
Journal of Scientific Computing (2020) 85:33
https://doi.org/10.1007/s10915-020-01332-8

Variable Smoothing for Convex Optimization Problems Using
Stochastic Gradients

Radu Ioan Boţ1 · Axel Böhm1

Received: 16 May 2019 / Revised: 12 March 2020 / Accepted: 3 October 2020 /
Published online: 22 October 2020
© The Author(s) 2020

Abstract
We aim to solve a structured convex optimization problem, where a nonsmooth function is
composedwith a linear operator.When opting for full splitting schemes, usually, primal–dual
type methods are employed as they are effective and also well studied. However, under the
additional assumption of Lipschitz continuity of the nonsmooth function which is composed
with the linear operator we can derive novel algorithms through regularization via theMoreau
envelope. Furthermore, we tackle large scale problems by means of stochastic oracle calls,
very similar to stochastic gradient techniques. Applications to total variational denoising and
deblurring, and matrix factorization are provided.

Keywords Structured convex optimization problem · Variable smoothing algorithm ·
Convergence rate · Stochastic gradients

Mathematics Subject Classification 90C25 · 90C15 · 65Y20

1 Introduction

The problem at hand is the following structured convex optimization problem

min
x∈H f (x) + g(K x), (1)

for real Hilbert spacesH and G, f : H → R := R ∪ {±∞} a proper, convex and lower semi-
continuous function, g : G → R a, possibly nonsmooth, convex and Lipschitz continuous
function, and K : H → G a linear continuous operator.

Research partially supported by FWF (Austrian Science Fund) project I 2419-N32. Research supported by
the doctoral programme Vienna Graduate School on Computational Optimization (VGSCO), FWF (Austrian
Science Fund), Project W 1260.

B Radu Ioan Boţ
radu.bot@univie.ac.at

Axel Böhm
axel.boehm@univie.ac.at

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01332-8&domain=pdf
http://orcid.org/0000-0002-4469-314X

33 Page 2 of 29 Journal of Scientific Computing (2020) 85 :33

Our aimwill be to devise an algorithm for solving (1) following the full splitting paradigm
(see [5,6,8,9,15,17,29]). In other words, we allow only proximal evaluations for simple
nonsmooth functions, but no proximal evaluations for compositions with linear continuous
operators, like, for instance, for g ◦ K .

We will accomplish this feat by the means of a smoothing strategy, which, for the purpose
of this paper, means, making use of the Moreau-Yosida approximation. The approach can
be described as follows: we “smooth” g, i.e. we replace it by its Moreau envelope, and
solve the resulting optimization problem by an accelerated proximal-gradient algorithm
(see [3,13,21]). This approach is similar to those in [7,10,11,20,22], where a convergence

rate of O
(
log(k)

k

)
is proved. However, our techniques (for the deterministic case) resemble

more the ones in [28], where an improved rate of O(1k) is shown, with the most notable
difference to our work is that we use a simpler stepsize and treat the stochastic case.

The only other family of methods able to solve problems of type (1) are the so called
primal–dual algorithms, first and foremost the primal–dual hybrid gradient (PDHG) intro-
duced in [15]. In comparison, this method does not need the Lipschitz continuity of g in
order to prove convergence. However, in this very general case, convergence rates can only
be shown for the so-called restricted primal–dual gap function. In order to derive from here
convergence rates for the primal objective function, either Lipschitz continuity of g or finite
dimensionality of the problem plus the condition that g must have full domain are necessary
(see, for instance, [5, Theorem 9]). This means, that for infinite dimensional problems the
assumptions required by both, PDHG and our method, for deriving convergence rates for the
primal objective function are in fact equal, but for finite dimensional problems the assump-
tion of PDHG are weaker. In either case, however, we are able to prove these rates for the
sequence of iterates (xk)k≥1 itself whereas PDHGonly has them for the sequence of so-called
ergodic iterates, i.e. (1k

∑k
i=1 xi)k≥1, which is naturally undesirable as the averaging slows

the convergence down. Furthermore, we do not show any convergence for the iterates as
these are notoriously hard to obtain for accelerated method whereas PDHG gets these in the
strongly convex setting via standard fixed point arguments (see e.g. [29]).

Furthermore, we will also consider the case where only a stochastic oracle of the proximal
operator of g is available to us. This setup corresponds e.g. to the case where the objective
function is given as

min
x∈H f (x) +

m∑
i=1

gi (Ki x), (2)

where, for i = 1, . . . , m, Gi are real Hilbert spaces, gi : Gi → R are convex and Lipschitz
continuous functions and Ki : H → Gi are linear continuous operators, but the number of
summands being large we wish to not compute all proximal operators of all gi , i = 1, . . . , m,
for purpose of making iterations cheaper to compute.

For the finite sum case (2), there exist algorithms of similar spirit such as those in [14,24].
Some algorithms do in fact deal with a similar setup of stochastic gradient like evaluations,
see [26], but only for smooth terms in the objective function.

In Sect. 2 we will cover the preliminaries about the Moreau-Yosida envelope as well as
useful identities and estimates connected to it. In Sect. 3 we will deal with the deterministic
case and prove a convergence rate of O(1k) for the function values at the iterates. Next up,
in Sect. 4, we will consider the stochastic case as described above and prove a convergence

rate of O
(
log(k)√

k

)
. Last but not least, we will look at some numerical examples in image

processing in Sect. 5.

123

Journal of Scientific Computing (2020) 85 :33 Page 3 of 29 33

It is important to note that the proof for the deterministic setting differs surprisingly from
the one for the stochastic setting. The technique for the stochastic setting is less refined in
the sense that there is no coupling between the smoothing parameter and the extrapolation
parameter. Where as this technique works also works for the deterministic setting it gives a

worse convergence rate ofO
(
log k

k

)
. The tight coupling of the two sequences of parameters,

however does not work in the proof of the stochastic algorithm as it does not allow for the
particular choice of the smoothing parameters needed there.

2 Preliminaries

In the main problem (1), the nonsmooth function regularizer g is supposed to be Lipschitz
continuous. This assumption is necessary to ensure our main convergence results, however,
many of the preliminary lemmata of this section hold true similarly if the function is only
assumed to be lower semicontinuous. We will point this out in every statement of this section
individually.

Definition 2.1 For a proper, convex and lower semicontinuous function g : H → R, its
convex conjugate is denoted by g∗ defined as a function from H to R, given by

g∗(x) := sup
p∈H

{〈x, p〉 − g(p)} ∀x ∈ H.

Asmentioned in the introduction, wewant to smooth a nonsmooth function by considering
itsMoreau envelope. The next definition will clarify exactly what object we are talking about.

Definition 2.2 For a proper, convex and lower semicontinuous function g : H → R, its
Moreau envelope with the parameter μ ≥ 0 is defined as a function from H to R, given by

μ g(·) :=
(

g∗ + μ

2
‖·‖2

)∗
(·) = sup

p∈H

{
〈·, p〉 − g∗(p) − μ

2
‖p‖2

}
.

From this definition, however, it is not completely evident that theMoreau envelope indeed
fulfills its purpose in being a smooth representation of the original function. The next lemma
will remedy this fact.

Lemma 2.1 (see [2, Proposition 12.29]) Let g : H → R be a proper, convex and lower
semicontinuous function and μ > 0. Then its Moreau envelope is Fréchet differentiable on
H. In particular, the gradient itself is given by

∇(μ g)(x) = 1

μ

(
x − proxμg (x)

)
= prox 1

μ
g∗

(
x

μ

)
∀x ∈ H

and is μ−1-Lipschitz continuous.

In particular, for all μ > 0, a gradient step with respect to the Moreau envelope corresponds
to a proximal step

x − μ∇(μ g)(x) = proxμg (x) ∀x ∈ H.

The previous lemma establishes two things. Not only does it clarify the smoothness of the
Moreau envelope, but it also gives a way of computing its gradient. Obviously, a smooth
representation whose gradient we would not be able to compute would not be any good.

123

33 Page 4 of 29 Journal of Scientific Computing (2020) 85 :33

As mentioned in the introduction, we want to smooth the nonsmooth summand of the
objective function which is composed with the linear operator as this can be considered the
crux of problem (1). The function g ◦ K will be smoothed via considering instead μ g ◦ K :
H → R. Clearly, by the chain rule, this function is continuously differentiable with gradient
given for every x ∈ H by

∇ (
μ g ◦ K

)
(x) = K ∗∇ (

μ g
)
(K x) = 1

μ
K ∗ (

K x − proxμg (K x)
)

= K ∗ prox 1
μ

g∗

(
K x

μ

)
,

and is thus Lipschitz continuous with Lipschitz constant ‖K‖2
μ

, where ‖K‖ denotes the oper-
ator norm of K .

Lipschitz continuity will play an integral role in our investigations, as can be seen by the
following lemmas.

Lemma 2.2 (see [4, Proposition 4.4.6]) Let g : H → R be a convex and Lg-Lipschitz
continuous function. Then, the domain of its Fenchel conjugate is bounded, i.e.

dom g∗ ⊆ B(0, Lg),

where B(0, Lg) denotes the open ball with radius Lg around the origin.

The Moreau envelope even preserves the Lipschitzness of the original function.

Lemma 2.3 (see [18, Lemma 2.1]) Let g : H → R be a convex and Lg-Lipschitz continuous
function. Then its Moreau envelope μ g is Lg-Lipschitz as well, i.e.

|μ g(x) − μ g(y)| ≤ Lg‖x − y‖ ∀x, y ∈ H.

Proof We observe that for all x ∈ H

∇μ g(x) ∈ ∂g(proxμg (x)).

Therefore we can bound the gradient norm

‖∇μ g(x)‖ ≤ sup{‖v‖ : y ∈ H, v ∈ ∂g(y)} ≤ Lg ∀x ∈ H, (3)

where we used in the last step that the Lipschitz continuity of g. The statement follows from
the mean-value theorem. ��

The following lemmata are not new, but we provide proofs anyways in order to remain
self-contained and to shed insight on how to use the Moreau envelope for the interested
reader.

Lemma 2.4 (see [28, Lemma 10 (a)]) Let g : H → R be proper, convex and lower semicon-
tinuous. The maximizing argument in the definition of the Moreau-Yosida envelope is given
by its gradient, i.e. for μ > 0 it holds that

argmax
p∈H

{
〈·, p〉 − g∗(p) − μ

2
‖p‖2

}
= ∇μ g(·).

123

Journal of Scientific Computing (2020) 85 :33 Page 5 of 29 33

Proof Let x ∈ H be fixed. It holds

argmax
p∈H

{
〈x, p〉 − g∗(p) − μ

2
‖p‖2

}
= argmax

p∈H

{
− 1

2μ
‖x‖2 + 〈x, p〉 − μ

2
‖p‖2 − g∗(p)

}

= argmax
p∈H

{
−μ

2

∥∥∥∥
x

μ
− p

∥∥∥∥
2

− g∗(p)

}

= argmin
p∈H

{
g∗(p) + μ

2

∥∥∥∥
x

μ
− p

∥∥∥∥
2
}

= prox 1
μ

g∗

(
x

μ

)

and the conclusion follows by using Lemma 2.1. ��
Lemma 2.5 (see [28,Lemma10 (a)]) For a proper, convex and lower semicontinuous function
g : H → R and every x ∈ H we can consider the mapping from (0,+∞) to R given by

μ �→ μ g(x). (4)

This mapping is convex and differentiable and its derivative is given by

∂

∂μ

μ g(x) = −1

2
‖∇μ g(x)‖2 ∀x ∈ H ∀μ ∈ (0,+∞).

Proof Let x ∈ H be fixed. From the definition of the Moreau-Yosida envelope we can see
that the mapping given in (4) is a pointwise supremum of functions which are linear in μ. It
is therefore convex. Furthermore, since the objective function is strongly concave, this supre-
mum is uniquely attained at ∇μ g(x) = argmax

p∈H
{〈x, p〉 − g∗(p) − μ

2 ‖p‖2}. According to

the Danskin Theorem, the function μ �→ μ g(x) is differentiable and its gradient is given by

∂

∂μ

μ g(x) = ∂

∂μ
sup
p∈H

{
〈x, p〉 − g∗(p) − μ

2
‖p‖2

}

= − 1

2
‖∇μ g(x)‖2 ∀μ ∈ (0,+∞).

��
Lemma 2.6 ([28, Lemma 10 (b)]) Let g : H → R be proper, convex and lower semicontin-
uous. For μ1, μ2 > 0 and every x ∈ H it holds

μ1g(x) ≤ μ2g(x) + (μ2 − μ1)
1

2
‖∇μ1g(x)‖2. (5)

If g is additionally Lg-Lipschitz and if μ2 ≥ μ1 > 0, then

μ2g(x) ≤ μ1g(x) ≤ μ2g(x) + (μ2 − μ1)
L2

g

2
. (6)

Proof Let x ∈ H be fixed. Via Lemma 2.5 we know that the map μ �→ μ g(x) is convex and
differentiable. We can therefore use the gradient inequality to deduce that

μ2g(x) ≥ μ1g(x) + (μ2 − μ1)

(
∂

∂μ

μ g(x)

∣∣∣
μ=μ1

)

= μ1g(x) − (μ2 − μ1)
1

2
‖∇μ1g(x)‖2,

123

33 Page 6 of 29 Journal of Scientific Computing (2020) 85 :33

which is exactly the first statement of the lemma. The first inequality of (6) follows directly
from the definition of the Moreau envelope and the second one from (5) and (3). ��

By applying a limiting argument it is easy to see that (6) implies that for any μ > 0

μ g(x) ≤ g(x) ≤ μ g(x) + μ
L2

g

2
, (7)

which shows that theMoreau envelope is always a lower approximation the original function.

Lemma 2.7 (see [28, Lemma 10 (c)]) Let g : H → R be proper, convex and lower semicon-
tinuous. Then, for μ > 0 and every x, y ∈ H we have that

μ g(x) + 〈∇μ g(x), y − x
〉 ≤ g(y) − μ

2
‖∇μ g(x)‖2.

Proof Using Lemma 2.4 and the definition of the Moreau-Yosida envelope we get that

μ g(x) + 〈∇μ g(x), y − x
〉 = 〈

x,∇μ g(x)
〉 − g∗(∇μ g(x))

− μ

2
‖∇μ g(x)‖2 + 〈∇μ g(x), y − x

〉

= 〈∇μ g(x), y
〉 − g∗(∇μ g(x)) − μ

2
‖∇μ g(x)‖2

≤ sup
p∈H

{〈p, y〉 − g∗(p)} − μ

2
‖∇μ g(x)‖2

= g(y) − μ

2
‖∇μ g(x)‖2.

��
In the convergence proof of Lemma 3.3 we will need the inequality in the above lemma

at the points K x and K y, namely

g(K y) − μ

2
‖∇μ g(K x)‖2 ≥ μ g(K x) + 〈∇μ g(K x), K y − K x

〉

= μ g(K x) + 〈
K ∗∇μ g(K x), y − x

〉

= μ g(K x) + 〈∇(μ g ◦ K)(x), y − x
〉 ∀x, y ∈ H.

(8)

The following lemma is a standard result for convex and Fréchet differentiable functions.

Lemma 2.8 (see [23]) For a convex and Fréchet differentiable function h : H → R with
Lh-Lipschitz continuous gradient we have that

h(x) + 〈∇h(x), y − x〉 ≤ h(y) − 1

2Lh
‖∇h(x) − ∇h(y)‖2 ∀x, y ∈ H.

By applying Lemma 2.8 with μ g, K x and K y instead of h, x and y respectively, we obtain

μ g(K x) + 〈∇(μ g ◦ K)(x), y − x
〉 ≤ μ g(K y) − μ

2
‖∇μ g(K x) − ∇μ g(K y)‖2 ∀x, y ∈ H. (9)

The following technical result will be used in the proof of the convergence statement.

Lemma 2.9 For α ∈ (0, 1) and every x, y ∈ H we have that

(1 − α)‖x − y‖2 + α‖y‖2 ≥ α(1 − α)‖x‖2.

123

Journal of Scientific Computing (2020) 85 :33 Page 7 of 29 33

3 Deterministic Method

Problem 3.1 The problem at hand reads

min
x∈H F(x) := f (x) + g(K x),

for a proper, convex and lower semicontinuous function f : H → R, a convex and Lg-
Lipschitz continuous (Lg > 0) function g : G → R, and a nonzero linear continuous
operator K : H → G.

The idea of the algorithm which we propose to solve (1) is to smooth g and then to solve
the resulting problem by means of an accelerated proximal-gradient method.

Algorithm 3.1 (Variable Accelerated SmooThing (VAST)) Let y0 = x0 ∈ H, (μk)k≥0 ⊆
(0,+∞), and (tk)k≥1 a sequence of real numbers with t1 = 1 and tk ≥ 1 for every k ≥ 2.
Consider the following iterative scheme

(∀k ≥ 1)

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lk = ‖K‖2
μk

γk = 1
Lk

xk = proxγk f

(
yk−1 − γk K ∗ prox 1

μk
g∗

(
K yk−1

μk

))

yk = xk + tk−1
tk+1

(xk − xk−1).

Remark 3.1 The assumption t1 = 1 can be removed but guarantees easier computation and
is also in line with classical choices of (tk)k≥1 in [13,21].

Remark 3.2 The sequence (uk)k≥1 given by

uk := xk−1 + tk(xk − xk−1) ∀k ≥ 1,

despite not appearing in the algorithm, will feature a prominent role in the convergence proof.
Due to the convention t1 = 1 we have that

u1 := x0 + t1(x1 − x0) = x1.

We also denote

Fk = f + μk g ◦ K ∀k ≥ 0.

The next theorem is the main result of this section and it will play a fundamental role
when proving a convergence rate of O(1k) for the sequence (F(xk))k≥0.

Theorem 3.1 Consider the setup of Problem 3.1 and let (xk)k≥0 and (yk)k≥0 be the sequences
generated by Algorithm 3.1. Assume that for every k ≥ 1

μk − μk+1 − μk+1

tk+1
≤ 0

and (
1 − 1

tk+1

)
γk+1t2k+1 = γk t2k .

Then, for every optimal solution x∗ of Problem 3.1, it holds

F(xN) − F(x∗) ≤ ‖x0 − x∗‖2
2γN t2N

+ μN
L2

g

2
∀N ≥ 1.

123

33 Page 8 of 29 Journal of Scientific Computing (2020) 85 :33

The proof of this result relies on several partial results which we will prove as follows.

Lemma 3.1 The following statement holds for every z ∈ H and every k ≥ 0

Fk+1(xk+1) + 1

2γk+1
‖xk+1 − z‖2

≤ f (z) + μk+1g(K yk) + 〈∇(μk+1g ◦ K)(yk), z − yk
〉 + 1

2γk+1
‖z − yk‖2.

Proof Let k ≥ 0 be fixed. Since, by the definition of the proximal map, xk+1 is the minimizer
of a 1

γk+1
-strongly convex function we know that for every z ∈ H

f (xk+1) + μk+1g(K yk) + 〈∇(μk+1g ◦ K)(yk), xk+1 − yk
〉 + 1

2γk+1
‖xk+1 − yk‖2+

1

2γk+1
‖xk+1 − z‖2

≤ f (z) + μk+1g(K yk) + 〈∇(μk+1g ◦ K)(yk), z − yk
〉 + 1

2γk+1
‖z − yk‖2.

Next we use the Lk+1-smoothness of μk+1g ◦ K and the fact that 1
γk+1

= Lk+1 to deduce

f (xk+1) + μk+1g(K xk+1) + 1

2γk+1
‖xk+1 − z‖2

≤ f (z) + μk+1g(K yk) + 〈∇(μk+1g ◦ K)(yk), z − yk
〉 + 1

2γk+1
‖z − yk‖2.

��
Lemma 3.2 Let x∗ be an optimal solution of Problem 3.1. Then it holds

γ1(F1(x1) − F(x∗)) + 1

2
‖u1 − x∗‖2 ≤ 1

2
‖x∗ − x0‖2.

Proof We use the gradient inequality to deduce that for every z ∈ H and every k ≥ 0

μk+1g(K yk) + 〈∇(μk+1g ◦ K)(yk), z − yk
〉 ≤ μk+1g(K z) ≤ g(K z)

and plug this into the statement of Lemma 3.1 to conclude that

Fk+1(xk+1) + 1

2γk+1
‖xk+1 − z‖2 ≤ F(z) + 1

2γk+1
‖z − yk‖2.

For k = 0 we get that

F1(x1) + 1

2γ1
‖x1 − x∗‖2 ≤ F(x∗) + 1

2γ1
‖x∗ − y0‖2.

Now we us the fact that u1 = x1 and y0 = x0 to obtain the conclusion. ��
Lemma 3.3 Let x∗ be an optimal solution of Problem 3.1. The following descent-type inequal-
ity holds for every k ≥ 0

Fk+1(xk+1) − F(x∗) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

) (
Fk(xk) − F(x∗)

)
+ ‖uk − x∗‖2

2γk+1t2k+1

+
(
1 − 1

tk+1

) (
μk − μk+1 − μk+1

tk+1

)
‖∇μk+1g(K xk)‖2.

123

Journal of Scientific Computing (2020) 85 :33 Page 9 of 29 33

Proof Let k ≥ 0 be fixed. We apply Lemma 3.1 with z :=
(
1 − 1

tk+1

)
xk + 1

tk+1
x∗ to deduce

that

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤ f

((
1 − 1

tk+1

)
xk + 1

tk+1
x∗

)
+ μk+1g(K yk)

+
(
1 − 1

tk+1

) 〈∇(μk+1g ◦ K)(yk), xk − yk
〉

+ 1

tk+1

〈∇(μk+1g ◦ K)(yk), x∗ − yk
〉 + 1

2γk+1t2k+1

‖uk − x∗‖2.

Using the convexity of f gives

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

)
f (xk) + 1

tk+1
f (x∗)

+
(
1 − 1

tk+1

)
μk+1g(K yk) +

(
1 − 1

tk+1

) 〈∇(μk+1g ◦ K)(yk), xk − yk
〉

+ 1

tk+1

μk+1g(K yk) + 1

tk+1

〈∇(μk+1g ◦ K)(yk), x∗ − yk
〉 + ‖uk − x∗‖2

2γk+1t2k+1

.

(10)

Now, we use (8) to deduce that

1

tk+1

μk+1g(K yk) + 1

tk+1

〈∇(μk+1g ◦ K)(yk), x∗ − yk
〉

≤ 1

tk+1
g(K x∗) − 1

tk+1

μk+1

2
‖∇μk+1g(K yk)‖2

(11)

and (9) to conclude that

(
1 − 1

tk+1

)
μk+1g(K yk) +

(
1 − 1

tk+1

) 〈∇(μk+1g ◦ K)(yk), xk − yk
〉

≤
(
1 − 1

tk+1

)
μk+1g(K xk) −

(
1 − 1

tk+1

)
μk+1

2
‖∇μk+1g(K yk) − ∇μk+1g(K xk)‖2.

(12)

Combining (10), (11) and (12) gives

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

)
μk+1g(K xk) +

(
1 − 1

tk+1

)
f (xk)

+ 1

tk+1
g(K x∗) + 1

tk+1
f (x∗) −

(
1 − 1

tk+1

)
μk+1

2
‖∇μk+1g(K yk) − ∇μk+1g(K xk)‖2

− 1

tk+1

μk+1

2
‖∇μk+1g(K yk)‖2 + ‖uk − x∗‖2

2γk+1t2k+1

.

123

33 Page 10 of 29 Journal of Scientific Computing (2020) 85 :33

The first term on the right hand side is μk+1g(K xk) but we would like it to be μk g(K xk).
Therefore we use Lemma 2.6 to deduce that

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

)
μk g(K xk) +

(
1 − 1

tk+1

)
f (xk)

+ 1

tk+1
g(K x∗) + 1

tk+1
f (x∗) +

(
1 − 1

tk+1

)
(μk − μk+1)

1

2
‖∇μk+1g(K xk)‖2

−
(
1 − 1

tk+1

)
μk+1

2
‖∇μk+1g(K yk) − ∇μk+1g(K xk)‖2

− 1

tk+1

μk+1

2
‖∇μk+1g(K yk)‖2 + ‖uk − x∗‖2

2γk+1t2k+1

.

(13)

Next up we want to estimate all the norms of gradients by using Lemma 2.9 which says that
(
1 − 1

tk+1

)
‖∇μk+1g(K yk) − ∇μk+1g(K xk)‖2 + 1

tk+1
‖∇μk+1g(K yk)‖2

≥
(
1 − 1

tk+1

)
1

tk+1
‖∇μk+1g(K xk)‖2.

(14)

Combining (13) and (14) gives

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

)
μk g(K xk) +

(
1 − 1

tk+1

)
f (xk)

+ 1

tk+1
g(K x∗) + 1

tk+1
f (x∗) +

(
1 − 1

tk+1

)
(μk − μk+1)

1

2
‖∇μk+1g(K xk)‖2

− μk+1

2

(
1 − 1

tk+1

)
1

tk+1
‖∇μk+1g(K xk)‖2 + ‖uk − x∗‖2

2γk+1t2k+1

.

Now we combine the two terms containing ‖∇μk+1g(K xk)‖2 and get that

Fk+1(xk+1) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

)
μk g(K xk) +

(
1 − 1

tk+1

)
f (xk)

+ 1

tk+1
g(K x∗) + 1

tk+1
f (x∗) + ‖uk − x∗‖2

2γk+1t2k+1

+
(
1 − 1

tk+1

) (
μk − μk+1 − μk+1

tk+1

)
1

2
‖∇μk+1g(K xk)‖2.

By subtracting F(x∗) = f (x∗) + g(K x∗) on both sides we finally obtain

Fk+1(xk+1) − F(x∗) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

) (
Fk(xk) − F(x∗)

)
+ ‖uk − x∗‖2

2γk+1t2k+1

+
(
1 − 1

tk+1

) (
μk − μk+1 − μk+1

tk+1

)
1

2
‖∇μk+1g(K xk)‖2.

��

Now we are in the position to prove Theorem 3.1.

123

Journal of Scientific Computing (2020) 85 :33 Page 11 of 29 33

Proof of Theorem 3.1 We start with the statement of Lemma 3.3 and use the assumption that

μk − μk+1 − μk+1

tk+1
≤ 0

to make the last term in the inequality disappear for every k ≥ 0

Fk+1(xk+1) − F(x∗) + ‖uk+1 − x∗‖2
2γk+1t2k+1

≤
(
1 − 1

tk+1

) (
Fk(xk) − F(x∗)

)
+ ‖uk − x∗‖2

2γk+1t2k+1

.

Now we use the assumption that
(
1 − 1

tk+1

)
γk+1t2k+1 = γk t2k

to get that for every k ≥ 0

γk+1t2k+1(Fk+1(xk+1) − F(x∗)) + ‖uk+1 − x∗‖2
2

≤ γk t2k (Fk(xk) − F(x∗)) + ‖uk − x∗‖2
2

. (15)

Let N ≥ 2. Summing (15) from k = 1 to N − 1 and getting rid of the nonnegative term
‖uN − x∗‖2 gives

γN t2N (F N (xN) − F(x∗)) ≤ γ1(F1(x1) − F(x∗)) + ‖u1 − x∗‖2
2

∀N ≥ 2.

Since t1 = 1, the above inequality is fulfilled also for N = 1. Using Lemma 3.2 shows that

F N (xN) − F(x∗) ≤ ‖x0 − x∗‖2
γN t2N

∀N ≥ 1.

The above inequality, however, is still in terms of the smoothed objective function. In order
to go to the actual objective function we apply (7) and deduce that

F(xN) − F(x∗) ≤ F N (xN) − F(x∗) + μN
L2

g

2
≤ ‖x0 − x∗‖2

2γN t2N
+ μN

L2
g

2
∀N ≥ 1.

��
Corollary 3.1 By choosing the parameters (μk)k≥1, (tk)k≥1, (γk)k≥1 in the following way,

t1 = 1, μ1 = b‖K‖2, for b > 0,

and for every k ≥ 1

tk+1 :=
√

t2k + 2tk, μk+1 := μk
t2k

t2k+1 − tk+1
, γk := μk

‖K‖2 , (16)

they fulfill

μk − μk+1 − μk+1

tk+1
≤ 0 (17)

123

33 Page 12 of 29 Journal of Scientific Computing (2020) 85 :33

and (
1 − 1

tk+1

)
γk+1t2k+1 = γk t2k (18)

For this choice of the parameters we have that

F(xN) − F(x∗) ≤ ‖x0 − x∗‖2
b(N + 1)

+ bL2
g‖K‖2

(N + 1)
exp

(
4π2

6

)
∀N ≥ 1.

Proof Since γk and μk are a scalar multiple of each other (18) is equivalent to
(
1 − 1

tk+1

)
μk+1t2k+1 = μk t2k ∀k ≥ 1

and further to (by taking into account that tk+1 > 1 for every k ≥ 1)

μk+1 = μk
t2k

t2k+1

tk+1

tk+1 − 1
= μk

t2k
t2k+1 − tk+1

∀k ≥ 1. (19)

Our update choice in (16) for the sequence (μk)k≥1 is exactly chosen in such a way that it
satisfies this. Plugging (19) into (17) gives for every k ≥ 1 the condition

1 ≤
(
1 + 1

tk+1

)
t2k

t2k+1

tk+1

tk+1 − 1
= t2k

t2k+1

tk+1 + 1

tk+1 − 1
,

which is equivalent to

0 ≥ t3k+1 − t2k+1 − t2k tk+1 − t2k

and further to

t2k+1 + t2k ≥ tk+1
(
t2k+1 − t2k

)
.

Plugging in tk+1 =
√

t2k + 2tk we get that this equivalent to

t2k+1 + t2k ≥ tk+12tk ∀k ≥ 1,

which is evidently fulfilled. Thus, the choices in (16) are indeed feasible for our algorithm.
Now we want to prove the claimed convergence rates. Via induction we show that

k + 1

2
≤ tk ≤ k ∀k ≥ 1. (20)

Evidently, this holds for t1 = 1. Assuming that (20) holds for k ≥ 1, we easily see that

tk+1 =
√

t2k + 2tk ≤
√

k2 + 2k ≤
√

k2 + 2k + 1 = k + 1

and, on the other hand,

tk+1 =
√

t2k + 2tk ≥
√

(k + 1)2

4
+ k + 1 = 1

2

√
k2 + 6k + 5 ≥ 1

2

√
k2 + 4k + 4 = k + 2

2
.

In the following we prove a similar estimate for the sequence (μk)k≥1. To this end we
show, again by induction, the following recursion for every k ≥ 2

μk = μ1

∏k−1
j=1 t j∏k

j=2(t j − 1)

1

tk
. (21)

123

Journal of Scientific Computing (2020) 85 :33 Page 13 of 29 33

For k = 2 this follows from the definition (19). Assume now that (21) holds for k ≥ 2. From
here we have that

μk+1 = μk
t2k

tk+1(tk+1 − 1)
= μ1

∏k−1
j=1 t j∏k

j=2(t j − 1)

1

tk

t2k
tk+1(tk+1 − 1)

= μ1

∏k
j=1 t j∏k+1

j=2(t j − 1)

1

tk+1
.

Using (21) together with (20) we can check that for every k ≥ 1

μk+1 = μ1

∏k
j=1 t j∏k+1

j=2(t j − 1)

1

tk+1
= μ1

tk+1

k∏
j=1

t j

(t j+1 − 1)
≥ μ1

tk+1
= b‖K‖2 1

tk+1
, (22)

where we used in the last step the fact that tk+1 ≤ tk + 1.
The last thing to check is the fact that μk goes to zero like 1

k . First we check that for every
k ≥ 1

tk
tk+1 − 1

≤ 1 + 1

tk+1(tk+1 − 1)
. (23)

This can be seen via

(tk + 1)tk+1 ≤ (tk + 1)2 = t2k+1 + 1 ∀k ≥ 1.

By bringing tk+1 to the other side we get that

tk+1tk ≤ t2k+1 − tk+1 + 1,

from which we can deduce (23) by dividing by t2k+1 − tk+1.
We plug in the estimate (23) in (21) and get for every k ≥ 2

μk = μ1

∏k−1
j=1 t j∏k−1

j=1(t j+1 − 1)

1

tk

≤ μ1

k−1∏
j=1

(
1 + 1

t j+1(t j+1 − 1)

)
1

tk
≤ μ1

k−1∏
j=1

(
1 + 4

(j + 2) j

)
1

tk

≤ μ1

k−1∏
j=1

(
1 + 4

j2

)
1

tk
≤ μ1 exp

(
π24

6

)
1

tk
= b‖K‖2 exp

(
π24

6

)
1

tk
.

With the above inequalities we can to deduce the claimed convergence rates. First note that
from Theorem 3.1 we have

F(xN) − F(x∗) ≤ ‖x0 − x∗‖2
2γN t2N

+ μN
L2

g

2
∀N ≥ 1.

Now, in order to obtain the desired conclusion, we use the above estimates and deduce for
every N ≥ 1

‖x0 − x∗‖2
2γN t2N

+ μN
L2

g

2
≤ ‖x0 − x∗‖2

2btN
+ bL2

g‖K‖2
2tN

exp

(
4π2

6

)

≤ ‖x0 − x∗‖2
b(N + 1)

+ bL2
g‖K‖2

(N + 1)
exp

(
4π2

6

)
,

123

33 Page 14 of 29 Journal of Scientific Computing (2020) 85 :33

where we used that

γN tN = μN tN

‖K‖2 ≥ b,

as shown in (22). ��

Remark 3.3 Consider the choice (see [21])

t1 = 1, tk+1 =
1 +

√
1 + 4t2k

2
∀k ≥ 1

and

μ1 = b‖K‖2, for b > 0.

Since

t2k = t2k+1 − tk+1 ∀k ≥ 1,

we see that in this setting we have to choose

μk = b‖K‖2 and γk = b ∀k ≥ 1.

Thus, the sequence of optimal function values (F(xN))N≥1 approaches a b‖K‖2 Lg
2 -

approximation of the optimal objective value F(x∗) with a convergence rate of O(1
N2),

i.e.

F(xN) − F(x∗) ≤ 2
‖x0 − x∗‖2
b(N + 1)2

+ b
‖K‖2L2

g

2
∀N ≥ 1.

4 Stochastic Method

Problem 4.1 The problem is the same as in the deterministic case

min
x∈H f (x) + g(K x)

other than the fact that at each iteration we are only given a stochastic estimator of the
quantity

∇(μk g ◦ K)(·) = K ∗ prox 1
μk

g∗

(
1

μk
K ·

)
∀k ≥ 1.

Remark 4.1 See Algorithm 4.3 for a setting where such an estimator is easily computed.

For the stochastic quantities arising in this section we will use the following notation.
For every k ≥ 0, we denote by σ(x0, . . . , xk) the smallest σ -algebra generated by the
family of random variables {x0, . . . , xk} and by Ek(·) := E(·|σ(x0, . . . , xk)) the conditional
expectation with respect to this σ -algebra.

Algorithm 4.1 (stochastic Variable Accelerated SmooThing (sVAST)) Let y0 = x0 ∈
H, (μk)k≥1 a sequence of positive and nonincreasing real numbers, and (tk)k≥1 a sequence

123

Journal of Scientific Computing (2020) 85 :33 Page 15 of 29 33

of real numbers with t1 = 1 and tk ≥ 1 for every k ≥ 2. Consider the following iterative
scheme

(∀k ≥ 1)

⎢⎢⎢⎢⎢⎢⎣

Lk = ‖K‖2
μk

γk = 1
Lk

xk = proxγk f (yk−1 − γkξk−1)

yk = xk + tk−1
tk+1

(xk − xk−1),

where we make the standard assumptions about our gradient estimator of being unbiased,
i.e.

Ek(ξk) = ∇(μk+1g ◦ K)(yk),

and having bounded variance

Ek
(‖ξk − ∇(μk+1g ◦ K)(yk)‖2

) ≤ σ 2

for every k ≥ 0.

Note that we use the same notations as in the deterministic case

uk := xk−1 + tk(xk − xk−1) and Fk(·) := f + μk g ◦ K ∀k ≥ 1.

Lemma 4.1 The following statement holds for every (deterministic) z ∈ H and every k ≥ 0

Ek

(
Fk+1(xk+1) + ‖xk+1 − z‖2

2γk+1

)
≤ Fk+1(z) + ‖z − yk‖2

2γk+1

+ γk+1

(
σ 2 + ‖K‖2L2

g

2

)

Proof Here we have to proceed a little bit different fromLemma 3.1. Namely, we have to treat
the gradient step and the proximal step differently. For this purpose we define the auxiliary
variable

zk := yk−1 − γkξk−1 ∀k ≥ 1.

Let k ≥ 1 be fixed. From the gradient step we get

‖z − zk‖2 = ‖yk−1 − γkξk−1 − z‖2
= ‖yk−1 − z‖2 − 2γk 〈ξk−1, yk−1 − z〉 + γ 2

k ‖ξk−1‖2.
Taking the conditional expectation gives

Ek−1

(
‖z − zk‖2

)
= ‖yk−1 − z‖2− 2γk

〈∇(μk g ◦ K)(yk−1), yk−1 − z
〉+ γ 2

k Ek−1

(
‖ξk−1‖2

)
.

Using the gradient inequality we deduce

Ek−1
(‖z − zk‖2

) ≤ ‖yk−1 − z‖2 − 2γk((
μk g ◦ K)(yk−1) − (μk g ◦ K)(z))

+ γ 2
k Ek−1

(‖ξk−1‖2
)

and therefore

γk(
μk g ◦ K)(yk−1) + 1

2
Ek−1

(‖z − zk‖2
) ≤ 1

2
‖yk−1 − z‖2 + γk(

μk g ◦ K)(z)

+ γ 2
k

2
Ek−1

(‖ξk−1‖2
)
.

(24)

123

33 Page 16 of 29 Journal of Scientific Computing (2020) 85 :33

Also from the smoothness of (μk g ◦ K) we deduce via the Descent Lemma that

μk g(K zk) ≤ μk g(K yk−1) + 〈∇(μk g ◦ K)(yk−1), zk − yk−1
〉 + Lk

2
‖zk − yk−1‖2.

Plugging in the definition of zk and using the fact that Lk = 1
γk

we get

μk g(K zk) ≤ μk g(K yk−1) − γk
〈∇(μk g ◦ K)(yk−1), ξk−1

〉 + γk

2
‖ξk−1‖2.

Now we take the conditional expectation to deduce that

Ek−1(
μk g(K zk)) ≤ μk g(K yk−1) − γk

∥∥∇(μk g ◦ K)(yk−1)
∥∥2 + γk

2
Ek−1

(‖ξk−1‖2
)
.(25)

Multiplying (25) by γk and adding it to (24) gives

γkEk−1
(
μk g(K zk)

) + 1

2
Ek−1

(‖z − zk‖2
)

≤ γk
μk g(K z) + 1

2
‖yk−1 − z‖2 − γ 2

k

∥∥∇(μk g ◦ K)(yk−1)
∥∥2 + γ 2

k Ek−1
(‖ξk−1‖2

)
.

Now we use the assumption about the bounded variance to deduce that

γkEk−1
(
μk g(K zk)

) + 1

2
Ek−1

(
‖z − zk‖2

)
≤ γk

μk g(K z) + 1

2
‖yk−1 − z‖2 + γ 2

k σ 2. (26)

Next up for the proximal step we deduce

f (xk) + 1

2γk
‖xk − zk‖2 + 1

2γk
‖xk − z‖2 ≤ f (z) + 1

2γk
‖z − zk‖2. (27)

Taking the conditional expectation and combining (26) and (27) we get

Ek−1

(
γk(

μk g(K zk) + f (xk)) + 1

2
‖xk − zk‖2 + 1

2
‖xk − z‖2

)

≤ γk Fk(z) + 1

2
‖yk−1 − z‖2 + γ 2

k σ 2.

From here, using now Lemma 2.3, we get that

Ek−1

(
γk Fk(xk) − γk Lg‖K‖‖xk − zk‖ + 1

2
‖xk − zk‖2 + 1

2
‖xk − z‖2

)

≤ γk Fk(z) + 1

2
‖yk−1 − z‖2 + γ 2

k σ 2.

Now we use

−1

2
γ 2

k L2
g‖K‖2 ≤ 1

2
‖xk − zk‖2 − γk Lg‖K‖‖xk − zk‖

to obtain that

Ek−1

(
γk Fk(xk) + 1

2
‖xk − z‖2

)

≤ γk Fk(z) + 1

2
‖yk−1 − z‖2 + γ 2

k σ 2 + 1

2
γ 2

k L2
g‖K‖2.

��

123

Journal of Scientific Computing (2020) 85 :33 Page 17 of 29 33

Lemma 4.2 Let x∗ be an optimal solution of Problem 4.1. Then it holds

E
(
γ1(F1(x1) − F1(x∗))

) + 1

2
‖u1 − x∗‖2 ≤ 1

2
‖x0 − x∗‖2 + γ 2

1 σ 2 + 1

2
γ 2
1 L2

g‖K‖2.

Proof Applying the previous lemma with k = 0 and z = x∗, we get that

E

(
γ1F1(x1) + 1

2
‖x1 − x∗‖2

)
≤γ1F1(x∗) + 1

2
‖y0 − x∗‖2 + γ 2

1 σ 2 + 1

2
γ 2
1 L2

g‖K‖2.

Therefore, using the fact that y0 = x0 and u1 = x1,

E

(
γ1(F1(x1) − F1(x∗)) + 1

2
‖u1 − x∗‖2

)
≤ 1

2
‖x0 − x∗‖2 + γ 2

1 σ 2 + 1

2
γ 2
1 L2

g‖K‖2,

which finishes the proof. ��
Theorem 4.1 Consider the setup of Problem 4.1 and let (xk)k≥0 and (yk)k≥0 denote the
sequences generated by Algorithm 4.1. Assume that for all k ≥ 1

ρk+1 := t2k − t2k+1 + tk+1 ≥ 0.

Then, for every optimal solution x∗ of Problem 4.1, it holds

E
(
F(xN) − F(x∗)

) ≤ 1

γN t2N

1

2
‖x0 − x∗‖2 + 1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ 2
k (tk + ρk)

+ 1

γN t2N

(
σ 2 + ‖K‖2L2

g

2

)
N∑

k=1

t2k γ 2
k ∀N ≥ 1.

Proof of Theorem 4.1 Let k ≥ 0 be fixed. Lemma 4.1 for z :=
(
1 − 1

tk+1

)
xk + 1

tk+1
x∗ gives

Ek

(
Fk+1(xk+1) + 1

2γk+1

∥∥∥∥
1

tk+1
uk+1 − 1

tk+1
x∗

∥∥∥∥
2
)

≤ Fk+1
((

1 − 1

tk+1

)
xk + 1

tk+1
x∗

)
+ 1

2γk+1

∥∥∥∥
1

tk+1
x∗ − 1

tk+1
uk

∥∥∥∥
2

+ γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

From here and from the convexity of Fk+1 follows

Ek

(
Fk+1(xk+1) − Fk+1(x∗)

)
−

(
1 − 1

tk+1

)
(Fk+1(xk) − Fk+1(x∗))

≤ ‖uk − x∗‖2
2γk+1t2k+1

− Ek

(
‖uk+1 − x∗‖2
2γk+1t2k+1

)
+ γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

Now, by multiplying both sides with by t2k+1, we deduce

Ek

(
t2k+1(Fk+1(xk+1) − Fk+1(x∗))

)
+ (tk+1 − t2k+1)(Fk+1(xk) − Fk+1(x∗))

≤ 1

2γk+1

(‖uk − x∗‖2 − Ek
(‖uk+1 − x∗‖2)) + t2k+1γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

(28)

123

33 Page 18 of 29 Journal of Scientific Computing (2020) 85 :33

Next, by adding t2k (Fk+1(xk) − Fk+1(x∗)) on both sides of (28), gives

Ek

(
t2k+1(Fk+1(xk+1) − Fk+1(x∗))

)
+ ρk+1(Fk+1(xk) − Fk+1(x∗)) ≤

t2k (Fk+1(xk) − Fk+1(x∗)) + 1

2γk+1

(‖uk − x∗‖2 − Ek
(‖uk+1 − x∗‖2))

+ t2k+1γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

Utilizing (6) together with the assumption that (μk)k≥1 is nonincreasing leads to

Ek

(
t2k+1(Fk+1(xk+1) − Fk+1(x∗))

)
+ ρk+1(Fk+1(xk) − Fk+1(x∗))

≤ t2k (Fk(xk) − Fk(x∗)) + 1

2γk+1

(‖uk − x∗‖2 − Ek
(‖uk+1 − x∗‖2)) + t2k (μk − μk+1)

L2
g

2

+ t2k+1γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

Now, using that t2k ≥ t2k+1 − tk+1, we get

Ek

(
t2k+1(Fk+1(xk+1) − Fk+1(x∗))

)
+ ρk+1(Fk+1(xk) − Fk+1(x∗))

≤ t2k (Fk(xk) − Fk(x∗)) + 1

2γk+1
(‖uk − x∗‖2 − Ek

(‖uk+1 − x∗‖2))

+ t2k μk
L2

g

2
− t2k+1μk+1

L2
g

2
+ tk+1μk+1

L2
g

2

+ t2k+1γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

Multiplying both sides with γk+1 and putting all terms on the correct sides yields

Ek

(
γk+1t2k+1

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2

)
+ 1

2
‖uk+1 − x∗‖2

)
+

γk+1ρk+1(Fk+1(xk) − Fk+1(x∗))

≤ γk+1t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
+ 1

2
‖uk − x∗‖2

+ γk+1tk+1μk+1
L2

g

2
+ t2k+1γ

2
k+1

(
σ 2 + ‖K‖2L2

g

2

)
.

(29)

At this point we would like to discard the term γk+1ρk+1(Fk+1(xk) − Fk+1(x∗)) which
we currently cannot as the positivity of Fk+1(xk) − Fk+1(x∗) is not ensured. So we add

γk+1ρk+1μk+1
L2

g
2 on both sides of (29) and get

123

Journal of Scientific Computing (2020) 85 :33 Page 19 of 29 33

Ek

(
γk+1t2k+1

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2

)
+ 1

2
‖uk+1 − x∗‖2

)
+

γk+1ρk+1

(
Fk+1(xk) − Fk+1(x∗) + μk+1

L2
g

2

)
≤

γk+1t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
+ 1

2
‖uk − x∗‖2+

+ γk+1μk+1
L2

g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

(
σ 2 + ‖K‖2L2

g

2

)
.

(30)

Using again (6) to deduce that

γk+1ρk+1

(
Fk+1(xk) − Fk+1(x∗) + μk+1

L2
g

2

)
≥ γk+1ρk+1(F(xk) − F(x∗)) ≥ 0

we can now discard said term from (30), giving

Ek

(
γk+1t2k+1

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2

)
+ 1

2
‖uk+1 − x∗‖2

)
≤

γk+1t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
+ 1

2
‖uk − x∗‖2

+ γk+1μk+1
L2

g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

(
σ 2 + ‖K‖2L2

g

2

)
.

(31)

Last but not least we use that Fk(xk)− Fk(x∗)+μk
L2

g
2 ≥ F(xk)− F(x∗) ≥ 0 and γk+1 ≤ γk

to follow that

γk+1t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
≤ γk t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
. (32)

Combining (31) and (32) yields

Ek

(
γk+1t2k+1

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2

)
+ 1

2
‖uk+1 − x∗‖2

)
≤

γk t2k

(
Fk(xk) − Fk(x∗) + μk

L2
g

2

)
+ 1

2
‖uk − x∗‖2

+ γk+1μk+1
L2

g

2
(tk+1 + ρk+1) + t2k+1γ

2
k+1

(
σ 2 + ‖K‖2L2

g

2

)
.

(33)

123

33 Page 20 of 29 Journal of Scientific Computing (2020) 85 :33

Let N ≥ 2. We take the expected value on both sides (33) and sum from k = 1 to N − 1.
Getting rid of the non-negative terms ‖uN − x∗‖2 gives

E

(
γN t2N

(
F N (xN) − F N (x∗) + μN

L2
g

2

))
≤

E

(
γ1

(
F1(x1) − F1(x∗) + μ1

L2
g

2

))
+ 1

2
‖u1 − x∗‖2 +

N∑
k=2

γkμk
Lg

2
(tk + ρk)

+
N∑

k=2

t2k γ 2
k

(
σ 2 + ‖K‖2L2

g

2

)
.

Since t1 = 1, the above inequality holds also for N = 1. Now, using Lemma 4.2 we get that
for every N ≥ 1

E

(
γN t2N

(
F N (xN) − F N (x∗) + μN

L2
g

2

))
≤ 1

2
‖x0 − x∗‖2 +

N∑
k=1

γkμk
L2

g

2
(tk + ρk)

+
N∑

k=1

t2k γ 2
k

(
σ 2 + ‖K‖2L2

g

2

)
.

From (7) we follow that

γN t2N
(
F(xN) − F(x∗)

) ≤ γN t2N

(
F N (xN) − F N (x∗) + μN

L2
g

2

)
,

therefore, for every N ≥ 1

E

(
γN t2N

(
F N (xN) − F N (x∗)

))
≤ 1

2
‖x0 − x∗‖2 +

N∑
k=1

γkμk
L2

g

2
(tk + ρk)

+
N∑

k=1

t2k γ 2
k

(
σ 2 + ‖K‖2L2

g

2

)
.

By using the fact that μk = γk‖K‖2 for every k ≥ 1 gives

E
(
γN t2N (F(xN) − F(x∗))

) ≤ 1

2
‖x0 − x∗‖2 + ‖K‖2L2

g

2

N∑
k=1

γ 2
k (tk + ρk)

+
(

σ 2 + ‖K‖2L2
g

2

)
N∑

k=1

t2k γ 2
k ∀N ≥ 1.

Thus,

E
(
F(xN) − F(x∗)

) ≤ 1

γN t2N

1

2
‖x0 − x∗‖2 + 1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ 2
k (tk + ρk)

+ 1

γN t2N

(
σ 2 + ‖K‖2L2

g

2

)
N∑

k=1

t2k γ 2
k ∀N ≥ 1.

��

123

Journal of Scientific Computing (2020) 85 :33 Page 21 of 29 33

Corollary 4.1 Let

t1 = 1, tk+1 =
1 +

√
1 + 4t2k

2
∀k ≥ 1,

and, for b > 0,

μk = b

k
3
2

‖K‖2, and γk = b

k
3
2

∀k ≥ 1.

Then,

E
(
F(xN) − F(x∗)

) ≤ 2
‖x0 − x∗‖2

b
√

N
+ b‖K‖2L2

g
π2

3

1√
N

+ 2b
(
2σ 2 + ‖K‖2L2

g

) 1 + log(N)√
N

∀N ≥ 1.

Furthermore, we have that F(xN) converges almost surely to F(x∗) as N → +∞.

Proof First we notice that the choice of tk+1 = 1+
√
1+4t2k
2 fulfills that

ρk+1 = t2k − t2k+1 + tk+1 = 0 ∀k ≥ 1.

Now we derive the stated convergence result by first showing via induction that

1

k
≤ 1

tk
≤ 2

k
∀k ≥ 1.

Assuming that this holds for k ≥ 1, we have that

tk+1 =
1 +

√
1 + 4t2k

2
≤ 1 + √

1 + 4k2

2
≤ 1 + √

1 + 4k + 4k2

2
= k + 1

and

tk+1 =
1 +

√
1 + 4t2k

2
≥ 1 +

√
1 + 4(k

2)
2

2
≥ 1 + √

k2

2
≥ k + 1

2
.

Furthermore, for every N ≥ 1 we have that

1

γN t2N

‖K‖2L2
g

2

N∑
k=1

γ 2
k (tk + ρk) ≤ 4

b
√

N

‖K‖2L2
g

2

N∑
k=1

b2

k3
k = 2b‖K‖2L2

g√
N

N∑
k=1

k−2

≤ 2b‖K‖2L2
g√

N

∞∑
k=1

k−2 = b‖K‖2L2
g
π2

3

1√
N

.

(34)

The statement of the convergence rate in expectation follows now by plugging in our param-
eter choices into the statement of Theorem 4.1, using the estimate (34) and checking that

N∑
k=1

t2k γ 2
k ≤ b2

N∑
k=1

1

k
≤ b2(1 + log(N)) ∀N ≥ 1.

123

33 Page 22 of 29 Journal of Scientific Computing (2020) 85 :33

The almost sure convergence of (F(xN))N≥1 can be deduced by looking at (33) and dividing
by γk+1t2k+1 and using that γk+1t2k+1 ≥ γk t2k as well as ρk = 0, which gives for every k ≥ 0

Ek

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2
+ 1

2γk+1t2k+1

‖uk+1 − x∗‖2
)

≤ Fk(xk) − Fk(x∗) + μk
L2

g

2
+ 1

2γk t2k
‖uk − x∗‖2 + μk+1

tk+1

L2
g

2
+ γk+1

(
σ 2 + ‖K‖2L2

g

2

)
.

Plugging in our choice of parameters gives for every k ≥ 0

Ek

(
Fk+1(xk+1) − Fk+1(x∗) + μk+1

L2
g

2
+ 1

2γk+1t2k+1

‖uk+1 − x∗‖2
)

≤ Fk(xk) − Fk(x∗) + μk
L2

g

2
+ 1

2γk t2k
‖uk − x∗‖2 + C

k
3
2

,

where C > 0.
Thus, by the famous Robbins-Siegmund Theorem (see [25, Theorem 1]) we get that

(Fk+1(xk+1) − Fk+1(x∗) + μk+1
L2

g
2)k≥0 converges almost surely. In particular, from the

convergence to 0 in expectation we know that the almost sure limit must also be the constant
zero. ��

Finite Sum The formulation of the previous section can be used to deal e.g. with problems
of the form

min
x∈H f (x) +

m∑
i=1

gi (Ki x) (35)

for f : H → R a proper, convex and lower semicontinuous function, gi : Gi → R convex
and Lgi -Lipschitz continuous functions and Ki : H → Gi linear continuous operators for
i = 1, . . . , m.

Clearly one could consider

K :=
{
H →×m

i=1 Gi

x �→×m
i=1 Ki x

with ‖K‖2 = ∑m
i=1 ‖Ki‖2 and

g :=
{×m

i=1 Gi → R

×m
i=1 yi �→ ∑m

i=1 gi (yi).

in order to reformulate the problem as

min
x∈H f (x) + g(K x)

and use Algorithm 3.1 together with the parameter choices described in Corollary 3.1 on this.
This results in the following algorithm.

123

Journal of Scientific Computing (2020) 85 :33 Page 23 of 29 33

Algorithm 4.2 Let y0 = x0 ∈ H, μ1 = b‖K‖, for b > 0, and t1 = 1. Consider the following
iterative scheme

(∀k ≥ 1)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γk =
∑m

i=1‖Ki ‖2
μk

xk = proxγk f

(
yk−1 − γk

∑m
i=1 K ∗

i prox 1
μk

g∗
i

(
Ki yk−1

μk

))

tk+1 =
√

t2k + 2tk

yk = xk + tk−1
tk+1

(xk − xk−1)

μk+1 = μk
t2k

t2k+1−tk+1
.

However, Problem (35) also lends itself to be tackled via the stochastic version of ourmethod,
Algorithm 4.1, by randomly choosing a subset of the summands. Together with the parameter
choices described in Corollary 4.1 which results in the following scheme.

Algorithm 4.3 Let y0 = x0 ∈ H, b > 0, and t1 = 1. Consider the following iterative scheme

(∀k ≥ 1)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μk = b
∑m

i=1‖Ki‖2k− 3
2

γk = bk− 3
2

xk = proxγk f

(
yk−1 − γk

εi,k
pi

∑m
i=1 K ∗

i prox 1
μk

g∗
i

(
Ki yk−1

μk

))

tk+1 = 1+
√
1+4t2k
2

yk = xk + tk−1
tk+1

(xk − xk−1),

with εk := (ε1,k, ε2,k, . . . , εm,k) a sequence of i.i.d., {0, 1}m random variables and pi =
P[εi,1 = 1].

Since the above twomethods were not explicitly developed for this separable case and can
therefore not make use of more refined estimation of the constant ‖K‖, as it is done in e.g.
[14]. However, in the stochastic case, this fact is remedied due to the scaling of the stepsize
with respect to the i-th component by p−1

i .

Remark 4.2 In theory Algorithm 4.1 could be used to treat more general stochastic problems
than finite sums like (35), but in the former case it is not clear anymore how a gradient
estimator can be found, so we do not discuss it here.

5 Numerical Examples

We will focus our numerical experiments on image processing problems. The examples are
implemented in python using the operator discretization library (ODL) [1]. We define the
discrete gradient operators D1 and D2 representing the discretized derivative in the first and
second coordinate respectively, which we will need for the numerical examples. Both map
from R

m×n to R
m×n and are defined by

(D1u)i, j :=
{

ui+1, j − ui, j 1 ≤ i < m,

0 else,

and

(D2u)i, j :=
{

ui, j+1 − ui, j 1 ≤ j < m,

0 else.

123

33 Page 24 of 29 Journal of Scientific Computing (2020) 85 :33

Fig. 1 TVdenoising. Images used. The approximate solution is computed by runningPDHGfor 7000 iterations

The operator norm of D1 and D2, respectively, is 2 (where we equipped R
m×n with the

Frobenius norm). This yields an operator norm of
√
8 for the total gradient D := D1 × D2

as a map from R
m×n to R

m×n × R
m×n , see also [12].

We will compare our methods, i.e. the Variable Accelerated SmooThing (VAST) and its
stochastic counterpart (sVAST) to the PrimalDualHybridGradient (PDHG) of [15] aswell as
its stochastic version (sPDHG) from [14]. Furthermore, we will illustrate another competitor,
the method by Pesquet and Repetti, see [24], which is another stochastic version of PDHG
(see also [29]).

In all examples we choose the parameters in accordance with [14]:

• for PDHG and Pesquet&Repetti: τ = σi = γ
‖K‖

• for sPDHG: σi = γ
‖K‖ and τ = γ

n maxi ‖Ki ‖ ,

where γ = 0.99.

5.1 Total Variation Denoising

The task at hand is to reconstruct an image from its noisy observation. We do this by solving

min
x∈Rm×n

α‖x − b‖2 + ‖D1x‖1 + ‖D2x‖1,

with α > 0 as regularization parameter, in the following setting: f = α‖· − b‖2, g1 = g2 =
‖·‖1, K1 = D1, K2 = D2.

Figure 1 illustrates the images (of dimension m = 442 and n = 331) used in for this
example. These include the groundtruth, i.e. the uncorrupted image, as well as the data for
the optimization problem b, which visualizes the level of noise. In Fig. 2 we can see that for
the deterministic setting our method is as good as PDHG. For the objective function values,
Fig. 2b, this is not too surprising as both algorithms share the same convergence rate. For
the distance to a solution however we completely lack a convergence result. Nevertheless in
Fig. 2a we can see that our method performs also well with respect to this measure.

In the stochastic setting we can see in Fig. 2 that, while sPDHG provides some benefit
over its deterministic counterpart, the stochastic version of ourmethod, although significantly
increasing the variance, provides great benefit, at least for the objective function values.

Furthermore, Fig. 3, shows the reconstructions of sPDHG and our method which are,
despite the different objective function values, quite comparable.

123

Journal of Scientific Computing (2020) 85 :33 Page 25 of 29 33

100 101 102 103

iterations [epochs]

100

101

102

pr
im

al
di
st
an

ce

PDHG
sPDHG
VAST b=0.1
sVAST b=0.1

(a) Distance to the solution.

100 101 102 103

iterations [epochs]

10−5

10−4

10−3

10−2

10−1

100

re
la
ti
ve

ob
je
ct
iv
e

PDHG
sPDHG
VAST b=0.1
sVAST b=0.1

(b) Relative objective F (xk)−F (x∗)
F (x0)−F (x∗) .

Fig. 2 TV denoising. Plots illustrating the performance of different methods

Fig. 3 TV Denoising. A comparison of the reconstruction for the stochastic variable smoothing method and
the stochastic PDHG

Fig. 4 TV Deblurring. The approximate solution is computed by running PDHG for 3000 iterations

5.2 Total Variation Deblurring

For this example wewant to reconstruct an image from a blurred and noisy image.We assume
to know the blurring operator C : Rm×n → R

m×n . This is done by solving

min
x∈Rm×n

α‖Cx − b‖2 + ‖D1x‖1 + ‖D2x‖1, (36)

for α > 0 as regularization parameter, in the following setting: f = 0, g1 = α‖·−b‖2, g2 =
g3 = ‖·‖1, K1 = C, K2 = D1, K2 = D2.

Figure 4 shows the images used to set up the optimization problem (36), in particular
Fig. 4b which corresponds to b in said problem.

123

33 Page 26 of 29 Journal of Scientific Computing (2020) 85 :33

100 101 102

iterations [epochs]

101

102

103

pr
im

al
di
st
an

ce

PDHG
SPDHG
Pesquet&Repetti
VAST b=0.2
sVAST b=0.2

(a) Distance to the solution.

100 101 102

iterations [epochs]

10−3

10−2

10−1

100

re
la
ti
ve

ob
je
ct
iv
e

PDHG
SPDHG
Pesquet&Repetti
VAST b=0.2
sVAST b=0.2

(b) Relative objective F (xk)−F (x∗)
F (x0)−F (x∗) .

Fig. 5 TV deblurring. Plots illustrating the performance of different methods

In Fig. 5 we see that while PDGH performs better in the deterministic setting, in par-
ticular in the later iteration, the stochastic variable smoothing method provides a significant
improvement where sPDHGmethod seems not to converge. It is interesting to note that in this
setting even the deterministic version of our algorithm exhibits a slightly chaotic behaviour.
Although neither of the two methods is monotone in the primal objective function PDHG
seems here much more stable.

5.3 Matrix Factorization

In this section we want to solve a nonconvex and nonsmooth optimization problem of com-
pletely positive matrix factorization, see [16,19,27]. For an observed matrix A ∈ R

d×d

we want to find a completely positive low rank factorization, meaning we are looking for
x ∈ R

r×d
≥0 with r � d such that xT x = A. This can be formulated as the following opti-

mization problem

min
x∈Rr×d

≥0

‖xT x − A‖1, (37)

where xT denotes the transpose of the matrix x . The more natural approach might be to use a
smooth formulation where ‖ · ‖22 is used instead of the 1-Norm we are suggesting. However,
the former choice of distance measure, albeit smooth, comes with its own set of problems
(mainly a non-Lipschitz gradient).

The so called Prox-Linear method presented in [18] solves the above problem (37), by
linearizing the smooth (Rd×d -valued) function x �→ xT x inside the nonsmooth distance
function. In particular for the problem

min
x

g(c(x)),

for a smooth vector valued function c and a convex and Lipschitz function g, [18] proposes
to iteratively solve the subproblem

xk+1 = argmin
x

{
g(c(xk) + ∇c(xk)(x − xk)) + 1

2t
‖x − xk‖22

}
∀k ≥ 0, (38)

123

Journal of Scientific Computing (2020) 85 :33 Page 27 of 29 33

Fig. 6 Comparison of the evolutions of the objective function values for different starting points. We run
40 epochs with 5 iterations each. For each epoch we choose the last iterate of the previous epoch as the
linearization. For the stochastic methods we fix the number of rows (batch size) which are randomly chosen
in each update a priori and count d divided by this number as one iteration. For the randomly chosen initial
point we use a batch size of 3 (to allow for more exploration) and for the one close to the solution we use 5 in
order to give a more accuracy. The parameter b in the variable smoothing method was chosen with minimal
tuning to be 0.1 for both the deterministic and the stochastic version

for a stepsize t ≤ (Lg L D∇c)
−1. For our particular problem described in (37) the subproblem

looks as follows

xk+1 = argmin
x∈Rr×d

≥0

{
‖xT

k x − A‖1 + 1

2
‖x − xk‖22

}
, (39)

and therefore fits our general setup described in (1) with the identification f = ‖ · −xk‖22 +
δ
R

r×d
≥0

(x), g = ‖·‖1 and K = xT
k .Moreover, due to its separable structure, the subproblem (39)

fits the special case described in (35) and can therefore be tackled by the stochastic version of
our algorithm presented in Algorithm 4.3. In particular reformulating (38) for the stochastic
finite sum setting we interpret the subproblem as

xk+1 = argmin
x∈Rr×d

≥0

{
d∑

i=1

∥∥∥xT
k [i, :]x − A[i, :]

∥∥∥
1
+ 1

2
‖x − xk‖22

}
,

where A[i, :] denotes the i-th row of the matrix A (Fig. 6).
In comparison to Sects. 5.1 and 5.2 a new aspect becomes important when evaluating

methods for solving (38). Now, it is not only relevant how well subproblem (39) is solved,
but also the trajectory taken in doing so as different paths might lead to different local
minima. This can be seen in Fig. 6 where PDHG gets stuck early on in bad local minima.
The variable smoothing method (especially the stochastic version) is able to move further
from the starting point and find better local minima. Note that in general the methods have
a difficulty in finding the global minimum xtrue ∈ R

3×60 (with optimal objective function
value zero, as constructed A := xT

truextrue ∈ R
60×60 in all examples).

Acknowledgements The authors are thankful to two anonymous reviewers for comments and remarks which
improved the quality of the presentation and led to the numerical experiment on matrix factorization.

Funding Open access funding provided by Austrian Science Fund (FWF).

123

33 Page 28 of 29 Journal of Scientific Computing (2020) 85 :33

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adler, J., Kohr, H., Öktem, O.: Operator Discretization Library. https://odlgroup.github.io/odl/ (2017)
2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.

Springer, New York (2011)
3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sci. 2(1), 183–202 (2009)
4. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterex-

amples. Cambridge University Press, Cambridge (2010)
5. Boţ, R.I., Csetnek, E.R.: On the convergence rate of a forward–backward type primal–dual splitting

algorithm for convex optimization problems. Optimization 64(1), 5–23 (2015)
6. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal–

dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150(2), 251–279
(2015)

7. Boţ, R.I., Hendrich, C.: A double smoothing technique for solving unconstrained nondifferentiable convex
optimization problems. Comput. Optim. Appl. 54(2), 239–262 (2013)

8. Boţ, R.I., Hendrich, C.C.: A Douglas-Rachford type primal–dual method for solving inclusions with
mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565
(2013)

9. Boţ, R.I., Hendrich, C.: Convergence analysis for a primal–dual monotone+ skew splitting algorithmwith
applications to total variation minimization. J. Math. Imaging Vis. 49(3), 551–568 (2014)

10. Boţ, R.I., Hendrich, C.: On the acceleration of the double smoothing technique for unconstrained convex
optimization problems. Optimization 64(2), 265–288 (2015)

11. Boţ, R.I., Hendrich, C.: A variable smoothing algorithm for solving convex optimization problems. TOP
23(1), 124–150 (2015)

12. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.
20(1–2), 89–97 (2004)

13. Chambolle, A., Dossal, C.: On the convergence of the iterates of the Fast Iterative Shrinkage/Thresholding
Algorithm. J. Optim. Theory Appl. 166(3), 968–982 (2015)

14. Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schönlieb, C.B.: Stochastic primal–dual hybrid gradient
algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28(4), 2783–2808 (2018)

15. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

16. Chen, C., Pong, T.K., Tan, L., Zeng, L.: A difference-of-convex approach for split feasibility with appli-
cations to matrix factorizations and outlier detection. J. Glob. Optim. https://doi.org/10.1007/s10898-
020-00899-8 (2020)

17. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

18. Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth
maps. Math. Program. 178, 1–56 (2019)

19. Groetzner, P., Dür, M.: A factorization method for completely positive matrices. Linear Algebra Appl.
591, 1–24 (2020)

20. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
21. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence

O(1/k2). Doklady Akademija Nauk USSR 269, 543–547 (1983)
22. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program.

110(2), 245–259 (2007)
23. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer, NewYork (2013)

123

http://creativecommons.org/licenses/by/4.0/
https://odlgroup.github.io/odl/
https://doi.org/10.1007/s10898-020-00899-8
https://doi.org/10.1007/s10898-020-00899-8

Journal of Scientific Computing (2020) 85 :33 Page 29 of 29 33

24. Pesquet, J.-C., Repetti, A.: A class of randomized primal–dual algorithms for distributed optimization. J.
Nonlinear Convex Anal. 16(12), 2453–2490 (2015)

25. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost supermartingales and some
applications. In: Optimizing Methods in Statistics, Proceedings of a Symposium Held at the Center for
Tomorrow, Ohio State University, June 14–16, Elsevier, pp. 233–257 (1971)

26. Rosasco, L., Villa, S., Vũ, B.C.: A first-order stochastic primal-dual algorithm with correction step.
Numer. Funct. Anal. Optim. 38(5), 602–626 (2017)

27. Shi, Q., Sun, H., Songtao, L., Hong, M., Razaviyayn, M.: Inexact block coordinate descent methods for
symmetric nonnegative matrix factorization. IEEE Trans. Signal Process. 65(22), 5995–6008 (2017)

28. Tran-Dinh, Q., Fercoq, O., Cevher, V.: A smooth primal–dual optimization framework for nonsmooth
composite convex minimization. SIAM J. Optim. 28(1), 96–134 (2018)

29. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Com-
put. Math. 38(3), 667–681 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
	Abstract
	1 Introduction
	2 Preliminaries
	3 Deterministic Method
	4 Stochastic Method
	5 Numerical Examples
	5.1 Total Variation Denoising
	5.2 Total Variation Deblurring
	5.3 Matrix Factorization

	Acknowledgements
	References

