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Abstract
Instabilities of electron plasma waves in high-mobility semiconductor devices have recently
attracted a lot of attention as a possible candidate for closing the THz gap. Conventional
moments-based transportmodels usually neglect time derivatives in the constitutive equations
for vectorial quantities, resulting in parabolic systems of partial differential equations (PDE).
To describe plasma waves however, such time derivatives need to be included, resulting in
hyperbolic rather than parabolic systems of PDEs; thus the fundamental nature of these
equation systems is changed completely. Additional nonlinear terms render the existing
numerical stabilization methods for semiconductor simulation practically useless. On the
other hand there are plenty of numerical methods for hyperbolic systems of PDEs in the
form of conservation laws. Standard numerical schemes for conservation laws, however, are
often either incapable of correctly handling the large source terms present in semiconductor
devices due to built-in electric fields, or rely heavily on variable transformations which are
specific to the equation system at hand (e.g. the shallow water equations), and can not be
generalized easily to different equations. In this paper we develop a novel well-balanced
numerical scheme for hyperbolic systems of PDEs with source terms and apply it to a simple
yet non-linear electron transport model.

Keywords Hyperbolic Balance Laws · THz Oscillations in Semiconductors · Well-balanced
numerical Scheme · Isothermal hydrodynamic model

Mathematics Subject Classification 65M08 · 76M12 · 78M12

This project has been funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Ref. No.: JU406/14-1 and the Austrian Science Fund (FWF): I3130-N30.

B Tobias Linn
tl@ithe.rwth-aachen.de

Kai Bittner
Kai.Bittner@fh-hagenberg.at

Hans Georg Brachtendorf
Hans-Georg.Brachtendorf@fh-hagenberg.at

1 Institute of Electromagnetic Theory, RWTH Aachen University, Kackertstr. 15-17, 52072 Aachen,
Germany

2 University of Applied Sciences of Upper Austria, 4232 Hagenberg, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01311-z&domain=pdf
http://orcid.org/0000-0002-7681-7725


6 Page 2 of 15 Journal of Scientific Computing (2020) 85 :6

1 Introduction

In recent years instabilities of electron plasma waves in high-electron-mobility transistors
(HEMT) have attracted a lot of attention as a possible solution for closing the THz gap [4,7,8].
By solving the full Boltzmann Transport Equation (BTE) the behavior of such devices can
be simulated in a very accurate way [13]. As transient simulations of the BTE however are
computationally very expensive, especially for two or three dimensional devices, simpler
transport models are needed. By using balance equations derived from the BTE together
with appropriate closure relations, models of arbitrary complexity can be specified [1,11].
The simplest of these models is the well-known Drift-Diffusion (DD) model, where only two
moments of the distribution function of the BTE are considered. However, the standard DD
model is not able to capture plasma wave effects, because the time derivative in the current
constitutive equation is usually neglected [16]. Furthermore, two moments are not enough
since heating effects of the electron gas can not be described. The closure relation is also too
simplistic and inconsistent with a non-zero current density [20].

By usingmore balance equations aswell asmore advanced closure relations, bettermodels
(e.g. the full hydrodynamic model) can be developed, at the expense of higher complexity.
Due to non-linear terms such models are also quite difficult to stabilize numerically, and the
well-known Scharfetter-Gummel scheme [27] used for the standard DD model can not be
applied anymore.

Due to the strong built-in electric fields present in semiconductor devices at the transitions
between differently doped regions, the balance equations considered also contain strong
and in some regions even dominating source terms, where the electron density will change
by many orders of magnitude on a small length scale. Standard numerical schemes from
computational fluid dynamics (CFD) are not able to capture these strong source terms in a
stable way, and often lead to unphysical negative densities.

In this paper we develop a novel numerical scheme specifically for the purpose of simulat-
ing electron plasma oscillations by solving balance equations. By splitting the equations into
a stationary and a dynamic part, well-balancing can be achieved even for enormous source
terms,where conventional numerical schemes fail. To that endweuse a one-dimensionalmod-
ified hyperbolic DD model (sometimes referred to as the isothermal hydrodynamic model)
including non-linearity in the flux term due to a convective derivative as a testbed for the
scheme, while maintaining a simple extensibility to more advanced models including further
balance equations.

2 Model

Weconsider a double-gatemetal-oxide-semiconductor field-effect transistor (MOSFET)with
a quasi two-dimensional channel homogeneous perpendicular to the transport direction and
ideal ohmic source and drain contacts shown in Fig. 1. We solve the two-dimensional Pois-
son equation (PE) together with a one-dimensional DD model including an additional time
derivative and a convective term in the constitutive current equation. Holes can be neglected
in this case. The PE is given by [28]

∇ · (ε∇ϕ) = −e (ND − n) , (1)

where ε is the electrostatic permittivity, ϕ the quasistationary potential, e the elementary
charge, ND the donor concentration and n is the electron density. At the contacts Dirichlet
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Fig. 1 Double-Gate MOSFET with one-dimensional channel

boundary conditions are used with [28]

ϕS,D = VS,D + VT arsinh

(
ND

2nint

)

ϕG = VG + φMS , (2)

where VS, VD, VG are the respective source, drain and gate voltages and VT = kBT
e is the

thermal voltage, with the Boltzmann constant kB and the temperature T . φMS is a constant
work function difference, and nint is the intrinsic carrier density.

The DD model consists of the continuity and constitutive equation [6]

∂t n + ∂x j = 0 (3)

∂t j + j

τ
+ ∂x

(
c2n + j2

n

)
+ eE

m∗ n = 0 , (4)

where j is the electron current density, c =
√

kBT
m∗ is the thermal velocity with the effective

mass m∗. The temperature T is fixed to the lattice temperature. Furthermore, E = −∂xϕ is
the longitudinal electric field in the channel and τ is the macroscopic relaxation time [1],
which, for simplicity, is also assumed to be constant. Note that the inclusion of the convective

term ∂x
( j2

n

)
leads to a non-linear equation, which complicates the numerical solution process

immensely.
At the contacts we use a Dirichlet condition for the electron density (ideal ohmic con-

tacts) [28]

nct = nint exp

(
arsinh

(
ND

2nint

))
. (5)

The terminal currents including displacement currents are calculated by the Ramo-Shockley
theorem [17,26,29].

It should be noted that this model can only serve as a rough approximation and is not
sophisticated enough to model transport in nanoscale devices [23], especially in the case
of high mobilities, that are necessary for plasma waves (quasi-ballistic transport). However,
we chose this model because it is simple due to its inclusion of only two moments of the
distribution function, while it still contains some non-linearity and can describe plasma
instabilities [7]. This alleviates the development and validation of a suitable numerical solver,
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which can then be generalized to more advanced models as e.g. the full hydrodynamic model
or other models with even higher complexity.

A critical limitation is the assumed constant thermal velocity, leading to the formation of
supersonic regions in the device at sufficiently large applied voltages, when the drift velocity
v = j

n becomes larger than c. The transition between a sub- and a supersonic region as
well as the opposite case, which leads to stationary shock-waves [21], is hard to capture in
a numerical scheme. We will therefore limit our analysis to the subsonic case |v| < c near
equilibrium by restricting the allowed drain-source voltage to rather small values, which
leads to smooth solutions [6]. This also means that the maximum voltage we can apply to
savely stay in the subsonic regime is limited by the temperature through c.

We write eq. (3) and eq. (4) in conservation form [30]

∂tU + ∂x F(U) = SU (6)

with

U =
(
n
j

)
, F(U) =

(
j

c2n + j2

n

)
and S =

(
0 0

− eE
m∗ − 1

τ

)
.

Equations of this formare frequently encountered in thefield of computational fluid dynamics,
for example the shallow-water equations. Due to the presence of a source term SU on the
right-hand side, special care must be taken to achieve so called well-balancedness [12,18];
meaning that stationary solutions, where the flux derivative is exactly canceled out by the
source term, should also be exactly preserved in the discrete system.This is especially difficult
in our case, because due to the large differences in the doping concentration the density can
vary over many orders of magnitude in a small region, resulting in large built-in fields. A
simple implementation of the finite volume scheme [10] will then result in large errors in
these regions, because the flux derivative and the source term are discretized in different ways
(difference of two fluxes compared to numerical integral of the source term over the cell),
which can lead to numerical instability.

Since we want to perform transient simulations of plasma oscillations around a steady
state, we do not need to achieve well-balancedness for all possible stationary solutions, but
only for that particular steady state. To that end we splitU and S as well as ϕ into a stationary
and a dynamic part

U = U s(x) + Ud(x, t), S = Ss(x) + Sd(x, t)

ϕ = ϕs(x, y) + ϕd(x, y, t) , (7)

where U s(x) is the solution of the stationary equation

∂x F(U s) = SsU s , (8)

which needs to be solved prior to a transient simulation. The stationary and dynamic source
matrices are given by

Ss =
(

0 0
− eEs

m∗ − 1
τ

)
and Sd =

(
0 0

− eEd

m∗ 0

)
,

where E s = −∂xϕ
s and Ed = −∂xϕ

d. The stationary and dynamic potentials both have to
satisfy the corresponding version of eq. (1):

∇ · (
ε∇ϕs) = −e

(
ND − ns

)
(9)

∇ · (
ε∇ϕd) = end . (10)
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In the case of the extended DDmodel eq. (8) leads to an ordinary differential equation for
ns and a constant current density j s

∂xn
s =

eEs

m∗ ns + j s

τ

c2 −
(

j s

ns

)2 (11)

∂x j
s = 0 . (12)

Inserting eq. (8) into eq. (6) results in

∂tUd + ∂x
(
F(U) − F(U s)

) = SsUd + SdU s + SdUd , (13)

where the purely stationary contribution to the source term was replaced by a flux deriva-
tive. This modified equation can now be discretized more easily in a well-balanced manner,
because the remaining source term is small near the stationary solution. Note that the last
term on the right-hand side of eq. (13) is not neglected, i.e. the dynamical part is not assumed
to be small compared to the stationary part.

Even though the source term in eq. (6) is linear, a similar procedure can be used if a more
sophisticated model of the form

∂tU + ∂x F(U) = T (U, ϕ) (14)

is considered, where a non-linear source term T (U, ϕ) is included. The stationary equation
is then given by

∂x F(U s) = T (U s, ϕs) . (15)

Subtracting eq. (15) from eq. (14) yields

∂tUd + ∂x
(
F(U) − F(U s)

) = T (U s + Ud, ϕs + ϕd) − T (U s, ϕs) , (16)

corresponding to eq. (13).

3 Discretization

For simplicity we use an equidistant grid in x and y direction with the coordinates

xk = x0 + kΔx and yl = y0 + lΔy (17)

for the direct and
xk+ 1

2
= xk + xk+1

2
and yl+ 1

2
= yl + yl+1

2
(18)

for the adjoint grid points. Note that our scheme is not fundamentally limited to the equidistant
case and could easily be extended to non-equidistant grids. The PE is discretized on the 2D
grid in the usual way (vertex centered finite volumes [28]), resulting in discrete values for
the potential defined on the direct grid nodes.

3.1 Stationary Problem

To discretize the stationary DD model eq. (8) we use the point-wise defined values

U s
k+ 1

2
= U s

(
x = xk+ 1

2

)
(19)
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located at the adjoint grid points as the solution variables of the discrete equation system.
Starting from an initial guess we calculate time derivatives which are then brought to zero
by an iterative process.

At first the function U s(x) is reconstructed from the solution variables by solving the
stationary equation eq. (8) as an initial value problem separately in each interval starting
from its midpoint and going in positive and negative x direction. This computationally costly
process, which can be realized by using a high-order stiff ODE solver, is necessary to enforce
well-balancedness. The accuracy should be set to almostmachine precision, in order to enable
convergence for the whole system later. Another requirement for the ODE solver is the supply
of the derivatives of the end state with respect to the initial state and the electric field, which
is needed for the Newton iteration later. Here we used the fifth order RADAU IIA method
described in [31].

The result is a piece-wise defined reconstruction function

U s(x) = Ũ
s
k+ 1

2
(x) for x ∈ (xk, xk+1) , (20)

where
Ũ

s
k+ 1

2

(
x = xk+ 1

2

)
= U s

k+ 1
2

(21)

and
∂x F

(
Ũ

s
k+ 1

2
(x)

)
= Ss

k+ 1
2
Ũ

s
k+ 1

2
(x) . (22)

The source matrix Ss
k+ 1

2
depends on the electric field which is calculated by finite-differences

from ϕs and is assumed to be constant in each interval [xk, xk+1]. Due to this fact the
local solutions Ũ

s
k+ 1

2
(x) are smooth on [xk, xk+1], which is important for the efficiency and

accuracy of the ODE solver.
Next, the equation system including the time derivative is integrated over one interval

resulting in∫ xk+1

xk
∂t Ũ

s
k+ 1

2
(x) dx + F(U s∗

k+1) − F(U s∗
k ) =

∫ xk+1

xk
Ss
k+ 1

2
Ũ

s
k+ 1

2
(x) dx , (23)

where the values denoted by an asterisk are located at the direct grid points between two
intervals. Since there are always two values (left and right) available at each grid point, the
interface states have to be calculated by a suitable averaging process. For this purpose we use
an exact Riemann solver (a simple derivation can be found e.g. in [22]) which takes the full
upwind information into account. The computational effort of an exact solver is quite limited
in this case of only two equations, however for more advanced models an approximate solver
can be used as well. The resulting upwinded interface states

U s∗
k = Avg{Ũ s

k− 1
2
(xk), Ũ

s
k+ 1

2
(xk)} (24)

are then shared between two adjacent intervals, ensuring charge conservation.
At the contact grid points the Dirichlet condition for the electron density leads to a semi-

Riemann problem on the contact surface, since the state directly inside of the device and the
density directly on the contact surface are given. A Riemann-Solver for the DDmodel works
by connecting two initial states by two waves, where in between the two waves a constant
interface state forms. In the subsonic case the two waves will travel in opposite directions.
By fixing the density for the interface state to nct, we can then calculate the missing current
density on the contact surface by connecting the state on the contact to the state directly inside
of the device by the respective inflowing wave. For more advancedmodels, more information
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on the contact boundaries must be supplied and more inflowing waves considered, in general
one boundary condition is needed for every two balance equations.

Using the stationary reconstruction, the source term in eq. (23) can be replaced by a flux
difference, resulting in

∂tU
s
k+ 1

2
= − 1

Δx

(
F

(
U s∗

k+1

) − F
(
Ũ

s
k+ 1

2
(xk+1)

)

− F
(
U s∗

k

) + F
(
Ũ

s
k+ 1

2
(xk)

) )
!= 0 , (25)

where ∫ xk+1

xk
∂t Ũ

s
k+ 1

2
(x) dx = Δx∂tU

s
k+ 1

2
. (26)

Note that even though it may be tempting to use eq. (25) for the dynamic case as well, this is
not reasonable, because the reconstruction process explicitly involves solving the stationary
equation for each interval. Even if we ignore the high computational cost of the ODE solver,
it is not necessarily an accurate reconstruction for the dynamic case.

Self-Consistent coupling to the PE is achieved by extracting the densities at the direct
grid points from the interface states and using them for the right-hand side of the PE. The
stationary coupled PE-DD system is then written in residual form

(
f sϕ

(
xsϕ, xsU

)
f sU

(
xsϕ, xsU

)
)

!= 0 , (27)

where the residuals f sU of the DD model are the time derivatives of eq. (25). xsϕ and xsU
denote the discrete solution variables. The equation system is then solved by a damped
Newton iteration, where the Jacobian is a large, sparse matrix containing the derivatives of
the residuals with respect to the solution variables. These derivatives are computed as part
of the solution process.

3.2 Dynamic Problem

After solving the stationary system, its solution is fixed and we can move on to the dynamic
system. As opposed to the stationary case, for the dynamic case we use the average values

U
d
k = 1

Δx

∫ x
k+ 1

2

x
k− 1

2

Ud(x) dx (28)

of Ud in each vertex centered cell as the solution variables, because it leads to an easier
coupling to the PE.

We use a simple piece-wise constant reconstruction of the dynamic variables in each
cell. As an alternative we tested the CWENOZ3 scheme [2,3,19] in combination with a local
characteristic decomposition [25]. Due to its third-order accuracy in smooth regions, it should
be preferable to the first-order piece-wise constant reconstruction. Unfortunately, however,
the resulting scheme proved to be numerically unstable in the regions with strong source
terms, since the local characteristic decomposition only takes the flux Jacobian into account.

Integrating eq. (13) over one cell yields

∂tU
d
k = − 1

Δx

(
F

(
U∗

k+ 1
2

)
− F

(
U s

k+ 1
2

)
− F

(
U∗

k− 1
2

)
+ F

(
U s

k− 1
2

) )
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+ 1

2

(
Ss
k− 1

2
U

d(−)

k + Ss
k+ 1

2
U

d(+)

k

)
+ 1

2

(
Sd
k− 1

2
U

(−)

k + Sd
k+ 1

2
U

(+)

k

)
, (29)

where

U
(−)

k = 2

Δx

∫ xk

x
k− 1

2

U(x) dx

and U
(+)

k = 2

Δx

∫ x
k+ 1

2

xk
U(x) dx (30)

are averaged over half of a cell. For the piece-wise constant reconstruction the half cell
averages are equal to the full cell averages. The variables denoted by an asterisk are as before
solutions to Riemann problems, however this time located at the adjoint grid points.

At the boundaries we use the values of U directly on the contact vertices as solution
variables instead of cell averages. The reconstruction in the contact (half) cells is done by a
local polynomial reconstruction satisfying

ñdct (x)|xct = 0 (31)

∂x j̃
d
ct (x)|xct = 0 , (32)

leading to linear and quadratic reconstruction polynomials for ñdct (x) and j̃dct (x) respectively

ñdct(x) = ndct±1

(
± x − xct

Δx

)
(33)

j̃dct(x) = jdct +
(
j
d
ct±1 − jdct

) 12 (x − xct)2

13Δx2
, (34)

where ct and ct ± 1 denote the contact and the adjacent cell.
Since the density is fixed on the contacts, its time derivative is zero. The time derivative

of the current density however is not and it is obtained by evaluating eq. (13) directly on the
contact, without integration over a finite volume. The spatial derivatives in that equation are
evaluated consistently with the stationary and dynamic reconstructions.

The full dynamic system can then be written in the form of
(
0 0
0 DU

)
∂t

(
xdϕ
xdU

)
+

(
f dϕ

(
xdϕ, xdU

)
f dU

(
xdϕ, xdU

)
)

!= 0 , (35)

where DU is a diagonal matrix. This system can then be solved by standard time-integration
schemes, like the BDF methods [5] or in the frequency domain by harmonic balance [9].

4 Results

Weconsider the device shown in Fig. 1, with a length of L = 100nm,where the gated length is
Lg = 60nm. The oxide and channel thicknesses are dox = 2.5nm and dch = nm respectively.
The permittivities are εox = 3.9 ε0 and εch = 11.7 ε0 with the vacuum permittivity ε0. We
assume a constant relaxation time of τ = 0.1ps and an effective mass of m∗ = 0.28621me.
The intrinsic carrier density is set to nint = 1010 cm−3 dch. For the potential at the gate contact
we use φMS = 0.3V. The simulations are performed at room temperature T = 300K. The
doping concentration in the channel is set to ND = 1015 cm−3 dch while the contact regions
are split into two highly doped parts with ND = 1020 cm dch and ND = 1020 cm−3 dch
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Fig. 2 Doping profile ND(x) and stationary electron densities for VGS = 0V and VDS = 0V (neq(x)) and
VDS = 40mV (ns(x), neq(x) + nd(x))

Fig. 3 Driver circuit for resistive mixing. [15,24]

respectively (see Fig. 2). Between each region of constant doping an exponential transition is
assumed. We use an equidistant tensor-product grid with Nx = 201 by Ny = 21 grid points.

In Fig. 2 we tested our scheme by performing stationary simulations with two different
applied drain voltages. The gate voltage was set to zero VG = 0V resulting in strong built-
in fields to test the numerical stability of the scheme. For equilibrium conditions, where
VS = VD = 0V, the electrondensityneq roughly follows thedoping concentration. In addition
to this we calculated the density for VDS = 40mV by solving the stationary equation system
eq. (27) directly as well as solving the dynamic system eq. (35) for vanishing time derivatives,
where the fixed stationary solution was set to the equilibrium solution. The resulting density
profiles are almost identical, confirming the validity of our approach of splitting the variables
into stationary and dynamic parts.

For further analysis of our scheme we use the same driver circuit as in [15,24], shown in
Fig. 3. Due to the high admittance at THz frequencies of the coupling capacitance between
the gate and drain terminal, we make the same simplification as in [14,15] and apply the AC
voltage to the source terminal instead, while keeping the gate and drain voltages constant
(AC-wise grounded).
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(a) Nx = 201 grid points in transport direction.
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(b) Nx = 401 grid points in transport direction.

Fig. 4 Real (solid) and imaginary (dashed) part of the drain-source admittance parameter vs the frequency for
two different reconstruction methods at the DC voltage levels of VDS = 0V and VGS = 0.2V

We start by calculating the small-signal drain-source admittance parameter YDS, which is
the drain current response to an AC voltage at source, where the device equations have been
linearized around equilibriumwith VDS = 0. To show the influence of the reconstruction pro-
cedure we compare the third-order CWENOZ3 scheme and the simple first-order piecewise
constant reconstruction in Fig. 4. It is clearly visible, that the piecewise constant reconstruc-
tion introduces strong numerical damping at higher frequencies compared to the CWENOZ3
reconstruction. The stability problems we encountered for the high order reconstruction can
not be seen in the small-signal regime,where the dynamic variablesUd are treated as infinites-
imal quantities, leading to a perfectly smooth solution. The non-linear weights introduced in
the CWENO procedure here simply reduce to the linear weights of an optimal third-order
parabolic reconstruction. By increasing the number of grid points the numerical damping of
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(a) Source current vs. time.
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(b) Drain current vs. time.

Fig. 5 Transient source and drain terminal currents for an applied AC signal at the source terminal with
different amplitudes and a frequency of f = 1THz at the DC voltage levels of VDS = 0V and VGS = 0.2V

the piecewise constant reconstruction can be reduced and it converges with O(Δx) to the
CWENOZ3 solution, which would only change by an negligible amount in the considered
frequency region. For frequencies of up to about 3THz the amount of Ny = 201 grid points
in transport direction chosen here seems to be sufficient to not introduce too much damping.

Going further,we performed actual transient simulations of the device by using the second-
order BDF2-method [5]. The time-step size was chosen automatically by an adaptive time-
step algorithm, which does not require additional information about the equation system, e.g.
characteristic time scales (black-box approach). In Fig. 5 the source and drain currents are
shown for different amplitudes VA of the AC signal applied to the source terminal. After a
short transient period a periodic steady-state is reached. Especially for high amplitudes the
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(a) Current density at the cell interfaces.
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(b) Electron density normalized to the stationary density.

Fig. 6 Electron and current density resolved over space and time for the periodic steady state with VA = 5mV
and f = 1THz

non-linear behavior of the device becomes visible in the asymmetric deformation of the drain
current signal, which can not be captured by a simple small-signal analysis.

In Fig. 6 we show the internal variables of the periodic steady-state resolved over one
period for a frequency of f = 1THz. In Fig. 6a the current density on the cell interfaces,
namely the current density component of the Riemann solutions, is shown. These current
densities are also used in the calculation of the terminal currents. In the highly doped regions
it is nearly constant in space, leading to a constant electron density in time. In the lowly doped
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Fig. 7 Influence of the convective derivative on the current responsivity at a DC bias of VDS = 0V

channel, the propagation of waves can be observed, leading to a phase shift of the current
density at the source and drain terminals, which could already be seen in the drain-source
admittance parameters. In Fig. 6b the total electron density at the cell centers normalized to
the stationary density is shown. As expected, in the contact regions the density is essentially
constant, and only in the channel oscillations occur.

We also calculated the current responsivity of the mixer given by the DC component of
the current at the drain divided by the AC input power at the source terminal [15]

RI = IDCD

PAC
S

(36)

with

PAC
S = 1

T

∫ T

0
VS(t)IS(t) dt, (37)

averaged over one period T . In Fig. 7 the current responsivity at a DC bias of VDS = 0V for a
frequency range of 0 to 3THz is shown. To highlight the effect the convective derivative has,
we repeated the calculation without it, where both of these simulations were performed using
the harmonic balance approach [9]. Even though in the small-signal regime the convective
derivative has no effect at equilibrium, in this case the difference is quite obvious, highlighting
the nonlinear nature of the responsivity effect. For small frequencies both models yield the
same result, however for larger frequencies in the THz region inclusion of the convective
term leads to much larger responsivities.

5 Conclusion

Wedeveloped a stable numerical method for the simulation of one dimensional balance equa-
tions with strong source terms. The equations were split into a stationary and a dynamic part,
where well-balancedness was guaranteed for the stationary part. However, even for dynamic
conditions different from the stationary solution, the scheme provides good results. We com-
pared the results obtained from a low-order piecewise constant and a high order CWENOZ3
reconstruction and showed the damping effect the low-order reconstruction has at high fre-
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quencies. Furthermore, we demonstrated the capabilities of our scheme to perform nonlinear
transient simulations which are able to capture important effects like the responsivity of a
MOSFET mixer.
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