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Abstract
In this paper, we derive several a posteriori error estimators for generalized diffusion equation
with delay in a convex polygonal domain. TheCrank–Nicolsonmethod for time discretization
is used and a continuous, piecewise linear finite element space is employed for the space
discretization. The a posteriori error estimators corresponding to space discretization are
derived by using the interpolation estimates. Two different continuous, piecewise quadratic
reconstructions are used to obtain the error due to the time discretization. To estimate the
error in the approximation of the delay term, linear approximations of the delay term are
used in a crucial way. As a consequence, a posteriori upper and lower error bounds for fully
discrete approximation are derived for the first time. In particular, long-time a posteriori
error estimates are obtained for stable systems. Numerical experiments are presented which
confirm our theoretical results.

Keywords Generalized diffusion equation with delay · Finite element method · A posteriori
error estimates · Crank–Nicolson method · Long-time a posteriori error estimates

Mathematics Subject Classification 65M15 · 65M50 · 65L03 · 65L70 · 65L20

1 Introduction

In this paper we study a posteriori error estimates of fully discrete finite element method for
parabolic delay differential equations (PDDEs). As an example, we consider the numerical
methods for the generalized diffusion equation with delay
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∂t u(x, t) + Au(x, t) + Bu(x, η(t)) = f (x, t), (x, t) ∈ � × [0, T ], (1.1)

u(x, t) = 0, (x, t) ∈ ∂� × [0, T ], (1.2)

u(x, t) = φ(x, t), (x, t) ∈ � × [t∗, 0], (1.3)

where� ⊂ R
d ,d ∈ N, is a bounded convexpolygonal domainwith boundary ∂�, ∂t u(x, t) =

∂u
∂t (x, t), T ≤ ∞ is a constant, η(t) = t −τ(t) < t is a sufficiently smooth “lag” function on
the interval [0, T ] and increases strictly monotonically, the initial function φ and the forcing
term f (x, t) are assumed to be smooth, and t∗ = η(0) is a constant. More precisely, we shall
derive a posteriori error estimators for the Crank–Nicolson finite element (CNFE) solutions
to Eqs. (1.1)–(1.3). Here operators A and B are of the form, respectively,

Au = −∇ · (A(x)∇u), Bu = −∇ · (B(x)∇u),

with A being self-adjoint positive definite, where “∇” denotes the spatial gradient and the
coefficient matrices A and B are assumed to be smooth.

The equation of the form (1.1), to the best of our knowledge, is one of the two typi-
cal examples of PDDEs (see, for example, [21,39]). Equations of this type arise in several
applications such as control theory, population dynamics, heat conduction in materials with
thermal memory, biosciences, and so on (see [2,15,28,39,49], and references therein). Espe-
cially, delay systems have recently been used to model the outbreak of Corona Virus Disease
2019 ( COVID-19) in the world [10,50].

For the numerical solutions of (1.1)–(1.3), the stability of predictor–corrector methods
was first investigated in [21]. Later on, several researchers have discussed the stability and a
priori error analysis of numerical methods for (1.1)–(1.3) with a constant delay, i.e., τ(t) =
t − η(t) = τ with τ > 0 being a real constant. The authors of [13,14] considered the
consistence, stability and convergence of an explicit difference scheme and two implicit
difference schemes for theEqs. (1.1)–(1.3)with a constant delay, respectively. Blanco-Cocom
and Ávila-Vales in [7] studied the stability and convergence of the θ -methods together with
finite differencemethods for constant delay reaction–diffusion equations.Usingfinite element
methods for spatial discretization, Liang in [33] investigated the convergence and asymptotic
stability of backward Euler and Crank–Nicolson schemes for (1.1)–(1.3) with a constant
delay. It should be pointed out that applying the process of semi-discretization with respect
to the spatial variable x to (1.1)–(1.3) will leads to delay differential equations (DDEs), and
stability and convergence of numerical methods for DDEs have been investigated by many
researchers; see, e.g., [6,12,16,17,22–27,30,31,34,36,43–46,51,52]. For recent monographs
relevant to the numerical solutions of DDEs, we refer the readers to [5,9,29,32].

We write ξ0 = 0 and introduce the points {ξi }i≥1 such that

η(ξi+1) = ξi , i = 0, 1, 2, . . . .

Under the given assumptions, the solution of (1.1)–(1.3) on (ξi , ξi+1] follows from the solu-
tion on (ξi−1, ξi ] and the solution for t ≥ 0 can be found by a “method of steps”. Although
u(x, t) will inherit its smoothness properties on each interval [ξi , ξi+1] from the smoothness
properties of φ on [t∗, 0] for smooth f and η, the solution u(x, t) may suffer regularity loss
of time smoothness at points ξi , i = 0, 1, 2, . . .; see, e.g., [5]. This implies that even if the
initial function φ is sufficiently smooth, the solution to DDEs or PDDEs is generally not
sufficiently smooth and has breaking points ξi , i = 0, 1, . . .. Several approaches have been
proposed to detect and approximate these breaking points (see, e.g., [3,11,18,19,31,48]) or
to resolve the low regularity of the solution at these breaking points by regularization (see,
e.g., [20]). These breaking points requires us to provide error estimates with minimal reg-
ularity of the solutions. A posteriori estimators of numerical methods can be also used as
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the indicator in the adaptive time grid refinement which is important in numerically solving
DDEs or PDDEs because of the existence of the breaking points ξi , i = 0, 1, . . .. Recently,
Wang et. al. [47] have derived a posteriori error bounds for the Crank–Nicolson–Galerkin
type time semi-discretizations for reaction–diffusion equations with delay. In that paper,
numerical studies were reported for several test cases where the Crank–Nicolson–Galerkin
type time discretization methods together with finite difference method were explored. From
the numerical results presented in [47], we observed that although the errors at the point of
low regularity have influence on the error estimators, the Crank–Nicolson method attains its
expected second order convergence rate since ξ1 is the only low regularity point for second
order time methods. Therefore, in this paper we still consider the Crank–Nicolson method
in time discretization but with finite element methods in space discretization for (1.1)–(1.3).
To the best of our knowledge no article is available in the literature concerning a posteriori
error analysis for fully discrete finite element approximations for PDDEs.

In the absence of the delay term (when B = 0), much work has been conducted on
a posteriori error estimates for linear parabolic problems on isotropic meshes (see, e.g.,
[4,42]) or anisotropic meshes (see, e.g., [35,38]) during the last decades. In particular, several
researchers have investigated a posteriori error analysis for the Crank–Nicolson method for
parabolic problems in recent years; see, e.g., [1,4,35,37,38,42]. It is natural to ask whether the
a posteriori error analysis for the parabolic problem can be carried over to PDDEs which may
be thought of as a perturbation of the parabolic problem. Such an extension is particularly
important not only because the solution to PDDEs has some weak discontinuity points ξi ,
i = 0, 1, . . ., but also because a posteriori error analysis has received little attention in the
literature. Due to the low regularity property of the solution and the presence of the delay term
in (1.1), the extension of those ideas from the simple heat equation to the linear PDDEs is of
increased difficulty. To obtain a posteriori error estimators for the CNFE method for linear
PDDEs, in this paper, we introduce new quadratic reconstructions based on interpolation
approximations.

The paper is organized as follows. We start in Sect. 2 by introducing some definitions
and notations relative to the problem, and by presenting the time and space discretization
of the problem. In this section, the stability of generalized diffusion equations with delay is
also discussed. Section 3 is devoted to quadratic reconstructions for CNFE method for this
class of equations. The a posteriori error estimates for the two reconstructions are presented
in Sect 4. Especially, the long-time a posteriori error bounds are derived for CNFE method
for stable systems in this section. A numerical study is carried out for several test cases in
Sect. 5. Section 6 contains a few concluding remarks.

2 CNFE for Generalized Diffusion Equations with Delay

In this section we consider the CNFE approximation of generalized diffusion equations with
delay (1.1)–(1.3). The continuous time approximationwill be obtained by linear interpolation.

2.1 Functional Setting and Abstract Formulation

We first include some preliminaries on the functional setting and some basic results to be
used in our analysis.

For a given Lebesgue measurable set ω ⊂ R
d , let L p(ω), p ≥ 1, be the Lebesgue spaces

with the corresponding norms ‖·‖L p(ω), and W s,p(ω), s ≥ 0, p ≥ 1, be the standard Sobolev
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spaces with the norms ‖·‖s,p,ω. For convenience, we denote by ‖·‖s,ω and ‖·‖∞,ω the norms
of the space Hs(ω) = W s,2(ω) and L∞(ω), respectively, and ‖ · ‖ω for the usual norm in
L2(ω). We denote by H1

0 (ω) the space of functions in H1(ω) that vanish on the boundary of
ω (boundary values are taken in the sense of traces), and we denote by 〈·, ·〉ω either the inner
product in L2(ω) or the duality pairing between H1

0 (ω) and its duality H−1(ω). The norm
of the space H−1(ω) will be denoted by ‖ · ‖−1,ω. Whenever ω = �, we omit the letter ω in
the subscripts of ‖ · ‖s,p,ω, ‖ · ‖s,ω, ‖ · ‖∞,ω, ‖ · ‖ω, 〈·, ·〉ω, and ‖ · ‖−1,ω. We also introduce
the Bochner spaces L2(a, b; X) which are defined by

L2(a, b; X) :=
{
ϕ(t) ∈ X , t ∈ [a, b]

∣∣∣∣
∫ b

a
‖ϕ‖2X dt < ∞

}
,

with X being H−1(�), H1
0 (�), or H1(�).

To state the abstract weak formulation of problem (1.1), we need to define two bilinear
forms, a(·, ·) and b(·, ·), corresponding to the elliptic operator A and B, respectively. They
are defined respectively on H1

0 (�) × H1
0 (�) by

a(ϕ, χ) := 〈A(x)∇ϕ,∇χ〉, b(ϕ, χ) := 〈B(x)∇ϕ,∇χ〉, ∀ϕ, χ ∈ H1
0 (�).

With the above notations and assumptions in hand, theweak formulation of problem (1.1)–
(1.3) may be stated as follows: Suppose f ∈ L2(0, T ; H−1(�)) and φ ∈ L2(t∗, 0; H1

0 (�)),
and seek u : [0, T ] → H1

0 (�) such that

〈ut , ϕ〉 + a(u(t), ϕ) + b(u(η(t)), ϕ) = 〈 f , ϕ〉, ∀ϕ ∈ H1
0 (�), t ∈ [0, T ], (2.1)

u(·, t) = φ(·, t), t ∈ [t∗, 0]. (2.2)

Here we assume that the bilinear form a(·, ·) is coercive and continuous on H1
0 (�), i.e.,

a(ϕ, ϕ) ≥ α‖∇ϕ‖2, |a(ϕ, χ)| ≤ β‖∇ϕ‖‖∇χ‖, ∀ϕ, χ ∈ H1
0 (�) (2.3)

with α, β ∈ R
+. We also assume that the bilinear form b(·, ·) is continuous on H1

0 (�), i.e.,

|b(ϕ, χ)| ≤ γ ‖∇ϕ‖‖∇χ‖, ∀ϕ, χ ∈ H1
0 (�), (2.4)

with γ ∈ R
+.

2.2 Stability of Generalized Diffusion Equations with Delay

Since we will derive long-time a posteriori error estimates for CNFE method for stable
generalized diffusion equations with delay, in this subsection we discuss shortly the stability
of this class of equations. For this purpose, we assume that the function η(t) is continuously
differentiable and define

η̄ = sup
s≥0

1

η′(s)
. (2.5)

Further, let us define η(0)(t) = t , η(1)(t) = η(t), and recursively

η(μ)(t) = η(η(μ−1)(t)), μ ∈ N.

We assume that there exists a positive integer M such that η(M)(T ) ∈ [t∗, 0]. Wang et.
al. [47] illustrated the existence of such a positive integer M for three lag functions η(t) =
t−1, 0.5t−1, t−√

t + 1. For the three lag functions, we have η̄ = 1, 2, 2, respectively. Here
we give another nontrivial example of a lag function η satisfying condition η(M)(T ) ∈ [t∗, 0]:
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η(t) = pt − ln(t + 2), 0.5 < p < 1. Obviously, for any fixed T > 0, there exists a positive
integer M such that η(M)(T ) ∈ [− ln 2, 0]. It is also easy to get η̄ = 2

2p−1 for this case.
Now we are in position to give the stability result.

Theorem 2.1 (Stability) Suppose f ∈ L2(0, T ; H−1(�)) and φ ∈ L2(t∗, 0; H1
0 (�)), and

the bilinear forms a(·, ·) and b(·, ·) satisfy (2.3) and (2.4), respectively. Then under the
condition

α2 > γ 2η̄, (2.6)

the solution u(t) to (2.1)–(2.2) satisfies

‖u(T )‖2 + α

∫ T

η(T )

‖∇u(t)‖2dt

≤ ‖u(0)‖2 + α

η̄

∫ 0

t∗
‖∇φ(t)‖2dt + 1

Cα

∫ T

0
‖ f ‖2−1dt, (2.7)

where Cα = α2−γ 2η̄
α

.

Proof Setting ϕ = u(t) in (2.1), we obtain

〈ut , u(t)〉 + a(u(t), u(t)) + b(u(η(t)), u(t)) = 〈 f , u(t)〉, (2.8)

which, in view of (2.3) and (2.4), implies that

1

2

d

dt
‖u(t)‖2 + α‖∇u(t)‖2 ≤ γ ‖∇u(η(t))‖‖∇u(t)‖ + ‖ f ‖−1‖∇u(t)‖

≤ α

2
‖∇u(t)‖2 + α

2η̄
‖∇u(η(t))‖2 + 1

2Cα

‖ f ‖2−1. (2.9)

Integrate from 0 to T to get

‖u(T )‖2 + α

∫ T

0
‖∇u(t)‖2dt

≤ ‖u(0)‖2 + α

η̄

∫ T

0
‖∇u(η(t))‖2dt + 1

Cα

∫ T

0
‖ f ‖2−1dt . (2.10)

Using (2.5), we have

α

η̄

∫ T

0
‖∇u(η(t))‖2dt ≤ α

∫ η(T )

η(0)
‖∇u(t)‖2dt, (2.11)

and therefore (2.7) holds. This completes the proof. ��
We note that for constant delay equation, i.e., η(t) = t − τ (in this case, η̄ = 1), Tian in

[41] obtained a similar condition to (2.6) for stability.

2.3 CNFEMethod for Generalized Diffusion Equations with Delay

For any 0 < h < 1, let Th be a shape regular, conforming triangulation of � into triangles
K with diameter hK ≤ h. We define Vh by the usual finite element space of continuous,
piecewise linear functions on Th :

Vh = {
vh ∈ H1(�)|vh|K ∈ P1(K ), ∀K ∈ Th

}
,
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where P1(K ) denotes the space of polynomials of degree at most 1. We now set

V 0
h = Vh ∩ H1

0 (�).

The assumptions on the mesh and discrete space above ensure the existence of an inter-
polation operator �h : H1

0 (�) → V 0
h , satisfying the following approximation estimates.

Proposition 2.2 [8,40] Let �h : H1
0 (�) → V 0

h be the usual linear Lagrange interpolation
operator. Then we have

‖∇�hv‖ ≤ C1‖∇v‖. (2.12)

Further, the following approximation property is satisfied:

h−1
K ‖v − �hv‖K + h−1/2

K ‖v − �hv‖∂K ≤ C�‖∇v‖K , (2.13)

where the constants C1 and C� depend only on the shape regularity of the family of trian-
gulations Th.

In order to describe the time discretization corresponding to (2.1)–(2.2), we introduce a
time mesh 0 = t0 < t1 < · · · < tN = T which is a partition of the interval [0, T ] with
In := [tn−1, tn] and we denote the time steps by kn = tn − tn−1. For n = 1, 2, . . . , N , we
define

tn−1/2 := tn + tn−1

2
, vn−1/2 := vn + vn−1

2
, and ∂̄vn := vn − vn−1

kn
.

Let Uh(t) = �hφ(t) for t ∈ [t∗, 0]. Then our CNFE approximation can be stated as follows:
For the given Uh(t), t ∈ [t∗, 0], find U n

h ∈ V 0
h for all n = 1, 2, . . . , N such that

〈∂̄U n
h , ϕh〉 + a(U n−1/2

h , ϕh) + b
(
Uh(η(tn−1/2)), ϕh

) = 〈 f (tn−1/2), ϕh〉, ∀ϕh ∈ V 0
h ,

(2.14)

where the continuous time approximation Uh(t) (t ∈ [0, T ]) is defined by linearly interpo-
lating the nodal values U n

h and U n−1
h for t ∈ In , 1 ≤ n ≤ N , i.e.

Uh(t) := t − tn−1

kn
U n

h + tn − t

kn
U n−1

h = U n−1/2
h + (t − tn−1/2)∂̄U n

h . (2.15)

It is noteworthy that the method (2.14) itself needs the continuous approximation Uh(t).

3 Quadratic Reconstructions for Generalized Diffusion Equations with
Delay

Now we shall introduce quadratic time reconstructions, which are appropriate for Eq. (2.1)
corresponding method (2.14), and continuous time approximation (2.15).
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3.1 Crank–Nicolson Delay-Dependent Reconstruction

For 1 ≤ n ≤ N , we define the continuous, piecewise quadratic delay-dependent reconstruc-
tion Ũh : In → V 0

h of Uh in time as

Ũh(t) := Uh(t) + 1

2
(t − tn−1)(t − tn)W̃ n

h

= U n−1/2
h + (t − tn−1/2)∂̄U n

h + 1

2
(t − tn−1)(t − tn)W̃ n

h , (3.1)

where W̃ n
h ∈ V 0

h is defined by

〈W̃ n
h , ϕh〉 = 〈∂̄ f n, ϕh〉 − a(∂̄U n

h , ϕh) − 〈η′(tn−1/2)B∇ ∂̄ηU n
h ,∇ϕh〉. (3.2)

Here we define ∂̄ηU n
h as

∂̄ηU n
h := Uh(η(tn)) − Uh(η(tn−1))

η(tn) − η(tn−1)
. (3.3)

For t ∈ [t∗, 0], we let Ũh(t) = Uh(t). Note that even if η(tn−1/2) ∈ [ti−1, ti ], i ≤ n − 1,
η(t) for t ∈ [tn−1, tn] may not belong to [ti−1, ti ]. Then in order to estimate the interpolation
error in approximating the delay term, we set

R̃U (t) := Uh(η(t)) − Uh(η(tn−1/2)) − (t − tn−1/2)η
′(tn−1/2)∂̄ηU n

h , t ∈ [tn−1, tn]. (3.4)

Obviously, if η(tn) and η(tn−1) belong to the same small interval [ti−1, ti ], i ≤ n−1, then we
have η(t) ∈ [ti−1, ti ] for t ∈ [tn−1, tn] and hence R̃U (t) = 0 because η is a strictly monotone
increasing function on [0, T ].

3.2 Multi-point Delay-Independent Reconstruction

We observe that the reconstruction introduced in the above subsection depends on the past
values Uh(η(t)), and W̃ n

h in (3.1) is formally an approximation of ∂ f /∂t − A∂u/∂t −
B∂u(η(t))/∂t in the time slab In . Since the latter is equal to ∂2u/∂t2, it seems natural to
try to replace W̃ n

h in (3.1) by a finite difference approximation of ∂2u/∂t2. We introduce
thus a continuous, piecewise multi-point delay-independent reconstruction Ûh of Uh in time
defined for all t ∈ In , 1 ≤ n ≤ N , by

Ûh(t) := Uh(t) + 1

2
(t − tn−1)(t − tn)Ŵ n

h

= U n−1/2
h + (t − tn−1/2)∂̄U n

h + 1

2
(t − tn−1)(t − tn)Ŵ n

h , (3.5)

where

Ŵ n
h :=

{
W̃ 1

h for n = 1,

∂̄2U n
h := 2(∂̄U n

h −∂̄U n−1
h )

kn+kn−1
, for 2 ≤ n ≤ N .

An argument similar to [35] ensures that Ûh(t) vanishes on the boundary so that Ûh(t), Ŵ n
h ∈

V 0
h . We note that Uh(t), Ũh(t) and Ûh(t) coincide at ti , i = 1, 2, . . . , N . For t ∈

[tn−3/2, tn−1/2], η(t), η(tn−3/2) and η(tn−1/2) may not belong to the same interval Ii ,
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i ≤ n − 1. Then, to estimate the time discretization error due to quadrature approxima-
tion of the delay term in the context of multi-point reconstruction, we define

R̂U (t) := Uh(η(t)) − ln−1/2(t)Uh(η(tn−1/2)) − ln−3/2(t)Uh(η(tn−3/2)), (3.6)

where

ln−1/2(t) = 1 + 2(t − tn−1/2)

kn + kn−1
, ln−3/2(t) = −2(t − tn−1/2)

kn + kn−1
.

Remark 3.1 Considering the delay property of the problem, it is natural to use the multi-point
reconstruction. For t∗ < 0, we can define k0 = −t∗, U−1

h = Ihφ(t∗) and

Ŵ 1
h := ∂̄2U 1

h := 2((U 1
h − U 0

h )/k1 − (U 0
h − U−1

h )/k0)

k1 + k0
. (3.7)

Nevertheless, we only consider the case of Ŵ 1
h = W̃ 1

h for simplicity in this paper.

4 A Posteriori Error Estimates

Based on the reconstructions Ũh and Ûh , in this section, we derive four optimal order a
posteriori upper bounds for the error e := u − Uh in the L2(H1)-norm, where u and Uh

satisfy (2.1) and (2.14), respectively.

4.1 Long-Time Error Estimates for Stable Systems

We first derive long-time a posteriori error estimates in the L2(η(T ), T ; H1) norm. For this
purpose, we set ẽ := u − Ũh and ê := u − Ûh for the reconstructions Ũh and Ûh , and need
to prove the following lemma.

Lemma 4.1 Let Uh be defined by (2.14). Then

1. For the reconstruction Ũh defined by (3.1), we have, for any t ∈ In with 1 ≤ n ≤ N, and
for all ϕh ∈ V 0

h , 〈
∂t Ũh, ϕh

〉 + a(Uh, ϕh) + b
(
Uh(η(tn−1/2)), ϕh

)
= 〈 f̃ , ϕh〉 − (t − tn−1/2)b

(
η′(tn−1/2)∂̄ηU n

h , ϕh
)
, (4.1)

where ∂̄ηU n
h has been given in (3.3) and f̃ (t) = f (tn−1/2) + (t − tn−1/2)∂ f n , t ∈ In.

2. For the multi-point reconstruction Ûh defined by (3.5), we have, for any t ∈ In with
2 ≤ n ≤ N, and for all ϕh ∈ V 0

h ,〈
∂t Ûh, ϕh

〉 + a(Uh, ϕh) + ln−1/2(t)b(Uh(η(tn−1/2)), ϕh)

+ ln−3/2(t)b(Uh(η(tn−3/2)), ϕh),

= 〈 f̂ , ϕh〉 + kn−1(t − tn−1/2)

2
a(Ŵ n

h , ϕh), (4.2)

where

f̂ = f (tn−1/2) + (t − tn−1/2)
2( f (tn−1/2) − f (tn−3/2))

kn−1 + kn
.
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Proof For ϕh ∈ V 0
h and 1 ≤ n ≤ N , (2.14) and (2.15) can yields

〈∂̄U n
h , ϕh〉 + a(Uh, ϕh) + b

(
Uh(η(tn−1/2)), ϕh

)
= 〈 f (tn−1/2), ϕh〉 + (t − tn−1/2)a(∂̄U n

h , ϕh). (4.3)

It follows from (3.1) that

∂t Ũh(t) = ∂̄U n
h + (

t − tn−1/2
)

W̃ n
h . (4.4)

Substitute the above relation into (4.3) to obtain〈
∂t Ũh, ϕh

〉 + a(Uh, ϕh) + b
(
Uh(η(tn−1/2)), ϕh

)
= 〈 f (tn−1/2), ϕh〉 + (t − tn−1/2)

(
a(∂̄U n

h , ϕh) + 〈W̃ n
h , ϕh〉) . (4.5)

Then, by the definition of W̃ n
h , we give the desired identity (4.1).

To derive (4.2) involving the reconstruction Ûh , from (3.5) we get

∂t Ûh(t) = ∂̄U n
h + (

t − tn−1/2
)

Ŵ n
h , t ∈ In, n = 2, 3, . . . , N . (4.6)

For ϕh ∈ V 0
h and 2 ≤ n ≤ N , substitute the above equation into (4.3) to obtain〈

∂t Ûh(t), ϕh
〉 + a(Uh, ϕh) + b

(
Uh(η(tn−1/2)), ϕh

)
= 〈 f (tn−1/2), ϕh〉 + (t − tn−1/2)

(
a(∂̄U n

h , ϕh) + 〈Ŵ n
h , ϕh〉) . (4.7)

Replace n by n − 1 such that (2.14) becomes

〈∂̄U n−1
h , ϕh〉 + a(U n−3/2

h , ϕh) + b
(
Uh(η(tn−3/2)), ϕh

) = 〈 f (tn−3/2), ϕh〉,
∀ϕh ∈ V 0

h . (4.8)

Subtract (4.8) from (2.14) to obtain for all ϕh ∈ V 0
h

〈
Ŵ n

h , ϕh
〉 + a

(
U n

h − U n−2
h

kn−1 + kn
, ϕh

)

+ 2

kn−1 + kn
b(Uh(η(tn−1/2)) − Uh(η(tn−3/2)), ϕh)

=
〈
2( f (tn−1/2) − f (tn−3/2))

kn−1 + kn
, ϕh

〉
. (4.9)

Using the relation

U n
h − U n−2

h

kn−1 + kn
= ∂̄U n

h − kn−1

2
Ŵ n

h ,

from (4.9) we obtain

〈
Ŵ n

h , ϕh
〉 + a

(
∂̄U n

h , ϕh
) + 2

kn−1 + kn
b(Uh(η(tn−1/2)) − Uh(η(tn−3/2)), ϕh)

=
〈
2( f (tn−1/2) − f (tn−3/2))

kn−1 + kn
, ϕh

〉
+ kn−1

2
a(Ŵ n

h , ϕh). (4.10)

It suffices now to substitute (4.10) on the right-hand side of (4.7) to obtain (4.2). ��
Now we state the following long-time a posteriori error estimates.
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Theorem 4.2 (Long-time a posteriori error estimates) Let u and Uh satisfy (2.1) and (2.14),
respectively. Then under the stability condition (2.6), there is a constant C independent of
the final time T such that, when the delay-dependent reconstruction Ũh is employed,

‖e(T )‖2 + Cα

4

∫ T

η(T )

‖∇Ũh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e‖2 + Cα

2
‖∇ ẽ‖2

)
dt

≤ ‖e(0)‖2 + α

∫ 0

η(0)
‖∇e(t)‖2dt

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+
∫ tn

tn−1

‖∇(Ũh(t) − Uh(t))‖2K dt +
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
, (4.11)

and, when the multi-point reconstruction Ûh is employed,

‖e(T )‖2 + Cα

4

∫ T

η(T )

‖∇Ûh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e‖2 + Cα

2
‖∇ ẽ‖2

)
dt

≤ ‖e(t1)‖2 + α

∫ t1

η(t1)
‖∇e(t)‖2dt + C

N∑
n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt

+ 1

12
k3nh2

K ‖Ŵ n
h ‖2K + 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K +
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt

+
∫ tn

tn−1

‖∇(Ûh(t) − Uh(t))‖2K dt +
∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
, (4.12)

where the contributions SK ,n in space discretization are defined on each triangle K of Th

and each time interval In as

SK ,n : = hK
∥∥ f − ∂̄U n

h + ∇ · (A∇Uh) + ∇ · (B∇Uh(η(t)))
∥∥

K

+ h1/2
K ‖[A∇Uh · n]‖∂K + h1/2

K ‖[B∇Uh(η(t)) · n]‖∂K . (4.13)

Here and in what follows, [·] denotes the jump of the bracketed quantity across an interval
edge, [·] = 0 for an edge on the boundary ∂� and n is the unit edge normal.

Proof We first show the error estimate (4.11) for the delay-dependent reconstruction Ũh . For
t ∈ In , 1 ≤ n ≤ N , we use the weak formulation (2.1) and (4.4) to get

〈∂t ẽ(t), ϕ〉 + a(e(t), ϕ) + b(e(η(t)), ϕ)

= 〈 f − ∂̄U n
h , ϕ〉 − a(Uh, ϕ) − b(Uh(η(t)), ϕ) − (

t − tn−1/2
) 〈W̃ n

h , ϕ〉. (4.14)
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Choosing ϕ = ẽ in the above error equation and using (4.4) again, we have

〈∂t ẽ(t), ẽ〉 + a(e(t), ẽ) + b(e(η(t)), ẽ)

= 〈 f − ∂̄U n
h , ẽ − �h ẽ〉 − a(Uh, ẽ − �h ẽ) − b(Uh(η(t)), ẽ − �h ẽ)

− (
t − tn−1/2

) 〈W̃ n
h , ẽ − �h ẽ〉 + 〈 f ,�h ẽ〉 − 〈

∂t Ũh,�h ẽ
〉

− a(Uh,�h ẽ) − b(Uh(η(t),�h ẽ). (4.15)

Using (4.1) for 〈∂t Ũh,�h ẽ〉 + a(Uh,�h ẽ) yields

〈∂t ẽ(t), ẽ〉 + a(e(t), ẽ) + b(e(η(t)), ẽ)

= 〈 f − ∂̄U n
h , ẽ − �h ẽ〉 − a(Uh, ẽ − �h ẽ) − b(Uh(η(t)), ẽ − �h ẽ)

− (
t − tn−1/2

) 〈W̃ n
h , ẽ − �h ẽ〉 + 〈 f − f̃ ,�h ẽ〉 − b(Uh(η(t)),�h ẽ)

+ (t − tn−1/2)b
(
η′(tn−1/2)∂̄ηU n

h ,�h ẽ
) + b(Uh(η(tn−1/2)),�h ẽ). (4.16)

By the definition of R̃U [see (3.4)], we obtain

〈∂t ẽ(t), ẽ〉 + a(e(t), ẽ) + b(e(η(t)), ẽ)

= 〈 f − ∂̄U n
h , ẽ − �h ẽ〉 − a(Uh, ẽ − �h ẽ) − b(Uh(η(t)), ẽ − �h ẽ)

− (
t − tn−1/2

) 〈W̃ n
h , ẽ − �h ẽ〉 + 〈 f − f̃ ,�h ẽ〉 − b(R̃U (t),�h ẽ). (4.17)

Now, we integrate the second and third terms on the right-hand side of (4.17) by parts on
each of the elements K of Th . Then, in view of the continuity of the bilinear forms b(·, ·),
using the Cauchy-Schwarz inequality and the Poincaré inequality, we obtain

1

2

d

dt
‖ẽ(t)‖2 + a(e(t), ẽ) ≤ γ ‖∇e(η(t))‖‖∇ ẽ‖

+
∑

K∈Th

{∥∥ f − ∂̄U n
h + ∇ · (A∇Uh) + ∇ · (B∇Uh(η(t)))

∥∥
K ‖ẽ − �h ẽ‖K

+ 1

2
‖[A∇Uh · n]‖∂K ‖ẽ − �h ẽ‖∂K + 1

2
‖[B∇Uh(η(t)) · n]‖∂K ‖ẽ − �h ẽ‖∂K

+ ∣∣t − tn−1/2
∣∣ ‖W̃ n

h ‖K ‖ẽ − �h ẽ‖K + CP hK ‖ f − f̃ ‖K ‖∇�h ẽ‖K

+ γ ‖∇ R̃U (t)‖K ‖∇�h ẽ‖K
}
, (4.18)

where CP is the Poincaré constant. Now, based on the fact

a(e, ẽ) = 1

2
{a(e, e) + a(ẽ, ẽ) − a(e − ẽ, e − ẽ)} (4.19)

together with the coercivity of the bilinear form a(·, ·) and the relation
|a(e − ẽ, e − ẽ)| ≤ β‖∇(e − ẽ)‖2 = β‖∇(Ũh − Uh)‖2, (4.20)

we use the Young’s inequality and Proposition 2.2 to obtain

1

2

d

dt
‖ẽ(t)‖2 + α

2
‖∇e‖2 + α

2
‖∇ ẽ‖2

≤ γ 2η̄

2α
‖∇ ẽ‖2 + α

2η̄
‖∇e(η(t))‖2 +

∑
K∈Th

{
C�SK ,n‖∇ ẽ‖K

+ C�hK
∣∣t − tn−1/2

∣∣ ‖W̃ n
h ‖K ‖∇ ẽ‖K + CP C1hK ‖ f − f̃ ‖K ‖∇ ẽ‖K

+β‖∇(Ũh(t) − Uh(t))‖2K + C1γ ‖R̃U (t)‖K ‖∇ ẽ‖K
}
. (4.21)
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An application of the Young’s inequality yields

d

dt
‖ẽ(t)‖2 + α‖∇e‖2 + α‖∇ ẽ‖2 ≤ γ 2η̄

α
‖∇ ẽ‖2 + α

η̄
‖∇e(η(t))‖2

+
∑

K∈Th

{
εC2

�S2
K ,n + εC2

�h2
K

(
t − tn−1/2

)2 ‖W̃ n
h ‖2K + 4

ε
‖∇ ẽ‖2K

+ εC2
P C2

1h2
K ‖ f − f̃ ‖2K + 2β‖∇(Ũh(t) − Uh(t))‖2K + εγ 2C2

1‖∇ R̃U (t)‖2K
}

.

(4.22)

Since α2 > γ 2η̄, we can choose ε = 8α
α2−γ 2η̄

. Integrate from tn−1 to tn to obtain

‖ẽ(tn)‖2 +
∫ tn

tn−1

(
α‖∇e‖2 + Cα

2
‖∇ ẽ‖2

)
dt ≤ ‖ẽ(tn−1)‖2 +

∫ tn

tn−1

α

η̄
‖∇e(η(t))‖2dt

+ C
∑

K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+
∫ tn

tn−1

‖∇(Ũh(t) − Uh(t))‖2K dt +
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
, (4.23)

where C = max

{
8αC2

�

α2−γ 2η̄
,
8αC2

P C2
1

α2−γ 2η̄
,
8αγ 2C2

1
α2−γ 2η̄

, 2β

}
. Summing over n = 1 to N , noting ẽ(tn) =

e(tn) for n ≥ 0, and ∫ T

0

α

η̄
‖∇e(η(t))‖2dt ≤ α

∫ η(T )

η(0)
‖∇e(t)‖2dt, (4.24)

lead to the upper bound estimate in (4.11).
We now turn to establish the lower bound of errors. In view of

‖∇Ũ (t) − ∇U (t)‖ ≤ ‖∇e(t)‖ + ‖∇ ẽ(t)‖ (4.25)

and Cα

2 ≤ α, we have

Cα

2
‖∇Ũ (t) − ∇U (t)‖2 ≤ 2

(
α‖∇e(t)‖2 + Cα

2
‖∇ ẽ(t)‖2

)
,

and therefore

‖e(T )‖2 + Cα

4

∫ T

η(T )

‖∇Ũh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e(t)‖2 + Cα

2
‖∇ ẽ(t)‖2

)
dt, (4.26)

which gives the lower bound and completes the proof of (4.11).
Similar argument can be used to estimate the errors for the multi-point reconstruction Ûh .

For t ∈ In , 2 ≤ n ≤ N , using (4.2) for 〈∂t Ûh,�h ê〉 + a(Uh,�h ê) and (3.6), we have〈
∂t ê(t), ê

〉 + a(e(t), ê) + b(e(η(t)), ê)

= 〈 f − ∂̄U n
h , ê − �h ê〉 − a(Uh, ê − �h ê) − b(Uh(η(t)), ê − �h ê)

− (
t − tn−1/2

) 〈Ŵ n
h , ê − �h ê〉 + 〈 f − f̂ ,�h ê〉

− kn−1(t − tn−1/2)

2
a(Ŵ n

h ,�h ê) − b(R̂U (t),�h ê). (4.27)

123



Journal of Scientific Computing (2020) 84 :13 Page 13 of 27 13

Similar to the case of the delay-dependent reconstruction, it holds that

1

2

d

dt
‖ê(t)‖2 + α

2
‖∇e‖2 + α

2
‖∇ ê‖2 ≤ γ 2η̄

2α
‖∇ ê‖2 + α

2η̄
‖∇e(η(t))‖2

+
∑

K∈Th

{
C�SK ,n‖∇ ê‖K + C�hK

∣∣t − tn−1/2
∣∣ ‖Ŵ n

h ‖K ‖∇ ê‖K

+ C1βkn−1|t − tn−1/2|
2

‖∇Ŵ n
h ‖K ‖∇ ê‖K + CP C1hK ‖ f − f̂ ‖K ‖∇ ê‖K

+ β‖∇(Ũh(t) − Uh(t))‖2K + γ C1‖∇ R̂U (t)‖K ‖∇ ê‖K
}
, (4.28)

and therefore

d

dt
‖ê(t)‖2 + α‖∇e‖2 + α‖∇ ê‖2 ≤ γ 2η̄

α
‖∇ ê‖2 + α

η̄
‖∇e(η(t))‖2

+
∑

K∈Th

{
εC2

�S2
K ,n + εC2

�h2
K

(
t − tn−1/2

)2 ‖Ŵ n
h ‖2K

+ 5

ε
‖∇ ê‖2K + εC2

1β
2

4
k2n−1(t − tn−1/2)

2‖∇Ŵ n
h ‖2K + εC2

PC2
1h2

K ‖ f − f̂ ‖2K
+ 2β‖∇(Ûh(t) − Uh(t))‖2K + εγ 2C2

1‖∇ R̂U (t)‖2K
}
. (4.29)

We choose ε = 10α
α2−γ 2η̄

and integrate from tn−1 to tn to obtain

‖ê(tn)‖2 +
∫ tn

tn−1

(
α‖∇e‖2 + Cα

2
‖∇ ê‖2

)
dt ≤ ‖ê(tn−1)‖2 +

∫ tn

tn−1

α

η̄
‖∇e(η(t))‖2dt

+ C
∑

K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖Ŵ n
h ‖2K + 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K

+
∫ tn

tn−1

‖∇(Ûh(t) − Uh(t))‖2K dt +
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt +

∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
,

(4.30)

whereC = max

{
10αC2

�

α2−γ 2η̄
,
10αC2

P C2
1

α2−γ 2η̄
,
10αγ 2C2

1
α2−γ 2η̄

, 2β,
10αC2

1β2

α2−γ 2η̄

}
. Summing over n = 2 to N , and

using the fact ê(tn) = e(tn) for n ≥ 0, and (4.24), we obtain the upper bound in (4.12). The
lower bound in (4.12) can be obtained with the same argument as for the delay-dependent
reconstruction. Thus, we complete the proof. ��

Remark 4.1 We first observe that it follows from (3.1) that

‖∇(Ũh(t) − Uh(t))‖2 = 1

4
(t − tn−1)

2(t − tn)2‖∇W̃ n
h ‖2, ∀t ∈ In . (4.31)

Then in view of

∫
In

(t − tn−1)
2(t − tn)2 = 1

30
k5n, (4.32)
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the upper bound of the error can be given by

‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e‖2 + Cα

2
‖∇ ẽ‖2

)
dt ≤ ‖e(0)‖2 + α

∫ 0

η(0)
‖∇e(t)‖2dt

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+ 1

30
k5n‖∇W̃ n

h ‖2K +
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
. (4.33)

Further, if e(t) = 0 for t ∈ [t∗, 0], then

‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e‖2 + Cα

2
‖∇ ẽ‖2

)
dt

≤ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K

}

+ C

{∫ T

0
h2‖ f − f̃ ‖2dt + 1

30

N∑
n=1

k5n‖∇W̃ n
h ‖2 +

∫ T

0
‖∇ R̃U (t)‖2dt

}
. (4.34)

Some observations analogous to the delay-dependent reconstruction can be presented for
the multi-point reconstruction. In view of (3.5) and (4.32), we have the following alternative
estimate under the assumption (2.6)

‖e(T )‖2 +
∫ T

η(T )

(
α‖∇e‖2 + Cα

2
‖∇ ê‖2

)
dt ≤ ‖e(t1)‖2 + α

∫ t1

η(t1)
‖∇e(t)‖2dt

+ C
N∑

n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖Ŵ n
h ‖2K

+
(

k2n−1k3n
48

+ k5n
30

)
‖∇Ŵ n

h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt +

∫ tn

tn−1

‖∇ĜU (t)‖2K dt

}
. (4.35)

Remark 4.2 Under the condition (2.6), the constant C in Theorem 4.2 is independent of the
final time T , and therefore the a posteriori error estimators can serve as long-time a posteriori
error estimators. To the best of our knowledge, this is the first result on long-time a posteriori
error estimates for numerical methods for DDEs and PDDEs. For more general case, we have
the following estimates where the constant C will depend on the final time T .

4.2 A Posteriori Error Estimates on Finite Time Interval

If the condition (2.6) doesn’t hold, then we have the following a posteriori error estimates
for CNFE scheme on a finite time interval.
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Theorem 4.3 Let u and Uh satisfy (2.1) and (2.14), respectively. Then, there is a constant C
such that

‖e(T )‖2 + α

7

∫ T

0
‖∇Ũh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 + α

∫ T

0

(
‖∇e(t)‖2 + 1

6
‖∇ ẽ(t)‖2

)
dt

≤ C

(
‖e(0)‖2 +

∫ 0

η(0)
‖∇e(t)‖2dt +

∫ T

0
‖∇Uh(t) − ∇Ũh(t)‖2dt

)

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt +

∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
. (4.36)

Proof Similar to (4.21), from (4.18) we use the Young’s inequality and Proposition 2.2 to
obtain

1

2

d

dt
‖ẽ(t)‖2 + α

2
‖∇e‖2 + α

2
‖∇ ẽ‖2 ≤ α

12
‖∇ ẽ‖2 + 3γ 2

α
‖∇e(η(t))‖2

+
∑

K∈Th

{
C�SK ,n‖∇ ẽ‖K + C�hK

∣∣t − tn−1/2
∣∣ ‖W̃ n

h ‖K ‖∇ ẽ‖K

+ CP C1hK ‖ f − f̃ ‖K ‖∇ ẽ‖K + β‖∇(Ũh(t) − Uh(t))‖2K
+ C1γ ‖R̃U (t)‖K ‖∇ ẽ‖K

}
. (4.37)

An application of the Young’s inequality yields

d

dt
‖ẽ(t)‖2 + α‖∇e‖2 + α‖∇ ẽ‖2 ≤ α

6
‖∇ ẽ‖2 + 6γ 2

α
‖∇e(η(t))‖2

+
∑

K∈Th

{
εC2

�S2
K ,n + εC2

�h2
K

(
t − tn−1/2

)2 ‖W̃ n
h ‖2K + 4

ε
‖∇ ẽ‖2K

+ εC2
P C2

1h2
K ‖ f − f̃ ‖2K + 2β‖∇(Ũh(t) − Uh(t))‖2K

+ εγ 2C2
1‖∇ R̃U (t)‖2K

}
. (4.38)

Now choosing ε = 6
α
and integrating from tn−1 to tn , we obtain

‖ẽ(tn)‖2 + α

∫ tn

tn−1

(
‖∇e‖2 + 1

6
‖∇ ẽ‖2

)
dt ≤ ‖ẽ(tn−1)‖2 + 6γ 2

α

∫ tn

tn−1

‖∇e(η(t))‖2dt

+ C2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+
∫ tn

tn−1

‖∇(Ũh(t) − Uh(t))‖2K dt +
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
, (4.39)
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whereC2 = max

{
6C2

�

α
,
6C2

P C2
1

α
,
6γ 2C2

1
α

, 2β

}
. Summingovern = 1 to N , noting ẽ(tn) = e(tn)

for 1 ≤ n ≤ N , and Ũh(t) = U (t) for t ∈ [t∗, 0], we get

‖e(T )‖2 + α

∫ T

0

(
‖∇e‖2 + 1

6
‖∇ ẽ‖2

)
dt ≤ ‖e(0)‖2 + 6γ 2

α

∫ T

0
‖∇e(η(t))‖2dt

+ C2

N∑
n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
+ C2

∫ T

0
‖∇Uh(t) − ∇Ũh(t)‖2dt . (4.40)

Using (4.24), by induction, we have

‖e(T )‖2 + α

∫ T

0

(
‖∇e‖2 + 1

6
‖∇ ẽ‖2

)
dt ≤ ‖e(0)‖2 + 6γ 2η̄

α2 α

∫ η(T )

η(0)
‖∇e(t)‖2dt

+ C2

N∑
n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K +

∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt

+
∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
+ C2

∫ T

0
‖∇Uh(t) − ∇Ũh(t)‖2dt

≤ C(T )

(
‖e(0)‖2 + 6γ 2η̄

α

∫ 0

η(0)
‖∇e(t)‖2dt + C2

∫ T

0
‖∇Uh(t) − ∇Ũh(t)‖2dt

)

+ C(T )C2

N∑
n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt +

∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
, (4.41)

where

C(T ) =
{

M, if 6γ 2η̄ = α2,(
6γ 2η̄

)M −α2M

6γ 2η̄α2M−2−α2M , if 6γ 2η̄ �= α2.

Note that M , which depends on T , has been defined in Sect. 2.2. Then the upper bound in

Theorem 4.3 is proved with C = C(T )max{1, C2,
6γ 2η̄

α
}.

We now turn to establish the lower bound. It follows from (4.25) that

‖∇Ũh(t) − ∇Uh(t)‖2 ≤ 7

(
‖∇e(t)‖2 + 1

6
‖∇ ẽ(t)‖2

)
. (4.42)

As a consequence, it holds that

‖e(T )‖2 + α

7

∫ T

0
‖∇Ũh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 + α

∫ T

0

(
‖∇e(t)‖2 + 1

6
‖∇ ẽ(t)‖2

)
dt, (4.43)

which gives the lower bound and completes the proof. ��
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Remark 4.3 In view of (4.31) and (4.32),
∫ T
0 ‖∇Ũh(t) − ∇Uh(t)‖2dt in the lower and upper

bounds of Theorem 4.3 can be replaced by 1
30

N∑
n=1

k5n‖∇W̃ n
h ‖.Moreover, the upper bound can

be also estimated by

‖e(T )‖2 + α

∫ T

0

(
‖∇e‖2 + 1

6
‖∇ ẽ‖2

)
dt

≤ C

(
‖e(0)‖2 +

∫ 0

η(0)
‖∇e(t)‖2dt + 1

30

N∑
n=1

k5n‖∇W̃ n
h ‖

)

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt +

∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
, (4.44)

and, if e(t) = 0 for t ∈ [t∗, 0], then

‖e(T )‖2 + α

∫ T

0

(
‖∇e‖2 + 1

6
‖∇ ẽ‖2

)
dt

≤ C

30

N∑
n=1

k5n‖∇W̃ n
h ‖ + C

N∑
n=1

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖W̃ n
h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̃ ‖2K dt +

∫ tn

tn−1

‖∇ R̃U (t)‖2K dt

}
. (4.45)

If the multi-point reconstruction Ûh is explored, then we have the following estimate of
CNFE scheme for general delay problems.

Theorem 4.4 Let u and Uh satisfy (2.1) and (2.14), respectively. Then, there is a constant C
such that

‖e(T )‖2 + α

8

∫ T

t1
‖∇Ûh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 + α

∫ T

t1

(
‖∇e(t)‖2 + 1

7
‖∇ ê(t)‖2

)
dt

≤ C

(
‖e(·, t1)‖2 +

∫ t1

η(t1)
‖∇e(t)‖2dt +

∫ T

t1
‖∇Uh(t) − ∇Ûh(t)‖2dt

)

+ C
N∑

n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖Ŵ n
h ‖2K + 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt +

∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
. (4.46)
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Proof We use the Young’s inequality and Proposition 2.2 to obtain the following inequality
similar to (4.28),

1

2

d

dt
‖ê(t)‖2 + α

2
‖∇e‖2 + α

2
‖∇ ê‖2 ≤ α

14
‖∇ ê‖2 + 7γ 2

2α
‖∇e(η(t))‖2

+
∑

K∈Th

{
C�SK ,n‖∇ ê‖K + C�

∣∣t − tn−1/2
∣∣ ‖Ŵ n

h ‖K ‖∇ ê‖K

+ CP C1hK ‖ f − f̂ ‖K ‖∇ ê‖K + C1βkn−1|t − tn−1/2|
2

‖∇Ŵ n
h ‖K ‖∇ ê‖K

+ β‖∇(Ûh(t) − Uh(t))‖2K + C1γ ‖R̂U (t)‖K ‖∇ ê‖K
}
. (4.47)

Using the Young’s inequality again yields

d

dt
‖ê(t)‖2 + α‖∇e‖2 + α‖∇ ê‖2 ≤ α

7
‖∇ ê‖2 + 7γ 2

α
‖∇e(η(t))‖2

+
∑

K∈Th

{
εC2

�S2
K ,n + εC2

�h2
K

(
t − tn−1/2

)2 ‖Ŵ n
h ‖2K + 5

ε
‖∇ ê‖2K

+ εC2
P C2

1h2
K ‖ f − f̂ ‖2K + εC2

1β
2

4
k2n−1(t − tn−1/2)

2‖∇Ŵ n
h ‖K

+ 2β‖∇(Ûh(t) − Uh(t))‖2K + εγ 2C2
1‖∇ R̂U (t)‖2K

}
. (4.48)

Now choosing ε = 7
α
, integrating from tn−1 to tn , summing over n = 2 to N , and noting

ê(tn) = e(tn) for 2 ≤ n ≤ N , we get

‖e(T )‖2 + α

∫ T

t1

(
‖∇e‖2 + 1

7
‖∇ ê‖2

)
dt

≤ ‖e(0)‖2 + 7γ 2

α

∫ T

t1
‖∇e(η(t))‖2dt + C3

N∑
n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt

+ 1

12
k3nh2

K ‖Ŵ n
h ‖2K + 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K +
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt

+
∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
+ C3

∫ T

t1
‖∇Uh(t) − ∇Ûh(t)‖2dt, (4.49)

where C3 = max

{
7C2

�

α
,
7C2

P C2
1

α
,
7γ 2C2

1
α

,
7β2C2

1
α

, 2β

}
. By induction, it follows that

‖e(T )‖2 + α

∫ T

t1

(
‖∇e‖2 + 1

6
‖∇ ê‖2

)
dt

≤ C(T )

(
‖e(t1)‖2 +

∫ t1

η(t1)
‖∇e(t)‖2dt + C3

∫ T

t1
‖∇Uh(t) − ∇Ûh(t)‖2dt

)

+ C(T )C3

N∑
n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖Ŵ n
h ‖2K

+ 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K +
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt +

∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
, (4.50)
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where

C(T ) =
⎧⎨
⎩

M − 1, if 7γ 2η̄ = α2,(
7γ 2η̄

)M−1−α2M−2

7γ 2η̄α2M−4−α2M−2 , if 7γ 2η̄ �= α2.

Then the upper bound in Theorem 4.4 is obtained with C = C(T )max{1, C3,
7γ 2η̄

α
}.

As for the lower bound, similar to the case of the delay-dependent reconstruction, we have
∫ T

t1
‖∇Ûh(t) − ∇Uh(t)‖2dt ≤ 8

∫ T

t1

(
‖∇e(t)‖2 + 1

7
‖∇ ê(t)‖2

)
dt, (4.51)

and therefore

‖e(T )‖2 + α

8

∫ T

t1
‖∇Ûh(t) − ∇Uh(t)‖2dt

≤ ‖e(T )‖2 + α

∫ T

t1

(
‖∇e(t)‖2 + 1

7
‖∇ ê(t)‖2

)
dt . (4.52)

This gives the lower bound and completes the proof. ��

Remark 4.4 We first make an analogous observation to Remark 4.3, that is,
∫ T
0 ‖∇Ûh(t) −

∇Uh(t)‖2dt in the lower and upper bounds of Theorem 4.4 can be replaced by
1
30

∑N
n=1 k5n‖∇Ŵ n

h ‖. Moreover, the upper bound can also be estimated by

‖e(T )‖2 + α

∫ T

t1

(
‖∇e‖2 + 1

7
‖∇ ê‖2

)
dt

≤ C

(
‖e(t1)‖2 +

∫ t1

η(t1)
‖∇e(t)‖2dt + 1

30

N∑
n=1

k5n‖∇Ŵ n
h ‖

)

+ C
N∑

n=2

∑
K∈Th

{∫ tn

tn−1

S2
K ,ndt + 1

12
k3nh2

K ‖Ŵ n
h ‖2K + 1

48
k2n−1k3n‖∇Ŵ n

h ‖2K

+
∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt +

∫ tn

tn−1

‖∇ R̂U (t)‖2K dt

}
. (4.53)

Remark 4.5 As already mentioned in Remark 3.1, in this paper we also consider the recon-
struction Ŵ 1

h = W̃ 1
h , although the reconstruction (3.7) is natural. Due to the presence of the

term ‖e(t1)‖2 and
∫ t1
η(t1)

‖∇e(t)‖2dt on the right-hand sides of (4.12), (4.35) and (4.46), it
seems that the estimators derived in (4.12), (4.35) and (4.46) are not sufficient to provide
three meaningful a posteriori error estimators. Nevertheless, the optimality of the a posteriori
error estimates in (4.12), (4.35) and (4.46) are justified by using the estimates of ‖e(t1)‖2
and

∫ t1
η(t1)

‖∇e(t)‖2dt from (4.11) and (4.36) in which the error bounds are of optimal order

in the L2(0, t1; H1)-norm.

5 Numerical Examples

We now illustrate the theoretical results on the error estimators for which the error comes
either from the time discretization, or from the space discretization, or from both of them.
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Let us consider applying the CNFE method (2.14) to the following generalized diffusion
equation with a delay term

∂

∂t
u(x, t) = a

∂2

∂x2
u(x, t) + b

∂2

∂x2
u(x, η(t)) + f (x, t), t ∈ [0, T ], x ∈ [0, 1]. (5.1)

Here the forcing term f , and the initial and boundary value conditions are chosen such that
the exact solution is u(x, t) = x(1 − x) sin t .

Since it is natural to use the multi-point reconstruction of the numerical solution to DDEs
for a posteriori error estimates, in the following numerical examples we will mainly consider
themulti-point reconstruction (3.5). In our implementation, we use the uniform time partition
and uniform space partition with constant stepsize k and h, respectively. Moreover, all the
integral between tn−1 and tn are approximated by the Gauss-Legendre quadrature formula
with three nodes, where the integral, as a polynomial of degree 4, is integrated exactly by
this formula.

Let us define the space error estimator EK

EK :=
N∑

n=2

∑
K∈Th

∫ tn

tn−1

S2
K ,ndt,

where the contributions SK ,n in spatial discretization have been introduced in Theorem 4.2.
The time error estimator ET is defined by

ET := EW1 + EW2 + EU + E f + Eη,

where the contributions EW1, EW2, EU , E f and Eη are computed by

EW1 := 1

12

N∑
n=2

∑
K∈Th

k3nh2
K ‖Ŵ n

h ‖2K , EW2 := 1

48

N∑
n=2

∑
K∈Th

k2n−1k3n‖∇Ŵ n
h ‖2K ,

EU :=
N∑

n=2

∑
K∈Th

∫ tn

tn−1

‖∇(Ûh(t) − Uh(t))‖2K dt,

E f :=
N∑

n=2

∑
K∈Th

∫ tn

tn−1

h2
K ‖ f − f̂ ‖2K dt, Eη :=

N∑
n=2

∑
K∈Th

∫ tn

tn−1

‖∇ R̂U (t)‖2K dt,

respectively.

5.1 Example 1: Linear Proportional Delay

In this case, we test the long time a posteriori error estimates (4.12). For this purpose, we
consider linear proportional delay η(t) = 0.5t − 1 and take a = 10, b = 5, and T = 20 in
problem (5.1). It is easy to verify the condition (2.6) which implies that the system is stable.

Let us denote by ErrT the square of the error at time T , i.e.,

ErrT = ‖e(T )‖2,
by Errη1 the square of the L2(η(T ), T ; V )-norm of the error, i.e.,

Err1η = α

∫ T

η(T )

‖∇e‖2dt,
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Table 1 Example 1: The errors and their orders of CNFE method (2.14) for (5.1) with η(t) = 0.5t − 1, where
T = 20

h k ErrT Order Err1η Order EK Order EW1 Order

0.005 0.25 1.27E−06 3.89 6.84E−04 2.91 1.06E−01 – 4.26E−08 2.02

0.125 8.40E−08 3.92 4.42E−04 0.63 1.06E−01 – 1.06E−08 2.00

0.0625 4.84E−09 4.12 4.28E−04 0.05 1.06E−01 – 2.66E−09 2.00

0.0025 0.25 1.27E−06 3.88 3.63E−04 3.74 2.62E−02 – 1.06E−08 2.02

0.125 8.55E−08 3.90 1.22E−04 1.57 2.62E−02 – 2.65E−09 2.00

0.0625 5.20E−09 4.04 1.08E−04 0.18 2.63E−02 – 6.64E−10 2.00

Table 2 Example 1: The errors and their orders of CNFE method (2.14) for (5.1) with η(t) = 0.5t − 1, where
T = 20

h k EW2 Order EU Order E f Order Eη Order

0.005 0.25 2.66E−04 4.02 4.26E−04 4.02 8.79E−06 3.97 3.26E−05 4.01

0.125 1.66E−05 4.00 2.65E−05 4.00 5.53E−07 3.99 2.04E−06 4.00

0.0625 1.04E−06 4.00 1.66E−06 4.00 3.47E−08 4.00 1.28E−07 4.00

0.0025 0.25 2.66E−04 4.02 4.26E−04 4.02 2.20E−06 3.97 3.26E−05 4.01

0.125 1.66E−05 4.00 2.65E−05 4.00 1.38E−07 3.99 2.04E−06 4.00

0.0625 1.04E−06 4.00 1.66E−06 4.00 8.67E−09 4.00 1.28E−07 4.00

The true errors ErrT , Err1η, and the a posteriori error estimators EK , EW1, EW2, EU , E f , Eη,
and their temporal convergence orders are listed in Tables 1 and 2, respectively. From these
numerical results, we observe that the true error ErrT and the a posteriori error estimators
EW2, EU , E f , Eη, are of optimal order 4 (since they estimate the square of the error), and the
space error estimator EK does not depend on the time stepsize k. The a posteriori quantities
EW1 := 1

12

∑N
n=2

∑
K∈Th

k3nh2
K ‖Ŵ n

h ‖2K is of optimal order 2. We also note that since the true
error Err1η is badly affected by the space mesh diameter h, there is a continuing decreasing
in its temporal convergence order.

To clearly illustrate the temporal convergence behaviours of the true errors ErrT , Err1η,
and the a posteriori error estimators EK , EW1, EW2, EU , E f , Eη, we also present them in Fig. 1
against 1/k in a log–log scale.

In order to measure the quality of our estimators, the estimated error is compared to the
true error by introducing the so-called effecitvity index. We define the effectivity index eiU

of the upper error bound as

eiU :=
(

EK + ET

ErrT + Err1η

) 1
2

.

To measure the contribution of space discretization error and time discretization error, we
also define the following effectivity indices in space and in time

ei K
U :=

(
EK

ErrT + Err1η

) 1
2

and ei T
U :=

(
ET

ErrT + Err1η

) 1
2

.

respectively.
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Fig. 1 Log–log plot of the errors of CNFE method (2.14) for (5.1) with η(t) = 0.5t − 1 in Example 1, where
T = 20 and h = 0.000125

Table 3 Example 1: The
effecitvity indices of error
estimators of CNFE method
(2.14) for (5.1) with
η(t) = 0.5t − 1, where T = 20

h k ErrT + Err1η eiU ei K
U ei T

U

0.005 0.25 6.85E−04 12.48 12.44 1.03

0.125 4.22E−04 15.48 15.48 0.32

0.0625 4.28E−04 15.74 15.74 0.08

0.0025 0.25 3.65E−04 8.60 8.48 1.41

0.125 1.22E−04 14.68 14.66 0.61

0.0625 1.07E−04 15.61 15.61 0.16

Referring to Table 3, we observe that for a fixed space mesh diameter h, the computing
error is mainly due to the space discretizaiton and the space error estimator EK behaves as the
true error. To clearly illustrate the effectivity indices ei K

U and ei T
U , we change simultaneously

the space mesh diameter h and the time stepsize k with h being proportional to k2, which
is the natural choice because of the error behaviour O(h + k2). The numerical results are
presented in Table 4. The correct temporal and spatial convergence orders are observed for the
true errors. We can see that the effectivity indices eiU , ei K

U and ei T
U presented in Table 4 for

CNFE method seem to be asymptotically constant (around 15.4, 15.4 and 0.3, respectively).

5.2 Example 2: Nonlinear Delay

In this case, we consider nonlinear delay η(t) = 0.8t − ln(t + 2) and take a = 1 and b = 2
in problem (5.1). It is easy to verify that the condition (2.6) is not satisfied. Thus we consider
the a posteriori error estimates (4.46) on a finite time interval [0, T ] with T = 1. On account
of the nonlinearity of the delay, the error behaviours are certainly much more complicated
compared to the previous example. We denote by Err1 the square of the L2(t1, T ; V )-norm
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Table 4 Example 1: The effecitvity indices of error estimators of CNFE method (2.14) for (5.1) with η(t) =
0.5t − 1, where T = 20

h k ErrT + Err1η Order in h Order in k eiU ei K
U ei T

U

0.02 0.25 7.09E−03 – – 15.90 15.90 0.35

0.005 0.125 4.42E−04 2.00 4.00 15.48 15.48 0.32

0.00125 0.0625 2.76E−05 2.00 4.00 15.37 15.37 0.32

0.0003125 0.03125 1.73E−06 2.00 4.00 15.34 15.34 0.32

Table 5 Example 2: The errors and their orders of CNFEmethod (2.14) for (5.1) with η(t) = 0.8t − ln(t +2),
where T = 1

h k ErrT Order Err1 Order EK Order EW1 Order

0.001 0.125 8.15E−08 4.01 1.43E−07 2.72 1.09E−06 – 9.96E−12 1.72

0.0625 5.07E−09 4.00 9.41E−08 0.61 1.41E−06 – 2.72E−12 1.87

0.03125 3.14E−10 4.02 9.10E−08 0.05 1.60E−06 – 7.10E−13 1.94

0.0005 0.125 8.16E−08 4.01 7.53E−08 3.54 2.76E−07 – 2.49E−12 1.72

0.0625 5.08E−09 4.00 2.60E−08 1.54 3.57E−07 – 6.80E−13 1.87

0.03125 3.16E−10 4.00 2.29E−08 0.18 4.03E−07 – 1.77E−13 1.94

Table 6 Example 2: The errors and their orders of CNFEmethod (2.14) for (5.1) with η(t) = 0.8t − ln(t +2),
where T = 1

h k EW2 Order EU Order E f Order Eη Order

0.001 0.125 3.89E−07 3.72 6.23E−07 3.72 1.57E−12 3.58 7.83E−08 3.75

0.0625 2.66E−08 3.87 4.25E−08 3.87 1.13E−13 3.79 5.30E−09 3.89

0.03125 1.73E−09 3.94 2.77E−09 3.94 7.61E−15 3.90 3.44E−10 3.95

0.0005 0.125 3.89E−07 3.72 6.23E−07 3.72 3.92E−13 3.58 7.83E−08 3.75

0.0625 2.66E−08 3.87 4.25E−08 3.87 2.83E−14 3.79 5.30E−09 3.89

0.03125 1.73E−09 3.94 2.77E−09 3.94 1.90E−15 3.90 3.44E−10 3.95

of the error, i.e.,

Err1 = α

∫ T

t1
‖∇e‖2dt .

The true errors ErrT , Err1, and the a posteriori error estimators EK , EW1, EW2, EU , E f ,
Eη, and their temporal convergence orders are listed in Tables 5 and 6, respectively. The
temporal convergence behaviours of these quantities are also presented in Fig. 2 against 1/k
in a log–log scale. From these numerical results, we still observe the correct convergence
orders for all these quantities, though the convergence orders are slightly affected by the
nonlinearity of the delay and the space mesh diameter h.

In view of the a posteriori error estimates (4.46), the lower and upper estimators are defined

by
α

8
EU and EK + ET , respectively. We are interested in computing the effectivity indices
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Fig. 2 Log–log plot of the errors of CNFE method (2.14) for (5.1) with η(t) = 0.8t − ln(t + 2) in Example
2, where T = 1, h = 0.000125

Table 7 Example 2: The
effecitvity indices of error
estimators of CNFE method
(2.14) for (5.1) with
η(t) = 0.8t − ln(t + 2), where
T = 1

h k ErrT + 8
7Err1 eiL eiU ei K

U ei T
U

0.0005 0.5 3.75E−05 0.79 1.88 0.03 1.88

0.25 2.32E−06 1.01 2.50 0.26 2.49

0.125 1.68E−07 0.95 2.85 1.28 2.55

0.00025 0.5 3.75E−05 0.79 1.88 0.01 1.88

0.25 2.30E−06 1.02 2.50 0.13 2.50

0.125 1.48E−07 1.08 2.80 0.69 2.71

eiL and eiU , defined as

eiL :=
(
Lower estimator

8
7Err1

) 1
2

and eiU :=
(
Upper estimator

ErrT + 8
7Err1

) 1
2

,

respectively. These effectivity indices are presented in Table 7 for a fixed spacemesh diameter
h and in Table 8 for changeable h with simultaneous decrease of the time stepsize k. From
Table 8, we find that the effectivity index eiL of the lower estimator of the CNFE method is
around 0.18 and the effectivity index ei T

U of the upper time error estimator ET is around 0.66
when the space mesh diameter h and the time stepsize k are changed simultaneously with h
being proportional to k2.

6 Concluding Remarks

Seeing that DDEs and PDDEs and their variants play a pivotal role in the modeling of
several physical and biological phenomena, and that the solution to this class of equations
is generally not sufficiently smooth and has breaking points, a posteriori error estimates are
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Table 8 Example 2: The effecitvity indices of error estimators of CNFE method (2.14) for (5.1) with η(t) =
0.8t − ln(t + 2), where T = 1

h k ErrT + 8
7Err1 Order in h Order in k eiL eiU ei K

U ei T
U

0.02 0.25 4.30E−05 – – 0.16 2.30 2.22 0.58

0.005 0.125 2.73E−06 1.99 3.98 0.17 3.17 3.10 0.63

0.00125 0.0625 1.71E−07 2.00 4.00 0.18 3.65 3.59 0.66

0.0003125 0.03125 1.07E−08 2.00 4.00 0.18 3.90 3.84 0.67

extremely important for numerically solving them. In this work we presented the a posteriori
error analysis for the CNFE method (2.14) for generalized diffusion equation with delay. We
first obtained the sufficient condition for the stability of this class of equations. Based on
this stability condition, we proved long-time a posteriori error estimates for stable PDDEs
for the first time, after we introduced two different continuous and piecewise quadratic
reconstructions to estimate the time discretization error. By means of these reconstructions,
we further derived a posteriori upper and lower error bounds for the CNFE method (2.14) on
a finite time interval for general systems. These lower bounds are optimal in a certain sense.
Althoughmany researchers have investigated the stability and a priori error estimates of some
numerical methods for PDDEs and their variant, it is the first time to explore a posteriori
error analysis for fully discrete numerical methods for such types of equations. It is worth
emphasizing that the techniques exploited in this paper can be easily extended to other types
of linear PDDEs, even PDDEs with several delays.

It is noteworthy that these error bounds depend only upon the discretization parameters
and the data of problems, and thus they are computable. We carried out various numerical
experiments for the CNFE method (2.14) for generalized diffusion equation with different
delays, e.g., linear proportional delay η(t) = 0.5t − 1 and nonlinear delay η(t) = 0.8t −
ln(t + 2). For both delay problems, these experiments exactly verify the theoretical results,
and the effectivity index ei T

U of the upper time error estimator ET stays close to a constant.
We also found that the upper space error estimator EK may slightly affect the effectivity
of the upper error estimator when the CNFE method with linear element was applied to
general systems with nonlinear delay. Studying a posteriori error estimates of high-order
finite element methods for partial functional differential equations will be our future work.

Acknowledgements The authors would like to thank the referee for comments and suggestions that led to
improvements in the presentation of this paper. This work was supported by the National Natural Science
Foundation of China (Grant Nos. 11771060, 11771298, 11671343).

References

1. Akrivis, G., Makridakis, Ch., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolsonmethod
for parabolic equations. Math. Comput. 75, 511–531 (2006)

2. Baker, C.T.H., Bocharov,G.A., Rihan, F.A.:A report on the use of delay differential equations in numerical
modelling in the biosciences, MCCM Technical Report, vol. 343, pp. 1360–1725. Manchester, ISSN
(1999)

3. Baker, C.T.H., Paul, C.A.H.: Discontinuous solutions of neutral delay differential equations. Appl. Numer.
Math. 56, 284–304 (2006)

4. Bänsch, E., Karakatsani, F., Makridakis, Ch.: A posteriori error control for fully discrete Crank–Nicolson
schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)

123



13 Page 26 of 27 Journal of Scientific Computing (2020) 84 :13

5. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press,
Oxford (2003)

6. Bellen, A., Maset, S., Zennaro, M., Guglielmi, N.: Recent trends in the numerical solution of retarded
functional differential equations. Acta Numer. 18, 1–110 (2009)

7. Blanco-Cocom, L., Ávila-Vales, E.: Convergence and stability analysis of the θ -method for delayed
diffusion mathematical models. Appl. Math. Comput. 231, 16–26 (2014)

8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York
(2002)

9. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge
University Press, Cambridge (2004)

10. Chen, Y., Cheng, J., Jiang, J., Liu, K. J.: A time delay dynamical model for outbreak of 2019-nCoV and
the parameter identification (2020). ArXiv: 2002.00418

11. Enright, W.H., Hayashi, H.: A delay differential equation solver based on a continuous Runge–Kutta
method with defect control. Numer. Algorithms 16, 349–364 (1998)

12. Gan, S.Q.: Dissipativity of θ -methods for nonlinear delay differential equations of neutral type. Appl.
Numer. Math. 59, 1354–1365 (2009)

13. García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Numerical solutions of diffusion methematical models
with delay. Math. Comput. Model. 50, 860–868 (2009)

14. García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Convergence of two implicit numerical schemes for
diffusion mathematical models with delay. Math. Comput. Model. 52, 1279–1287 (2010)

15. Green, D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. In: Busenberg,
S.N., Cooke, K.L. (eds.) Differential Equations and Applications in Ecology, Epidemics, and Population
Problems. Academic Press, New York (1981)

16. Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential
equations. Numer. Math. 77, 467–485 (1997)

17. Guglielmi, N.: Asymptotic stability barriers for natural Runge–Kutta processes for delay equations. SIAM
J. Numer. Anal. 39, 763–783 (2001)

18. Guglielmi, N.: Open issues in devising software for the numerical solution of implicit delay differential
equations. J. Comput. Appl. Math. 185(2), 261–277 (2006)

19. Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Com-
put. Math. 29, 229–247 (2008)

20. Guglielmi, N., Hairer, E.: Asymptotic expansions for regularized state-dependent neutral delay equations.
SIAM J. Math. Anal. 44, 2428–2458 (2012)

21. Houwen, P.J.V., Sommeijer, B.P., Baker, C.T.H.: On the stability of predictor–corrector methods for
parabolic equations with delay. IMA J. Numer. Anal. 6, 1–23 (1986)

22. Hu, G.D., Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential
equations. BIT 35, 504–515 (1995)

23. Huang, C.M., Li, S.F., Fu, H.Y., Chen, G.N.: Stability and error analysis of one-leg methods for nonlinear
delay differential equations. J. Comput. Appl. Math. 103, 263–279 (1999)

24. In’t Hout, K.J., Spijker, M.N.: Stability analysis of numerical methods for delay differential equations.
Numer. Math. 59, 807–814 (1991)

25. In’t Hout, K.J.: The stability of a class of Runge–Kutta methods for delay differential equations. Appl.
Numer. Math. 9, 347–355 (1992)

26. Jackiewicz, Z.: Asymptotic stability analysis of θ -methods for functional differential equations. Numer.
Math. 43, 389–396 (1984)

27. Jackiewicz, Z., Lo, E.: Numerical solution of neutral functional differential equations by Adams methods
in divided difference form. J. Comput. Appl. Math. 189, 592–605 (2006)

28. Kolmanovskii, V.B., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential
Equations. Kluwer Academic Publishers, Dordrecht (1999)

29. Kuang, J.X., Cong, Y.H.: Stability of Numerical Methods for Delay Differential Equations. Science Press,
Beijing (2005)

30. Li, S.F.: High order contractiveRunge–Kuttamethods forVolterra functional differential equations. SIAM
J. Numer. Anal. 47, 4290–4325 (2010)

31. Li, S.F., Li, Y.F.: B-convergence theory of Runge–Kutta methods for stiff Volterra functional differential
equations with infinite integration interval. SIAM J. Numer. Anal. 53, 2570–2583 (2015)

32. Li, S.F.: NumericalAnalysis for StiffOrdinary andFunctionalDifferential Equations.XiangtanUniversity
Press, Xiangtan (2010)

33. Liang, H.: Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with
delays. Appl. Math. Comput. 264, 160–178 (2015)

123

http://arxiv.org/abs/2002.00418


Journal of Scientific Computing (2020) 84 :13 Page 27 of 27 13

34. Liu, M.Z., Spijker, M.N.: The stability of θ -methods in the numerical solution of delay differential
equations. IMA J. Numer. Anal. 10, 31–48 (1990)

35. Lozinski, A., Picasso,M., Prachittham,V.: An anisotropic error estimator for the Crank–Nicolsonmethod:
application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)

36. Maset, S., Zennaro,M.: Good behavior with respect to the stiffness in the numerical integration of retarded
functional differential equations. SIAM J. Numer. Anal. 52, 1843–1866 (2014)

37. Murali Mohan Reddy, G., Sinha, R.K.: On the Crank–Nicolson anisotropic a posteriori error analysis for
parabolic integro-differential equations. Math. Comput. 85, 2365–2390 (2016)

38. Picasso, M., Prachittham, V.: An adaptive algorithm for the Crank–Nicolson scheme applied to a time-
dependent convection–diffusion problem. J. Comput. Appl. Math. 233, 1139–1154 (2009)

39. Reyes, E., Rodríguez, F., Martín, J.A.: Analytic-numerical solutions of diffusion mathematical models
with delays. Comput. Math. Appl. 56, 743–753 (2008)

40. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary condi-
tions. Math. Comput. 54, 483–493 (1990)

41. Tian, H.J.: Asymptotic stability of numerical methods for linear delay parabolic differential equations.
Comput. Math. Appl. 56, 1758–1765 (2008)

42. Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo
40, 195–212 (2003)

43. Wang,W.S., Li, S.F.: Stability analysis of θ -methods for nonlinear neutral functional differential equations.
SIAM J. Sci. Comput. 30, 2181–2205 (2008)

44. Wang, W.S., Li, S.F., Su, K.: Nonlinear stability of general linear methods for neutral delay differential
equations. J. Comput. Appl. Math. 224, 592–601 (2009)

45. Wang, W.S., Zhang, Y., Li, S.F.: Stability of continuous Runge–Kutta-type methods for nonlinear neutral
delay-differential equations. Appl. Math. Model. 33, 3319–3329 (2009)

46. Wang, W.S., Zhang, C.J.: Preserving stability implicit Euler method for nonlinear Volterra and neutral
functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010)

47. Wang,W.S., Rao, T., Shen,W.W., Zhong, P.: A posteriori error analysis for the Crank–Nicolson–Galerkin
method for the reaction–diffusion equations with delay. SIAM J. Sci. Comput. 40, A1095–A1120 (2018)

48. Willé, D.R., Baker, C.T.H.: The tracking of derivative discontinuities in systems of delay differential
equations. Appl. Numer. Math. 9, 209–222 (1992)

49. Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York
(1996)

50. Yan, Y., Chen, Y., Liu, K.J., Luo, X.Y., Xu, B.X., Jiang, Y., Cheng, J.: Modeling and prediction for the
trend of outbreak of NCP based on a time-delay dynamic system. Sci. Sin. Math. 50, 1–8 (2020). https://
doi.org/10.1360/SSM-2020-0026. (in Chinese)

51. Zhang, C.J., Zhou, S.Z.: Non-linear stability and D-convergence of Runge–Kutta methods for delay
differential equations. J. Comput. Appl. Math. 85, 225–237 (1997)

52. Zhang, C.J., Li, S.F.: Dissipativity and exponentially asymptotic stability of the solutions for nonlinear
neutral functional-differential equations. Appl. Math. Comput. 119, 109–115 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1360/SSM-2020-0026
https://doi.org/10.1360/SSM-2020-0026

	A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay
	Abstract
	1 Introduction
	2 CNFE for Generalized Diffusion Equations with Delay
	2.1 Functional Setting and Abstract Formulation
	2.2 Stability of Generalized Diffusion Equations with Delay
	2.3 CNFE Method for Generalized Diffusion Equations with Delay

	3 Quadratic Reconstructions for Generalized Diffusion Equations with Delay
	3.1 Crank–Nicolson Delay-Dependent Reconstruction
	3.2 Multi-point Delay-Independent Reconstruction

	4 A Posteriori Error Estimates
	4.1 Long-Time Error Estimates for Stable Systems
	4.2 A Posteriori Error Estimates on Finite Time Interval

	5 Numerical Examples
	5.1 Example 1: Linear Proportional Delay
	5.2 Example 2: Nonlinear Delay

	6 Concluding Remarks
	Acknowledgements
	References




