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Abstract
We develop error estimates for the finite element approximation of elliptic partial differential
equations on perturbed domains, i.e. when the computational domain does not match the real
geometry. The result shows that the error related to the domain can be a dominating factor
in the finite element discretization error. The main result consists of H1- and L2-error esti-
mates for the Laplace problem. Theoretical considerations are validated by a computational
example.
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Mathematics Subject Classification 65N30 · 65N15 · 35J25

1 Introduction

The main aim of this work is to develop finite element (FE) error estimates in the case when
there is uncertainty with respect to the computational domain. We consider the question
of how a domain related error affects the finite element discretization error. We use the
conformingfinite elementmethod (FEM)which iswell established in the scientific computing
community and allows for a rigorous analysis of the approximation error [15].

Our motivation is as follows. The steps to obtain a mesh for FE computations often come
with some uncertainty, for example related to empirical measurements or image processing
techniques, e.g. medical image segmentation [26,27]. Therefore, we often perform compu-
tations on a domain which is an approximation of the real geometry, i.e., the computational
domain is close to but does not match the real domain. In this work we do not specify the
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source of the error, but we take the error into account by explicitly using the error laden
reconstructed domains.

This theoretical result is of great importance for scientific computations. Vast numbers
of engineering branches rely on the results of computational fluid dynamics simulations,
where there is often uncertainty connected to the computational domain. A prime example
of this is computational based medical diagnostics, where shapes are reconstructed from
inverse problems, such as computer tomography. The assessment of error attributed to the
limited spatial resolution of magnetic resonance techniques has been discussed in [23,24].
For a survey on computational vascular fluid dynamics, where modeling and reconstruction
related issues are discussed, we refer to [29]. Error analysis of computational models is a key
factor for assessing the reliability for virtual predictions.

Uncertainties in the computational domain have been studied from the numerical per-
spective. Rigorous bounds for elliptic problems on random domains have been derived, for
approximate problems defined on a sequence of domains that is supposed to converge in the
set sense to a limit domain, for both Dirichlet [3] and Neumann [2] boundary conditions.
Although our techniques are similar, we consider a case where the geometrical error is not
small, but where it might dominate the discretization error.

When measurement data is available the accuracy of numerical predictions can be
improved by data assimilation techniques. Applications of variational data assimilation in
computational hemodynamics have been reviewed in [13]. For recent developments we refer
to [17,25]. On the other hand, the treatment of boundary uncertainty can be cast into a proba-
bilistic framework. The domain mapping method is based entirely on stochastic mappings to
transform the original deterministic/stochastic problem in a random domain into a stochastic
problem in a deterministic domain, see [18,32,33]. The perturbation method starts with a
prescribed perturbation field at the boundary of a reference configuration and uses a shape
Taylor expansionwith respect to this perturbation field to represent the solution [19]. In [1,12]
a similar technique was used to incorporate random perturbations of a given domain in the
context of shape optimization. Moreover, the fictitious domain approach and a polynomial
chaos expansion have been applied in [10].We note, that the probabilistic approach is beyond
the scope of this work and the introduction of the boundary uncertainty as random variable
increases the complexity of the problem.

The above approaches incorporate additional information on the domain reconstruction,
such as measurement data or a probabilistic distribution of the approximation error. In com-
parison to these approaches our result can be seen as the worst case scenario. We only require
that the distance between the two domains is bounded.

The analysis presented in this paper starts with well-known results regarding the finite
element approximation on domains with curved boundaries. But in contrast to these estimates
we cannot expect the error coming from the approximation of the geometry is small or
even converging to zero. Instead we split the error into a geometric approximation error
between real domain and perturbed domain and into an error coming from the finite element
discretization of the problem on the perturbed domain. A central step is Lemma 4 which
estimates the geometry perturbation. Having in mind that this error is not small and cannot
be reduced by means of tuning the discretization, the typical application case is to balance
both error contributions to efficiently reach the barrier of the geometry error. Theorem 2 gives
such optimally balanced estimates that include both error contributions.

This paper is organized as follows. After this introduction, in Sect. 2 we introduce the
mathematical setting and some required auxiliary results. Section 3 covers finite element
discretization and proves the main results of this work. We illustrate our result with compu-
tational examples in Sect. 4.
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2 Mathematical Setting and Auxiliary Result

2.1 Notation

Let Ω ⊂ Rd be a domain with dimension d ∈ {2, 3}. By L2(Ω) we denote the Lebesgue
space of square integrable functions equipped with the norm ‖·‖Ω . By H1(Ω)we denote the
space of L2(Ω) functions with first weak derivative in L2(Ω) and by Hm(Ω) for m ∈ N0

we denote the corresponding generalizations with weak derivatives up to degree m ∈ N0.
The norms in Hm(Ω) are denoted by ‖ · ‖Hm (Ω). For convenience we use the notation
H0(Ω) := L2(Ω). By H1

0 (Ω) we denote the space of those H1(Ω) functions that have
vanishing trace on the domain’s boundary ∂Ω and we use the notation H1

0 (Ω;Γ ) if the
trace only vanishes on a part of the boundary, Γ ⊂ ∂Ω . Further, by (·, ·)Ω we denote the
L2(Ω)-scalar product and 〈·, ·〉Γ the L2-scalar product on a d − 1 dimensional manifold Γ ,
e.g. Γ = ∂Ω . Moreover, [∂nψ] is the jump of the normal derivative of ψ , i.e. for x ∈ Γ with
normal n (that is normal to Γ ) [∂nψ](x) := limh↘0 ∂nψ(x + hn) − limh↘0 ∂nψ(x − hn).

2.2 Laplace Equation and Domain Perturbation

On Ω ⊂ Rd let f ∈ L2(Ω) be the given right hand side. We consider the Laplace problem
with homogeneous Dirichlet boundary conditions,

− �u = f in Ω, u = 0 on ∂Ω. (1)

The variational formulation of this problem is given by: find u ∈ H1
0 (Ω), such that

(∇u,∇φ)Ω = ( f , φ)Ω ∀φ ∈ H1
0 (Ω). (2)

The boundary ∂Ω is supposed to have a parametrization in Cm+2, where m ∈ N0. Given
the additional regularity f ∈ Hm(Ω), H0(Ω) := L2(Ω), there exists a unique solution
satisfying the a-priori estimate

‖u‖Hm+2(Ω) ≤ c‖ f ‖Hm (Ω), (3)

see e.g. [16].
In the following we assume that the real domain Ω is not exactly known but only given

up to an uncertainty. We hence define a second domain, the reconstructed domain Ωr with
a boundary that allows for Cm+2 parametrization. The Hausdorff distance between both
domains is then denoted by Υ ∈ R,

Υ := dist(∂Ω, ∂Ωr ) := max{ sup
x∈∂Ω

inf
y∈∂Ωr

|x − y|, sup
y∈∂Ωr

inf
x∈∂Ω

|x − y|}.

This distance Υ is not necessarily small. When it comes to spatial discretization we will
be interested in both cases, h � Υ as well as Υ � h, where h > 0 is the mesh size. The two
domains do not match and either domain can protrude from the other, see Fig. 1. In order
to prove our error estimates we require the following technical assumption on the relation
between the two domains Ω and Ωr .

Assumption 1 (Domains)LetΩ andΩr be twodomainswithΩ∩Ωr = ∅ andwithHausdorff
distance Υ ∈ R. Both boundaries allow for a local Cm+2 parametrization, m ∈ N0. Let

S := (Ωr \ Ω) ∪ (Ω \ Ωr ).
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Fig. 1 The domain Ω (bold line) and its reconstruction Ωr (dashed). The cover of the domain remainders
S = (Ω \ Ωr ) ∪ (Ωr \Ω) by a set of rectangles. The left configuration fulfils Assumption 1. The height hi
of each rectangle Ri is bounded by cS,1Υ and the intersections of each rectangle with the domain remainder
Ri ∩ S do not overlap excessively. The shaded areas show the overlap. The right configuration is excluded by
Assumption 1

We assume that there exists a cover of S by a finite number of open rectangles (or rectangular
cuboids) {R1, . . . , Rn(S)}. Each rectangle Ri is given as translation and rotation of (0, hi ) ×
(0, ti ) for d = 2, or (0, hi ) × (0, t1i ) × (0, t2i ) for d = 3, where the height hi is bounded by
hi ≤ cS,1 Υ with a constant cS,1 ≥ 0. Following conditions hold:

1.a) On each rectangle R, the boundary lines ∂Ω ∩ R and ∂Ωr ∩ R allow for unique
parametrizations gR

Ω(t) and gR
Ωr

(t) over the base t , or (t1, t2) for d = 3, respectively.
1.b) The area of the cover is bounded by the area of the remainder S, i.e.

∣
∣

n(S)
⋃

i=1

Ri ∩ S
∣
∣ ≤ cS,2|S|,

where cS,2 > 0 is a constant.

For the following we set cS := max{cS,1, cS,2}.
Figure 1 shows such a cover for different domain remainders. From Assumption A1 we

deduce that each line through the height of the rectangle (marked in red in the figure) cuts
each of the two boundaries exactly one time. The second assumption limits the overlap of the
rectangles. These are shown as the shaded in the left sketch in Fig. 1. Both assumptions on the
domain are required for the proof of Lemma 3 that is based on Fubini’s integral theorem. A
more flexible framework that allows for a wider variety of domains, e.g. with boundaries that
feature hooks, could be based on the construction of a map between two boundary segments
on ∂Ωr and ∂Ω . Such approaches play an important role in isogeometric analysis. We refer
to [34,35] for examples on the construction of such maps.

To formulate the Laplace equation on the reconstructed domain Ωr we must face the
technical difficulty that the right hand side f ∈ Hm(Ω) is not necessarily defined on Ωr .
We therefore weaken the assumptions on the right hand side.

Assumption 2 (Right hand side) Let f ∈ Hm
loc(R

d), i.e. f ∈ Hm(G) for each compact
subset G ⊂ Rd . In addition we assume that the right hand side on Ωr can be bounded by the
right hand side on Ω , i.e.

‖ f ‖Hm (Ωr ) ≤ c‖ f ‖Hm (Ω). (4)
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An alternative would be to use Sobolev extension theorems to extend functions f ∈ Hm(Ω)

from Ω to Ωr , see [8].
On Ωr we define the solution ur ∈ H1

0 (Ωr ) to the perturbed Laplace problem

(∇ur ,∇φr )Ωr = ( f , φr )Ωr ∀φr ∈ H1
0 (Ωr ), (5)

The unique solution to (5) satisfies the bound

‖ur‖Hm+2(Ωr )
≤ c‖ f ‖Hm (Ωr ) ≤ c‖ f ‖Hm (Ω). (6)

Remark 1 (Extension of the solutions) A difficulty for deriving error estimates is that u is
defined on Ω and ur on Ωr = Ω . Since the domains do not match, u may not be defined on
all of Ωr and vice versa. To give the expression u − ur a meaning on all domains we extend
both solutions by zero outside their defining domains, i.e. u := 0 on Ωr \ Ω and ur := 0 on
Ω \ Ωr . Globally, both functions still have the regularity u, ur ∈ H1(Ω ∪ Ωr ). We will use
the same notation for discrete functions uh ∈ Vh defined on a mesh Ωh and extend them by
zero to Rd .

The following preliminary results are necessary in the proof of the main estimates. They
can be considered as variants of the trace inequality and of Poincaré’s estimate, respectively.

Lemma 3 Let γ ∈ R, γ > 0, V ⊂ Rd and W ⊂ Rd for d ∈ {2, 3} be two domains with
boundaries ∂V and ∂W that satisfy Assumption 1 with distance

γ := dist(∂V , ∂W ).

For ψ ∈ C1(V ) ∩ C(V̄ ) it holds

‖ψ‖∂W∩V ≤ c
(

‖ψ‖∂V + γ
1
2 ‖∇ψ‖V \W

)

,

‖ψ‖V \W ≤ cγ
1
2

(

‖ψ‖∂V + γ
1
2 ‖∇ψ‖V \W

)

,
(7)

where the constants c > 0 depend on cS from Assumption 1 and the curvature of the domain
boundaries.

Proof Let R be one rectangle of the cover and let x∂W = gR
W (t) ∈ ∂(W ∩V )∩ R, see Fig. 2.

By x∂V = gR
V (t) ∈ ∂(W ∩ V ) ∩ R we denote the corresponding unique point on ∂W ∩ R.

The connecting line segment x∂V x∂W completely runs through V \ W , as, if the line would
leave this remainder, it would cut each line more than once which opposes Assumption 1b).
Integrating the function ψ along this line gives

∣
∣ψ(x∂W )

∣
∣2 ≤ 2

∣
∣ψ(x∂V )

∣
∣2 + 2

∣
∣

∫ x∂W

x∂V

ψ ′(s) ds
∣
∣2.

Applying Hölder’s inequality to the second term on the right hand side, with the length of
the line bounded by cSγ , we obtain

|ψ(x∂W )|2 ≤ 2|ψ(x∂V )|2 + 2cSγ
∫ x∂W

x∂V

|∇ψ(s)|2 ds.

Using the parametrizations x∂W = gR
W (t) and x∂V = gR

V (t) we integrate over t which gives

∫

|ψ(gR
W (t))|2 dt ≤

∫

|ψ(gR
V (t))|2 dt + 2cSγ

∫ ∫ gRW (t)

gRV (t)
|∇ψ(s)|2 ds dt . (8)
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Fig. 2 Illustration of the proof of Lemma 3. Points in each rectangle R can be represented by local coordinates
(t, s), where 0 ≤ s ≤ cSγ and the range of t depends on the size of the rectangle. The two boundary
segments are given by the (smooth) parametrizations gRV (t) and gRW (t). Each line in the direction of s cuts
both boundaries exactly once. In the 3d setting, the base is represented by two coordinates t = (t1, t2)

The volume integral on the right hand side is exactly the integral over R ∩ (V \ W ). The
boundary integrals can be interpreted as path integrals and therefore be estimated by

1

maxt {1 + |∇gR
W (t)|2}

∫

(∂W∩V )∩R
|ψ |2 ds

≤ 1

mint {1 + |∇gR
V (t)|2}

∫

R∩∂V
|ψ |2 ds + 2cSγ

∫

R∩(V \W )

|∇ψ |2 dx . (9)

As the boundaries allow for a C2 parametrization, we estimate

‖ψ‖2(∂W∩V )∩R ≤ c(∂V , ∂W )cS
(

‖ψ‖2R∩∂V + γ ‖∇ψ‖2R∩S

)

. (10)

Summation over all rectangles and estimation of all overlaps by means of Assumption 1
gives

‖ψ‖2∂W∩V ≤ c(∂V , ∂W )cS
(

‖ψ‖2∂V + γ ‖∇ψ‖2V \W
)

.

For ψ ∈ H1
0 (V ), the term on ∂V vanishes.

To show the second estimate on V \W we again pick one rectangle R and consider a point
x ∈ V \ W on the line connecting x∂V = gR

V (t) and x∂W = gR
W (t) such that we introduce

the notation x = x(t, s).
By the same arguments as above it holds

|ψ(x(t, s))|2 ≤ 2|ψ(gR
V (t))|2 + 2cSγ

∫ ∫ gRV (t)

x(t)
|∇ψ |2 dsdt .

We integrate over s and t to obtain

‖ψ(x)‖2R∩(V \W ) ≤ 2

mint {1 + |∇gR
V (t)|2}γ ‖ψ‖2R∩∂V + 2cSγ

2‖∇ψ‖2R∩(V \W ).

Summing over all rectangles gives the desired result. ��
The above lemma is later used in such a way that V and W can be substituted as both Ω

and Ωr , specifically to the case of use.
We continue by estimating the difference between the solutions of the Laplace equations

on Ω and on Ωr .
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Lemma 4 LetΩ,Ωr ∈ Rd with ∂Ω, ∂Ωr ∈ Cm+2 satisfying dist(∂Ω, ∂Ωr ) < Υ as well as
Assumption 1. Furthermore, let f ∈ L2

loc(R
d) satisfy Assumption 2 and let fr := f |Ωr . For

the solutions u ∈ H1
0 (Ω) ∩ H2(Ω) and ur ∈ H1

0 (Ωr ) ∩ H2(Ωr ) to (2) and (5) respectively,
it holds that

‖u − ur‖Ω + Υ
1
2 ‖∇(u − ur )‖Ω ≤ cΥ ‖ f ‖Ω∪Ωr .

Proof (i)We continuously extend u and ur by zero toRd , c.f. Remark 1, such that u − ur ∈
H1(Ω ∪ Ωr ) is well defined.

We separate the domains of integration and integrate by parts

‖∇(u − ur )‖2Ω = (∇(u − ur ),∇(u − ur )
)

Ω∩Ωr
+ (∇(u − ur ),∇(u − ur )

)

Ω\Ωr

= −(

�(u − ur ), u − ur
)

Ω
+ 〈∂n(u − ur ), u − ur 〉∂(Ω∩Ωr )

+ 〈∂n(u − ur ), u − ur 〉∂(Ω\Ωr ).

(11)

Combining the boundary terms on the right-hand side of (11), into an integral over ∂Ω and
a jump term over ∂Ωr ∩ Ω , we obtain

‖∇(u − ur )‖2Ω = −(

�(u − ur ), u − ur
)

Ω
+ 〈∂n(u − ur ), u − ur 〉∂Ω

+ 〈[∂n(u − ur )], u − ur 〉∂Ωr∩Ω.
(12)

In Ω ∩ Ωr it holds f = fr and hence (weakly) −�(u − ur ) = 0, such that

−(�(u−ur ), u−ur )Ω = −(�(u−ur ), u−ur )Ω∩Ωr −(�u, u)Ω\Ωr = ( f , u)Ω\Ωr . (13)

On ∂Ω it holds u = 0 and on ∂Ωr ∩ Ω it holds ur = 0. Further, since u ∈ H2(Ω) it holds
that [∂nu] = 0 on ∂Ωr ∩Ω . Finally, ur = 0 on Ω \Ωr , such that the boundary terms reduce
to

〈∂n(u − ur ), u − ur 〉∂Ω + 〈[∂n(u − ur )], u − ur 〉∂Ωr∩Ω

= −〈∂n(u − ur ), ur 〉∂Ω∩Ωr − 〈∂nur , u〉∂Ωr∩Ω. (14)

Combining (12)–(14) and using the Cauchy–Schwarz inequality, we estimate

‖∇(u − ur )‖2Ω ≤ ‖ f ‖Ω\Ωr ‖u‖Ω\Ωr

+‖∂n(u − ur )‖∂Ω∩Ωr ‖ur‖∂Ω∩Ωr + ‖∂nu‖∂Ωr∩Ω‖u‖∂Ωr∩Ω. (15)

Since u, ur ∈ H2(Ω ∩ Ωr ), the trace inequality gives

‖∇(u − ur )‖2Ω ≤ ‖ f ‖Ω\Ωr ‖u‖Ω\Ωr

+ c
(‖u‖H2(Ω) + ‖ur‖H2(Ωr )

)(‖ur‖∂Ω∩Ωr + ‖u‖∂Ωr∩Ω

)

. (16)

Applying Lemma 3 twice: to ψ = u and to ψ = ∇u (same for ur ), and extending the
norms from Ω \ Ωr to Ω and from Ωr \ Ω to Ωr give the bounds

‖u‖∂Ωr∩Ω ≤ cΥ
1
2 ‖∇u‖Ω\Ωr ≤ cΥ

(

‖∇u‖∂Ω + Υ
1
2 ‖u‖H2(Ω)

)

,

‖ur‖∂Ω∩Ωr ≤ cΥ
1
2 ‖∇ur‖Ωr \Ω ≤ cΥ

(

‖∇ur‖∂Ωr + Υ
1
2 ‖ur‖H2(Ωr )

)

.
(17)

With the trace inequality and the a priori estimates ‖u‖H2(Ω) ≤ c‖ f ‖Ω and ‖ur‖H2(Ωr )
≤

c‖ fr‖Ωr ≤ c‖ f ‖Ω we obtain the bounds

‖u‖∂Ωr∩Ω ≤ cΥ ‖ f ‖Ω, ‖ur‖∂Ω∩Ωr ≤ cΥ ‖ f ‖Ω. (18)
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Using the fact that u = 0 on ∂Ω we apply (7) twice and use the trace inequality to get the
estimate

‖u‖Ω\Ωr ≤ cΥ ‖∇u‖Ω\Ωr ≤ cΥ
3
2

(

‖u‖H2(Ω) + Υ
1
2 ‖u‖H2(Ω)

)

≤ cΥ
3
2 ‖ f ‖Ω. (19)

We can then estimate ‖ f ‖Ω\Ωr ≤ ‖ f ‖Ω by extending to the complete domain. Combin-
ing (16) with (18) and (19) we obtain the estimate

‖∇(u − ur )‖2Ω ≤ c
(

Υ
3
2 + Υ

)

‖ f ‖2Ω,

which concludes the H1-norm bound.
(ii) For the L2-estimate we introduce the adjoint problem

z ∈ H1
0 (Ω) : −�z = u − ur

‖u − ur‖Ω

in Ω,

which allows for a unique solution satisfying the a-priori bound ‖z‖H2(Ω) ≤ cs with the
stability constant cs < ∞. Testing with u − ur and integrating by parts twice gives

‖u − ur‖Ω = −(z,�(u − ur ))Ω + 〈z, ∂n(u − ur )〉∂Ω

+ 〈z, [∂n(u − ur )]〉∂Ωr∩Ω − 〈∂nz, u − ur 〉∂Ω.

It holds z = 0 and u = 0 on ∂Ω , [∂nu] = 0 on ∂Ωr ∩ Ω and −�(u − ur ) = 0 in Ω ∩ Ωr

such that we get

‖u − ur‖Ω = (z, f )Ω\Ωr − 〈z, ∂nur 〉∂Ωr∩Ω + 〈∂nz, ur 〉∂Ω

≤ ‖z‖Ω\Ωr ‖ f ‖Ω\Ωr + ‖z‖∂Ωr∩Ω‖∂nur‖∂Ωr∩Ω + ‖∂nz‖∂Ω‖ur‖∂Ω.

The boundary terms ‖z‖∂Ωr∩Ω and ‖ur‖∂Ω are estimated with Lemma 3, the normal
derivatives by the trace inequality and the terms on Ω \ Ωr by (7)

‖u − ur‖Ω ≤ cΥ
3
2 ‖z‖H2(Ω)‖ f ‖Ω + cΥ ‖z‖H2(Ω)‖ur‖H2(Ωr )

+ cΥ ‖z‖H2(Ω)‖ur‖H2(Ωr )
.

The L2-norm estimate follows by using the bounds ‖u‖H2(Ω) ≤ c‖ f ‖Ω , ‖ur‖H2(Ωr )
≤

c‖ f ‖Ω and ‖z‖H2(Ω) ≤ c. ��
Remark 2 The estimate ‖ f ‖Ω\Ωr ≤ c‖ f ‖Ω is not optimal. Further powers of Υ are
easily generated at the cost of a higher right hand side regularity. Also, the estimate
‖∂n(u − ur )‖ ≤ c(‖u‖H2(Ω) + ‖ur‖H2(Ωr )

) by Cauchy Schwarz and the trace inequality
could be enhanced to produce powers ofΥ . The limiting term in (12) however is the boundary

integral |〈∂nur , u〉∂Ωr∩Ω | = O(Υ
1
2 ) which is optimal in the H1-estimate. In Remark 4 and

Corollary 1 we present an estimate that focuses on the intersection Ω ∩ Ωr only and that
allows us to improve the order to O(Υ ) in the H1-case by avoiding exactly this boundary
integral.

3 Discretization

The starting point of a finite element discretization is the mesh of the domain Ω . In our
setting we do not mesh Ω directly, because the domain Ω is not exactly known. Instead, we
consider a mesh of the reconstructed domain Ωr .

We partitionΩr into a parametric triangulationΩh , consisting of open elements T ⊂ Rd .
Each element T ∈ Ωh stems from a unique reference element T̂ which is a simple geometric
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structure such as a triangle, quadrilateral or tetrahedron. The numerical examples in Sect. 4
are based on quadrilateral meshes. The map TT : T̂ → T is a polynomial of degree r ∈ N.
We will consider iso-parametric finite element spaces, that are based on polynomials of the
same degree r ≥ 1. In the following we assume structural and shape regularity of the mesh
such that standard interpolation estimates

‖∇k(ur − Ihur )‖T ≤ chr+1−k‖ur‖Hr+1(T ), k = 0, . . . , r ≤ m,

‖∇k(ur − Ihur )‖∂T ≤ chr+
1
2−k‖ur‖Hr+1(T ), k = 0, . . . , r ≤ m,

(20)

will hold for all elements T ∈ Ωh , c.f. [7]. The discretization parameter h represents the size
of the largest element in the mesh. See [31, Section 4.2.2] for a detailed description.

On the reference element T̂ let P̂ be a polynomial space of degree r , e.g.

P̂ =̂ Qr := span{xα1
1 · · · xαd

d : 0 ≤ α1, . . . , αd ≤ r}
on quadrilateral and hexahedral meshes. Then, the finite element space V r

h on the mesh Ωh

is defined as

V r
h = {φh ∈ C(Ω̄h) : φh ◦ TT ∈ P̂ on every T ∈ Ωh}.

This parametric finite element space does not exactly match the domain Ωr . Given an iso-
parametric mapping of degree r it holds dist(∂Ωr , ∂Ωh) = O(hr+1) and finite element
approximation error and geometry approximation error are balanced. Iso-parametric finite
elements for the approximation on domains with curved boundaries are well established [14],
optimal interpolation and finite element error estimates have been presented in [11, Section
4.4]. The case of higher order elements with optimal order energy norm estimates is covered
in [21].

From [31, Theorem4.37]we cite the following approximation result for the iso-parametric
approximation of the Laplace equation that also covers the L2-error and which is formulated
in a similar notation.

Theorem 1 Let m ∈ N0 and let Ωr be a domain with a boundary that allows for a
parametrization of degree m + 2. Let fr ∈ Hm(Ωr ) and uh ∈ Vr

h ∩ H1
0 (Ωh) be the iso-

parametric finite element discretization of degree 1 ≤ r ≤ m + 1

(∇uh,∇φh)Ωh = ( fr , φh)Ωh ∀φh ∈ V r
h .

It holds

‖ur − uh‖H1(Ωr )
≤ chr‖ fr‖Hr−1(Ωr )

, ‖ur − uh‖Ωr ≤ chr+1‖ fr‖Hr−1(Ωr )
.

We formulated the error estimate on the domain Ωr although the finite element functions
are given on Ωh only. To give Theorem 1 meaning, we consider all functions extended by
zero as described in Remark 1. Combining these preliminary results directly yields the a
priori error estimates.

Theorem 2 Let m ∈ N0, Ω and Ωr be domains with Cm+2 boundary, distance Υ and that
satisfy Assumption 1. Let Ωh be the iso-parametric mesh of Ωr with degree 1 ≤ r ≤ m + 1
and let f ∈ Hr−1

loc (Rd) satisfy Assumption 2. For the finite element error between the fully
discrete solution uh ∈ V r

h

(∇uh,∇φh)Ωh = ( f , φh)Ωh ∀φh ∈ V r
h
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and the true solution u ∈ H1
0 (Ω) ∩ Hm+2(Ω) it holds

‖u − uh‖H1(Ω) ≤ c
(

Υ
1
2 + hr

)‖ f ‖Hr−1(Ω),

as well as

‖u − uh‖Ω ≤ c(Υ + hr+1)‖ f ‖Hr−1(Ω).

Proof (i) We start with the H1 error. Inserting ±ur and extending the finite element error
ur − uh from Ω to Ωr , where a small remainder appears, we have

‖∇(u − uh)‖2Ω ≤ 2
(

‖∇(u − ur )‖2Ω + ‖∇(ur − uh)‖2Ωr
+ ‖∇(ur − uh)‖2Ω\Ωr

)

. (21)

The first and the second term on the right hand side are estimated by Lemma 4 and Theorem 1
and, since ur = 0 on Ω \ Ωr , we obtain

‖∇(u − uh)‖2Ω ≤ c
(

Υ + h2r
)

‖ f ‖2Hr−1(Ω)
+ 2‖∇uh‖2Ω\Ωr

. (22)

We continue with the remainder ∇uh on Ω \ Ωr , which is non-zero on Ωh only

‖∇uh‖2Ω\Ωr
= ‖∇uh‖2(Ωh\Ωr )∩(Ω\Ωr )

.

This remaining stripe has the width

γh,Υ := O(min{hr+1, Υ }),
and we apply Lemma 3 to get

‖∇uh‖2(Ω\Ωr )∩(Ωh\Ωr )
≤ cγh,Υ ‖∇uh‖2∂Ωr

+ cγ 2
h,Υ ‖∇2uh‖2Ωh\Ωr

, (23)

where the second derivative ∇2uh is understood element wise. This term is extended to Ωh

and with the inverse estimate and the a priori estimate for the discrete solution we obtain
with γ 2

h,Υ = O(h2r+2) that

γ 2
h,Υ ‖∇2uh‖2Ωh\Ωr

≤ cinvγ
2
h,Υ h−2‖∇uh‖2Ωh

≤ cinvh
2r‖ f ‖2Ωh

≤ ch2r‖ f ‖2Ω. (24)

To the first term on the right hand side of (23) we add ±ur and ±Ihur , the nodal interpo-
lation of ur into the finite element space

γh,Υ ‖∇uh‖2∂Ωr
≤ cγh,Υ

(‖∇ur‖2∂Ωr
+ ‖∇(ur − Ihur )‖2∂Ωr

+ ‖∇(uh − Ihur )‖2∂Ωr

)

. (25)

Here, the first and last terms are estimated with the trace inequalities and, in the case of
the discrete term with the inverse inequality1, followed by adding ±ur we get

γh,Υ ‖∇uh‖2∂Ωr
≤ cΥ ‖ f ‖2L2(Ω)

+chr+1‖∇(ur − Ihur )‖2∂Ωr

+chr‖∇(ur − Ihur )‖2Ωr
+ hr‖∇(uh − ur )‖2Ωr

. (26)

We used both γh,Υ = O(hr+1) and γh,Υ = O(Υ ).
Then, collecting all terms in (22)–(26) and using the interpolation estimates as well as

Theorem 1 we finally get

‖∇(u − uh)‖2Ω ≤ c
(

Υ + h2r
)‖ f ‖2Hr−1(Ω)

+ ch3r−1‖ f ‖2Hr−1(Ω)
, (27)

1 We refer to [28, Chapter 1.4.3] or [4,9] for recent developments on the local trace inequality and the inverse
estimate on meshes with curved boundaries.
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which shows the a priori estimate since 3r − 1 ≤ 2r for all r ≥ 1.
(ii) For the L2-error we proceed in the same way, but the remainder appearing in (21) does
not carry any derivative, such that, instead of (23) the optimal order variant of Lemma 3 with
integration to the boundary ∂Ωh , where uh = 0, can be applied, i.e.

‖u − uh‖2Ω ≤ c
(

‖u − ur‖2Ω + ‖ur − uh‖2Ωr
+ Υ 2‖∇uh‖2Ω\Ωr

)

.

The L2-estimate directly follows with Lemma 4, Theorem 1 and by the a priori estimate
‖∇uh‖2Ω\Ωr

≤ c‖∇uh‖2Ωh
≤ c‖ f ‖2Ωr

. ��
Remark 3 (Polygonal domains) In two dimensions, the extension of the error estimates to
the case of convex polygonal domains, where u ∈ H2(Ω) and ur ∈ H2(Ωr ), is relatively
straightforward. In this case, Ωh fits Ωr such that the finite element error ur − uh can be
estimatedwith the standard a priori result ‖ur −uh‖+h‖∇(ur −uh)‖ ≤ c‖ f ‖. The extension
of Lemma 3, which locally requires smoothness of the parametrizations gR

W (·) and gR
V (·), see

steps (8)–(10), can be accomplished by refining the cover of the domain which is described
in Assumption 1, see also Fig. 1: All rectangles are split in such a way that the corners of ∂Ω

and Ωr are cut by the edges of rectangles. This allows to derive the optimal error estimates

‖u − uh‖H1(Ω) = O(Υ
1
2 + h) and ‖u − uh‖H1(Ω) = O(Υ + h2). In three dimensions, such

a simple refinement of the cover is not possible and the extension to polygonal domains is
more involved.

Remark 4 (Optimality of the estimates) Two ingredients govern the error estimates:

1. A geometrical error of order O(Υ
1
2 ) and O(Υ ), that describes the discrepancy between

Ω and Ωr , in the H1 and L2 norms respectively. This term is optimal which is easily
understood by considering a simple example illustrated in Fig. 3, namely −�u = 4 on
the unit disc Ω = B1(0) and −�ur = 4 on the shifted domain Ωr = B1(Υ ). The errors
in H1 norm and L2 norms expressed on the complete domain Ω are estimated by

‖u − ur‖Ω = √
πΥ + O(Υ 3), ‖∇(u − ur )‖Ω = √

8Υ + O(Υ ).

A closer analysis shows that the main error – in the H1-case – occurs on the small shaded
stripe Ω \ Ωr such that

‖∇(u − ur )‖Ω\Ωr = O(Υ
1
2 ), ‖∇(u − ur )‖Ω∩Ωr = O(Υ ),

while the L2-error in Ω ∩ Ωr is optimal

‖u − ur‖Ω\Ωr = O(Υ
3
2 ), ‖u − ur‖Ω∩Ωr = O(Υ ).

2. The usual Galerkin error ‖ur − uh‖Ωr + h‖∇(u − ur )‖Ωr = O(hr+1) of iso-parametric
finite element approximations contributes to the overall error. For Ω = Ωr , i.e. Υ = 0,
this would be the complete error. This estimate is optimal, as it shows the same order as
usual finite element bounds on meshes that resolve the geometry.

In Sect. 4 we discuss the difficulty of measuring errors on an unknown domain Ω . The
optimality of the error estimates is difficult to verify which is mainly due to the technical
problems in evaluating norms on the domain remainders Ω \ Ωr , where no finite element

mesh is given. These remainders contribute the lowest order parts Υ
1
2 in the overall error.

The following corollary is closer to the setting of the numerical examples and it yields the
approximation of orderΥ in the H1-norm error. In addition to the previous setting we require
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Fig. 3 Illustration concerning
Remark 4. The error estimates for
u − uh are optimal, if the error is
evaluated on Ω . The lowest order

terms O(Υ
1
2 ) appear in the

shaded area Ω \ Ωr where ur
and (most of) uh are zero

a regular map Tr : Ω → Ωr between the two domains. By pulling backΩr toΩ via this map
a Jacobian arises that controls the geometrical error and that hence has to be controllable by
Υ .

Corollary 1 In addition to the assumptions of Theorem 2 let there be a C1-diffeomorphism

Tr : Ω → Ωr

satisfying
‖I − det(∇Tr )∇T−1

r ∇T−T
r ‖L∞(Ω) = O(Υ ). (28)

Further, let the following regularity of problem data hold in addition to Assumption 2

f ∈ W 1,∞
loc (Rd) ∩ Hr−1

loc (Rd) (29)

and let the solution satisfy

‖u‖W 2,∞(Ω) + ‖ur‖W 2,∞(Ωr )
≤ c. (30)

Then, it holds

‖∇(u − uh)‖Ω∩Ωr∩Ωh ≤ c
(

Υ + hr
)

.

Proof We start by splitting the error into domain approximation and finite element approxi-
mation errors

‖∇(u − uh)‖Ω∩Ωr∩Ωh ≤ ‖∇(u − ur )‖Ω∩Ωr + ‖∇(ur − uh)‖Ωr∩Ωh . (31)

An optimal order estimate of the finite element error

‖∇(ur − uh)‖Ωr∩Ωh ≤ ‖∇(ur − uh)‖Ωr = O(hr ) (32)

is given in Theorem 1.
To estimate the first term of the right hand side of (31) we introduce the function

ûr (x) := ur (Tr (x)),

which satisfies ûr ∈ H1
0 (Ω) and solves the problem

(Jr F
−1
r F−T

r ∇ûr ,∇φ̂r )Ω = ( f̂r , φ̂r ) ∀φ̂r ∈ H1
0 (Ω),

where f̂r (x) := f (Tr (x)) and where Fr := ∇Tr and Jr := det(Fr ). See [31, Section 2.1.2]
for details of this transformation of the variational formulation. To estimate the domain
approximation error in (31) we introduce ±ûr to obtain

‖∇(u − ur )‖Ω∩Ωr ≤ ‖∇(u − ûr )‖Ω∩Ωr + ‖∇(ûr − ur )‖Ω∩Ωr . (33)
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We introduce the notation er := u − ûr , extend the first term from Ω ∩ Ωr to Ω and insert
±Jr F−1

r F−T
r ∇ûr which gives

‖∇(u − ûr )‖2Ω∩Ωr
≤ ‖∇(u − ûr )‖2Ω

= (∇u,∇er )Ω − (Jr F
−1
r F−T

r ∇ûr ,∇er )Ω + (Jr F
−1
r F−T

r ∇ûr ,∇er )Ω − (∇ûr ,∇er )Ω

= ( f − f̂r , er )Ω + ([Jr F−1
r F−T

r − I ]∇ûr ,∇er )Ω

≤ ‖ f − f̂r‖Ωc‖∇er‖Ω + ‖[Jr F−1
r F−T

r − I ]‖L∞(Ω)‖∇er‖Ω, (34)

where we also used Poincaré’s estimate. For bounding f − f̂r we consider a point x ∈
Ω ∩Ωr , use the higher regularity of the right hand side (29) to estimate by a Taylor expansion

| f (x) − f̂r (x)| = | f (x) − f (Tr (x))| = |∇ f (ξ) · (Tr (x) − x)| ≤ Υ |∇ f (ξ)|, (35)

where ξ ∈ Ω is some point on the line from x to Tr (x). We take the square and integrate
over Ω to get the estimate

‖ f − f̂r‖Ω ≤ cΥ ‖ f ‖W 1,∞(ΩΥ ), (36)

where ΩΥ is a enlargement of Ω by at most O(Υ ), since intermediate values ξ used in (35)
are not necessarily part of Ω ∪ Ωr . This argument is also applicable to the second term on
the right hand side of (33) such that it holds

‖∇(ûr − ur )‖M ≤ cΥ ‖ur‖W 2,∞(Ω∩Ωr )
≤ cΥ .

Combining this with (31), (32), (33) and (34) finishes the proof. ��
Unfortunately this corollary can not be applied universally as the existence of a suitable

map Tr : Ω → Ωr depends on the given application. Here a construction, corresponding to
the ALE map, can be realised by means of a domain deformation d̂ : Ω → R2

Tr (x) = x + d̂(x), Fr (x) = I + ∇d̂(x).

Such a construction is common in fluid-structure interactions, see [31, Section 2.5.2]. Given
that |d̂|, |∇d̂| = O(Υ ) it holds

‖Jr‖L∞(Ω) = 1 + O(Υ ), ‖I − Jr F
−1
r F−T

r ‖L∞(Ω) = O(Υ ).

While the assumption |d̂| = O(Υ ) is easy to satisfy since dist(∂Ω, ∂Ωr ) ≤ Υ , the condition
|∇d̂| = O(Υ ) will strongly depend on the shape and regularity of the boundary.

We conclude by discussing a simple application of this corollary. Figure 4 illustrates the
setting. Let Ω be the unit sphere, Ωr be an ellipse

Ω = {x ∈ R2 : x21 + x22 < 1}, Ωr = {x ∈ R2 : (1 + Υ )2x21 + (1 + Υ )−2x22 < 1}.
It holds dist(∂Ω, ∂Ωr ) ≤ Υ and we define the map Tr : Ω → Ωr by

Tr (x) =
(

(1 + Υ )−1x1
(1 + Υ )x2,

)

, Fr = ∇Tr =
(

(1 + Υ )−1 0
0 (1 + Υ )

)

, Jr = 1.

This map satisfies the assumptions of the corollary

I − Jr F
−1
r F−T

r = Υ (Υ + 2)

(−1 0
0 (1 + Υ )−2

)

, ‖I − Jr F
−1
r F−T

r ‖∞ = 2Υ + Υ 2.
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Fig. 4 Illustration of an example for the application of Corollary 1
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Fig. 5 Sketch of the computational domains w.r.t. the parameter Υ in two dimensions (left) and for Υ = 0.1
in three dimensions (right)

4 Numerical Illustration

In this section we illustrate the theoretical results from the previous section. We compute the
Laplace problem on a family of domains representing different values of Υ . Moreover, we
numerically extend the analytical predictions and show that a similar behavior holds for the
Stokes system.

WeconsiderΩ to be a unit ball in two and three dimensions and define a family of perturbed
domains ΩΥ , with the amplitude of the perturbation being dependent on the coefficient Υ ,
cf. Fig. 5.

In two dimensions, the boundary of the domain ΩΥ is given in polar coordinates (ρ, ϕ)

by

∂ΩΥ = {(1 − Υ /5 + Υ sin(8ϕ), ϕ) for ϕ ∈ [0, 2π)},
and in three dimensions in spherical coordinates (ρ, θ, ϕ) by

∂ΩΥ = {(1 − Υ /5 + Υ sin(3ϕ) sin(3θ), θ, ϕ) for θ ∈ [0, π), ϕ ∈ [0, 2π)}.
For computations we take

Υ ∈ {0, 0.0125, 0.025, 0.05, 0.1}.
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In order to illustrate the convergence result from Theorem 2, we compute the model
problem on a series of uniformly refined meshes. The dependence between the mesh size h
and the refinement level L reads h = 2−L . We denote the mesh approximating ΩΥ , with a
mesh size h, by Ωh,Υ .

The numerical implementation is realized in the software library Gascoigne 3D [6], using
iso-parametric finite elements of degree 1 and 2. A detailed description of the underlying
numerical methods is given in [31].

4.1 Laplace Equation in Two and Three Dimensions

We consider the following problem

− �u = f in Ω, u = 0 on ∂Ω, (37)

where Ω is the unit ball in two dimensions and the unit sphere in three dimensions.
To compute errors we choose a rotationally symmetric analytical solution to (37) as

u(r) = − cos
(π

2
r
)

with r = √

x2 + y2 in two and r = √

x2 + y2 + z2 in three dimensions, respectively, which
results in the right hand sides

f2d(r) = π

2r
sin

(π

2
r
)

+ π2

4
cos

(π

2
r
)

, f3d(r) = π

r
sin

(π

2
r
)

+ π2

4
cos

(π

2
r
)

.

For the ease of evaluations the errors, the H1- and L2-norms will be computed on the
truncated domains

Ω ′
2d = {(ϕ, ρ) for ϕ ∈ [0, 2π) and ρ ∈ (0, 0.88)},

Ω ′
3d = {(ϕ, θ, ρ) for θ ∈ [0, π), ϕ ∈ [0, 2π) and ρ ∈ (0, 0.88)},

see also Remark 4. We hence do not compute the errors ‖∇(u − uh)‖ and ‖u − uh‖ on
the remainders Ω \ Ωr . Therefore we expect optimal order convergence in the spirit of
Corollary 1. The restriction of the domain to an area within Ωh is also by technical reasons,
as the evaluation of integrals outside of the meshed area is not easily possible.

In Figs. 7 and 6 we see the resulting L2- and H1-errors. We observe that for finer meshes,
Υ becomes the dominating factor of the error. In particular the use of quadratic finite elements
shows a strong imbalance between FE error and geometric error, which quickly dominates as
seen in the left part of Fig. 6. The result is consistent with Corollary 1. As soon as the FE error
is smaller than the geometry perturbation Υ , we do not observe any further improvement of
the error. In Fig. 8 we show the convergence in both norms in terms of the geometry parameter
Υ . Linear convergence is clearly observed. The apparent decay of convergence rate in case
of the L2-error in three dimensions is due to the still dominating FE error in this case.

4.2 Stokes System in Two Dimensions

To go beyond the Laplace problem, we investigate the behavior of the solution to the Stokes
system with respect to the domain variation in two spatial dimensions. The problem is to find
the velocity u and the pressure p such that

div u = 0, −�u + ∇ p = f in Ω, (38)
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Fig. 6 L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Laplace problem
in two-dimensions with FE. Left: linear finite elements. Right: quadratic finite elements

Fig. 7 L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Laplace problem
in three-dimensions with linear finite elements

Fig. 8 L2- and H1-errors w.r.t. parameter Υ computed for the Laplace problem in two and three-dimensions
with linear and quadratic finite elements
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Fig. 9 L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Stokes problem
in two dimensions with linear finite elements

with homogeneous Dirichlet condition u = 0 on the boundary ∂Ω and a right hand side
vector f. System (38) is solved with equal-order iso-parametric finite elements using pressure
stabilization by local projections, see [5].

We prescribe an analytical solution for comparison with the finite element approximation

u(x, y) = cos
(π

2
(x2 + y2)

) (

y
−x

)

,

where the corresponding forcing term reads

f(x, y) = π cos
(π

2
(x2 + y2)

) (

yr2π + 4(y − x) tan
(

π
2 (x2 + y2)

)

−xr2π − 4(x + y) tan
(

π
2 (x2 + y2)

)

)

.

In Fig. 9 we see the resulting L2- and H1-errors. Again we observe that Υ becomes
the dominant factor for finer meshes. This result is not covered by the theoretical findings,
however it shows that geometric uncertainty should be taken into account for the simulations
of flow models.

5 Conclusions

We have demonstrated that small boundary variations have crucial impact on the result of
the finite element simulations. The developed error estimates are linear with respect to the
maximal distance Υ between the real and the approximated domains, cf. Theorem 2. We
have illustrated the sharp nature of this bound in the computations performed in Sect. 4.

Particularly, in the case offirst and secondorder approximationweobserve how the relation
between the mesh size h and aforementioned Υ impact the resulting L2- and H1-errors. The
same behavior has been demonstrated numerically for the Stokes system.

In practice we do not have control on the accuracy of the domain reconstruction. This has
shown that it is worth to take into account the geometric uncertainty when deciding on the
mesh-size in order to avoid unnecessary computational effort.

In this work we have focused on the Laplace problem (2). Additionally, the Stokes system
has been treated numerically and it exhibits similar features. In future work we will extend
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this consideration to flow models, in particular the Navier-Stokes equations [22]. Among
the additional challenges in extending the present work to the Navier-Stokes system are the
consideration of the typical saddle-point structure of incompressible flowmodels introducing
a pressure variable [30] and the difficulty of nonlinearities introduced by the convective term,
and thus the non-uniqueness of solutions [20].
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