuming. The iterative FDMs with
iteration policy developed in this paper is proved to be convergent and numerical comparison
is made to show that it is much faster than computing the lower bound using the approach in
[23].

The remaining parts of the paper are arranged as follows. In Sect. 2, we introduce the utility
maximization under regime switching models and the HJB system and analyze the iterative
FDMs with policy iterations for the sequence of decoupled HJB equations. In Sect. 3, we
carry out a variety of numerical examples to test the convergence and compare efficiency of
the proposed algorithms with the existingmethods. Conclusions are given in the final section.
The standard FDMs with policy iterations for the coupled HJB equations are given in the
appendix.
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2 Discretization of the Decoupled HJB Equations

Consider a fixed time horizon [0, T ]. Let (�,F, P) be a complete probability space, W a
standard brownian motion, α a continuous time finite state observable Markov Chain process
(MCP), which are independent of each other, and let {Ft } be the natural filtration generated
by W and α completed with all P-null sets.

We identify the state space of {αt} as a finite set of unit vectorsE := {e1, e2, . . . , ed}where
ei ∈ R

d is a column vectors with one in the i-th position and zeros elsewhere, j = 1, . . . , d .
Denote by Q = (qi j )d×d the generator of the Markov Chain {αt } with qi j ≥ 0 for i �= j and
d∑

j=1

qi j = 0 for each j ∈ D := {1, . . . , d}. TheMCP α has a semi-martingale representation.

αt = α0 +
∫ t

0
Q′αvdv + M t , 0 ≤ t ≤ T ,

where Q′ is the transpose of Q, M is a purely discontinuous square integrable Martingale
with initial value zero. Assume the financial market consists of one risk-free bond and one
risky stock. The bond and stock price processes B and S are assumed to follow the stochastic
differential equations (SDE)

dBt = rt Btdt, dSt = St (μt dt + σt dWt ), 0 ≤ t ≤ T ,

where rt = rαt , μt = μαt , σt = σαt and r = (r1, . . . , rd) is a vector of risk-free interest
rates with ri being the rate in regime i, and μ = (μ1, . . . , μd) and σ = (σ1, . . . , σd) are
vectors of return and volatility rates of the risky asset. Assume all rates are positive constants.
Denote by θ := (θ1, . . . , θd) the vector of market prices of risk with θi = μi−ri

σi
for i ∈ D.

Let X be the wealth process of a portfolio comprising the bond B and the stock S. The
wealth process X satisfies the SDE:

dXt = Xt

(
rt dt + πtσt (θt dt + dWt )

)
, 0 ≤ t ≤ T ,

where πt is a progressively measurable control process and represents the proportion of
wealth Xt invested in risky asset St and θt = θαt is the market price of risk at time t .

The utility maximization problem is defined by:

sup
π

E [U (XT )] , (1)

whereU is a utility function that is continuous, increasing and concave on [0,∞]. Stochastic
control is a standard method that to solve problem (1). To do so, we define the value functions

Ṽ (t, x, j) := sup
π∈�t

Et,x, j [U (XT )], j ∈ D,

where Et,x, j is the conditional expectation operator given Xt = x , αt = e j for j ∈ D and
�t := {πs, s ∈ [t, T ]} is the set of all admissible control strategies over [t, T ].

It is proved by [16] that for a continuous, strictly increasing and concave utility function
U , the optimal value functions Ṽ (t, x, j), for j ∈ D, satisfy the following system of HJB
equations,
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0 = sup
π( j)∈�t

⎡

⎣Ṽt (t, x, j) + 1

2
σ 2
j

(
π( j)

)2
x2 · Ṽxx (t, x, j) +

[
π( j)(μ j − r j ) + r j

]

x · Ṽx (t, x, j) − q j Ṽ (t, x, j) +
d∑

�=1,��= j

q j�Ṽ (t, x, �)

⎤

⎦ , (2)

on [0, T ] × (0,+∞) and the terminal and boundary conditions are given by

Ṽ (T , x, j) = U (x), x ∈ [0,+∞), (3)

Ṽ (t, 0, j) = 0, t ∈ [0, T ], (4)

Ṽ (t, xmax, j) = φ̃(t, xmax, j), t ∈ [0, T ], (5)

where q j :=
d∑

�=1,��= j

q j�, and the boundary condition (5) will be specified for concrete

problems in the following sections. The verification theorem is also given by [16]. Moreover,
[16] define a functional operator �,

Ṽ (m+1)(t, x, j) = �Ṽ (m)(t, x, j)

= eq j t · sup
π( j)∈�t

Et,x, j

[ ∫ T

t
e−q j s

d∑

�=1,��= j

q j�Ṽ
(m)(s, X ( j)

π( j) (s), �)ds

+e−q j TU (X ( j)
π( j) (T ))

]
, (6)

and claim that the sequences Ṽ (m)(t, x, j) converge to the value function Ṽ (t, x, j) as m
tends to ∞. The function Ṽ (0)(t, x, j) is computed by

Ṽ (0)(t, x, j) = Et,x, j

[
U
(
x · exp (

∫ T

t
〈r,α(s)〉ds)

)]
. (7)

Using dynamic programming principle and variable transformation τ = T − t , Ṽ (m+1)

(t, x, j) = Ṽ (m+1) (T − τ, x, j) ≡ V (m+1) (τ, x, j), Eq. (6) leads to the following HJB
equations for j ∈ D

V (m+1)
τ (τ, x, j) = sup

π( j)∈�τ

[1
2
σ 2
j

(
π( j)

)2
x2 · V (m+1)

xx (τ, x, j) +
[
π( j)(μ j − r j ) + r j

]
x

· V (m+1)
x (τ, x, j) − q j V

(m+1)(τ, x, j) +
d∑

�=1,��= j

q j�V
(m) (τ, x, �)

]
,

(8)

on [0, T ] × (0,+∞) with terminal and boundary conditions

V (m+1)(0, x, j) = U (x), x ∈ [0,+∞), (9)

V (m+1)(τ, 0, j) = 0, τ ∈ [0, T ], (10)

V (m+1)(τ, xmax, j) = φ(τ, xmax, j), τ ∈ [0, T ], (11)

where φ̃(t, xmax, j) = φ̃(T − τ, xmax, j) ≡ φ(τ, xmax, j). This treatment reduces a system
of fully coupled HJB equations (2) to a sequence of decoupled HJB equations (8).
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We mainly study the iterative FDMs with policy iterations for the system of decoupled
HJB equations (8). A grid is constructed consisting of a set of M + 1 nodes {x0, . . . , xM }
with x0 = 0, xM = xmax, 
x = xmax

M , following a sequence of N time steps {τ0, . . . , τN }
with 
τ = T

N , τn = n
τ . Let V (m+1),n
i ( j) be the approximation to V (m+1)(τn, xi , j).

Equation (8) can be discretized by a standard finite difference method to give

V (m+1),n+1
i ( j) − V (m+1),n

i ( j)


τ

= sup
π( j)∈�τ

[1
2
σ 2
j

(
π( j)

)2
x2i

V (m+1),n+1
i+1 ( j) − 2V (m+1),n+1

i ( j) + V (m+1),n+1
i−1 ( j)


x2

+ ξ
[
π( j)(μ j − r j ) + r j

]
xi · V

(m+1),n+1
i+1 ( j) − V (m+1),n+1

i ( j)


x

+ (1 − ξ)
[
π( j)(μ j − r j ) + r j

]
xi · V

(m+1),n+1
i ( j) − V (m+1),n+1

i−1 ( j)


x

− q j V
(m+1),n+1
i ( j) +

d∑

�=1,��= j

q j�V
(m),n+1
i (�)

]
, (12)

with V (m),n
0 ( j) = 0 and V (m),n

M ( j) = φ(τn, xM , j). For the convenience of analysis, (12) is
re-written as

V (m+1),n+1
i ( j) − V (m+1),n

i ( j)


τ

=
[ (

−αn+1
i (π

( j)
n+1) − βn+1

i (π
( j)
n+1) − q j

)
V (m+1),n+1
i ( j) + αn+1

i (π
( j)
n+1)V

(m+1),n+1
i−1 ( j)

+βn+1
i (π

( j)
n+1)V

(m+1),n+1
i+1 ( j)

]
+

d∑

�=1,��= j

q j�V
(m),n+1
i (�), (13)

where

π
( j)
n+1 ∈ arg sup

π( j)∈�τ

[
αn+1
i (π( j))V (m+1),n+1

i−1 ( j) + βn+1
i (π( j))V (m+1),n+1

i+1 ( j)

+ ( − αn+1
i (π( j)) − βn+1

i (π( j)) − q j
)
V (m+1),n+1
i ( j)

]
,

and

αn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

2
x2
−

(1 − ξ)
[
π

( j)
n+1(μ j − r j ) + r j

]
xi


x
,

βn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

2
x2
+

ξ
[
π

( j)
n+1(μ j − r j ) + r j

]
xi


x
,

where at each node, ξ ∈ {0, 1} is chosen to ensure that αn+1
i (π

( j)
n+1) and βn+1

i (π
( j)
n+1) are

positive. For ease of analysis, we can alsowrite the Eq. (13) coupledwith boundary conditions
(10) and (11) into the matrix form. Let
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V(m+1),n+1( j) =
[
V (m+1),n+1
0 ( j), . . . , V (m+1),n+1

M ( j)
]′

.

Define matrix operator A(m+1)(π
( j)
n+1) by

[
A(m+1)(π

( j)
n+1)V

(m+1),n+1( j)
]

i+1

=
[( − αn+1

i (π
( j)
n+1) − βn+1

i (π
( j)
n+1) − q j

)
V (m+1),n+1
i ( j) + αn+1

i (π
( j)
n+1)V

(m+1),n+1
i−1 ( j)

+βn+1
i (π

( j)
n+1)V

(m+1),n+1
i+1 ( j)

]
, i = 1, . . . , M − 1. (14)

Then (13) can be written as
[
I − 
τ A(m+1)(π

( j)
n+1)

]
V(m+1),n+1( j) = V(m+1),n( j) + φn+1( j) − φn( j) + D(m),n+1( j),

(15)
where

D(m),n+1( j) =
[
0,

d∑

�=1,��= j

q j�V
(m),n+1
1 (�), . . . ,

d∑

�=1,��= j

q j�V
(m),n+1
M−1 (�), 0

]′
,

φn+1( j) =
[
0, . . . , 0, φn+1

M ( j)
]′

, φn+1
M ( j) := φ(τn+1, xM , j).

From [3,4,13], it is known that the stability, consistency and monotonicity of the discretiza-
tion can ensure the convergence to the viscosity solution. So we will analyze the stability,
consistency and monotonicity of (12) or equivalent form (13) or its matrix form (15).

Lemma 2.1 (Stability of the iterative FDMs) If boundary function φ in (11) is bounded, then
the fully implicit iterative FDMs (12) are stable,

‖V(m+1),n+1‖∞ ≤ max
{
‖V(m+1),0‖∞,C1,C2

}
,

where C1 ≡ max
i, j,n

∣∣∣
d∑

�=1,��= j

V (m),n+1
i (�)

∣∣∣, C2 ≡ max
j,n

∣∣∣φn+1
M ( j)

∣∣∣.

Proof From (13), for i = 1, . . . , M − 1, we have

V (m+1),n+1
i ( j) − V (m+1),n

i ( j)

= 
τ
[( − αn+1

i (π
( j)
n+1) − βn+1

i (π
( j)
n+1) − q j

)
V (m+1),n+1
i ( j)

+αn+1
i (π

( j)
n+1)V

(m+1),n+1
i−1 ( j)

+βn+1
i (π

( j)
n+1)V

(m+1),n+1
i+1 ( j)

] + 
τ

d∑

�=1,��= j

q j�V
(m),n+1
i (�), (16)

and

V (m+1),n+1
0 ( j) = 0, V (m+1),n+1

M ( j) = φn+1
M ( j).

From (16), we derive that
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|V (m+1),n+1
i ( j)| ·

(
1 + 
τ

(
αn+1
i (π

( j)
n+1) + βn+1

i (π
( j)
n+1) + q j

))

≤ ‖V(m+1),n‖∞ + ‖V(m+1),n+1‖∞
τ
(
αn+1
i (π

( j)
n+1) + βn+1

i (π
( j)
n+1)

)

+
τ

∣∣∣
d∑

�=1,��= j

q j�V
(m),n+1
i (�)

∣∣∣. (17)

Due to ‖V(m+1),n+1‖∞ = max
i, j

∣∣∣V (m+1),n+1
i ( j)

∣∣∣, there must exist i∗ and j∗, such that

‖V(m+1),n+1‖∞ =
∣∣∣V (m+1),n+1

i∗ ( j∗)
∣∣∣. If i∗ ∈ {i = 1, . . . , M − 1}, then inserting i∗, j∗

into (17) gives that

‖V(m+1),n+1‖∞ · (1 + 
τq j∗
) ≤ ‖V(m+1),n‖∞ + 
τq j∗ max

i, j

∣∣∣
d∑

�=1,��= j

V (m),n+1
i (�)

∣∣∣.

So we have

‖V(m+1),n+1‖∞ ≤ max
{
‖V(m+1),n‖∞,max

i, j

∣∣∣
d∑

�=1,��= j

V (m),n+1
i (�)

∣∣∣
}
. (18)

If i∗ = M , then ‖V(m+1),n+1‖∞ = max
j

|φn+1
M ( j)|. So we have

‖V(m+1),n+1‖∞ ≤ max
j,n

|φn+1
M ( j)|. (19)

Combining (18) and (19), we obtain

‖V(m+1),n+1‖∞ ≤ max
{
‖V(m+1),n‖∞,max

i, j

∣∣∣
d∑

�=1,��= j

V (m),n+1
i (�)

∣∣∣,max
j,n

|φn+1
M ( j)|

}
.

Let C1 ≡ max
i, j,n

∣∣∣
d∑

�=1,��= j

V (m),n+1
i (�)

∣∣∣, C2 ≡ max
j,n

|φn+1
M ( j)|. Then we obtain

‖V(m+1),n+1‖∞ ≤ max
{
‖V(m+1),n‖∞,C1,C2

}
. (20)

Iteratively using (20) gives that

‖V(m+1),n+1‖∞ ≤ max
{
‖V(m+1),0‖∞,C1,C2

}
.

��

To proceed the analysis, it is convenient to denote (12) as

G j

(
V (m+1),n+1
i ( j), V (m+1),n+1

i−1 ( j), V (m+1),n+1
i+1 ( j), V (m+1),n

i ( j),

−
d∑

�=1,��= j

q j�V
(m),n+1
i (�)

)
= 0, (21)
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where G j is defined by the left-hand side minus the right-hand side of (12), and denote (8)
as

Fj

(
V (m+1)
xx ( j), V (m+1)

x ( j), V (m+1)
τ ( j), V (m+1)( j),−

d∑

�=1,��= j

q j�V
(m)(�), x, τ

)
= 0,

(22)
where Fj is defined by the left-hand side minus the right-hand side of (8) and V (m+1)( j)
denotes a function V (m+1)( j) = V (m+1)(τ, x, j), j ∈ D is the current regime state. Next we
give the definitions of the upper and lower semi-continuous envelopes of function Fj .

Definition 2.1 The upper and lower semi-continuous envelopes of function Fj are defined
respectively by

F j ≡ lim sup
τ̃→τ
x̃→x

τ̃∈B(τ,ρ)
x̃∈B(x,h)

Fj

(
V (m+1)
x̃ x̃ ( j), V (m+1)

x̃ ( j), V (m+1)
τ̃ ( j), V (m+1)( j),−

d∑

�=1,��= j

q j�V
(m)(�), x̃, τ̃

)

and

F j ≡ lim inf
τ̃→τ
x̃→x

τ̃∈B(τ,ρ)
x̃∈B(x,h)

Fj

(
V (m+1)
x̃ x̃ ( j), V (m+1)

x̃ ( j), V (m+1)
τ̃ ( j), V (m+1)( j),−

d∑

�=1,��= j

q j�V
(m)(�), x̃, τ̃

)
,

where B(·, ◦) denotes the neighborhood with center · and size ◦.

We now give the definitions of the iteration-based viscosity sub-solution, the iteration-
based viscosity super-solution and the iteration-based viscosity solution of (22) as follows.

Definition 2.2 Let V (m+1) : � → R be locally bounded function.

(i) If for all ϕ(m+1) ∈ C1,2(�) and (τ , x) ∈ � such that V
(m+1) − ϕ(m+1) has a local

maximum at (τ , x), we have

F j

(
ϕ(m+1)
xx (τ , x, j), ϕ(m+1)

x (τ , x, j), ϕ(m+1)
τ (τ , x, j), V

(m+1)
(τ , x, j),

−
d∑

�=1,��= j

q j�V
(m)

(τ , x, �), x, τ
)

≤ 0, for m ≥ 0,

where V
(0)

(τ, x, �) = Ṽ (0)(T − τ, x, �) in (7), then V (m+1) is called the iteration-based
viscosity sub-solution of (22).
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(ii) If for all ϕ(m+1) ∈ C1,2(�) and (τ , x) ∈ � such that V (m+1) − ϕ(m+1) has a local
minimum at (τ , x), we have

F j

(
ϕ(m+1)
xx (τ , x, j), ϕ(m+1)

x (τ , x, j), ϕ(m+1)
τ (τ , x, j), V (m+1)(τ , x, j),

−
d∑

�=1,��= j

q j�V
(m)(τ , x, �), x, τ

)
≥ 0, for m ≥ 0,

where V (0)(τ, x, �) = Ṽ (0)(T − τ, x, �) in (7), then V (m+1) is called the iteration-based
viscosity super-solution of (22).

(iii) If it is both a sub-solution and super-solution of (22), then we call that V (m+1) is the
iteration-based viscosity solution of (22).

Lemma 2.2 (Consistency of the iterative FDMs) The implicit iterative FDMs (12) are consis-
tent, i.e., for ϕ(m+1) ∈ C1,2 ([0, T ] × [0, xmax]) and ψ(m) ∈ C ([0, T ] × [0, xmax]), it holds
true that

lim inf
τ̃→τ
x̃→x
ρ→0
h→0

G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j),

ϕ(m+1)(̃τ − ρ, x̃, j),−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

≥ F j

(
ϕ(m+1)
xx (τ, x, j), ϕ(m+1)

x (τ, x, j), ϕ(m+1)
τ (τ, x, j), ϕ(m+1)(τ, x, j),

−
d∑

�=1,��= j

q j�ψ
(m)(τ, x, �), x, τ

)
,

and

lim sup
τ̃→τ
x̃→x
ρ→0
h→0

G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j),

ϕ(m+1)(̃τ − ρ, x̃, j),−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

≤ F j

(
ϕ(m+1)
xx (τ, x, j), ϕ(m+1)

x (τ, x, j), ϕ(m+1)
τ (τ, x, j), ϕ(m+1)(τ, x, j),

−
d∑

�=1,��= j

q j�ψ
(m)(τ, x, �), x, τ

)
.

Proof For any stencil {̃x − h, x̃, x̃ + h} × {̃τ − ρ, τ̃ }, we have that
∣∣∣G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j), ϕ(m+1)(̃τ − ρ, x̃, j),

−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

−Fj

(
ϕ

(m+1)
x̃ x̃ (̃τ , x̃, j), ϕ(m+1)

x̃ (̃τ , x̃, j), ϕ(m+1)
τ̃ (̃τ , x̃, j), ϕ(m+1)(̃τ , x̃, j),
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−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �), x̃, τ̃

)∣∣∣

=
∣∣∣
ϕ(m+1)(̃τ , x̃, j) − ϕ(m+1)(̃τ − ρ, x̃, j)

ρ
− sup

π( j)∈�τ̃

B(π( j))

−ϕ
(m+1)
τ̃ (̃τ , x̃, j) + sup

π( j)∈�τ̃

C(π( j))

∣∣∣

≤
∣∣∣
ϕ(m+1)(̃τ , x̃, j) − ϕ(m+1)(̃τ − ρ, x̃, j)

ρ
− ϕ

(m+1)
τ̃ (̃τ , x̃, j)

∣∣∣

+ sup
π( j)∈�τ̃

∣∣∣C(π( j)) − B(π( j))

∣∣∣, (23)

where

B(π( j)) = 1

2
σ 2
j

(
π( j))2 x̃2

ϕ(m+1)(̃τ , x̃ + h, j) − 2ϕ(m+1)(̃τ , x̃, j) + ϕ(m+1)(̃τ , x̃ − h, j)

h2

+ ξ
[
π( j)(μ j − r j ) + r j

]
x̃
ϕ(m+1)(̃τ , x̃ + h, j) − ϕ(m+1)(̃τ , x̃, j)

h

+ (1 − ξ)
[
π( j)(μ j − r j ) + r j

]
x̃
ϕ(m+1)(̃τ , x̃, j) − ϕ(m+1)(̃τ , x̃ − h, j)

h

− q jϕ
(m+1)(̃τ , x̃, j) +

d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �),

C(π( j)) = 1

2
σ 2
j

(
π( j))2 x̃2 · ϕ

(m+1)
x̃ x̃ (̃τ , x̃, j) +

[
π( j)(μ j − r j ) + r j

]
x̃ϕ(m+1)

x̃ (̃τ , x̃, j)

− q jϕ
(m+1)(̃τ , x̃, j) +

d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �).

We expand ϕ(m+1) at node (̃τ , x̃, j) with the Taylor series for (23) to give that

∣∣∣
ϕ(m+1)(̃τ , x̃, j) − ϕ(m+1)(̃τ − ρ, x̃, j)

ρ
− ϕ

(m+1)
τ̃ (̃τ , x̃, j)

∣∣∣

+ sup
π( j)∈�τ̃

∣∣∣C(π( j)) − B(π( j))

∣∣∣

=
∣∣∣ − 1

2
ρϕ

(m+1)
τ̃ τ̃ (̃τ , x̃, j) + O(ρ2)

∣∣∣ +
∣∣∣ − 1

2
σ 2
j

(
π( j))2 x̃2 · O(h)

+ ξ
[
π( j)(μ j − r j ) + r j

]
x̃ ·

(
− 1

2
hϕ

(m+1)
x̃ x̃ (̃τ , x̃, j) + O(h2)

)

+ (1 − ξ)
[
π( j)(μ j − r j ) + r j

]
x̃ ·

(1
2
hϕ

(m+1)
x̃ x̃ (̃τ , x̃, j) + O(h2)

)∣∣∣

= |O (ρ) + O (h)| . (24)
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Therefore, combining (23) with (24) gives that
∣∣∣G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j), ϕ(m+1)(̃τ − ρ, x̃, j),

−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

−Fj

(
ϕ

(m+1)
x̃ x̃ (̃τ , x̃, j), ϕ(m+1)

x̃ (̃τ , x̃, j), ϕ(m+1)
τ̃ (̃τ , x̃, j), ϕ(m+1)(̃τ , x̃, j),

−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �), x̃, τ̃

)∣∣∣ ≤ |O (ρ) + O (h)| . (25)

Consequently, it follows from (25) that

lim inf
τ̃→τ
x̃→x
ρ→0
h→0

G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j), ϕ(m+1)

(̃τ − ρ, x̃, j),−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

≥ lim inf
τ̃→τ
x̃→x
ρ→0
h→0

Fj

(
ϕ

(m+1)
x̃ x̃ (̃τ , x̃, j), ϕ(m+1)

x̃ (̃τ , x̃, j), ϕ(m+1)
τ̃ (̃τ , x̃, j), ϕ(m+1)(̃τ , x̃, j),

−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, j), x̃, τ̃

)

= F j

(
ϕ(m+1)
xx (τ, x, j), ϕ(m+1)

x (τ, x, j), ϕ(m+1)
τ (τ, x, j), ϕ(m+1)(τ, x, j),

−
d∑

�=1,��= j

q j�ψ
(m), x, τ

)

and

lim sup
τ̃→τ
x̃→x
ρ→0
h→0

G j

(
ϕ(m+1)(̃τ , x̃, j), ϕ(m+1)(̃τ , x̃ − h, j), ϕ(m+1)(̃τ , x̃ + h, j), ϕ(m+1)

(̃τ − ρ, x̃, j),−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, �)

)

≤ lim sup
τ̃→τ
x̃→x
ρ→0
h→0

Fj

(
ϕ

(m+1)
x̃ x̃ (̃τ , x̃, j), ϕ(m+1)

x̃ (̃τ , x̃, j), ϕ(m+1)
τ̃ (̃τ , x̃, j), ϕ(m+1)(̃τ , x̃, j),

−
d∑

�=1,��= j

q j�ψ
(m)(̃τ , x̃, j), x̃, τ̃

)

= F j

(
ϕ(m+1)
xx (τ, x, j), ϕ(m+1)

x (τ, x, j), ϕ(m+1)
τ (τ, x, j), ϕ(m+1)(τ, x, j),
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−
d∑

�=1,��= j

q j�ψ
(m), x, τ

)
.

Thus the proof is complete. ��
Lemma 2.3 (Monotonicity of the iterative FDMs) If boundary function φ in (11) is bounded,
then the implicit iterative FDMs (12) are monotone in the sense that for any ρ1, ρ2, ρ3, ρ4 ≥
0, it holds true that

G j

(
V (m+1),n+1
i ( j), V (m+1),n+1

i−1 ( j) + ρ1, V
(m+1),n+1
i+1 ( j) + ρ2, V

(m+1),n
i ( j) + ρ3,

−
d∑

�=1,��= j

q j�(V
(m),n+1
i (�) + ρ4)

)

≤ G j

(
V (m+1),n+1
i ( j), V (m+1),n+1

i−1 ( j), V (m+1),n+1
i+1 ( j), V (m+1),n

i ( j),

−
d∑

�=1,��= j

q j�V
(m),n+1
i (�)

)
.

Proof For any ρ1, ρ2, ρ3, ρ4 ≥ 0, using the definition of G j in (21), q j� > 0 for j, � ∈ D

and j �= �, and the following inequalities

sup
x

X(x) − sup
x

Y (x) ≤ sup
x

(
X(x) − Y (x)

)
,

we derive that

G j

(
V (m+1),n+1
i ( j), V (m+1),n+1

i−1 ( j) + ρ1, V
(m+1),n+1
i+1 ( j) + ρ2, V

(m+1),n
i ( j) + ρ3,

−
d∑

�=1,��= j

q j�(V
(m),n+1
i (�) + ρ4)

)

−G j

(
V (m+1),n+1
i ( j), V (m+1),n+1

i−1 ( j), V (m+1),n+1
i+1 ( j), V (m+1),n

i ( j),

−
d∑

�=1,��= j

q j�V
(m),n+1
i (�)

)

≤ − ρ3


τ
+ sup

π( j)∈�τ

(
−q jρ4 − αn+1

i (π
( j)
n+1)ρ1 − βn+1

i (π
( j)
n+1)ρ2

)
≤ 0.

��
Lemma 2.4 (Comparison principle) Let V (resp. V ) be a upper-semi-continuous viscosity
sub-solution (resp. lower-semi-continuous viscosity super-solution) with polynomial growth
condition to (8). If boundary function φ in (11) is bounded and V (T , .) ≤ V (T , .) on
[0,+∞). Then V ≤ V on [0, T ] × [0,+∞).

Proof Since both b(x, π j ) = [
π( j)(μ j − r j ) + r j

]
x and a(x, π j ) = σ jπ

( j)x satisfy the

Lipschitz condition in x and f (τ, x, π j ) = ∑d
�=1,��= j q j�V (m) (τ, x, �) is uniformly contin-

uous in (τ, x), the proof follows from [25, Theorem 4.4.5]. ��
From Lemmas 2.1, 2.2, 2.3, we know that (12) or (15) is a consistent, stable, monotone

discretization. In [3,4,13,20,21,26,27], they all mention that a consistent, stable, monotone
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discretization converges to the viscosity solution. In this paper to prove the convergence of
the iterative FDMs (12) for solving (8), we must specially deal with the operator iterations
from m-th step to (m + 1)-th step. The result is presented in the following Theorem 2.1.

Theorem 2.1 (Convergence of the iterative FDMs) Assumed that the original HJB equation
(8) satisfies the conditions for Lemma 2.4 and discretization (12) satisfies all the conditions
for Lemmas 2.1, 2.2, 2.3. Let V (m+1),h,ρ denote the continuous form of (12)with h = 
x and
ρ = 
τ . Then V (m+1),h,ρ converges to the unique viscosity solution V (m+1) of the nonlinear
PDE (8), when ρ → 0 and h → 0.

Proof If m = 0, V (0)(τ, x, �) = Ṽ (0)(T − τ, x, �) in (7) is equal to the exact value. Using
Lemmas 2.1, 2.2, 2.3, 2.4 and following the lines in [4], we can prove that the solution
V (1),h,ρ of (12) converges to the unique viscosity solution V (1) of the nonlinear PDE (8)
as ρ → 0 and h → 0. Without loss of generality, we assume that the solution V (m),h,ρ of
(12) converges to the unique viscosity solution V (m) of the nonlinear PDE (8) as ρ → 0 and
h → 0. To complete the proof of this theorem by methods of induction, we only need to
prove that the theorem holds true for m + 1. Let

u(m+1)(τ, x, j) ≡ lim sup
τ̃→τ
x̃→x
h→0
ρ→0

V (m+1),h,ρ (̃τ , x̃, j)

and u(m+1)(τ, x, j) ≡ lim inf
τ̃→τ
x̃→x
h→0
ρ→0

V (m+1),h,ρ (̃τ , x̃, j)

where h = 
x and ρ = 
τ are the spatial and temporal mesh sizes.
Next, we prove that u(m+1) is the sub-solution of Eq. (8). To this end, let(τ , x) be a

local maximum point of u(m+1)(τ, x, j)−ϕ(m+1)(τ, x, j) for some ϕ(m+1) ∈ C1,2([0, T ]×
[0, xmax]). By definition, we can find a neighbourhood � in [0, T ] × [0, xmax] with cen-
ter (τ, x), whose closure is compact and on which (τ , x) is a global maximum point of
u(m+1)(τ, x, j) − ϕ(m+1)(τ, x, j). Without loss of generality, we may assume the maximum
is strict, u(m+1)(τ , x, j) = ϕ(m+1)(τ , x, j) and ϕ(m+1) ≥ suph,ρ ‖V (m+1),h,ρ‖∞ outside �.
This can be asserted by Lemma 2.1 which indicates that ‖V (m+1),h,ρ‖∞ ≤ C , where C is a
positive constant that is independent of h and ρ. So, we have that

u(m+1)(τ, x, j) − ϕ(m+1)(τ, x, j) ≤ u(m+1)(τ , x, j) − ϕ(m+1)(τ , x, j) = 0,

where (τ, x) ∈ [0, T ]×[0, xmax]. There exist sequences (τ k, xk) ∈ [0, T ]×[0, xmax], hk, ρk
such that (τ k, xk) is the maximum point of V (m+1),hk ,ρk (τ, x, j) − ϕ(m+1)(τ, x, j), and as
k → ∞, hk → 0, ρk → 0, (τ k, xk) → (τ , x), V (m+1),hk ,ρk (τ k, xk, j) → u(m+1)(τ , x, j).
Let

ξk ≡ V (m+1),hk ,ρk (τ k, xk, j) − ϕ(m+1)(τ k, xk, j).

Then ξk → 0, as k → ∞, and since (τ k, xk) is the maximum point of V (m+1),hk ,ρk (τ, x, j)−
ϕ(m+1)(τ, x, j), we have

V (m+1),hk ,ρk (τ, x, j) ≤ ϕ(m+1)(τ, x, j) + ξk, for all (τ, x) ∈ [0, T ] × [0, xmax]. (26)

Since V (m),hk ,ρk (τ, x, j) converges to the viscosity solution of the nonlinear PDE (8) as
ρ → 0 and h → 0, which is the assumption for the methods of induction, we have that

u(m)(τ, x, j) ≤ V (m),hk ,ρk (τ, x, j) ≤ u(m)(τ, x, j). (27)
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Therefore, using the monotonicity of G j in Lemma 2.3 gives that

0 = G j

(
V (m+1),hk ,ρk (τ k , xk , j), V (m+1),hk ,ρk (τ k , xk − hk , j), V

(m+1),hk ,ρk (τ k , xk + hk , j),

V (m+1),hk ,ρk (τ k − ρk , x
k , j),−

d∑

�=1,��= j

q j�V
(m),hk ,ρk (τ k , xk , �)

)

≥ G j

(
ϕ(m+1)(τ k , xk , j) + ξk , ϕ

(m+1)(τ k , xk − hk , j) + ξk , ϕ
(m+1)(τ k , xk + hk , j) + ξk ,

ϕ(m+1)(τ k − ρk , x
k , j) + ξk ,−

d∑

�=1,��= j

q j�u
(m)(τ k , xk , �)

)
.

It then follows from the consistency of G j in Lemma 2.2 that

0 ≥ lim inf
k→∞ G j

(
ϕ(m+1)(τ k , xk , j) + ξk , ϕ

(m+1)(τ k , xk − hk , j) + ξk , ϕ
(m+1)(τ k , xk + hk , j)

+ ξk , ϕ
(m+1)(τ k − ρk , x

k , j) + ξk , −
d∑

�=1,� �= j

q j�u
(m)(τ k , xk , �)

)

≥ F j

(
ϕ

(m+1)
xx (τ , x, j), ϕ(m+1)

x (τ , x, j), ϕ(m+1)
τ (τ , x, j), ϕ(m+1)(τ , x, j),

−
d∑

�=1,� �= j

q j�u
(m)(τ , x, �), x, τ

)

= F j

(
ϕ

(m+1)
xx (τ , x, j), ϕ(m+1)

x (τ , x, j), ϕ(m+1)
τ (τ , x, j), u(m+1)(τ , x, j),

−
d∑

�=1,� �= j

q j�u
(m)(τ , x, �), x, τ

)
.

So u(m+1) is the iteration-based sub-solution of Eq. (8). Analogously, it can be proved that
u(m+1) is the iteration-based super-solution of Eq. (8). Then it follows from the comparison
principle (see Lemma 2.4) that

u(m+1)(τ , x, j) ≤ u(m+1)(τ , x, j).

Furthermore the opposite inequality is obviously true from the definitions of u(m+1) and
u(m+1). Therefore, we have

u(m+1)(τ , x, j) = u(m+1)(τ , x, j).

This implies that the solution V (m+1),h,ρ of (12) converges to the unique iteration-based
viscosity solution V (m+1) of the nonlinear PDE (8) as ρ → 0 and h → 0. ��
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To implement the iterative FDM scheme (12), we need the following algorithm of iteration
policy.

Algorithm 1 Iteration policy for solving (12) or (15)
1: for n = 0, 1, 2, . . . , N do

2: let
(
V(m+1),n+1( j)

)0 = V(m+1),n( j),

3: let (V̂)0 =
(
V(m+1),n+1( j)

)0
,

4: for k = 0, 1, 2, . . . do
5: solve
6:

[
I − 
τ A(m+1)

(
(π

( j)
n+1)

k
)]

(V̂)k+1 = V(m+1),n( j) + 
τD(m),n+1( j) + φn+1( j) − φn( j),

7: where (π
( j)
n+1)

k ∈ arg sup
π( j)∈�τ

[
A(m+1)(π( j))(V̂)k

]
,

8: if

[
max
i, j

(
|(V̂i ( j))k+1 − (V̂i ( j))

k |
max

(
1, |(V̂i ( j))k+1|)

)
< tolerance

]
then,

9: Let V(m+1),n+1( j) = (V̂)k+1, then quit.
10: else
11: (V̂)k = (V̂)k+1,
12: k = k + 1,
13: end if
14: end for
15: n = n + 1,
16: end for

Theorem 2.2 (Convergence of the algorithm of iteration policy) If boundary function φ in
(11) is bounded, then the sequences (V̂( j))k in Algorithm 1 converge monotonically to the
unique solution of (13) or (15) for any initial iteration value (V̂)0 as k → ∞.

Proof We will first prove that this algorithm is convergent by showing that the sequences
(V̂( j))k for k ≥ 1 are non-decreasing and bounded. Subtracting the equations for steps k
and k + 1 on line 6 in Algorithm 1 leads to that

[
I − 
τ A(m+1)((π

( j)
n+1)

k)
] [

(V̂( j))k+1 − (V̂( j))k
]

= 
τ
[
A(m+1)((π

( j)
n+1)

k) − A(m+1)((π
( j)
n+1)

k−1)
]
(V̂( j))k .

From Algorithm 1 (line 7), we know that

A(m+1)((π
( j)
n+1)

k)(V̂( j))k = sup
π( j)∈�τ

[
A(m+1)(π( j))(V̂( j))k

]
.

Therefore,
[
A(m+1)((π

( j)
n+1)

k) − A(m+1)((π
( j)
n+1)

k−1)
]
(V̂( j))k ≥ 0.

From (14) and αn+1
i ((π

( j)
n+1)

k), βn+1
i ((π

( j)
n+1)

k) are non-negative, we know that[
I − 
τ A(m+1)((π

( j)
n+1)

k)
]
has positive diagonals, non-positive off-diagonals, and is diag-

onally dominant. So it is an M-matrix. Therefore, we have

(V̂( j))k+1 − (V̂( j))k ≥ 0, k ≥ 1, (28)
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i.e., the sequences (V̂( j))k for k ≥ 1 are non-decreasing. Now we prove that the sequences
are bounded. To this end, let

b( j) = V(m+1),n( j) + 
τD(m),n+1( j) + φn+1( j) − φn( j).

Since V(m+1),n( j), D(m),n+1( j) and φn+1( j) − φn( j) are bounded with infinity norm, we
know that b( j) is bounded. Using the notation of b( j), the equation on line 6 in Algorithm 1
can be written as

[
1 + 
τ

(
αn+1
i ((π

( j)
n+1)

k) + βn+1
i ((π

( j)
n+1)

k) + q j
)]

(V̂i ( j))
k+1

= 
τ
(
αn+1
i ((π

( j)
n+1)

k)(V̂i−1( j))
k+1 + βn+1

i ((π
( j)
n+1)

k)(V̂i+1( j))
k+1) + bi ( j),

where bi ( j) denotes the i-th component of vector b( j). Now let Vmax ≡ max
i, j

(V̂i ( j))
k+1,

Bmax ≡ max
i, j

(bi ( j)). Since all the coefficients, α
n+1
i , βn+1

i , q j , are positive, we derive that

[
1 + 
τ

(
αn+1
i ((π

( j)
n+1)

k) + βn+1
i ((π

( j)
n+1)

k) + q j
)]

(V̂i ( j))
k+1

≤ 
τ
(
αn+1
i ((π

( j)
n+1)

k) + βn+1
i ((π

( j)
n+1)

k) + q j
)Vmax + Bmax.

Let i, j be the indices such that Vmax = max
i, j

(V̂i ( j))
k+1. Then we derive that

[
1 + 
τ

(
αn+1
i ((π

( j)
n+1)

k) + βn+1
i ((π

( j)
n+1)

k) + q j
)]Vmax

≤ 
τ
(
αn+1
i ((π

( j)
n+1)

k) + βn+1
i ((π

( j)
n+1)

k) + q j
)Vmax + Bmax.

This gives that Vmax ≤ Bmax. Therefore V̂k+1 is bounded from above. Consequently, the
non-decreasing sequences V̂k+1 in Algorithm 1 are convergent.

Now we prove that the solution of Algorithm 1 is unique. To this end, let V̂1 and V̂2 be
the two solutions of Algorithm 1, i.e.,

[
I − 
τ A(m+1)(π( j)

n+1,1

)]
V̂1 = V(m+1),n + 
τD(m),n+1( j) + φn+1 − φn, (29)

[
I − 
τ A(m+1)(π( j)

n+1,2

)]
V̂2 = V(m+1),n + 
τD(m),n+1( j) + φn+1 − φn, (30)

where

π
( j)
n+1,1 ∈ arg sup

π( j)∈�τ

[
A(m+1)(π( j))V̂1

]
, π

( j)
n+1,2 ∈ arg sup

π( j)∈�τ

[
A(m+1)(π( j))V̂2

]
.

Subtracting Eq. (30) from Eq. (29) gives
[
I − 
τ A(m+1)(π

( j)
n+1,2)

] [
V̂1 − V̂2

]
= 
τ

[
A(m+1)(π

( j)
n+1,1) − A(m+1)(π

( j)
n+1,2)

]
V̂1.

Since A(m+1)(π
( j)
n+1,1)V̂1 = sup

π( j)

[
A(m+1)(π( j))V̂1

]
, we have

[
A(m+1)(π

( j)
n+1,1) − A(m+1)(π

( j)
n+1,2)

]
V̂1 ≥ 0.

Since
[
I − 
τ A(m+1)(π

( j)
n+1(2))

]
is an M-matrix, we have V̂1 ≥ V̂2. In the same manner,

we can prove V̂2 ≥ V̂1. Therefore, we obtain that V̂1 = V̂2. ��
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Now we are ready to present the convergence results for the whole approach namely
iterative FDMs with iteration policy for the original HJB equation (2).

Theorem 2.3 (Convergence of iterative FDMs with iteration policy) If boundary function φ

in (11) is bounded, then the non-linear iteration solution (V (m),n+1
i ( j))k converges to the

unique solution of (34), i.e., (V (m),n+1
i ( j))k converges to V (τn+1, xi , j), as m → +∞,

k → +∞, 
t → 0 and 
x → 0.

Proof We write

(V (m),n+1
i ( j))k − V (τn+1, xi , j)

= (V (m),n+1
i ( j))k − V (m),n+1

i ( j) + V (m),n+1
i ( j) − V (m)(τn+1, xi , j)

+ V (m)(τn+1, xi , j) − V (τn+1, xi , j)

= I1 + I2 + I3, (31)

where

I1 = (V (m),n+1
i ( j))k − V (m),n+1

i ( j),

I2 = V (m),n+1
i ( j) − V (m)(τn+1, xi , j),

I3 = V (m)(τn+1, xi , j) − V (τn+1, xi , j).

We know from Theorem 2.2 that (V (m),n+1
i ( j))k converges to V (m),n+1

i ( j) as k → +∞,
i.e.,

I1 = (V (m),n+1
i ( j))k − V (m),n+1

i ( j) → 0.

And fromTheorem2.1,we know thatV (m),n+1
i ( j) converges toV (m)(τn+1, xi , j), as
t → 0

and 
x → 0, i.e.,

I2 = V (m),n+1
i ( j) − V (m)(τn+1, xi , j) → 0.

Reference [16] state that as m → +∞,

I3 = V (m)(τn+1, xi , j) − V (τn+1, xi , j) → 0.

Therefore, from (31), we obtain that (V (m),n+1
i ( j))k converges to V (τn+1, xi , j), as m →

+∞ and k → +∞. ��
Remark 2.1 For nonuniformgrids {x0, . . . , xM }with x0 = 0, xM = xmax, the finite difference
scheme is modified by replacing αn+1

i and βn+1
i respectively by

π
( j)
n+1 ∈ arg sup

π( j)∈�τ

[
αn+1
i (π( j))V (m+1),n+1

i−1 ( j) + βn+1
i (π( j))V (m+1),n+1

i+1 ( j)

+ ( − αn+1
i (π( j)) − βn+1

i (π( j)) − q j
)
V (m+1),n+1
i ( j)

]
,

and

αn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

(xi+1 − xi−1)(xi − xi−1)
−

(1 − ξ)
[
π

( j)
n+1(μ j − r j ) + r j

]
xi

xi − xi−1
,

βn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

(xi+1 − xi−1)(xi+1 − xi )
+

ξ
[
π

( j)
n+1(μ j − r j ) + r j

]
xi

xi+1 − xi
.
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Adapting ξ = 0 or 1, it can ensure that αn+1
i (π

( j)
n+1) and βn+1

i (π
( j)
n+1) are positive. The stabil-

ity, consistency andmonotonicity discussions and theorems can be adapted to the nonuniform
grids.

3 Numerical Examples

In this section, we solve several examples using the iterative FDMs with policy iterations
for the sequence of decoupled HJB equations and the coupled ones for power, non-HARA
and Yaari utility functions. The iterative FDMs with policy iterations for the coupled HJB
equations stem from [20], which solve the American option pricing under regime switching.
But the scheme has to be modified for the utility maximization, since the policy for the utility
maximization is different from that for American options. For convenience to the readers, we
provide the scheme in the appendix. Moreover the boundary conditions to the HJB system
are constructed.

Example 3.1 We consider two-state Markov chain process (MCP) with generating matrix

Q =
(−1/3 1/3

1/2 −1/2

)
.

The riskless interest rates, return and volatility rates of risky asset are given by,

r = (0.05, 0.01), μ = (0.13, 0.07), σ = (0.20, 0.30).

The power utility function is U (x) = x
1
2

1/2 . The initial wealth at time t = 0 is x = 1 and the
investment period T = 1.

The boundary conditions (5) are constructed by

Ṽ (t, xmax, j) = E
[
exp

( ∫ T

0
< r,αt > dt

)] ·U (xmax),

= < exp [(Q − diag(r))(T − t)] · 1, e j > ·U (xmax), t ∈ [0, T ], (32)
where the second equality is calculated by [8]. The construction of the boundary condition is
motivated by that we allocate all of the wealth measured by the utility to the risk-free bond
over [t, T ]. To verify the boundary condition (32) is correct, we compare it with the exact
ones

Ṽ (t, xmax, j) = a(t, j)
x p
max

p
, t ∈ [0, T ], (33)

where the expression of a(t, j) is given by [16].

In Table 1, FDM-D-HJB denotes the iterative FDMs with policy iterations for solving the
decoupled HJB and FDM-C-HJB for the coupled ones, N , M are the number of time and
space mesh. The benchmark value is calculated by explicit formula given by (see [16]). The
benchmark values are 2.19913 and 2.08313 respectively for the current regime state being 1
and 2. The numerics in Table 1 show that the approach is convergent and FDM-D-HJB takes
much less time than FDM-C-HJB.

Figures 1 and 2 test the convergence rates of FDM-C-HJB and FDM-D-HJB for space
and time, respectively. The absolute value of the slope for the log-scale plots is just the
convergence rate. Figures 1 and 2 respectively show that the convergence rate for space is
about 2 and for time approximately 1.
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Table 1 Numerical results for Example 3.1 (power utility) for two-state regime switching

N = M2, xmax = 16

FDM-D-HJB FDM-C-HJB

M Error Time Error Time

Use the boundary condition (33)

Regime 1

32 6.4751e−03 2.6s 6.4433e−03 2.98s

64 1.0764e−03 19.3s 1.0754e−03 27.9s

128 1.4617e−04 168.5s 1.4614e−04 341.7s

256 2.2939e−05 412.3s 2.2929e−05 980.0s

512 4.9558e−06 8419.7s 4.9454e−06 11538.3s

Regime 2

32 2.0323e−03 2.6s 2.0243e−03 2.98s

64 2.8516e−04 19.3s 2.8498e−04 27.9s

128 4.1279e−05 168.5s 4.1283e−05 341.7s

256 8.2217e−06 412.3s 8.2280e−06 980.0s

512 1.9682e−06 8419.7s 1.9745e−06 11538.3s

Use the boundary condition (32)

Regime 1

32 6.5006e−03 2.9s 6.4435e−03 2.14s

64 1.0992e−03 18.6s 1.0752e−03 28.0s

128 1.6804e−04 282.1s 1.4583e−04 346.8s

256 4.4326e−05 541.6s 2.2593e−05 733.1s

512 2.6095e−05 8790.1s 4.5995e−06 12176.9s

Regime 2

32 2.0341e−03 2.9s 2.0242e−03 2.14s

64 2.8670e−04 18.6s 2.8492e−04 28.0s

128 4.2730e−05 282.1s 4.1218e−05 346.8s

256 9.6223e−06 541.6s 8.1613e−06 733.1s

512 3.3493e−06 8790.1s 1.9073e−06 12176.9s

Example 3.2 For comparison, we use example in [23], which considers the non-HARAutility
function

U (x) = 1

3
H(x)−3 + H(x)−1 + xH(x).

for x > 0, where H(x) = √
2(−1+√

1 + 4x)−1/2 and 3-state MCP with generating matrix

Q =
⎛

⎝
−1.5a a 0.5a

b −2b b
0.5c c −1.5c

⎞

⎠

where a, b, c are positive constants. The riskless interest rates, return and volatility
rates of risky asset are given by r = (0.06, 0.04, 0.01), μ = (0.20, 0.12, 0.07), σ =
(0.25, 0.20, 0.30). The boundary condition is given by (32).
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Fig. 1 The log-scale plots of the errors for FDM-D-HJB or FDM-C-HJB with fixed number of time meshes
N = 10,240
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Fig. 2 The log-scale plots of the errors for FDM-D-HJB or FDM-C-HJB with fixed number of space meshes
M = 256

In Table 2, we observe that the value computed by the FDM-D-HJB and FDM-C-HJB is
between the lower and upper bound, which shows that the computation is correct. Also we
see that the FDM-D-HJB is more efficient than the FDM-C-HJB.

Example 3.3 We consider the Yaari utility function: U (x) = min(x, H) with H = 2. Since
the second derivative of the Yaari utility function is 0, which leads to a degenerate equation,
we shall use the smoothing technique which is similar to [32]. Define the approximate utility
function

Uε(x) = min

(
lim
ε→0

(−4ε

x2max
x2 + 4ε

xmax
x
) + x, H

)
.
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Table 2 Numerical results for Example 3.2 (non-HARA utility) with random choices of generator matrix Q
for three-state regime switching

M = 320, N = 6400, xmax = 16

a,b,c Regime LB UB FDM-D-HJB FDM-C-HJB

Value Time Value Time

0.100015 1 3.001822 3.013359 3.001890 118.1s 3.001984 165.7s

0.349922 2 2.644041 2.647899 2.645049 2.645071

1.535650 3 2.568762 2.578005 2.570329 2.570345

0.971435 1 2.785344 2.800857 2.793353 118.8s 2.793409 167.5s

1.112258 2 2.600542 2.612361 2.605483 2.605504

0.516022 3 2.413723 2.421899 2.415937 2.415942

0.189385 1 2.974916 2.989711 2.978697 127.4s 2.978787 164.9s

1.389843 2 2.701354 2.709508 2.701819 2.701851

1.390663 3 2.564140 2.579063 2.569993 2.570010

1.875917 1 2.699810 2.715464 2.708161 137.3s 2.708201 168.6s

0.828654 2 2.594648 2.605721 2.598493 2.598510

1.086891 3 2.469313 2.481101 2.473937 2.473943

1.678834 1 2.693990 2.700862 2.697598 126.7s 2.697639 168.3s

0.165687 2 2.591520 2.595532 2.594707 2.594722

0.201577 3 2.350931 2.353512 2.351231 2.351233

ave CPU time (s) 3273.52s 29.76s 125.7s 167s

Note that, when ε → 0, Uε(x) → U (x). Consider 2-state Markov Chain process with
generating matrix,

Q =
(−a a

b −b

)

where a, b are positive constants. The riskless interest rates, return and volatility rates of
risky asset are given by,

r = (0.05, 0.01), μ = (0.13, 0.07), σ = (0.20, 0.30).

The initial wealth at time t = 0 is x = 1, the investment period T = 1, the boundary
condition given by (32) and the smoothing parameter ε = 10−6. Since the threshold H of
the Yaari utility function is given by 2, it is reasonable to take xmax = 2.

In Table 3, the number of timemeshes is taken as N = 4000 and the number of space uniform
meshes M = 200. When τ is close to 0, the value function is close to the utility function
whose first-order derivative is discontinuous and therefore more meshes points are needed
to improve the accuracy. Based on this observation, the nonuniform meshes are designed as
follows: The number of space uniform meshes is taken as M = 200 for τ ∈ [0, T /2] and
M = 100 for τ ∈ [T /2, T ]. The numerics in Table 3 show that for the Yaari utility, the
values fall between the lower and upper bounds and still the FDM-D-HJB takes less time
than FDM-C-HJB. Moreover, the average computational time with nonuniform meshes is
about 52% of that with uniform meshes for FDM-D-HJB and 57% for FDM-C-HJB under
almost the same accuracy. This shows that the nonuniform meshes can be used to improve
the accuracy of the algorithm.
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4 Conclusions

In this paper, we extend the finite difference methods (FDMs) with policy iterations to the
HJB system arising from regime switching utility maximization problems. The coupled
HJB equations and the sequence of decoupled HJB equations derived by [16] are solved
respectively by the standard and iterative FDMs with policy iterations. Numerical examples
for power, non-HARA, andYaari utilities are conducted to exhibit the accuracy and efficiency
of the approach and show that solving the sequence of decoupled HJB equations is more
efficient than the coupled one. The convergence of the approach is proved and some new
techniques (e.g., introducing of the iteration-based viscosity solution) are used to overcome
the difficulties caused by the errors from the iterative FDMs for solving of the sequences
of HJB equations and the policy iterations. In the future it will be interesting to study the
numericalmethods for the high-dimensionalHJBequations arising in theutilitymaximization
based onmultiple stochastic factors. To avoid the curse of the dimensionality, it worth to study
the radial basis function methods and the kernel-based methods which are proposed by [22]
and [24] for solving the linear partial differential equations arising in option pricing.

Compliance with Ethical Standards

Conflict of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: The Standard FDMs for Coupled HJB Equations

Using variable transformation τ = T − t , Ṽ (t, x, j) = Ṽ (T − τ, x, j) ≡ V (τ, x, j),
φ̃(t, xmax, j) = φ̃(T − τ, xmax, j) ≡ φ(τ, xmax, j), the system of fully coupled HJB equa-
tions (2) is re-written as

Vτ (τ, x, j) = sup
π( j)∈�τ

⎡

⎣1

2
σ 2
j

(
π( j))2x2 · Vxx (τ, x, j) + [

π( j)(μ j − r j ) + r j
]
x · Vx (τ, x, j)

− q j V (τ, x, j) +
d∑

�=1,��= j

q j�V (τ, x, �)

⎤

⎦ , (34)

on [0, T ] × (0,+∞) with terminal and boundary conditions

V (0, x, j) = U (x), x ∈ [0,+∞), (35)

V (τ, 0, j) = 0, τ ∈ [0, T ], (36)

V (τ, xmax, j) = φ(τ, xmax, j), τ ∈ [0, T ]. (37)

123

http://creativecommons.org/licenses/by/4.0/


55 Page 24 of 27 Journal of Scientific Computing (2020) 85 :55

LetV n
i ( j)be the approximationofV (τn, xi , j). Equation (34) canbediscretizedby a standard

FDM

V n+1
i ( j) − V n

i ( j)


τ
= sup

π( j)∈�τ

[
1

2
σ 2
j

(
π( j))2x2i

V n+1
i+1 ( j) − 2V n+1

i ( j) + V n+1
i−1 ( j)


x2

+ ξ
[
π( j)(μ j − r j ) + r j

]
xi · V

n+1
i+1 ( j) − V n+1

i ( j)


x

+ (1 − ξ)
[
π( j)(μ j − r j ) + r j

]
xi · V

n+1
i ( j) − V n+1

i−1 ( j)


x

− q j V
n+1
i ( j) +

d∑

�=1,��= j

q j�V
n+1
i (�)

]
,

which can be re-written as

V n+1
i ( j) − V n

i ( j)


τ
=

⎡

⎣
(
−αn+1

i (π
( j)
n+1) − βn+1

i (π
( j)
n+1) − q j

)
V n+1
i ( j)

+αn+1
i (π

( j)
n+1)V

n+1
i−1 ( j) + βn+1

i (π
( j)
n+1)V

n+1
i+1 ( j)+

d∑

�=1,� �= j

q j�V
n+1
i (�)

⎤

⎦ ,

(38)

where

π
( j)
n+1 ∈ arg sup

π( j)∈�τ

⎡

⎣
(
−αn+1

i (π( j)) − βn+1
i (π( j)) − q j

)
V n+1
i ( j)

+αn+1
i (π( j))V n+1

i−1 ( j) + βn+1
i (π( j))V n+1

i+1 ( j) +
d∑

�=1,��= j

q j�V
n+1
i (�)

⎤

⎦ ,

and

αn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

2
x2
− (1 − ξ)

[
π

( j)
n+1(μ j − r j ) + r j

]
xi


x
,

βn+1
i (π

( j)
n+1) = σ 2

j

(
π

( j)
n+1

)2
x2i

2
x2
+ ξ

[
π

( j)
n+1(μ j − r j ) + r j

]
xi


x
, ξ ∈ {0, 1}.

At each node, in order to ensure αn+1
i (π

( j)
n+1) and βn+1

i (π
( j)
n+1) are positive, we need a rea-

sonable choice ξ . We choose ξ = 1, if
σ 2
j

(
π

( j)
n+1

)2
x2i

2
x2
+

[
π

( j)
n+1(μ j−r j )+r j

]
xi


x ≥ 0, and ξ = 0
otherwise. For ease of describing the iteration policy algorithm, we re-write the equations
(38) into the matrix form. Let

Vn+1 =
[
V n+1
0 (1), . . . , V n+1

M (1), . . . , V n+1
0 (d), . . . , V n+1

M (d)
]′

.

Define matrix operator A(πn+1) by
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[
A(πn+1)Vn+1]

i+1+( j−1)(M+1)

=
[( − αn+1

i (π
( j)
n+1) − βn+1

i (π
( j)
n+1) − q j

)
V n+1
i ( j) + αn+1

i (π
( j)
n+1)V

n+1
i−1 ( j)

+βn+1
i (π

( j)
n+1)V

n+1
i+1 ( j) +

d∑

�=1,��= j

q j�V
n+1
i (�)

]
, i = 1, . . . , M − 1, j = 1, . . . , d.

For i = 0, M , the corresponding rows of A(πn+1) are given by the discretization of the
boundary conditions (36) and (37). The discrete equations (38) with the discretization of (36)
and (37) can be written as

[
I − 
τ A(πn+1)

]
Vn+1 = Vn + φn+1 − φn, (39)

where

φn+1 =
[
0, . . . , 0, φn+1

M (1), 0, . . . , 0, φn+1
M (2), . . . , 0, . . . , 0, φn+1

M (d)
]′

.

Now the iteration policy algorithm is presented as follows.

Algorithm 2 Iteration policy for solving (38) or (39)
1: for n = 0, 1, 2, . . . , N do
2: let (Vn+1)0 = Vn ,

3: let (V̂)0 =
(
Vn+1

)0
,

4: for k = 0, 1, 2, . . . do
5: solve
6:

[
I − 
τ A

(
(πn+1)

k
)]

(V̂)k+1 = I · Vn + φn+1 − φn ,

7: where (πn+1)
k ∈ arg sup

π∈�τ

[
A(π)(V̂)k

]
,

8: if

[
max
i, j

(
|(V̂i ( j))k+1 − (V̂i ( j))

k |
max

(
1, |(V̂i ( j))k+1|)

)
< tolerance

]
then,

9: let Vn+1 = (V̂)k+1, then quit.
10: else
11: (V̂)k = (V̂)k+1,
12: k = k + 1,
13: end if
14: end for
15: n = n + 1,
16: end for
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