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Abstract
Currently, in engineering computations for highReynolds number turbulent flows, turbulence
modeling continues to be the most frequently used approach to represent the effects of
turbulence. Such models generally rely on solving either one or two transport equations
along with the Reynolds-Averaged Navier–Stokes (RANS) equations. The solution of the
boundary-value problem of any system of partial differential equations requires the complete
delineation of the equations and the boundary conditions, including any special restrictions
and conditions. In the literature, such a description is often incomplete, neglecting important
details related to the boundary conditions and possible restrictive conditions, such as how to
ensure satisfying prescribed values of the dependent variables of the transport equations in the
far field of a finite domain. In this article,we discuss the possible influence of boundary values,
as well as near-field and far-field behavior, on the solution of the RANS equations coupled
with transport equations for turbulencemodeling. In so doing, we defne the concept of a well-
defined boundary-value problem. Additionally, a three-dimensional, rather than a simpler
one-dimensional analysis is performed to analyze the near-wall and far-field behavior of the
turbulence model variables. This allows an assessment of the decay rate of these variables
required to realize the boundary conditions in the far field. This paper also addresses the
impact of various transformations of two-equation models (e.g., the model of Wilcox) to
remove the singular behavior of the dissipation rate (ω) at the surface boundary. Finally,
the issue of well-posedness regarding the governing equations is considered. A compelling
argument (althoughnot a proof) for ill-posedness ismade for both direct and inverse problems.
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1 Introduction

In this paper we consider the Reynolds-averaged Navier–Stokes (RANS) equations. The
RANS equations are based upon Reynolds expansions for the dependent variables and time
(Reynolds) averaging. In practice, this definition is extended to include applying a combi-
nation of Reynolds expansions (for the pressure and density) and mass weighted (Favre)
expansions for the other dependent flow variables (see for example the textbooks of Wilcox
and Pope [1,2]). In so doing, the time-averaged equations can retain the same form as their
laminar flow counterparts. The resulting mean flow momentum equations are simply aug-
mented by an additional stress term (a Reynolds stress), and the mean flow energy equation
includes an additional heat flux term (Reynolds heat flux) and work term due to the Reynolds
stresses. To close the system of equations, some form of modeling is required to determine
the Reynolds stresses and Reynolds heat fluxes.

Currently, in engineering applications, partial differential or integral equations of a trans-
port type are generally used inmodeling the effects of turbulence (see [3–9]).One approach for
modeling the additional terms appearing in the RANS equations, such as Reynolds stresses,
is to invoke the eddy viscosity hypothesis (the Boussinesq approximation) in which the
Reynolds stress tensor is proportional to the mean strain rate tensor. This constitutive rela-
tion requires the determination of a viscosity coefficient that is called an eddy viscosity.
The eddy viscosity depends on two scales: a velocity scale and a length scale. These scales
can be determined using transport equations. Usually, turbulence modeling formulations use
one or two equations to determine the scales. For one-equation models, the velocity scale
comes from solving for either the turbulence kinetic energy k or a quantity that can be related
to k. The length scale for these models comes from an algebraic method that depends on
physical location and whether the flow is a wall-bounded shear layer or a free shear layer.
Two-equation models are often considered since the two scales can be computed from the
two transport equations, one for k and the other for a quantity related to the length scale, such
as the dissipation rate of k. Two advantages in using one-equation or two-equation models
are that they avoid the necessity of solving directly for the Reynolds stresses and simplify
considerably the modeling and solution requirements (e.g., typical Reynolds stress models
require solving six equations for the Reynolds stresses and one equation for the length scale).
The focus in this paper concerns two-equation models.

In the development, transformation and improvement of turbulencemodels themain focus
is the variation of the equations themselves. This approach is interesting from the point of
view that the main drivers for solutions are the boundary values. Roughly speaking, the
predictions using the model cannot become better than the boundary values enforced. To
understand possible shortcomings and behavior of the RANS equations in combination with
turbulence models, the impact and influence of the formulation of the boundary conditions
cannot be overstated. Both the complete boundary-value problem and the influence of the
boundary values on the solution need to be understood. For example, the boundary values
need to be chosen in such a way that it is at least possible to compute a solution. When
one does not know in which way to choose the boundary values correctly, that is the user
needs to make a guess, one cannot in general expect to find a solution of the corresponding
boundary-value problem.

Against the background of this approach the following questions arise

• In what ways do modifications to the turbulence model cause changes in boundary con-
ditions?

• What assumptions are made to derive boundary conditions for the turbulence model.
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• What impact do these assumptions have on possible solutions?
• Can the prediction behavior of a turbulence model be satisfactory if the formulation of

boundary conditions is unsatisfactory?

The principal objective of this paper is the presentation and discussion of the complete
boundary-value problem for the RANS equations coupled with two transport equations for
turbulence modeling. In this paper, the meaning of a well-defined boundary-value problem
is one in which the equations and boundary conditions are defined, as well as the near-
field and far-field behavior of the solution variables. Moreover, the consistency requirements
between the specified values of the dependent variables and their decay behavior in the
interior of the flow field are addressed in detail. As part of this overall objective, it is a
goal to draw attention to which way boundary conditions already establish properties of
solutions to the equations. An additional subject pertaining to this system of PDEs is the
effect of transforming the transport equations in an effort to remove the singular behavior
of the dissipation (or dissipation rate) at a solid surface boundary. In solving any system of
PDEs it is critical to establish some understanding of well-posedness. This subject is also
considered. An example is given that gives a strong indication of the ill-posedness of the
problem governed by the transport equations of the turbulence model.

The question of solvability for the complete boundary-value problem yields directly to
importantmathematical questions. Namely, it is essential to return to the fundamental issue of
constructing awell-posed problem. This issue is existential in solving both theNavier–Stokes
and turbulence modeling equations. As pointed out previously, we cannot in general establish
a well-posed problem for even the Navier–Stokes equations, in the sense of Hadamard [10]
and supplemented with the condition of regularity. This mathematical issue already sets
the stage for the issue of an ill-posed problem for the system of transport equations. Such
a consequence exposes the probability of anomalous results or multiple solutions. At this
point, there has been very little documented concerning the existence of multiple solutions
when considering various turbulence models. Moreover, there is currently no systematic way
of demonstrating multiple discrete solutions, as well as how many such solutions may exist,
when modeling turbulence.

It is important to recognize that there are examples of multiple solutions in fluid mechan-
ics, which have occurred when solving the transonic potential flow equation [11] and the
Euler equations [12,13]. There is also the discussion of Temam [14] concerning existence,
uniqueness and regularity for the Navier–Stokes equations. In fact, Temam shows an exam-
ple of non-uniqueness of solutions for the Navier–Stokes equations (i.e., regarding laminar
flows) in which he provides proof based on topological arguments.

More recently, in 2014, Kamenetskiy et al. [15] presented numerical evidence of multiple
solutions to the RANS equations for turbulent flows. They consider turbulent flow over an
extruded two-dimensional (2-D) airfoil geometry and a trap wing configuration from the first
AIAA High Lift Workshop [16]. Computations were performed for both the one-equation
model of Spalart-Allmaras and the two-equationmodel ofWilcox. Three primary approaches
were considered to find multiple solutions, which are as follows: Varying initial conditions,
applying different techniques for enforcement of solid surface boundary conditions, using
variations of implicit residual smoothing. For the trap wing case, the number of multiple
solutions discovered with the methods depended on the mesh density. The meshes used
(designated coarse, medium and fine) were from the AIAA High Lift Workshop. It should
be pointed out that in the work of Kamenetskiy et al. numerical results are only classified
as solutions when the residuals of the equations have been reduced to machine zero. As
discussed previously, reduction of the residual tomachine zero is essential. Otherwise, results
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in which the residual has only been reduced four or five orders of magnitude are affected by
solver integration errors that can play a significant role in the behavior of the result, possibly
making it quite different from the actual solution. Kamenetskiy et al. call such results pseudo-
solutions. It is interesting that on a coarse mesh eight solutions were found, while only two
solutions were discovered on the fine mesh. This suggests a connection to spatial resolution.
Thus, the question immediately arises as to how many multiple solutions, if any, will be
obtained when all the relevant scales of the turbulent flow are resolved. With a well resolved
flow field (on a sufficiently fine mesh), it is distinctly possible that the number of multiple
solutions is much greater than two solutions, which is a consequence of only small variations
in the solutions. A final point is that Kamenetskiy et al. observed that the appearance of
multiple solutions seems to be closely related to smooth body flow separation that occurs
for flows over high-lift configurations. Here, we note that such occurrences of non-unique
solutions may only be one member of the set of possible turbulent flows which have multiple
solutions.

The authors have encountered both non-unique solutions as well as anomalous (nonphys-
ical) results for the particular case of circulation control airfoil flows [17,18]. Being aware
of the fact that the forward problem, that is to find a solution of the boundary-value problem,
is possibly ill-posed, we may ask the question vice versa: Is turbulence modeling its self
ill-posed? And if so, what kinds of consequences follow from such a conclusion.

The article is organized as follows. Section 2 presents the governing equations of fluid flow,
and Sect. 3 considers the additional equations required to model the effects of turbulence.
Boundary conditions togetherwith the corresponding boundary-value problems are discussed
in Sect. 4. Proposedmethods in the literature to deal with problems arising from the boundary
conditions of the turbulent flow equations are introduced in Sect. 5. An interpretation of
turbulencemodeling as an inverse problem is given in Sect. 6.Numerical examples supporting
the assertions made in this article are presented in Sect. 7.

2 Governing Equations of Fluid Flow

To describe flow behavior we consider for the domain D ⊂ R
m , m = 2, 3, i.e., an open and

connected set, and an interval [0, T ) ⊂ R, T > 0, the RANS equations in conservative form
expressed in integral form by

0 = d

dt
VD (W ) (t) + R∂D (W ) (t) , t ∈ (0, T ) , (1a)

where the integral operators VD and R∂D are given by

VD (W ) (t) :=
∫
D
W (x, t) dx (1b)

Rc,∂D (W ) (t) :=
∫

∂D
〈 fc (W (y, t)) , n(y)〉 ds(y), (1c)

Rv,∂D (W ) (t) :=
∫

∂D
〈 fv (W (y, t)) , n(y)〉 ds(y), (1d)

R∂D := Rc,∂D − Rv,∂D, (1e)

and W : D × [0, T ) → R
m+2,

W (x, t) := (ρ(x, t), ρ(x, t)u(x, t), ρ(x, t)E(x, t))T ,
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denotes the vector field of conserved variables and n is the unit outward normal on ∂D. The
terms fc and fv describe the convective and viscous contributions

fc (W ) :=

⎛
⎜⎜⎜⎜⎜⎝

ρu
ρu1u + pe1

...

ρumu + pem
ρHu

⎞
⎟⎟⎟⎟⎟⎠

, fv (W ) :=

⎛
⎜⎜⎜⎜⎜⎝

0
τ1 (W )

...

τm (W )

θ (W )

⎞
⎟⎟⎟⎟⎟⎠

, m = 2, 3.

Here ei is the i th unit vector. The quantities ρ, u = (u1, . . . , um)T , E and

H := E + p/ρ (2)

are the density, the velocity, the specific total energy, and the enthalpy of the fluid. The
equation of state

p = (γ − 1)ρ

(
E − ‖u‖22

2

)
(3)

defines the pressure p, and γ is the gas dependent ratio of specific heats, which is given
by 1.4 for air. Assuming that an effective viscosity

μeff := μeff (W ) = μeff (W (x, t))

is given and, using Stoke’s hypothesis, that the bulk viscosity satisfies λ = −2/3μeff , the
viscous stress tensor τ = τ (W ) = τ (W (x, t)) is given by

τ (W ) := μeffS + λ div(u)Id = 2eff

(
S − 1

3
div(u)Id

)
= 2effS, (4)

S := S − 1

3
div(u)Id, (5)

and S denotes the strain rate, which is given by the symmetric part of the total derivative of
flow velocity vector u,

S := 1

2

(
du

dx
+

(
du

dx

)T
)

, i.e., Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (6)

Throughout the paper Id(x) = x denotes the identity operator. The missing viscous flux term
for the energy equation is given by

θ (W ) := τ (W ) u + q (W ) , (7a)

q (W ) := κeff grad T . (7b)

The effective viscosity μeff and effective conductivity κeff are computed by

μeff := μl + μt , κeff := κl + κt , (8)

and the laminar viscosity is given by Sutherland’s law

μl (W ) := μl,∞
(

T

T∞

)3/2 T∞ + T̄

T + T̄
, μl,∞ := ρ∞u∞L

Re
, (9)

κl (W ) := cpμl (W )

Prl
and cp := 	 γ

γ − 1
, (10)
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whereby ρ∞ > 0 and u∞ > 0 denote some constant reference density and velocity, L > 0
is some constant reference length scale, Re > 0 is the corresponding Reynolds number,

T̄ := 110.4K (11)

is Sutherland’s constant, 	 is the universal gas constant and the laminar Prandtl number is
given by Prl := 0.72.

In this article, we restrict ourselves to linear turbulence models represented by differential
or integral equations. The solutions of these equations reveal additional quantities in the
considered fluid. These occurring variables extend the degrees of freedom given by the
conservative variables W by a further unknown function

Wt : D × [0, T ) → R
Nt .

Here Nt ∈ N depends on the turbulence model. In this report we have

Nt = 1 for the Spalart-Allmaras model,

Nt = 2 for the Wilcox k-ω model and the SST model.

Since wemainly deal with two-equation turbulencemodels, one can assume Nt = 2 through-
out this report. The Spalart-Allmaras model is mentioned here for completeness since results
used for comparisons are presented in Sect. 7. Note, when for example using an algebraic
model Nt = 0, no additional unknowns need to be considered.

The additional variables required for the turbulence model are then used to to determine
the eddy viscosity,

μt = μt (Wt (x, t) ,W (x, t)) ≥ 0 for all (x, t) ∈ D × [0, T ) ,

which is required for (8). Given the eddy viscosity μt the turbulent thermal conductivity is
described by the algebraic relation

κt := cp
μt

Prt
, Prt := 0.92. (12)

Formula (12) is also required for (8). The determination of μt closes the system of the
Reynolds-averaged Navier–Stokes equations (1a).

3 Two Equation TurbulenceModels of k-! Type

In this section, we introduce the two-equation k-ωmodels of interest, which are often used for
aerodynamic applications. These are the k-ω model ofWilcox introduced 1988 and the Shear
Stress Transport (SST) model by Menter [19]. Both models include differential equations
for the unknown, positive functions

k = k(x, t) > 0 and ω = ω(x, t) > 0 for all (x, t) ∈ D × (0, T ), (13)

where k is turbulence kinetic energy per unit mass and ω the dissipation rate of turbulence
kinetic energy. Throughout the literature two-equation turbulence models are typically pre-
sented in their differential form, though in finite-element and finite-volume codes an integral
form is used.

Before we state the two transport equations for k and ω, we define t = (
ti j
)
1≤i, j≤m and

the Reynolds stress tensor τRS =
(
τRSi j

)
1≤i, j≤m

, using the strain rate tensors S and S, given
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in (6) and (5), and the mean-molecular-stress sensor, t = (
ti j
)
1≤i, j≤m . Then,

t = 2μeffS, ρτRS = 2μtS − 2

3
ρkId. (14)

Additionally, according to S we define the vorticity 
 as skew-symmetric part of the total
derivative of flow velocity u,


 := 1

2

(
du

dx
−

(
du

dx

)T
)

, i.e. 
i j = 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)
. (15)

3.1 Wilcox k-!Model

The k-ω model of Wilcox [5] has the form

∂ (ρk)

∂t
+ div (ρku) = div ((μl + σkμt ) grad k) + ρQk,(k,ω), (16a)

∂ (ρω)

∂t
+ div (ρωu) = div ((μl + σωμt ) grad ω) + ρQω,(k,ω). (16b)

The eddy viscosity, also called turbulent viscosity, is computed by

μt = ρ
k

ω
. (17)

The source terms for the k-equation and ω-equation are given by

Qk,(k,ω) := Prk,(k,ω) − Dek,(k,ω), Qω,(k,ω), := Prω,(k,ω) − Deω,(k,ω),

where

Prk,(k,ω) := τRS : du
dx

, Dek,(k,ω) := β∗kω (18a)

Prω,(k,ω) := α
ω

k
τRS : du

dx
, Deω,(k,ω) := βω2. (18b)

Here and throughout the rest of this article the symbol : denotes for A, B ∈ R
n×n , A =

(ai j ), B = (bi, j ) the product

A : B =
n∑

i, j=1

ai j bi j .

The constants of the model are

σk = 1

2
, σω = 1

2
, α = 5

9
, β = 3

40
, β∗ = 9

100
.

There is a 2006 version of the k-ω model of Wilcox given in [6]. For the purposes of this
article, it is sufficient to consider the original version of the model.

3.2 Menter’s SSTModel

Menter proposed the Shear-Stress-Transport model [7,19,20]. This model modifies the for-
mula for eddy viscosity μt , diffusive term and the source term Q when compared with

123



20 Page 8 of 33 Journal of Scientific Computing (2020) 85 :20

the k-ω model. An update of the SST model was suggested in [8], but this article restricts to
the presentation of the original model. The model reads as

∂ (ρk)

∂t
+ div (ρku) = div ((μl + �kμt ) grad k) + ρQk,SST (19a)

∂ (ρω)

∂t
+ div (ρωu) = div ((μl + �ωμt ) grad ω) + ρQω,SST, (19b)

and the eddy viscosity is defined via

μt = ρkmin

{
1

ω
,

a1

F2
√
2
 : 


}
. (20)

Here, F2 is a blending function defined by

F2 := tanh
(
(max {�1, 2�3})2

)
(21)

where

�1 := C�1νl

d2ω
, �3 :=

√
k

β∗ωd
, β∗ := 0.09, (22)

and d is the distance to the closest no-slip wall. According to [7], the constants are a1 = 0.31
and C�1 = 500. The source terms include a diffusion term,

Qk,SST = Prk,SST − Dek,SST, Qω,SST = Prω,SST − Deω,SST + Diω,SST,

where

Prk,SST := τRS : du
dx

, Dek,SST := β∗kω, (23a)

Prω,SST := �γ

1

νt
τRS : du

dx
, Deω,SST := �βω2, (23b)

Diω,SST := 2 (1 − F1) σω2

1

ω
〈grad k, grad ω〉 . (23c)

The SST-model involves a blending of a k-ω and a k-ε model. This blending is controlled by
a function � = � (x; ε1, ε2). This function is designed to detect the edge of the boundary
layer, such that the SST-model behaves inside the boundary layer like a k-ωmodel and outside
like a k-ε model, exploiting the convex combination � : [0, 1] → [ε1, ε2],

�(F1; ε1, ε2) := F1ε1 + (1 − F1) ε2. (24)

To realize smooth blending, the function F1 : [0,∞) → [0, 1] is modeled using the hyper-
bolic tangent,

F1 = F1(�F1) = tanh
(
�4
F1

)
, (25a)

where �F1 is determined by

�F1 := min {max {�1, �3} , �2} , (26)

�2 := 4σω2ρk

d2CD
, (27)

CD := max

{
2σω2ρ

ω
〈grad k, grad ω〉 , δ

}
, δ = 10−20. (28)

123



Journal of Scientific Computing (2020) 85 :20 Page 9 of 33 20

Using the function �, functions �k , �ω, �γ , and �β required for the viscous flux in (19)
are given by

�k := �
(
F1; σk1 , σk2

)
, σk1 = 0.85, σk2 = 1, (29a)

�ω := �
(
F1; σω1 , σω2

)
, σω1 = 0.5, σω2 = 0.856, (29b)

�γ := �(F1; γ1, γ2) , �β := �(F1;β1, β2) (29c)

and the constants are

β1 = 3/40, β2 = 0.0828, β∗ = 9

100
,

γ1 = β1

β∗ − σω1

v2k√
β∗ , γ2 = β2

β∗ − σω2

v2k√
β∗ , vk = 0.41.

The last constant vk is well known as the von Kármán constant in the literature.

4 Boundary-Value Problems

So far, we have only stated the equations of interest. That is, the mean flow equations (1)
together with a system of equations to determine the required eddy viscosity μt , for exam-
ple (16) or (19). Naturally, for a closed representation, we need to formulate a corresponding
boundary-value problem.

4.1 Boundary Conditions for Mean Flow Equations

Due to a lack of theoretical understanding of both mean flow and turbulent flow equations,
the definition of boundary values and conditions at infinity are not straightforward. For
example, for a complete and closed formulation the decay behavior at infinity for ρ, u, p, and
additionally even for or k and ω, is required. Since this is in general unknown, we prescribe
these values formally. For the representation of the exterior boundary-value problems of
interest, we introduce the formal setting,

W∞ := (ρ∞, ρ∞u∞ sin ϕ cos θ, ρ∞u∞ sin ϕ sin θ, ρ∞u∞ cosϕ, ρ∞E∞) ,

Wt,∞ := (k∞, ω∞) .

Here 0 ≤ ϕ ≤ π and 0 ≤ ψ < 2π are the Angle of Attack (AoA) and a possible side slip
angle. Furthermore, in the sequel, let D ⊂ R

m , D �= ∅ be a bounded domain, and for the sake
of simplicity, we assume that the boundary of ∂D is connected and that ∂D is an orientable
submanifold of Rm of dimension m − 1.

Then, the classical (adiabatic) no-slip wall boundary conditions are

u = 0 and
∂T

∂n
= 0 on ∂D = ∂Dno-slip, (30)

in the sense of a trace operator. In the following, we also write ∂D = ∂Dno-slip to clarify the
meaning of ∂D.

Though we have stated the RANS equations in their unsteady form, we are only interested
in approximating a steady-state solution. Hence, we formulate the boundary-value problems
only for the steady-state. Therefore, no initial condition must be considered as well as time-
dependent boundary values.
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4.2 Boundary Conditions for Two-Equation TurbulenceModels

4.2.1 No-Slip Wall Boundary Condition

To realize boundary conditions for k and ω is not straightforward. The only simple boundary
condition corresponding to vanishing velocity u∂Dno-slip = 0 is

k∂Dno-slip = 0. (31)

To derive a boundary condition on no-slip wall for ω we follow the presentation in [1,5].
We assume that near a no-slip wall a solution to Navier–Stokes equations is incompressible
and pressure is constant, and as a consequence, convective terms are negligible. Then the
equations for k and ω simplify to

0 = div ((νl + σkνt ) grad k) + 2
k

ω
S : du

dx
− β∗ωk,

0 = div ((νl + σωνt ) grad ω) + 2αS : du
dx

− βω2.

In a next step, it is assumed that only the velocity gradient in the direction normal to the
no-slip wall is dominant. If this direction is identified with x2-coordinate, we obtain

du

dx
=

⎛
⎜⎝

∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

⎞
⎟⎠ ≈

⎛
⎝ 0 ∂u1

∂x2
0

0 0 0
0 0 0

⎞
⎠ ,

and as a consequence we have

0 = ∂

∂x2

(
(νl + σkνt )

∂k

∂x2

)
+ 2

k

ω

(
∂u1
∂x2

)2

− β∗ωk,

0 = ∂

∂x2

(
(νl + σωνt )

∂ω

∂x2

)
+ 2α

(
∂u1
∂x2

)2

− βω2.

Finally, it is assumed that the production terms are negligible compared to the remaining
terms. Then, using (31) to conclude that νt vanishes on the no-slip wall, all what is left of
the ω-equation is the ordinary differential equation

βω2 = νl
∂2ω

∂x22
⇔ β

νl
ω2 = ∂2ω

∂x22
,

which has the solution

ω(x2) = 6νl
βx22

.

For generalization of this procedure in the normal direction n, we formally derive under the
assumptions mentioned above for ω the boundary condition

lim
h→0+ ω (x − hn(x)) h2 = 6νl

β
, x ∈ ∂Dno-slip. (32)

To investigate the behavior of k in a neighborhood of a no-slip wall, as a direct consequence,
we can apply the same assumptions to the equation for k to obtain

β∗ωk = β∗ 6νl
βx22

k = νl
∂2k

∂x22
⇔ 6β∗

β

k

x22
= ∂2k

∂x22
.
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Searching for a solution of the form k(x) = xα
2 , a comparison of left and right hand side

gives

λxα−2
2 = α (α − 1) xα−2

2 , λ = 6β∗

β
,

and therefore

α1/2 = 1

2
±

√
1

4
+ λ = 1

2
±

√
1

4
+ 6β∗

β
= 1

2
±

√
1

4
+ 6 · 9 · 40

3 · 100 ,

α1 ≈ 1

2
+ 2.73 = 3.23, α2 ≈ 1

2
− 2.73 = −2.23.

Assuming that the second solution α2 is non-physical, otherwise k would have singular
behavior at a no-slip wall, a contradiction to (31), we obtain

k(x) = Ck,no-slipx
α1
2 ≈ Ck,no-slipx

3.23
2 ,

which corresponds exactly to the behavior determined in [5,21]. Here Ck,no-slip > 0 denotes
some constant, which cannot be determined in general. In contrast to ω, the behavior of
function k is identified in a neighborhood of a no-slip wall only up to some scaling Ck,no-slip.
On the other hand, under the assumptions formulated above,we do not only have the boundary
condition k∂Dno-slip = 0, but also, in a neighborhood of a no-slip wall, we have the quantitative
behavior

lim
h→0+

k (x − hn(x))

hα1−ε
= 0, x ∈ ∂Dno-slip, ε > 0. (33)

Remark 1 Under the assumptions mentioned above and imposing boundary condition (32)
for ω in a neighborhood of a no-slip wall, k satisfies condition (33), and the value α1 is
determined by the relation of β∗ and β.

Furthermore, since k represents turbulence kinetic energy, i.e.

k = 1

2

(
u′2
1 + u′2

2 + u′2
3

)
,

this observation also determines the behavior of the fluctuating part of velocity u′ in a
neighborhood of a no-slip wall. In a neighborhood of a no-slip wall, velocity u′ satisfies
approximately the quantitative behavior

u′(x2) =
√
xα1
2 ≈ x1.6152 ,

that is

lim
h→0+

u′ (x − hn(x))

hα1/2−ε
= 0, x ∈ ∂Dno-slip, ε > 0. (34)

Remark 2 Under the assumptions mentioned above and imposing boundary condition (32)
for ω, in a neighborhood of a no-slip wall, both the behavior of k and the behavior of u′ are
determined and need to satisfy conditions (33) and (34). To say it directly, the specification of
no-slip wall boundary condition and near wall behavior for ω control the near wall behavior
of k and u′. Hence, physical situations which do not follow conditions (34), (33) and (32)
can in general not be simulated using the above boundary condition for ω.
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4.2.2 Farfield Boundary Condition

The presented derivation of far-field boundary conditions is similar to the one in [22]. The
authors in [22] restrict themselves to a one-dimensional analysis. Here, we generalize the
approach for the three-dimensional space.

To determine far-field boundary conditions, (k∞, ω∞)we assume for ‖x‖2 → ∞ constant
velocity u∞, and constant density ρ∞ > 0. Mathematically, this translates into

lim‖x‖2→∞

⎛
⎝ u1(x)
u2(x)
u3(x)

⎞
⎠ =

⎛
⎝ u1,∞
u2,∞
u3,∞

⎞
⎠ , hence lim‖x‖2→∞

du

dx
= 0, (35)

where in spherical coordinates⎛
⎝ u1,∞
u2,∞
u3,∞

⎞
⎠ = u∞

⎛
⎝ sin ϕ cos θ

sin ϕ sin θ

cosϕ

⎞
⎠ , 0 ≤ ϕ ≤ π, 0 ≤ θ < 2π.

Then, for sufficiently large ‖x‖2, we get from (16a) and (16b) and assumption (35)

−βρ∞ω2 = div (ρ∞ωu∞) − div ((μl + σωμt ) grad ω) ,

−β∗ρ∞kω = div (ρ∞ku∞) − div ((μl + σkμt ) grad k) ,

Additionally, it seems reasonable to postulate that in the free-stream, far away from the
obstacle, the diffusion terms in (16) become small; that is, we assume

lim‖x‖2→∞ div ((μl + σkμt ) grad k) = lim‖x‖2→∞ div ((μl + σωμt ) grad ω) = 0. (36)

Then, for ‖x‖2 → ∞, system (16) simplifies to

div (ku∞) = u1,∞
∂k

∂x1
+ u2,∞

∂k

∂x2
+ u3,∞

∂k

∂x3
= −β∗kω, (37)

div (ωu∞) = u1,∞
∂ω

∂x1
+ u2,∞

∂ω

∂x2
+ u3,∞

∂ω

∂x3
= −βω2. (38)

Using the normalized normal vector

n =
⎛
⎝ n1
n2
n3

⎞
⎠ =

⎛
⎝ sin ϕ cos θ

sin ϕ sin θ

cosϕ

⎞
⎠ ,

Eqs. (37) and (38) can be reformulated by

n1
∂k

∂x1
+ n2

∂k

∂x2
+ n3

∂k

∂x3
= 〈grad k, n〉 = − β∗

u∞
kω, (39)

n1
∂ω

∂x1
+ n2

∂ω

∂x2
+ n3

∂ω

∂x3
= 〈grad ω, n〉 = − β

u∞
ω2. (40)

A solution of (40) is given by

ω(x) = u∞
β

(a1n1 + a2n2 + a3n3) (a1x1 + a2x2 + a3x3 + Cω)−1 , (41)

where a1, a2, a3 ∈ R are coefficients. Straightforward differentiation can be used to show
that (41) is a solution of (40). For example, this solution corresponds to the one given in
formula (9) in [22]. The direct correpondence is derived below and given in (50).
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Here, Cω is some constant, which cannot be determined in general. But Cω is exploited
to determine reasonable free-stream values for k and ω at the inflow boundary. This is the
topic of Sect. 4.3 given below. In this section, we are only interested in the asymptotic decay
behavior of ω for ‖x‖2 → ∞. Hence, here it is not of importance to quantify Cω.

Using the representation (41) of ω at infinity, we get from (39) the differential equation
for k,

div (k(x)u∞) = −β∗u∞
β

(a1n1 + a2n2 + a3n3) (a1x1 + a2x2 + a3x3 + Cω)−1 k(x),

with solution

k(x) = Cku∞νl,∞
(

β

β∗ (a1x1 + a2x2 + a3x3 + Cω)

)− β∗
β

, (42)

and with some constant Ck > 0. Again, straightforward differentiation can be used to verify
that (42) is a solution of (39). To obtain the 1D analysis, for example considered in [22], we
may specify n = (1, 0, 0)T . Then, (38) and (39) simplify to their 1D counterparts

∂k

∂x1
= − β∗

u∞
kω,

∂ω

∂x1
= − β

u∞
ω2,

with solutions ω(x1) = u∞
β

(x1 + Cω)−1 and k(x1) = Cku∞νl,∞
(

β
β∗ (x1 + Cω)

)− β∗
β
. This

shows that the derived behavior of k and ω at infinity presented here fits into the 1D analysis
and represents therefore a generalization.

From (42) and (41), it is obvious that k and ω have singular behavior on the hyperplane

E := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 = −Cω} ⊂ R
3,

and the singularity is characterized as hyperbolic. According to E , we define

V− := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 < −Cω} ⊂ R
3,

V+ := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 > −Cω} ⊂ R
3.

To reach the goal of formulating a closed exterior boundary-value problem, two different
ways seem to be appropriate.

a) Without loss of generality, we can assume that the domain of interest satisfies D ⊂ V+.
Then we need to prescribe for k and ω a certain behavior according to solutions (42)
and (41) when approaching E from the interior of V+.

b) In a neighborhood of E , assumptions (35) and (36) do not hold, and (39) and (40) are
not valid simplifications of either (16) or (19). Therefore, it can be reasonable to assume
that k and ω as solutions of either (16) or (19) do not have singular behavior when
approaching E , but instead k and ω decay at infinity. Following this argumentation, we
can postulate that ω and k as solutions of either (16) or (19) decay at infinity as

lim‖x‖2→∞ ω(x) = O

(
1

‖x‖2
)

, (43)

lim‖x‖2→∞ k(x) = O

(
1

‖x‖β∗/β
2

)
. (44)
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For the k-ω model of Wilcox we have

β∗/β =
9

100
3
40

= 1.2, (45)

and for the SST model we approximately get

lim‖x‖2→∞ β∗/�β =
9

100
828

10000

≈ 1.086 (46)

since

lim‖x‖2→∞ �β = lim‖x‖2→∞ (F1β1 + (1 − F1)β2) = β2.

As a direct result, we obtain for the eddy viscosity

lim‖x‖2→∞
ρk

ω
= O

(
1

‖x‖β∗/β−1
2

)
, hence lim‖x‖2→∞ μt = 0. (47)

Finally, we are in a position to formulate the complete boundary-value problem for the RANS
equations for steady-state problems:

Considering possibility b) mentioned above, we may formulate:
Exterior turbulent flow problem, formulation 1:
Find a function W † that satisfies the steady RANS equations in R

m \ D, that is

d

dt
W † (x, t) = 0 for all x ∈ R

m \ D, t ≥ T † > 0,

and satisfies the (adiabatic) no-slip wall boundary conditions (30), and

lim‖x‖2→∞ W (x, t) = W∞

uniformly for all directions. Additionally, find a function Wt that satisfies the k-ω turbulence
model in Rm \ D, and satisfies the boundary conditions

(k, ω) = (0,∞) on ∂D

in the sense of (32) and (33) and

lim‖x‖2→∞ (k, ω) = (0, 0)

uniformly for all directions in the sense of (44) for k and (43) for ω.
Considering possibility a) mentioned above, we may formulate:

Exterior turbulent flow problem, formulation 2:
Find a function W † that satisfies the steady RANS equations in V+ \ D, that is

d

dt
W † (x, t) = 0 for all x ∈ V+ \ D, t ≥ T † > 0,

and satisfies the (adiabatic) no-slip wall boundary conditions (30), and

lim
h→∞ W (x + hy, t) = W∞, x ∈ E, 〈x, y〉 > 0,

lim
h→0

W (x + hy, t) = W∞, x ∈ E, 〈x, y〉 > 0.
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Additionally, find a function Wt that satisfies the k-ω turbulence model in V+ \ D, and
satisfies the boundary conditions

(k, ω) = (0,∞) on ∂D

in the sense of (32) and (33) and

lim
h→∞ (k(x + hy), ω(x + hy)) = (0, 0), x ∈ E, 〈x, y〉 > 0,

lim
h→0

(k(x + hy), ω(x + hy)) = (∞,∞), x ∈ E, 〈x, y〉 > 0.

Without knowledge about the behavior of k and ω as solutions of either (16) or (19), it is
impossible to saywhich of the formulations given above is preferred. The second formulation
is typically closer to the application.

4.3 Practical Considerations for Far-Field Boundary Conditions

To get an estimate of the constant Cω in (41), we fix a point x fs = (
x fs1 , x fs2 , x fs3

)
in the

free-stream (fs), that is, we assume that x fs is so far away from ∂D that assumptions (35)
and (36) are satisfied. Then

ωfs := ω
(
x fs

) = u∞
β

(a1n1 + a2n2 + a3n3)
(
a1x

fs
1 + a2x

fs
2 + a3x

fs
3 + Cω

)−1

denotes the free-stream value of ω at position x fs and determines the constant

Cω = 1

ωfs

u∞
β

(a1n1 + a2n2 + a3n3) − (
a1x

fs
1 + a2x

fs
2 + a3x

fs
3

)
. (48)

Inserting this into representation (41), we get

ω(x) = u∞
β

(a1n1 + a1n2 + a1n3)
[
a1

(
x1 − x fs1

) + a2
(
x2 − x fs2

) + a3
(
x3 − x fs3

)

+ 1

ωfs

u∞
β

(a1n1 + a2n2 + a3n3)

]−1

= ωfs
[

ωfsβ

u∞ (a1n1 + a2n2 + a3n3)

(
a1

(
x1 − x fs1

) + a2
(
x2 − x fs2

)

+ a3
(
x3 − x fs3

)) + 1
]−1

.

Again, considering direction n = (1, 0, 0)T and assuming that x fs = (0, 0, 0), the explicit
formula for ω simplifies to

ω(x) = ωfs
[

ωfsβ

u∞
(a1x1 + a2x2 + a3x3) + 1

]−1

,

which is the three-dimensional counterpart to formula (9) in [22]. To determine the decay
behavior of ω along rays through the domain, we define a ray in the inflow direction through
the point x fs by

y(t) = x fs + tn, t ∈ [0,∞) , (49)

and compute

ω (y (t)) = ωfs
[

ωfsβ

u∞
t + 1

]−1

, that is ω (y (0)) = ωfs. (50)
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In practice, we have a finite domain, and we need to prescribe values for k∞ and ω∞. Then,
for example, kfs = k∞ and ωfs = ω∞ hold along the outer boundary of the finite domain
correspondig to inflow, where we have assumed that the outer boundary is located so far
away from ∂D such that (35) and (36) are satisfied. Due to representations (41) and (42) and
the decay behavior (44) and (43), we conclude that kfs and ωfs need to be chosen such that
this behavior can be found in practice.

From (50) it is obvious that on a finite domain the desired decay behavior of ω can only
be guaranteed if

ωfsβ

u∞
t ∼ 1. (51)

If ωfs is chosen too small, we have ω (y (t)) ≈ ωfs on the whole computational domain, and
no decay behavior can be expected and observed. Thus, we could not expect that the equations
for turbulence will have impact on the RANS equations. Therefore, since t corresponds to a
length scale which corresponds to the Reynolds number,

L = μl,∞Re/ρ∞u∞ = νl,∞Re/u∞,

we obtain from (51)

ωfs ∼ u∞
β

u∞
νl,∞Re

= u2∞
β

1

νl,∞Re
. (52)

Based on this argumentation, such a choice of ω f s should guarantee a correlation (51) to
observe on a given, finite domain the desired decay behavior (43) for ω. Using (48) and (42)
we have

k(x) = Cku∞νl,∞
(

β

β∗
(
a1

(
x1 − x fs1

)+a2
(
x2−x fs2

)

+ a3
(
x3−x fs3

)+ 1

ωfs

u∞
β

(a1n1+a2n2+a3n3)

))− β∗
β

,

which gives inserting (49),

k (y(t)) = Cku∞νl,∞
(

β

β∗

(
t (a1n1 + a2n2 + a3n3)+ 1

ωfs

u∞
β

(a1n1+a2n2+a3n3)

))− β∗
β

= Cku∞νl,∞
(

β

β∗ (a1n1 + a2n2 + a3n3)

(
t + 1

ωfs

u∞
β

))− β∗
β

. (53)

To determine a reasonable value for kfs we estimate using (52),

kfs := k (y(0)) = Cku∞νl,∞
(

(a1n1 + a2n2 + a3n3)
1

ωfs

u∞
β∗

)− β∗
β

∼ Cku∞νl,∞
(

β

β∗
νl,∞Re

u∞

)− β∗
β

. (54)

Simplifying, β∗/β ≈ 1, we obtain from (54)

kfs ∼ Cku∞νl,∞
u∞

νl,∞Re
= Ck

u2∞
Re

. (55)

123



Journal of Scientific Computing (2020) 85 :20 Page 17 of 33 20

Fig. 1 Decay behavior of k and ω along a line far away from the airfoil

Finally, to understand the role of the constant Ck , we estimate the turbulence intensity in the
free stream by

νt,∞
νl,∞

∼
kfs

ωfs

νl,∞
=

Ck
u2∞
Re

νl,∞Re
u2∞

νl,∞
= Ck .

In this sense, Ck determines the turbulence intensity in the free-stream.
Relations (55) and (52) provide information as to how values can be specified such that

the postulated conditions hold; they do not reflect exact values. For the examples considered
in Sect. 7, using the Reynolds numbers of 6.5×106 and 6.2×106, we have chosen the values

kfs = 9 · 10−9u2∞ and ωfs = 10−6
(

u2∞
νl,∞

)
, (56)

that is Ck = 0.009. As a consequence, we get

μt,∞
μl,∞

= k∞
ω∞

1

νl,∞
= 9 · 10−9

10−6 = 9 · 10−3.

This fixed value can in general only hold and be prescribed at the inflow boundary. Assuming
the derived decay behavior of k and ω at infinity is correct, the fixed choice (56) is in general
wrong along the outflowboundary, and boundary-value problems formulated using (56) along
the outflow boundary can in general not be solved.

To demonstrate that the decay behavior (43) for k and (44) for ω is indeed observed in
applications, we apply (53) and (50).

To show that in the free stream a solution for k and ω is not significantly influenced by the
airfoil and the decay of k and ω behaves as predicted, solutions for k and ω along the line

y(t) = tan(AoA)t + const.

are shown in Fig. 1. Here the symbol AoA denotes the Angle of Attack, which is used to
determine the values for W∞ and Wt,∞ (see Sect. 4.1). Considering the choice (56) and the
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Fig. 2 Decay behavior of k and ω along a ray near the airfoil through the wake

outer boundary located about twenty chord lengths away from the airfoil, we expect that

ωoutflow = 10−6 · 1

40
= 2.5 · 10−8,

koutflow = 9 · 10−9
(

1

40

) β∗
β ≈

{
9 · 10−9

( 1
40

)1.2 = 1.08 · 10−10, k-ωmodel,

9 · 10−9
( 1
40

)1.086 = 1.64 · 10−10, SST model.

Note, for the examples shown, the values for k and ω are plotted in nondimensional form and
scaled according to the presentation in [23]. As seen in Fig. 1, these values are approximately
observed in the computation. Also, as predicted, the decay rate of (46) for k in the SSTmodel
is slower than that of (45) for the k-ωmodel. A second situation which needs to be considered
is a line which follows a path in a neighborhood of the airfoil through the wake. A plot of k
and ω for such a situation is given in Fig. 2. From the free-stream value of (56), both k
and ω decay as expected. Then, in a neighborhood of the airfoil, both increase suddenly.
Inside the wake there is decay as expected, but on a significantly higher level when compared
with Fig. 1. Figure 3 gives a detailed view on the decay of k and ω in the wake. Taking the
values k(5) ≈ 0.00036 and ω(5) ≈ 4.3 · 10−7 according to the analysis, we expect

ωoutflow,wake = 4.3 · 10−7 · 1

15
≈ 3.0 · 10−8,

koutflow,wake = 0.00036

(
1

15

) β∗
β ≈

{
0.00036

( 1
15

)1.2 ≈ 1.4 · 10−5, k − ωmodel,

0.00036
( 1
15

)1.086 ≈ 1.9 · 10−5, SST model.

These values are not observed in Fig. 3. This is expected, since inside the wake, the assump-
tions (35) and (36) are not satisfied because the outflow boundary is located too close to the
aifoil surface.

This analysis, confirmed by the examples, shows an additional property of the k-ωmodels.
In practice, for a given finite domain, the outer boundary of the given finite computational
domain needs to be decomposed into at least three different parts:

a) Inflow boundary
b) Outflow boundary corresponding to the wake of the flow
c) Outflow boundary not included in b).
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Fig. 3 Decay behavior of k and ω along a ray near the airfoil through the wake

For the inflow boundary, (52) and (54) are rules to prescribe values for k andω. In general, for
the different outflow boundaries no reasonable values can be determined. Hence, the outflow
boundary condition is realized using a homogeneous Neumann condition,

∂k

∂n

∣∣∣∣
outflow

= 0,
∂ω

∂n

∣∣∣∣
outflow

= 0. (57)

As a consequence, in integral form the diffusion terms in (16) and (19) vanish. Moreover,
denoting the last inner point at the outflow boundary by xin, we can represent

k(xoutflow) = k(xin + tn) ≈ k(xin) + t
∂k(xin)

∂n
≈ k(xin),

ω(xoutflow) = ω(xin + tn) ≈ ω(xin) + t
∂ω(xin)

∂n
≈ ω(xin),

where we have used (57). Hence, the convective part of (16) and (19) can be implemented
without prescribing unknown, outflow values. So, using boundary conditions at the out-
flow (57), we avoid the prescription of unknown values. This procedure is used for both
types of outflow boundaries mentioned above.

It is in general not straightforward to separate the outer boundary into a section corre-
sponding to inflow and into another one corresponding to outflow. Such separation is usually
only possible if the solution of the given problem is known. For the examples considered in
this article, we used C-typemeshes, where at least a large amount of the outflow boundary can
be determined geometrically. A more general approach to determine the outflow boundary is
to consider lines of the form (49). Given the angle of attack, for each control volume along
the outer boundary the entry intersection and exit intersection can be determined. All entry
intersections are marked as inflow and all exit intersections as outflow. The realization of
such a procedure and the investigation of the influence on solutions and solution algorithms
is part of future work. Finally, we want to close this section with the two following remarks:

Remark 3 One often finds in implementations the possibility to define a certain relation of
eddy viscosity to laminar viscosity (see for example [24]), i.e., it is possible to prescribe

Input parameter at inflow = μt,∞
μl,∞

.
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Such an input parameter defines only one condition for determining either kfs or ωfs; and
hence, a second condition is required. This second condition needs to be chosen such that (52)
and (55) hold. Though possible, the advantage of prescribing μt,∞

μl,∞ is not obvious. Hence,

here we directly define k∞ = kfsand ω∞ = ωfs along the inflow, and to conclude from this
the relation μt,∞/μl,∞.

Remark 4 The decay behavior for the eddy viscosity in (47)was not formulated in the assump-
tions of this Sect. 4.2.2, but it is a consequence. The constants β∗ and β determine the decay
behavior at infinity.

4.4 Practical Considerations for No-SlipWall Boundary Conditions

To implement in the discrete problem the quadratic singular behavior (32) for ω is not
straightforward. Instead,we follow the idea given in [7,19]. Note,when approaching a smooth
no-slip wall, the asymptotic behavior is determined by (32), which can be reformulated as

lim
h→0+ ω (x − hn(x)) = lim

h→0+
6νl (W (x − hn(x)))

β ‖hn(x)‖22
= lim

h→0+
6νl (W (x − hn(x)))

βh2
.

Since h represents the distance to the closest no-slip wall in the normal direction, it was
suggested to represent this expression numerically by

‖hn(x)‖2 = h ≈ di ≈ ‖pi,bdry − pi,n‖2,
where pi,bdry denotes the point on the no-slip wall and pi,n the closest, next discrete point in
direction −n

(
pi,bdry

)
. Then, di is the distance to the closest no-slip wall of the first discrete

point in the interior of the flow field. To take care of the quadratic singular behavior, it was
suggested to multiply this value with an additional order of magnitude. Hence, the no-slip
boundary value for ω is realized by

ωno-slip
(
pi,bdry

) = 60νl
(
W (pi,bdry)

)
β
∥∥pi,bdry − pi,n

∥∥2
2

, pi,bdry ∈ ∂Dno-slip. (58)

Now, to obtain the value forω required to evaluate the boundary flux, a linear extrapolation is
done. The increase (i.e., the gradient into normal direction ofω for the boundary edge ei,bdry)
is approximated by

(
∂ω

∂xk

)
ei,bdry

≈
(
ni,bdry

)
k

(
ωno-slip − ωi,bdry

)
∥∥pi,bdry − pi,n

∥∥
2

.

Then, in a small neighborhood of pi,bdry, the function ω is approximated by

ω
(
pi,bdry + hni,bdry

) ≈ ω
(
pi,bdry

) + 〈
grad ω

(
pi,bdry

)
, hni,bdry

〉

≈ ω
(
pi,bdry

) + h

(
ωno-slip − ωi,bdry

)
∥∥pi,bdry − pi,n

∥∥
2

〈
ni,bdry, ni,bdry

〉

= ω
(
pi,bdry

) + h

(
ωno-slip − ωi,bdry

)
∥∥pi,bdry − pi,n

∥∥
2

.

Now, a suitable choice for h is required. For the computations presented in this article, the
choice h = 2

∥∥pi,bdry − pi,n
∥∥
2 was used; and as a consequence, one obtains

ω
(
pi,bdry + 2

∥∥pi,bdry − pi,n
∥∥
2 ni,bdry

) ≈ 2ωno-slip − ωi,bdry. (59)
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The right-hand-side of (59) is used to evaluate the boundary flux for a no-slip wall. The
construction for k is significantly simpler. Given a value for k on the no-slip wall (ki,bdry),
we define as the state for the no-slip wall

kno-slip
(
pi,bdry

) := −ki,bdry.

To evaluate the boundary flux for a no-slip wall these values are averaged; and hence, k = 0
is enforced in the flux, which realizes the boundary condition for k.

4.5 Discussion About Existence and Uniqueness of Solutions

Obviously, the boundary conditions for k and ω on a no-slip wall and the decay behavior
at infinity influence a solution of the Navier–Stokes equations (1a) together with either (16)
or (19). But how restrictive are the constraints on possible solutions? That is, can we expect
that under these conditions the exterior turbulent flow problem is well-posed in the sense
of Hadamard [10]. Considering the problem not being well-posed it could mean that

a) no solution exists or
b) the solution is not unique or
c) the solution does not depend continuously on the given data.

Even if only one of these points is fulfilled, data produced with a computer code is in general
practically useless. And just because the suggested and implemented boundary conditions
allow for approximate solutions for a few preselected test cases, it does not allow for the
conclusion that they work in general.

Moreover, the analysis considered above shows that the decay behavior (44) of k at infinity
is different for the original k-ω model and the SST-model. Hence, in general, changes in a
model have impact on the behavior of variables at the boundary. This observation makes it
obvious that it is generally insufficient to consider changes in the equations of the model
without analyzing the impact of these changes to the formulation of boundary values.

Besides these theoretical considerations, in practice values for k and ω and / or their
derivatives need to be prescribed at all boundaries and consistently implemented. On a given
finitemesh the knowledge of a certain decay behavior is a good indicator, but it is not sufficient
to find suitable values. In this sense, a certain implemented choice is only a guess, which
has no claim to generality. At the no-slip wall the situation is not much better. The quadratic
singular behavior of ω needs to be realized in practice. Any numerical implementation can
simulate such behavior. All methods suggested and implemented so far try to deal with the
deficiencies of this behavior at the boundary. Furthermore, as shown by the analysis, the
behavior of ω determines the decay behavior of k up to a constant. And it is an open question
if k can exhibit such behavior in general. Without a good understanding for the choice of
boundary values, it is highly possible that problems are ill-posed.

Furthermore, we would like to draw attention to the following fact. The behavior of
function k in a neighborhood of the no-slip wall (33) is a consequence of the behavior of ω

given in (32). Also, in the free stream, the behavior of k given by (44) is also a consequence
of ω given in (43). Hence, both at the no-slip wall and in the free-stream it is the behavior
of ω which determines significantly the solution of the turbulence model. Since boundary
values are important for determination of the solution to the corresponding boundary value
problem, the equation for ω has particularly strong influence.
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5 Variable Substitution

When solving two-equation models such as the k-ω type or k-ε type, one typically
encounters the problem of ensuring that turbulence variables remain positive during the
iterations (see (13)). In general, negative values of k and / or ω directly yield a breakdown of
the iteration resulting in ”Not a number”. To avoid such problems, it was suggested in [25]
to substitute variables k and ε or ω by

k = eK, ε = eE , ω = e
. (60)

In particular, the sole substitution for ω found its way into several implementations, most
often in the background of discontinuous Galerkin methods. Here, the idea has been picked
up originally by Bassi et al. [26] and reused in [27]. Recently, a further application of such
substitution was used in [28].

Naturally, substitutions (60) only make sense for nondimensional k, ε and ω. This is not
a severe restriction, but depending on the implementation care must be taken. For example,
typically implementations want to support flexible restart options. Then, knowledge about
the output variable such as its kind of nondimensionalization and scaling is necessary to
convert the variable.

Further substitutions discussed in the literature are (see [29–31])

ω = 1

τ
and ω = 1

g2
. (61)

These substitutions were in particular introduced to deal with the singular behavior of ω

indicated in (32).

5.1 ln(k)- and ln (!)-Formulation

Tobetter understand the logarithmic reformulation and its consequenceswe present a possible
derivation. Starting with equation (16b), we substitute ω = e
 and apply the chain rule to
obtain

∂(ρω)

∂t
+ div (ρωu) = e


(
∂ (ρ
)

∂t
+ div (ρ
u)

)
, (62)

where we have exploited conservation of mass

∂ρ

∂t
+ div (ρu) = 0. (63)

For the diffusive term, one computes in a similar manner

div
[
(μl + σωμt ) grad e



] = e


[
div ((μl + σωμt ) grad 
)

+ (μl + σωμt ) ‖grad 
‖22
]
,

where we have used

div
(
grad e


) = e

(‖grad 
‖22 + �


)
.

123



Journal of Scientific Computing (2020) 85 :20 Page 23 of 33 20

Therefore, formally we obtain from (16b) and using the substitution forω, the equation for

given by

e


(
∂ (ρ
)

∂t
+ div (ρ
u)

)
= e
 ( div ((μl + σωμt ) grad 
)) + ρQω,(k,ω)

+e
 (μl + σωμt ) ‖grad 
‖22 . (64)

Division by e
 yields the equation

∂ (ρ
)

∂t
+ div (ρ
u) = div ((μl + σωμt ) grad 
) + ρ

e

Qω,(k,ω)

+ (μl + σωμt ) ‖grad 
‖22 . (65)

Using (18b) the source terms are explicitly given by

ρ

e

Qω,(k,ω) = ρ

(
α
1

k
τ : du

dx
− βe


)
.

Using the substitution k = eK in the same way, the differential equation

∂ (ρK)

∂t
dx + div (ρKu) = div ((μl + σkμt ) grad K)

+ ρ

eK
Qk,(k,ω) + (μl + σkμt ) ‖grad K‖22 , (66)

for K can be derived and the source terms are explicitly given by

ρ

eK
Qk,(k,ω) = ρ

eK

(
τ : du

dx
− β∗eKe


)
= ρ

(
1

eK
τ : du

dx
− β∗e


)
.

5.2 Equivalence to Original k-!Models

Now, the following questions need to be answered. Consider supplementing the system of
equations (16) or (19),

a) either the equation of k by (66),
b) or the equation for ω by (65),
c) or both the equations for k and ω by (66) and (65):

Is the obtained exterior turbulent flow problem equivalent to the original one; that is, we
assume that
, orK or (
,K) is a solution of the boundary-value problem with the modified
system of equations. Further, does it follow thatω, or k or (k, ω) is a solution of the boundary-
value problem with non-modified system of equations (16) or (19)?

The answer for equivalence of k-equation is straightforward. Since k represents turbulence
kinetic energy, the no-slip wall boundary condition is (33). But the consequence of substitut-
ing eK for k is k > 0 rather than 0 at the no-slip wall boundary. Therefore, equation (66) does
not allow for solutions of k, which need to satisfy the no-slip wall boundary condition. Hence,
for boundary-value problems which rely on such boundary conditions, substituting eK for k
cannot be realized equivalently.

Remark 5 Substitution of k by eK cannot be equivalently implemented considering a bound-
ary condition k∂D = 0. Such substitution might be considered when wall functions are used.
However, due to the discussion above, we do not support that substitution of k is a general
and successful way to deal with problems involving k-ω models.
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Considerations about substitution of ω = e
 are more interesting. To realize the boundary
condition for ω given by (32), one needs to realize a quadratic singularity, i.e.

lim
h→0+ ω (x − hn(x)) = O

(
1

h2

)
, x ∈ ∂Dno-slip.

Using substitution (60) for ω one obtains for 


lim
h→0+ 
(x − hn(x)) = lim

h→0+ lnω (x − hn(x)) = −O (ln h) . (67)

Hence, the quadratic singularity for ω has been converted into a logarithmic singularity
for 
. It can be assumed that a logarithmic singularity is numerically better to realize than
a quadratic one. And hence, at first glance the substitution for ω is promising. In detail, at
least two questions need to be answered:

a) Are the ansatz functions for ω better suited to approximate a function with logarithmic
singularity than a function with quadratic singularity?

b) How does the numerical error behavewhen comparing a quadrature rule for a logarithmic
singularity to a quadratic singularity?

On the other hand, due to the substitution and transformation, an additional source term
appears in (65) which needs to be discretized, namely

(μl + σωμt ) ‖grad 
‖22 .

Because of (67) near a no slip wall we have

‖grad 
‖22 = O

(
1

h2

)
.

Therefore, using the substitution ω = e
 converts the quadratic singularity for ω into a
logarithmic for 
. On the other hand, the singular quadratic behavior was simply shifted to
another term. Finally, we shortly summarize the arguments of this paragraph:

a) Due to a solid wall boundary condition, the k substitution ofK cannot be realized equiv-
alently.

b) Quadratic singular behavior at a no-slip wall for ω is converted to logarithmic singular
behavior for 
. Then, the grad 
 quadratic singular behavior needs to be realized.

To show that there is also no advantage of substitutions (61) we observe that due to (43)

lim‖x‖2→∞ τ(x) = O (‖x‖2) ,

lim‖x‖2→∞ g(x) = O
(‖x‖22) .

Obviously, the singular behavior has just been shifted from the no-slip wall to an unbounded
increase for τ and g in the far field. To deal with increasing values in the far field is just as
big a challenge, if not an even bigger one. On a finite mesh, comparably to (56), an arbitrary,
generally a guess, is required. Unfortunately, the authors of [29–31] leave this question open.

Concluding, there is no obvious advantage in using variable substitution. Original prob-
lems are only shifted. The equivalence of the original system of equations and the system of
equations obtained after variable substitution is at least questionable in the sense that so far
there exists no mathematical proof to even analytically ensure the equivalence.
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6 TurbulenceModeling: An Inverse View

To evaluate the formulation and the accuracy of a turbulence model is not an easy task. From
our perspective the following four points are a minimum standard one has to consider:

a) The full differential or integral formulation of the model,
b) its exact implementation,
c) a solution algorithm which is able to compute for a given number of degrees of freedom

a machine accurate solution and
d) mesh converged results.

As soon as one of these criteria is not satisfied, certain doubts about the assertions made
concerning a turbulence model arise. Unfortunately, throughout the literature about com-
putational fluid dynamics, the explicit details of the computations are often hidden, and
convincing arguments about convergence are also often missing. In particular, information
about the actual formulation of boundary conditions as well as the possible impact of cer-
tain limitations of variables to stabilize the solution process is often missing. Even when
all these criteria are satisfied and there is full evidence about the implementation, a strict
conclusion about the accuracy of computed results is difficult to obtain. Typical validation
measures are the comparison with measurements, which also come from a process which is
inaccurate. This observation about this complex topic motivates one to possibly reconsider
turbulence modeling as a parameter identification problem, typically an inverse problem,
which is ill-posed.

To look at this point of view, we do not need to consider derivation of the RANS equations.
Instead, we consider the system of equations (1a) such that it includes an unknown parame-
ter μt ≥ 0, which needs to be determined. For the simplest choice, which assumes μt = 0,
it is in general impossible to find steady-state solutions of (1a) for high Reynolds numbers.
High Reynolds number computations using equations (1a) and μt = 0 are called Direct
Numerical Simulations (DNS), and the integral curves Wlam = Wlam(x, t) satisfying (1a)
are in general unsteady.

There are many reasons why it is often not possible to numerically approximate Wlam

directly. Besides the mathematically open problem to prescribe meaningful physical initial
values in general, another severe issue is the numerical effort to compute a DNS solution for
high Reynolds number turbulent flows. The number of mesh points required (proportional to
Re to the 9/4 power) and the corresponding degrees of freedom are extremely large. Thus, in
general, such a computation cannot be realized due to computational reqirements and effort.
Hence, the question arising is as follows:

Does there exist an appropriate modification of the Navier–Stokes equations such that the
modified equations exhibit three conditions:

a) A steady-state solution exists and it is unique (also for high Reynolds numbers).
b) The steady-state solution represents important features of Wlam.
c) It is possible to compute numerically an approximation to the steady-state solution within

an adequate time interval.

Considering that the system of equations (1a) with μt = 0 allows for steady-state solution
when the Reynolds number is sufficiently small, for example 0 < Re ≤ 104, we follow the
idea to decrease (at least locally) the Reynolds number. This goes along with the idea that
a proper weighting of the diffusion terms needs to be incorporated to enforce steady-state
solutions. From the perspective of (1a), this means that artificially the laminar viscosity μl
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needs to be increased. This can be realized by adding an additional function, for example
denoted by μt , yielding (8) and (12).

Hence, it is the goal to find a a function (parameter) μt such that the above mentioned
criteria a)–c) are satisfied, and additionally, certain specific flow characteristica are satisfied.
In applications these are often for example

a) pressure distributions,
b) skin-friction distributions,
c) velocity profiles,
d) the location of separations.

We summarize these characteristics as given data Y . In general, these data are measurements;
and therefore, perturbed by noise. Hence, we assume that instead of Y , there is only noisy
data Y δ available, which satisfies

‖Y δ − Y‖ ≤ δ.

In general, the noise level δ ≥ 0 is unknown.
In this sense, it is the goal of turbulence modeling to prescribe the unknown eddy viscos-

ity μt ≥ 0 such that characteristics of interest are represented by a solution to the exterior
turbulent flow problem. To give the determination of the unknown function μt a more gen-
eral view, wemake the following assumption.We assume thatμt (x, t) ≥ 0 andμt is constant
outside of the ball Bd := {x ∈ R

m : ‖x‖2 ≤ d}. The characteristics of interest are often data
defined on ∂D, that is, Y ∈ L2 (∂D). Within this notation wemay formulate turbulence mod-
eling as an inverse problem. The forward problem might be stated as follows. Assume that
an eddy viscosity (or at least a method to determine μt ) is given, and then find a solution of
the exterior turbulent flow problem. Note, in this general formulation, equations implicitly
defining μt are not required any more. One can simply assume the existence and knowledge
of μt . Therefore, the finding of a functionWt would be eliminated in our formulation for the
exterior turbulent flow problem.

The inverse problem is to reconstruct the eddy viscosityμt from given data Y ∈ L2 (∂D).
To formulate the inverse problem mathematically, consider the operator

F : D(F) → L2(∂D),

μt �→ Y ,

which maps the eddy viscosity to the corresponding data, for example a pressure distribution,
such that the exterior turbulent flowproblem is satisfied. Here, we assume that the unknown
function μt ∈ D(F), where D(F) is the domain of the operator F . Naturally, when we
assume that given data are velocity profiles, the image space of F needs to be replaced by a
data-adapted one.

Though a given turbulence model is an a-priori known methodology to determine μt ,
calibration of model parameters and validation is performed by comparison with noisy mea-
surement data for a small number of test cases where data is available such that computed
data is in good agreement with thesemeasurements. A given turbulencemodel is a realization
of the operator F−1. And the problem is well-posed if F is bijective and F−1 is continuous,
otherwise ill-posed.

The interpretation of turbulencemodeling as an inverse problem gives rise to several ques-
tions, the most severe might be the one of well-posedness. Already, the number of turbulence
models in the literature yielding similar reconstructions for data such as the pressure distribu-
tions and even skin-friction coefficients suggest non-uniqueness of the problem. Also, a small
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perturbation in the given pressure distribution may produce a significantly different solution
of the exterior turbulent flow problem, and therefore, also a significant difference in the
eddy viscosity. This suggests additionally that the condition of continuous dependency on
the data is violated. These observations indicate that turbulence modeling by its mathemati-
cal nature is ill-posed. Therefore, the finding of a general ansatz to represent characteristics
of turbulent flows for a whole variety of problems using the RANS equations in combina-
tion with a given methodology determining μt seems to be challenging, and may even be
impossible.

In practice, measurements Y δ are available for almost none of the test cases of interest.
So, at the moment a practical way for reconstructing μt requires the knowledge of data
independent methods, such as an additional set of equations. Taking into account the possibly
ill-posedmathematically nature of the problem, one should be aware of the fact that in general
good agreement between noisy measurements and computed data cannot be expected.

Due to the increase in computational power and the ability to realize a scale resolving
simulation, we close this section with the following considerations for future work. Assume
that a method describing the eddy viscosity μt ≥ 0 is given, for example an established
turbulence model. Let us denote the steady-state solution of the corresponding exterior
turbulent flow problem by W †

turb. Furthermore, the associated possible time-dependent

solution of the flow problem with μt = 0 is given by W †
lam. We introduce the error induced

by the turbulence model within the time interval [T0, T1] by

errturb (T0, T1) :=
∫ T1

T0

∥∥∥W †
lam (., t) − W †

turb

∥∥∥ dt, T1 ≥ T0,

where ‖ . ‖ denotes a suitable norm. Such an error measure does not only include surface
data but also it includes the entire solution field. We can only expect that errturb (T0, T1) can
be small if there exists a continuous relationship between the solutions W †

lam of the laminar

and W †
turb of the Reynolds-averaged Navier–Stokes equations. That is, the change of the

solution due to the modification of the set of equations by the eddy viscosity should lead to
small differences in the solutions, mathematically speaking

‖μt‖ < δ ⇒ errturb (T0, T1) < ε.

The evaluation of such errors might be helpful to improve the characterization as well as
potentials and shortcomings of established models and those developed from scratch.

The argumentation of this paragraph carries over to full Reynolds stress models. Here,
instead of reconstructing one parameter μt , six terms defining the Reynolds stress tensor
need to be reconstructed.

7 Numerical Example

Toconfirm that different eddyviscosities canproduce almost exactly surface data,we consider
a numerical example. For the discretization strategy as well as a solution methodology, we
refer to [23,32–35]. The software used to generate the results is explained in detail in the
literature mentioned.
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Table 1 Flow conditions for
RAE 2822 airfoil

Cases M∞ AoA Re

Case 9 0.73 2.79◦ 6.5 × 106

Case 10 0.75 2.81◦ 6.2 × 106

As proposed in [19], a production limiter is incorporated into the k-ω turbulence models;
that is, the production term of the k-equation is replaced by

P̃rk,(k,ω) := min
{
Prk,(k,ω), 20Dek,(k,ω)

}
, (68a)

P̃rk,SST := min
{
Prk,SST, 20Dek,SST

}
. (68b)

The limiter is constructed such that the value of production does not exceed a multiple of
destruction. To demonstrate an effect of these limiters, we consider turbulent flow around the
RAE 2822 airfoil with respect to the conditions given in Table 1. Themesh is of size 320×64.
This particular airfoil is quite important since it is frequently considered to evaluate turbu-
lence models. Moreover, there is a substantial amount of detailed data from the experimental
investigation of Cook et al. [36]. This data provides the necessary basis for discussing addi-
tional issues in this paper.

Figure 4 shows the computed eddy viscosity for Case 9. Note, both results correspond to
fully converged solutions. The corresponding convergence histories are given in Fig. 7. The
solution without production limiter shows an increase in eddy viscosity in a neighborhood
where the shock impinges on the boundary layer. Such an effect is suppressed when using
the production limiter, as shown in Fig. 4 (right). The result is reproducible using another
implementation [32]. A structured grid code is applied, which uses a different discretization
strategy. The results for the computed eddy viscosity are shown in Figs. 5 and 6. Here a
different scaling of the plotted values is used.

The same observation is true for Case 10. Given two fully converged solutions (see
Fig. 7 (right)), the one with production limiter shows an increase in eddy viscosity in the
region where the shock impinges on the surface boundary layer, which vanishes when the
production limiter is used.

These numerical results indicate that both test cases have (approximately) no impact on
computed Cp and C f distributions. It should be pointed out that essentially the same Cp

variation implies that the boundary-layer displacement thickness is also about the same.
Further, since the surface skin-friction variations are essentially the same and the shear stress
plays a key role in determining the law-of-the-wall behavior, this suggest that there is a good
correlation with the streamwise velocity profiles. A plot of the Cp and C f distributions is
given in Fig. 8 for Case 9 and Fig. 9 for Case 10. Obviously, though the eddy viscosity with
and without production limiter (68a) is significantly different, its impact on computed Cp

and C f distributions is not discernible.
To summarize, this short investigation shows that the introduction of a production lim-

iter (68a) can have significant impact on the computed eddy viscosity. On the other hand, this
significant change in the computed eddy viscosity, did not yield significant changes in Cp

and C f distributions. Such an observation can be interpreted in two ways.

a) The influence of computed eddy viscosity is so weak, that if a fully converged solution is
possible, no noticeable change in the final solution of mean flow equations can be found.

b) Vice versa, it is interesting to notice that significant changes in the computed eddy viscos-
ity do not yield significant differences in Cp and C f distributions. Such an observation
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Fig. 4 Computed eddy viscosity for Case 9 without (left) and with (right) production limiter for 320 × 64
mesh

Fig. 5 Computed eddy viscosity for Case 9 using a structured grid code

gives rise to the question: In which way does the eddy viscosity need to be changed such
that it influences the solution of the mean flow equations.

In addition, from the viewpoint of an inverse problem,we need to emphasize that this example
reveals that the same data can produce multiple solutions for the eddy viscosity.

Returning to the subject of finding a suitable eddy viscosityμt , we notice that two different
functions forμt generate the sameCp andC f surface distributions. That is, the classical way
of turbulence modeling to find a methodology to determine an eddy viscosity such that noisy
data is matched cannot verify a unique determination of the eddy viscosity. For example, we
couldmake a numerical experimentwherewe consider the computedCp andC f distributions
as given and ask for the reconstruction of a corresponding eddy viscosity. Obviously, both
computed eddy viscosities, that is the one with and the one without production limiter are
solutions of this question. Hence, this example indicates that the inverse problem for these
examples does not have a unique answer.

Moreover, we mention that in formulae (68a) and (68b) a factor of 20 was introduced
for limitation. However, throughout the literature one finds other factors such as 10 or 5 for
limitation of production compared to destruction. The results obtained were similar.
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Fig. 6 Computed eddy viscosity for Case 10 without (left) and with (right) production limiter for 320 × 64
mesh

Fig. 7 Convergence histories for Case 9 (left) and Case 10 (right) on the 320 × 64 mesh with and without
usage of production limiter

Fig. 8 Computed Cp (left) and C f (right) distribution for Case 9 using production limiter for 320× 64 mesh
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Fig. 9 Computed Cp (left) and C f (right) distribution for Case 10 using production limiter for 320×64 mesh

8 Concluding Remarks

This article has considered boundary-value problems for the RANS equations in combination
with two-equation turbulence models. Classical boundary conditions for the unknowns k
andω havebeendiscussed, including the assumptions formulated underwhich these boundary
conditions were derived. In so doing, we have assigned ameaning to what one can call a well-
defined boundary-value problem. Such a boundary-value problem reveals a characterization
of the near-field and far-field solutions of the governing equations. This can be extremely
important for providing insight into what to expect when solving the corresponding discrete
problem.

For example, it has been shown and discussed that determination of boundary values of ω

for both the no-slip wall and the far field plays a significant role in determining the behavior
at the boundaries for k. Consequently, the behavior of the eddy viscosity μt in the boundary
layer is determined to a large extent by the surface boundary condition for ω. With respect
to this knowledge, it can be assumed that reformulation and manipulation of the equations
for the turbulence models will only have limited influence.

In this sense, an improvement of turbulence models might only be possible when sig-
nificantly better understanding of the complete boundary-value problem is available. Any
model including an equation for dissipation rate ω is restricted to the shortcomings which
are inherent to this equation and its boundary values. In particular, it cannot be excluded that
the choice of k and ω at the boundaries yields an ill-posed problem.

Furthermore, it has been demonstrated that proposed variable substitutions do not help in
general to remove the singular behavior of the equations. The singular behavior is typically
only shifted to other terms. Inclusion of a variable substitution gives generally a rise to
many more questions than it answers. For example, there is the important question about
equivalence of the original boundary-value problem to the one with a substituted variable.

Finally, it has been discussed in which way classical turbulence modeling can be inter-
preted as an inverse problem, that is, to reconstruct a parameter in a boundary-value problem
such that given noisy measurements are approximated. Based on this approach, it has been
discussed that the original mathematical nature of turbulence modeling is possibly ill-posed.
A numerical example is used to confirm this assertion.
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