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Abstract
Total variation diminishing multigrid methods have been developed for first order accu-
rate discretizations of hyperbolic conservation laws. This technique is based on a so-called
upwind biased residual interpolation and allows for algorithms devoid of spurious numerical
oscillations in the transient phase. In this paper, we justify the introduction of such prolon-
gation and restriction operators by rewriting the algorithm in a matrix-vector notation. This
perspective sheds new light on multigrid procedures for hyperbolic problems and provides a
direct extension for high order accurate difference approximations. The new multigrid pro-
cedure is presented, advantages and disadvantages are discussed and numerical experiments
are performed.

Keywords High order finite difference methods · Summation-by-parts · Multigrid ·
Hyperbolic problems · Convergence acceleration

1 Introduction

Multigrid is a convergence acceleration technique originally designed to solve elliptic partial
differential equations [1]. For these problems, it was observed that iterative methods were
only damping highly oscillating error modes fast. On the other hand, the low frequency
errors could be efficiently flattened by means of grid coarsening, since they were seen as
high frequency modes on coarser grids. The main idea behind multigrid techniques is to
complement the two effects in order to rapidly get the solution on the finest grid [2,3].

More recently, multigrid methods were successfully modified to find first order accu-
rate steady state solutions of hyperbolic conservation laws [4,5]. For these problems, the
low frequency errors can possibly be rapidly expelled from the domain by grid coarsening,
since coarser grids have less severe stability restrictions on time steps. The new L-multigrid
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procedure allow for 2L times faster wave propagation by ensuring that the Total Variation
Diminishing (TVD) property is preserved. In the Total Variation Diminishing Multi-Grid
scheme (TVD-MG), the residual restriction is performed using an upwind biased interpola-
tion rather than the classical linear one, and this also guarantees convergence of the iterative
procedure. However, a significant drawback of the TVD-MG is the intrinsic need for first
order accurate space discretizations.

In this article, we will replicate and extend the previously mentioned low order TVD-MG
method to upwind Summation-By-Parts (SBP) based high-order finite difference methods [6,
7] for linear hyperbolic problems. The crucial role played by the upwind biased interpolation
in the TVD-MG will be investigated from a matrix-vector perspective, leading to a direct
extension of the residual restriction to higher order approximations. In our approach, thewave
propagation for high-order discretizations on a fine grid is complemented with the TVD-MG
for first order schemes on coarse grids. New restriction operators that are needed to couple the
high order discretization on the fine grid with the first order scheme on the second finest grid
will be presented. We will also show how the new residual restriction operators developed
for scalar advection problems can be used to accelerate the wave propagation for linear
hyperbolic systems and nonlinear problems.

The article is structured as follows: in Sect. 2 we introduce a new first order upwind
SBP discretization for one-dimensional scalar advection problems. A multigrid technique
for such approximations, inspired by the TVD-MG, is presented in Sect. 3. In this section
we also revisit the upwind-biased residual restriction needed for convergence acceleration
from a matrix-vector point of view. The extension to higher order discretizations is given in
Sect. 4. Several modifications needed to implement the multigrid algorithm for hyperbolic
systems such as the linear compressible Euler equations are discussed in Sect. 5. In Sect. 6,
we present an extension of the multigrid procedure to nonlinear problems. Numerical results
for two-dimensional problems are shown in Sect. 7. Finally, conclusions are drawn in Sect. 8.

2 Upwind Discretization of the Advection Equation

Consider the linear wave propagation problem

ut + ux = f (x), 0 < x < 1, t > 0,
u(0, t) = g, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

(1)

where f and g are known data independent of time. A semi-discretization of (1) can be
written by using SBP operators on upwind form [7].

Definition 1 The difference operators D+ = P−1
(
Q+ + B

2

)
and D− = P−1

(
Q− + B

2

)
,

with B = diag([−1, 0, . . . , 0, 1]), are said to be pth order diagonal-norm upwind SBP
operators for the first derivative if

(i) D+ is pth and �p/2�th order accurate in the interior and at the left boundary, respectively.
Likewise, D− has order p in the interior and �p/2� at the right boundary;

(ii) the diagonal matrix P defines a discrete norm;
(iii) Q+ + QT− = 0;
(iv) Q+ + QT+ and Q− + QT− are positive and negative semi-definite, respectively. ��
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Consider an equidistant grid Ω1 = {
x j = jΔx, j = 0, 1, 2, . . . , N

}
on [0, 1], with

NΔx = 1. The space discretization of (1) with upwind SBP operators reads

U t + D+U = f − P−1(U0 − g)e0, t > 0,
U(0) = U0,

(2)

where the boundary condition is weakly imposed with a Simultaneous Approximation Term
(SAT) [6]. In (2), the vector U = (U0,U1, . . . ,UN )T indicates the approximate solution
with Uj (t) ≈ u

(
x j , t

)
and f = ( f (x0) , f (x1) , . . . , f (xN ))T . Moreover, we have used

e0 = (1, 0, . . . , 0)T . Note that the positive variant of the SBP upwind operator has been
used, since the solution of (1) is a wave propagating towards the right boundary.

As for the usual centered SBP operators [6,8], it is straightforward to show that (2) leads
to stability [7]. Indeed, by letting f = 0 and applying the energy method, i.e. multiplying (2)
from the left by UT P and adding the transpose of the resulting expression, we get

d

dt
‖U‖2P = g2 −U 2

N − (U0 − g)2 − UT
(
Q+ + QT+

)
U.

Since Q+ + QT+ is positive semi-definite, ‖U‖P = UT PU will be bounded by data.

2.1 New First Order Upwind SBP Operators

The upwind SBP operators in Definition 1 were derived from second up to ninth order [7].
However, in the present study we will also need first order upwind discretizations satisfy-
ing the SBP property in order to replicate and extend the TVD-MG technique [4,5]. Such
operators (for the positive variant) are given by

D+ = 1

Δx

⎡

⎢⎢⎢
⎣

0
−1 1

. . .
. . .

−1 1

⎤

⎥⎥⎥
⎦

, P = Δx · diag (1, . . . , 1) . (3)

The operator D+ is first order accurate in all the nodes with the exception of the left boundary
closure, where the order of accuracy drops to zero. The particular structure of D+ makes it
easy to compute the steady-state solution of (2) as

Ui = g0 + Δx
i∑

k=0

fk (4)

which is the discrete analogous of the steady-state solution of (1)

u (x) = g0 +
∫ x

0
f (ξ) dξ. (5)

Remark 1 The matrix P in (3) does not represent a consistent quadrature formula, namely it
does not correctly integrate constant grid functions. Consistency can be restored by relaxing
the constraint on the matrix P defining a discrete norm. In particular, the modified matrix
P+ = Δx · diag (0, 1, . . . , 1) exactly integrates constants and leads to the same D+ as in
(3), and defines a semi-norm. However, this matrix can only be used for the positive variant
D+, since the corresponding negative variant D− requires P− = Δx · diag (1, . . . , 1, 0).
Hence, to make the matrix P both strictly positive definite and equal for the two variants,
the consistency requirement is relaxed. This lack of consistency is in line with the previously
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derived upwind SBP operators: indeed, the norm P of a pth order SBP upwind first derivative
operator exactly integrates only (p − 2)th degree polynomials, if p is odd. ��

2.2 Convergence to Steady-State for Single Grid Methods

The steady state solution (4) can also be found by discretizing (2) in time and computing an
approximation of U(t) for large t . By marching in time with Euler Forward (EF) we get

Un+1 = Un − Δt
(
D+ + P−1e0eT0

)
Un + ΔtF, (6)

where F = f + g(Δx)−1e0 and the superscript n denotes the approximation at time tn =
nΔt . The discretization (6) converges to steady-state without spurious oscillations if Δt ≤
Δx . Moreover, it can be recast in compact form by introducing

L1 = D+ + P−1e0eT0 = 1

Δx

⎡

⎢
⎢
⎢
⎣

1
−1 1

. . .
. . .

−1 1

⎤

⎥
⎥
⎥
⎦

, (7)

and

S1 = I1 − Δt L1 =

⎡

⎢⎢⎢
⎣

1 − λ

λ 1 − λ

. . .
. . .

λ 1 − λ

⎤

⎥⎥⎥
⎦

. (8)

In (7, 8), I1 is the identity matrix, λ = Δt/Δx denotes the CFL number and the subscript 1 is
used to denote quantities on the grid Ω1. With this notation, the method (6) can be rewritten
as

Un+1 = S1Un + (I1 − S1) L
−1
1 F. (9)

If the eigenvalues of L1 have strictly positive real parts, then the convergence of (9) is
guaranteed [9,10].

Remark 2 The invertibility of L1 can be shown for pseudo-spectral approximations [9], but
not in general for discretizations based on finite-difference methods [11]. The 1st and 2nd
order upwind SBP operators lead to matrices L1 with triangular and block-triangular struc-
ture, respectively, for which invertibility follows in a straightforward way. However, proving
this result for a higher order approximation requires a considerable effort. ��
For a first order upwind operator D+ and λ = 1, the convergence to steady-state is achieved
in N + 1 iterations, since

Un+1
0 = g0 + Δx f0, Un+1

j = Un
j−1 + Δx f j , j = 1, . . . , N

yield

UN+1
N = UN

N−1 + Δx fN = UN−1
N−2 + Δx ( fN−1 + fN ) = · · · = g0 + Δx

N∑

k=0

fk .

Other explicit schemes can of course also be used for the time advancement of (2). For
example, the fourth order Runge-Kutta (RK4) scheme leads to the iterative procedure (9)
with
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Fig. 1 Approximate solution of (2) with f = 0, g = 0, U(0) = (1, . . . , 1)T and the first order space
discretization. The solution is shown at t = 0.5 for EF (left) and RK4 (right) time integrators with λ = 1
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Fig. 2 Convergence plots for the problem (2) with f (x) = cos(x) − x sin(x), g = 1, U(0) = (1, . . . , 1)T .
The P-norm of the error with respect to the steady-state solution is shown for both EF (left) and RK4 (right)
time-marching schemes with λ = 1

S1 = I1 − Δt L1 + 1

2
(Δt L1)

2 − 1

6
(Δt L1)

3 + 1

24
(Δt L1)

4 . (10)

Although also this iterativemethod converges to the steady-state solution, the EF timemarch-
ing for first order discretizations leads to faster convergence. InFig. 1 the approximate solution
of (2) with U0 = (1, . . . , 1)T , f = 0 and g = 0 is displayed at t = 0.5 for both procedures
with λ = 1. The RK4 method damps the initial discontinuity, and thereby slows down the
convergence to the steady-state solution U = (0, . . . , 0)T .

Using (10) leads to a transient phase consisting of both a convective part and a damping
part. Purely convective convergence is a distinctive feature of first order upwind space dis-
cretizations using EF with λ = 1, see Fig. 2. For λ < 1, dissipation effects arise also for
EF, but the convergence to steady-state is still faster when compared to RK4. For these rea-
sons, in the following we use EF as time-marching for first order discretizations. For higher
order schemes, using EF is inappropriate due to its poor stability properties and RK4 is
preferred.
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3 Convergence Acceleration for First Order Upwind Schemes

Consider the discrete problem (6), which converges to the steady-state solution U = L−1
1 F1

in N + 1 iterations. The wave propagation speed λ = 1 can be increased by using the
following two-level algorithm, which is inspired by the TVD-MG [4,5]:

Fine grid evolution: U
(1) = S1Un + (I1 − S1) L

−1
1 F1;

Fine grid residual: r(1) = L1U
(1) − F1;

Solution injection: U (2) = RuU
(1);

Coarse grid residual: F2 = L2U (2) − Ir r(1); (11)

Coarse grid evolution: U
(2) = S2U (2) + (I2 − S2) L

−1
2 F2;

Fine grid update: Un+1 = U
(1) + I Ip

(
U

(2) − RuU
(1)

)

+ I Ep
(
U

(2) − RuUn
)

.

Quantities on the fine and coarse grid are indicated with superscripts 1, 2, respectively.
In (11) we have introduced:

– A coarse grid Ω2 =
{
x (2)
j = 2 jΔx (1) = jΔx (2), j = 0, 2, . . . , N

}
⊂ [0, 1];

– A restriction operator of injection type Ru such that
(Ruv

(1)
)
j = v

(2)
j for j =

0, 2, . . . , N ;
– A residual restriction operator Ir which conveys the information from Ω1 to Ω2,

(
Irv

(1)
)

j
=

{
1
2v

(1)
0 , j = 0,

1
2

(
v

(1)
j + v

(1)
j−1

)
, j = 2, 4, . . . , N ,

(12)

which is upwind-biased [4,5] at interior nodes and inconsistent at the left boundary node.
This somewhat odd choice will be explained later. See Fig. 3 for details;

– A space discretization L2 = D+,2 + P−1
2 e0,2eT0,2 and a smoother S2 = I2 − Δt2L2 on

the coarse grid Ω2 which are counterparts to the operators L1 and S1 in (7, 8) on Ω1;
– The prolongation operator Ip = I Ip + I Ep in the fine grid update step [12] has been split

into two contributions: I Ip for the nodes included on the coarse grid and I Ep for the other
nodes, see Fig. 3. In particular,

(
I Ipv

(2)
)

j
=

{
v

(2)
j , j = 0, 2, 4, . . . , N ,

0, j = 1, 3, 5, . . . , N − 1,
(
I Ep v

(2)
)

j
=

{
0, j = 0, 2, 4, . . . , N ,

v
(2)
j−1, j = 1, 3, 5, . . . , N − 1,

(13)

are introduced to avoid overshoots in the transient phase, and preserve the TVD property
[4].

In (11), the coarse grid evolution step converges to the steady-state solution L−1
2 F2. This

vector can be recast as
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Fig. 3 The interpolation operators used in the two-level algorithm (11) are the injection operator Ru (top
left), the restriction operator Ir (top right), the prolongation operator for the included nodes I Ip (bottom left)

and the prolongation operator for the excluded nodes I Ep (bottom right). Note that Ir is inconsistent at the left
boundary node

L−1
2 F2 = L−1

2

(
L2U (2) − Ir r(1)

)
= L−1

2

[
L2RuU

(1) − Ir
(
L1U

(1) − F1

)]

= L−1
2 (L2Ru − Ir L1)U

(1) + L−1
2 IrF1.

By assuming that
Ir L1 ≈ L2Ru, (14)

the steady-state solution for the coarse grid evolution step becomes

L−1
2 F2 ≈ L−1

2 IrF1 ≈ Ru

(
L−1
1 F1

)
= RuU.

In other words, if (14) holds, the coarse grid problem converges towards the steady-state
solutionRuU, i.e. the injection of the steady-state solutionU onto the coarse grid nodes. For
this reason, (14) plays a crucial role in our multigrid method. Henceforth, we will refer to
this condition as the approximation assumption.

The convergence of the algorithm in (11) can be studied by rewriting it in compact form
as

Un+1 = MUn + (I1 − M) L−1
1 F1 (15)

where
M =

(
I1 − Ip (I2 − S2) L

−1
2 Ir L1

)
S1 − I Ep Ru (I1 − S1) (16)

is the multigrid iteration matrix.

Remark 3 The only formal difference between the algorithm in (11) and the conventional
two-grid procedure [12] is in the fine-grid update step. Indeed, by changing that to the usual

Un+1 = U
(1) + Ip

(
U

(2) − RuU
(1)

)
,

the resulting multigrid iteration matrix for the two approaches has the same structure, i.e.

M =
(
I1 − Ip (I2 − S2) L

−1
2 Ir L1

)
S1. ��

However, in contrast with (13) a centered prolongation operator Ip based on linear interpo-
lation was used in [12]:

(
Ipv

(2)
)

j
=

{
v

(2)
j , j = 0, 2, 4, . . . , N ,

1
2

(
v

(2)
j + v

(2)
j+1

)
, j = 1, 3, 5, . . . , N − 1.
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Using the first order upwind scheme discretized in time with EF (6) for both the fine- and
coarse-grid discretizations, M becomes

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

(1 − λ)(1 − 2λ)

−2λ(1 − λ) 1 − λ

λ(1 − λ) λ(1 − λ) (1 − λ)2

λ(1 − λ) λ(1 − λ) −λ(1 − λ) 1 − λ

λ2 λ(1 − λ) λ(1 − λ) (1 − λ)2

λ2 λ(1 − λ) λ(1 − λ) −λ(1 − λ) 1 − λ

. . .
. . .

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

It is easy to verify that the multigrid iteration scheme (15) converges for λ ≤ 1, since the
eigenvalues of M are given by its diagonal entries. Moreover, for the specific choice λ = 1,
the method has a purely convective transient phase and convergence is achieved in exactly
N/4 + 1 iterations. It is also possible to recursively apply grid coarsening to speed up the
procedure: for L grids, the multigrid algorithm can be written as

k = 1;
U(1) = Un;
U

(1) = S1U(1) + (I1 − S1) L
−1
1 F1;

while k < L

r(k) = LkU
(k) − Fk;

U (k+1) = R(k→k+1)
u U

(k);
Fk+1 = Lk+1U (k+1) − I (k→k+1)

r r(k);
U

(k+1) = Sk+1U (k+1) + (Ik+1 − Sk+1) L
−1
k+1Fk+1;

k = k + 1; (17)

end

Ũ(L) = U
(L);

while k > 1

Ũ(k−1) = U
(k−1) + I I ,(k→k−1)

p

(
Ũ

(k) − R(k−1→k)
u U

(k−1)
)

+ I E,(k→k−1)
p

(
Ũ

(k) − R(k−1→k)
u U (k−1)

)
;

k = k − 1;
end

Un+1 = Ũ(1).

In (17), the superscript (m → n) indicates that the interpolation operator transfers infor-
mation from the grid m to the grid n. For notation simplicity, this superscript is neglected
when considering the finest and the second finest grid.

The multigrid algorithm (17) converges in N/2L + 1 iterations (see Fig. 4). These results
are in line with the ones obtained with the TVD-MG [4] where the boundary conditions were
strongly imposed.
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Fig. 4 The left figure shows the P-norm of the error for a first order accurate single- and two-grid scheme with
N = 1000 and λ = 1. We have used the manufactured solution us (x) = e−x (cos(10πx) + cos(2πx)) and a
compatible random initial data. The convergence of the multigrid procedure is displayed in the right figure

Remark 4 For all the numerical experiments in Sects. 3 and 4, unless otherwise specified, we
have used the manufactured solution us(x) = e−x (cos(10πx) + cos(2πx)) and a random
initial data compatible with the boundary condition u (0, t) = 2. ��
Remark 5 The multigrid algorithm (17) is referred to as a multiplicative scheme [4,5]. A so-

called additive scheme can be obtained by replacingU (k+1) = R(k→k+1)
u U

(k)
withU (k+1) =

R(k→k+1)
u U (k). However, the resulting algorithm turns out to be slower than themultiplicative

version and hence only (17) will be considered in the following. ��

3.1 Initial Modifications for Higher Order Discretizations

The matrix-vector notation introduced in (11, 17) can be used to generalize and adapt the
multigrid algorithm for higher order discretizations. As a first attempt, we substitute D+ in
(2) with the SBP upwind operators of 3rd, 4th, 5th and 6th order for all the grids involved.
For all the levels, the RK4 time integrator with λ = 0.5 is used. The convergence results in
Fig. 5 show that the multigrid procedure either becomes ineffective or ceases to converge for
more than 2 grid levels.

A second attempt to extend the multigrid procedure to higher order discretizations was
made by recalling that the accuracy of the steady state solution does not depend on the
accuracy on the coarse grids. Thus, we kept a first order upwind discretization for Lk , k =
2, 3, . . .. The convergence plots for the multigrid procedure with high order discretization on
the fine grid and first order discretization on coarser grids are shown in Fig. 6. Once again, the
multigrid algorithm does not produce satisfactory results, at least not for orders of accuracy
higher than 3.

The outcome of these numerical experiments shows that an extension to higher order
discretizations requires a deeper understanding of the interpolation operators and further
analysis.
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Fig. 5 Convergence plots for the multigrid algorithm in (17) with 3rd (top left), 4th (top right), 5th (bottom
left), 6th (bottom right) order discretizations for all grids. RK4 time marching with λ = 0.5 was used on each
grid

3.2 Revisiting the Upwind-Biased Residual Restriction

Due to the pointwise notation and strong imposition of the boundary conditions used for the
TVD-MG, the upwind biased operator Ir (12) was previously presented only for the interior
nodes of the discretization. In that case, it can be shown that this residual restriction, for
F1 = 0, led to [4]

(F2) j = 1

Δx (2)

(
U (2)

j −U (2)
j−2

)
− 1

2

(
r (1)
j + r (1)

j−1

)

= 1

Δx (2)

(
U

(1)
j −U

(1)
j−2

)
− 1

2Δx (1)

[(
U

(1)
j −U

(1)
j−1

)
+

(
U

(1)
j−1 −U

(1)
j−2

)]

= 0, (18)

since Δx (2) = 2Δx (1). On the other hand, the coarse grid residual step of the algorithm (11)
can be recast as

F2 = L2U (2) − Irr(1) = (L2Ru − Ir L1)U
(1) + Ir F1. (19)

For first order upwind discretizations, in the interior nodes we can write
(
L1U

(1)
)

j
= 1

Δx (1)

(
U

(1)
j −U

(1)
j−1

)
,

(
L2U (2)

)

j
= 1

Δx (2)

(
U (2)

j −U (2)
j−2

)
,

(
Irr(1)

)

j
= 1

2

(
r (1)
j + r (1)

j−1

)
,

(
RuU

(1)
)

j
= U

(1)
j .
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Fig. 6 Convergence plots for the multigrid algorithm in (17) with 3rd (top left), 4th (top right), 5th (bottom
left), 6th (bottom right) order discretization for the fine grid and first order discretization for the coarser grids.
RK4 time marching with λ = 0.5 was used on each grid for wave propagation

Hence, each step of (18) ismimicked by (19), ifF1 = 0. By comparing these two expressions,
it is clear that the upwind biased restriction operator [4,5] satisfies L2Ru = Ir L1, verifying
exactly the approximation assumption (14), on the interior nodes of Ω2. To extend this
property also to the boundary nodes we compute

I+
r = L2Ru L

−1
1 =

⎡

⎢⎢⎢⎢⎢
⎣

1
2

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

⎤

⎥⎥⎥⎥⎥
⎦

, (20)

which explains the choice (12) which is identical to (20). I+
r in (12, 20) is inconsistent at the

left boundary node and matches the previously developed upwind biased restriction on the
other nodes.

The derivation of I+
r can of course be repeated for propagation problemswith left-traveling

waves discretized in space with the negative variant of the first order SBP upwind operators.
This leads to a residual restriction operator which is rotated with respect to its positive
counterpart
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I−
r =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In the following sections we will use I+
r and I−

r for the right- and left-traveling waves,
respectively. Similarly, the prolongation operators will be denoted with the superscript + or
− depending on the direction of propagation.

4 Extension to Higher Orders of Accuracy

To generalize the multigrid procedure for (1) to higher order accuracy, we recall that a unique
restriction operator I+

r such that L2Ru = I+
r L1 exists if L1 = D+ + P−1e0eT0 is invertible.

This relation should hold also for the residual restriction between coarser grids. However,
since the order of convergence does not depend on the accuracy of the operators on the coarse
grids, we choose, as we did in Sect. 3, to use a first order upwind scheme for the coarse grid
operators Li , i = 2, 3, . . .. The obvious advantage is that the residual restriction in (12, 20)
automatically satisfies the constraint Lk+1R(k→k+1)

u = I+,(k→k+1)
r Lk for k = 2, 3, . . .. In

other words, to accelerate the convergence for higher order discretizations we use the already
existing TVD-MG for first order schemes [4,5] on coarse grids. The crucial modification to
the former algorithm is the introduction of new residual interpolation operators between the
fine and the second finest grids, which depends on the order of accuracy of L1.

Note that by demanding I+
r = L2Ru L

−1
1 we can simplify the two-grid matrix M in (16)

to
M =

(
I1 − I+

p (I2 − S2)Ru

)
S1 − I E,+

p Ru (I1 − S1) , (21)

where I+
p = I Ip + I E,+

p . This matrix and, in general, the convergence properties of the
multigrid scheme are now formally independent of I+

r . However, to use the algorithm in
practice we need to compute F2 = I+

r F1 and hence we still need the restriction operators
I+
r in closed form.

4.1 Prolongation Operators

For the interpolation from coarse to fine grid, we will consider two classes of prolongation
operators:

1. The linear prolongation operator I+
p in (13).

2. The prolongation operator I+
p = I Ip + I E,+

p such that I Ip = RT
u and I E,+

p is obtained
from the SBP-preserving relation [12], limited to the nodes not included on the coarse
grid Ω2, i.e.

I E,+
p =

{
P−1
1

(
I−
r

)T
P2, nodes on Ω1 \ Ω2,

0, nodes on Ω2.
(22)

For simplicity, these prolongation operators will be referred to as SBP-preserving.

The SBP-preserving choice (22) also leads to (13) for first order discretizations. In Sect. 4.4
we will perform a few numerical experiments involving the SBP-preserving prolongation.
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However, unless otherwise stated, we will use the linear prolongation operator in the follow-
ing.

4.2 Second Order Discretizations

The second order space discretization of (1) is (2) with

D+ = 1

Δx

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1
−1 1
1
2 −2 3

2
. . .

. . .
. . .

1
2 −2 3

2
2
5 − 8

5 1 1
5

2 −5 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P=Δx · diag
(
1

4
,
5

4
, 1, . . . , 1,

5

4
,
1

4

)
.

(23)
Discretizing (2) in time with RK4 we get, as for the first order case, an iterative solver that
converges to an approximation of the steady-state solution (5). To accelerate the convergence,
we apply (11)with afirst order SBPupwind coarse-grid discretization. The residual restriction
operator I+

r = L2Ru L
−1
1 in this case can be written in closed form as

I+
r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
8 − 1

8
2
3

1
3

2
33

4
33

4
32

1
3

2
35

4
35

4
34

4
33

4
32

1
3

...
... · · · · · · · · · . . .

. . .
2

3N−3
4

3N−3
4

3N−4 · · · · · · · · · 4
32

1
3

1
4·3N−3

1
6·3N−4

1
6·3N−5 · · · · · · · · · 1

6·3
1
6

5
8

1
8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (24)

Note that the resulting interpolation is consistent for all nodes except the first one, as for (12).
Unlike the first order case, the residual restriction consists of nonlocal contributions which

increase the computational effort. A possible solution to this drawback is to cancel all con-
tributions smaller than a given threshold ε in absolute value. Furthermore, we round the
remaining entries to the number nearest to ε. We have chosen ε to be equal to 10−6. Fig-
ure 7 shows the sparsity patterns for the residual restriction in (24) and its approximated
counterpart.

Remark 6 The storage of Ir is not required, it suffices to compute its action on vectors.

In Fig. 8 (left) we compare the convergence of the multigrid algorithm with the exact
(24) and the approximate residual restriction operator. The approximate version does not
significantly change the convergence results compared to the use of the exact version in (24),
and hence it is preferred.

Remark 7 As for the single-grid case mentioned in Sect. 2.2, the convergence to steady-state
consists of a convective and a damping phase. The residual restriction I+

r = L2Ru L
−1
1

makes the convective phase faster and keeps the damping phase almost unaltered. ��
Remark 8 The fine grid wave propagation is not TVD for discretizations with order higher
than one. As a consequence, our multigrid algorithm is not designed to be TVD preserving.
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Fig. 7 Sparsity patterns of the exact residual restriction operator (24) (left) and its approximated version
(right) for the second order fine-grid discretization with N = 100. The approximated interpolation operator
is obtained by cancelling the matrix entries smaller than 10−6 in absolute value
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Fig. 8 Convergence plots for the multigrid algorithm applied to a second order discretization with N = 800.
The left figure shows the P-norm of the error for the exact residual restriction (24), while the convergence for
the approximate version is displayed on the right figure. RK4 time marching with λ = 0.5 was used on each
grid for wave propagation

4.3 Extension to Higher Orders

To extend the multigrid algorithm to higher order discretizations, we need to find I+
r such

that I+
r L1 = L2Ru . As for the second order case, it is possible to compute these restriction

operators by explicitly inverting the matrix L1. However, in general the entries of I+
r depend

on the number of nodes. This makes it unfeasible to exactly represent the restriction operator
needed for high order discretizations. However, the real representation of two consecutive
central rows of I+

r is only slightly different from one another. In particular we observe that
the farther two rows are from the boundaries, the smaller is the difference in absolute value
between two corresponding terms. Hence, we identify a repeating stencil by canceling all the
contributions smaller than a given threshold ε in absolute value and by rounding the entries
to the number nearest to ε.

Remark 9 A repeating stencil structure for the residual restriction operator I+
r can be iden-

tified only for N greater than a minimum dimension N∗, which depends on the threshold
chosen. For each order, we found N∗ through a straightforward trial and error procedure.

We have therefore computed, considering a tolerance ε = 10−6, the approximate version
of the residual restriction operators satisfying I+

r L1 = L2Ru for a 3rd, 4th, 5th and 6th order
fine-grid discretization. Since these discretizations are upwind biased, the resulting residual
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Fig. 9 Sparsity patterns of the residual restriction operators satisfying I+r L1 = L2Ru for 3rd (top left),
4th (top right), 5th (bottom left), 6th (bottom right) order discretizations on the fine grid. The approximated
interpolation operator is obtained by setting to zero the entries of the matrix smaller of 10−6 in absolute value

restrictions also depend on downwind components. In Fig. 9 the sparsity patterns for these
operators are shown for N = 160. Once again, the restriction operators are consistent at all
nodes except the first one due to the particular structure of the first order upwind operator
D+ in (3).

In Fig. 10we show the convergence plots of themultigrid procedure using the new residual
restriction operators I+

r . Similarly to the first (Fig. 4) and second (Fig. 8) order discretizations,
the new residual restrictions lead to L-grid algorithms with approximately 2L times faster
wave propagation, for all orders of accuracy.

For completeness, Table 1 shows the orders of convergence (computed and expected) for
different SBP-SAT upwind discretizations of (1). For a pth-order SBP upwind discretization
fulfilling Definition 1, the order of convergence is expected to be at least �p/2�+1 [7,8]. Our
results show a superconvergence behavior for some discretizations and do not contradict the
theory. Note that in practice it is not meaningful to aim for machine precision with multigrid
algorithms. It is enough to get an error below the truncation error of the scheme.

Remark 10 The multigrid algorithm (17) with the new interpolators can also be applied to
non-constant coefficient problems, for details see “Appendix A”.

4.4 The SBP-Preserving Prolongation

The use of the SBP-preserving prolongation instead of (13) leads to the convergence results
shown in Fig. 11 for 3rd, 4th, 5th and 6th order discretizations. In terms of iterations to reach
convergence, (22) does not yield any substantial improvement (cf. Fig. 10). However, the cost
in terms of arithmetical operations needed for the SBP-preserving prolongation is relatively
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Fig. 10 Convergence plots for the multigrid algorithm satisfying I+r L1 = L2Ru applied to a 3rd (top left),
4th (top right), 5th (bottom left), 6th (bottom right) order discretization on the fine grid. RK4 time marching
with λ = 0.5 was used on each grid for wave propagation

Table 1 Truncation errors and orders of convergence for the upwind SBP operators applied to (2)

N\Discretization 1st 2nd 3rd 4th 5th 6th

100 7.520e−2 2.130e−2 2.474e−3 3.972e−4 2.652e−4 2.664e−4

200 3.785e−2 5.563e−3 4.134e−4 2.303e−5 1.412e−5 1.430e−5

300 2.531e−2 2.500e−3 1.469e−4 4.449e−6 2.683e−6 2.395e−6

400 1.901e−2 1.414e−3 7.081e−5 1.404e−6 8.526e−7 6.654e−7

500 1.522e−2 9.072e−4 4.027e−5 5.789e−7 3.569e−7 2.455e−7

Order 0.9965 1.9889 2.5293 3.9703 3.9026 4.4684

Expected 1 2 2 3 3 4

The orders of convergence are computed with the truncation errors of the two finest grids

high compared to the linear prolongation, due to the sparsity pattern comparable to the one
of I+

r .
Nonetheless, the prolongation in (22) has the advantage of having better stability properties

compared to the linear prolongation in (13), hence allowing for slightly increased CFL
numbers. In Fig. 12, the convergence results for the 2nd order discretization with RK4 time-
marching and λ = 0.6 using both classes of prolongation operators are shown. In this case
the SBP-preserving prolongation prevents overshoots in the transient phase of the two-grid
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Fig. 11 Convergence plots for the multigrid algorithm satisfying I+r L1 = L2Ru applied to a 3rd (top left),
4th (top right), 5th (bottom left), 6th (bottom right) order discretization on the fine grid. The SBP-preserving
prolongation (22) was used in the fine grid update step and RK4 time marching with λ = 0.5 was used on
each grid for wave propagation
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Fig. 12 Convergence plots for the multigrid algorithm satisfying I+r L1 = L2Ru applied to a 2nd order
discretization on the fine grid. The linear (left) and the SBP-preserving prolongation (right) were used in the
fine grid update step. Moreover, RK4 time marching with λ = 0.6 was used on each grid for wave propagation

procedure. Despite this benefit, the SBP-preserving prolongation remains costly compared
to the linear prolongation. Hence, in the following (13) will be used in the fine grid update
step of (11).

123



62 Page 18 of 39 Journal of Scientific Computing (2020) 82 :62

5 Extension to Hyperbolic Systems of Equations

Consider the linear hyperbolic system of equations

ut + Aux = f(x), 0 < x < 1, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

(25)

where A ∈ R
s×s is a symmetric matrix with constant coefficients and all the vectors involved

have s components. To start with, we associate to (25) the set of characteristic boundary
conditions

XT+u = g0, x = 0,
XT−u = g1, x = 1,

(26)

where X+ and X− indicate the eigenvectors related to the positive and negative eigenvalues
of A, respectively.

Let A = X�XT be the eigendecomposition of A: we define A± = X�±XT = X±�±XT±
such that A = A+ + A−, where �+ and �− are matrices consisting of the positive and
negative eigenvalues of A. Furthermore, it is convenient to introduce the projection matrices
I±
s = X±XT± in order to split left- and right-traveling waves. The following relations hold

X = [
X+ X−

]
, � =

[
�+ 0
0 �−

]
, I+

s + I−
s = Is, I±

s A± = A±, I±
s A∓ = 0,

where Is ∈ R
s×s is the identity matrix. The boundary conditions (26) lead to well-posedness

of (25), since for f = 0 the energy-method gives

d

dt
‖u‖22 = uT Au |x=0 −uT Au |x=1

= gT0 �+g0 − gT1 �−g1 + uT A−u |x=0 −uT A+u |x=1 .

A semidiscrete SBP-SAT approximation of (25, 26) can be written as [7,13]

U t + (
A+ ⊗ D+

)
U + (

A− ⊗ D−
)
U = f −

(
A+ ⊗ P−1e0eT0

)
(U − g̃0)

+
(
A− ⊗ P−1eN eTN

)
(U − g̃1), (27)

where we have introduced the vector eN = (0, . . . , 0, 1)T . Moreover, in (27) the operator ⊗
denotes the Kronecker product defined by

X ⊗ Y =
⎡

⎢
⎣

x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY

⎤

⎥
⎦ ∈ R

mr×nk, X ∈ R
m×n, Y ∈ R

r×k .

The discrete operator (A+ ⊗ D+)+(A− ⊗ D−) in (27) can be recast to highlight the relation
between the SBP upwind operators (D+, D−) and the SBP operators based on centered
difference methods (Dc) [8] as

(A+ ⊗ D+) + (A− ⊗ D−) =
(
A ⊗ D+ + D−

2

)
+

((
A+ − A−) ⊗ D+ − D−

2

)

= (A ⊗ Dc) + (|A| ⊗ P−1S
)
. (28)
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In (28), |A| = A+ − A− has non-negative eigenvalues and S = 1
2 (Q+ − Q−) =

1
2

(
Q+ + QT+

)
is a positive semi-definite matrix which can be seen as an artificial dissi-

pation term [7,14]. As a consequence, the stability of (27) can be proved [6] in the same way
as for the usual SBP operators.

Remark 11 The centered operator Dc = 1
2 (D+ + D−) satisfies the usual SBP property.

Indeed, by denoting Dc with P−1Q we can write

P−1Q = Dc = D+ + D−
2

= P−1
(
Q+ + Q−

2
+ B

2

)

and Q = 1
2 (Q+ + Q−) + B

2 . By adding the transpose of Q to itself, we get

Q + QT = 1

2

(
Q+ + QT− + Q− + QT+

)
+ B = B,

which implies that Dc is a discrete operator fulfilling the usual SBP property [6].

5.1 Modifications of theMultigrid Procedure for Systems of Equations

To apply the multigrid algorithm to hyperbolic systems, we need to recast the semi-discrete
formulation (27) in compact form, as we did for the scalar problem (2). By introducing L+

1 =
D+ + P−1e0eT0 and L−

1 = D− − P−1eN eTN , we can write L1 = (
A+ ⊗ L+

1

)+ (
A− ⊗ L−

1

)

and (27) becomes

U t + L1U = f +
(
A+ ⊗ P−1e0eT0

)
g̃0 −

(
A− ⊗ P−1eN eTN

)
g̃1 =: F1. (29)

In a similar manner as for the scalar case, convergence to steady-state can be accelerated by
using the algorithm (11). For the system case, L2 = (

A+ ⊗ L+
2

) + (
A− ⊗ L−

2

)
indicates

a coarse-grid counterpart of L1 and Si is a matrix representing a time-marching procedure
on Ωi , i = 1, 2. The fine grid update step for the system case can be built from the char-
acteristic modes. Applying directly the same idea of the scalar problem to the characteristic
components, we obtain

(
XT ⊗ IN+1

)
Un+1 =

(
XT ⊗ IN+1

)
U

(1) +
(
XT ⊗ I I ,ep

) (
U

(2) − RuU
(1)

)

+
([

X+, 0
]T ⊗ I E,+

p

) (
U

(2) − RuUn
)

+
([
0, X−

]T ⊗ I E,−
p

) (
U

(2) − RuUn
)

.

Here, we used the identity matrix IN+1 ∈ R
(N+1)×(N+1) and I I ,ep indicates the prolongation

operator for the included nodes in the scalar case. Multiplying from the left by (X ⊗ IN+1)

yields

Un+1 = U
(1) +

(
Is ⊗ I I ,ep

) (
U

(2) − RuU
(1)

)

+
[(

I+
s ⊗ I E,+

p

)
+

(
I−
s ⊗ I E,−

p

)] (
U

(2) − RuUn
)

.

This formula can be recast as the fine grid update step in (11) by using the following prolon-
gation operators

I Ip = Is ⊗ I I ,ep , I Ep =
(
I+
s ⊗ I E,+

p

)
+

(
I−
s ⊗ I E,−

p

)
.
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Likewise, we must also consider the restriction operators

Ru = Is ⊗ Re
u, Ir = (

I+
s ⊗ I+

r

) + (
I−
s ⊗ I−

r

)
, (30)

whereRe
u indicates the injection operator for the scalar case. These restriction operators lead

to the following

Lemma 1 The operators in (30) yield Ir L1 = L2Ru for the characteristic boundary condi-
tions (26).

Proof The result can be proved by computing Ir L1 as

Ir L1 = [(
I+
s ⊗ I+

r

) + (
I−
s ⊗ I−

r

)] [(
A+ ⊗ L+

1

) + (
A− ⊗ L−

1

)]

=
⎛

⎜
⎝I+

s A+
︸ ︷︷ ︸
=A+

⊗I+
r L+

1

⎞

⎟
⎠ +

⎛

⎜
⎝I+

s A−
︸ ︷︷ ︸

=0

⊗I+
r L−

1

⎞

⎟
⎠

+
⎛

⎜
⎝I−

s A+
︸ ︷︷ ︸

=0

⊗I−
r L+

1

⎞

⎟
⎠ +

⎛

⎜
⎝I−

s A−
︸ ︷︷ ︸
=A−

⊗I−
r L−

1

⎞

⎟
⎠

= (
A+ ⊗ I+

r L+
1

) + (
A− ⊗ I−

r L−
1

)
.

Since I+
r and L+

1 are the samematrices as in the scalar problem, their product fulfills I+
r L+

1 =
L+
2 Re

u with L+
2 = D+,2 + P−1

2 e0,2eT0,2. Similarly, I−
r L−

1 = L−
2 Re

u , where L−
2 = D−,2 −

P−1
2 eN ,2eTN ,2, and hence

Ir L1 = (
A+ ⊗ L+

2 Re
u

) + (
A− ⊗ L−

2 Re
u

)

= [(
A+ ⊗ L+

2

) + (
A− ⊗ L−

2

)] (
Is ⊗ Re

u

) = L2Ru .

��

Remark 12 The residual restriction Ir in (30), which consists of the projection matrices I±
s ,

has the advantage of making the mixed contributions in Ir L1 disappear. ��

Lemma 1 implies that the operators I+
r and I−

r , previously computed for the scalar case,
can be used to write a residual restriction Ir which verifies the approximation assumption
(14). This results suggests that the algorithm for the system case behaves similarly to the
scalar constant coefficient case for problems with characteristic boundary conditions such as
(25, 26).

Remark 13 The general L-grid algorithm (17) can be similarly used for the system case.

5.2 Numerical Results for Characteristic Boundary Conditions

To test the algorithm (17) for the system case, we study the linearized one dimensional
symmetrized form of the compressible Euler equations [15]

Ut + AUx = F, 0 < x < 1, t > 0,
U(x, 0) = f, 0 < x < 1,

(31)
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In (31) we have

U =
[

c√
γ ρ

ρ, u, 1
c
√

γ (γ−1)
θ
]T

, A =

⎡

⎢
⎢
⎣

u c√
γ

0

c√
γ

u
√

γ−1
γ

c

0
√

γ−1
γ

c u

⎤

⎥
⎥
⎦

with u = 1, c = 2, ρ = 1 and γ = 1.4. The variables ρ, u and θ are the density, velocity and
temperature perturbations of the fluid, respectively. The characteristic boundary conditions
(26) become

c
ρ
ρ − θ

c(γ−1) = g01, x = 0,
c
ρ
ρ + γ u + θ

c = g02, x = 0,
c
ρ
ρ − γ u + θ

c = g1, x = 1.
(32)

Consider the manufactured solution

ρ = e−ν cos2(ξπx), u = cos (ξπx) , θ = e−ν sin2(ξπx)

with ν = 0.1, ξ = 2 and a random initial data compatible with the boundary conditions. The
multigrid convergence results for the 1st, 2nd, 3rd, 4th, 5th and 6th order upwind discretiza-
tions of (31), (32) are shown in Fig. 13. As expected, applying the algorithm in (17) makes
wave propagation faster by a factor of 2L . Note that for the two-grid algorithm applied to
the 2nd order discretization overshoots occur. As mentioned in Sect. 4.4, this side effect can
be eliminated by using the SBP-preserving prolongation (22) in the fine-grid update step of
(11).

5.3 Numerical Results for Other Boundary Conditions

Other sets of boundary conditions can also lead to a well-posed problem. Consider a rotation
of the matrix A = YΩY T using

Y =
⎡

⎢
⎣

1 0 0
c

u
√

γ
1 0

0
√

γ−1
γ

uγ c
u2γ−c2

1

⎤

⎥
⎦ , Ω = diag

(

u,
u2γ − c2

uγ
,
uγ

(
u2 − c2

)

u2γ − c2

)

. (33)

Since we consider a subsonic flow (u < c), two boundary conditions must be imposed at
x = 0 while the remaining boundary condition is set at x = 1. In particular,

Y T+u = g0, x = 0,
Y T−u = g1, x = 1,

lead to the boundary conditions

ρ
ρ

+ u
u = g0,1, x = 0,
θ = g0,2, x = 0,

u + u
u2γ−c2

θ = g2, x = 1,
(34)

and a well-posed problem. The semi-discrete formulation

U t + (
A+ ⊗ D+

)
U + (

A− ⊗ D−
)
U = f −

(
Y+ΩY T+ ⊗ P−1e0eT0

)
(U − g̃0)

+
(
Y−ΩY T− ⊗ P−1eN eTN

)
(U − g̃1), (35)
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Fig. 13 Convergence plots for the multigrid algorithm (17) applied to the linearized one dimensional sym-
metrized form of the compressible Euler equations (31) with characteristic boundary conditions (32)

can be shown to be stable [13] (it can be rewritten in terms of central difference operators
Dc due to (28)).

Applying the L-grid algorithm (17) to (35) leads to the convergence results in Fig. 14.
Since L1 = (A+ ⊗ D+)+ (A− ⊗ D−)+(

Y+ΩY T+ ⊗ P−1e0eT0
)−(

Y−ΩY T− ⊗ P−1eN eTN
)
,

Lemma 1 does not hold in this case, and Ir in (30) fulfills Ir L1 = L2Ru only at the inte-
rior nodes. Despite this fact, the multigrid procedure leads to faster convergence for all the
order of accuracy. The convergence to steady-state is slower compared to the one with the
characteristic boundary conditions in (32) (cf. Fig. 13), since the non-characteristic boundary
condition in (34) are reflecting [16]. In particular, the reflective effects seem to be dominating
over the wave propagation for both the single- and multi-grid iterative methods. Since the
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Fig. 14 Convergence plots for the multigrid algorithm (17) applied to the linearized one dimensional sym-
metrized form of the compressible Euler equations (31) with (34)

proposed multigrid method is designed to accelerate wave propagation, slower convergence
is somewhat expected.

More generally, the following set of boundary conditions

Y T+u − R0Y T−u = g0, x = 0,
Y T−u − R1Y T+u = g1, x = 1,

(36)

lead to the well-posedness of (31) if

Ω− + RT
0 Ω+R0 < 0, Ω+ + RT

1 Ω−R1 > 0. (37)
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Fig. 15 Convergence plots for the multigrid algorithm (17) applied to the linearized one dimensional sym-
metrized form of the compressible Euler equations (31) with (36), (38)

If (37) holds, the semi-discrete SBP-SAT approximation of (31), (36) is stable [13]. As an
example, the matrices

R0 = 1√
2

[
1
1

]
, R1 = [

1/3 1/2
]

(38)

verify (37) for the rotation (33) and hence can be used in (36) to produce stable boundary
conditions for (31). The convergence results for themultigrid algorithm in this case are shown
in Fig. 15. Once again, faster convergence to steady-state is achieved proportionally to the
number of grids used, but the results are slower compared to the one with R0 = R1 = 0 as
in (34) (cf. Fig. 14).

123



Journal of Scientific Computing (2020) 82 :62 Page 25 of 39 62

6 Extension to Nonlinear Problems

Consider the nonlinear conservation law

ut + f (u)x = 0, 0 < x < 1, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

(39)

with appropriate Dirichlet boundary conditions. In order to extend the multigrid algorithm
(17) to problems such as (39), we must modify both the residual restriction Ir and the
prolongation for the excluded nodes I Ep . Since the characteristic directions change from
grid points to grid points, these interpolation operators must be constructed by solving local
boundary problems

ut + f (u)x = 0, xL < x < xR, t < t < tnew,

u(xL , t) = uL , t < t < tnew,

u(xR, t) = uR, t < t < tnew

u(x, t) = u(x), xL < x < xR,

u(x) =
{
uL , xL < x < x,

uR, x < x < xR .

The extension of Ir and I Ep to nonlinear problems was first presented in [4] for first-order
schemes. Here, we generalize this technique to higher orders.

6.1 Interpolation Operators for the Nonlinear Case

We start by considering the residual restriction operator Ir in the two-grid algorithm (11).
Since the nonlinear problem (39) can be rewritten as ut + f ′ (u) ux = 0, the sign of f ′ (u)

determines the direction of the wave propagation. As a consequence, Ir
(
r(1)

)
depends on

the sign of f ′ evaluated at U(1)
.

Consider the 2 j th node, which is included in the coarse grid. If the sign of f ′ does not
change in a neighborhood of this node, it is easy to identify the direction of the upwind-biased

restriction. In particular, if both f ′
(
U

(1)
2 j−1

)
and f ′

(
U

(1)
2 j+1

)
are non-negative, the problem

gives rise to a right-traveling wave and the residual restriction at x (2)
2 j is given by I+

r . Vice

versa, if f ′
(
U

(1)
2 j−1

)
≤ 0 and f ′

(
U

(1)
2 j+1

)
≤ 0, then the problem propagates from right to

left and the restriction at x (2)
2 j is computed with I−

r . In Fig. 16, these two cases are illustrated
for the first-order residual restriction operators I±

r .

Sign changes of f ′ yield either shocks or rarefaction fans. For example, if f ′
(
U

(1)
2 j−1

)
is

positive and f ′
(
U

(1)
2 j+1

)
is negative, a discontinuity is expected to occur in a neighborhood

of x (2)
2 j . In this case, the sign of f ′

(
U

(1)
2 j

)
determines the direction of the residual restriction

Ir , see Fig. 17. Vice versa, rarefaction fans are experienced when f ′
(
U

(1)
2 j−1

)
is negative

and f ′
(
U

(1)
2 j+1

)
is positive. In that case, the node x (2)

2 j is not reached by any traveling wave

and the residual restriction acts locally as the injection operator Ru , see Fig. 18.
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Fig. 16 The residual restriction operator Ir acting on the 2 j th node of the coarse grid depends on the sign of
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and f ′ (U (1)

2 j+1

)
. For right-traveling waves the residual restriction acts as I+r , otherwise as I−r
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Fig. 17 The residual restriction operator Ir for shocks. The direction of the wave propagation depends on the

sign of f ′ at U (1)
2 j
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Fig. 18 If f ′ (U (1)
2 j−1

)
≤ 0 and f ′ (U (1)

2 j+1

)
≥ 0, then the node x(2)

2 j is not reached by any traveling wave.

As a result, the residual restriction acts locally as an injection operator
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The resulting residual restriction acting on the coarse grid node x (2)
2 j is summarized below:

[
Ir

(
r(1)

)]

2 j
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
I+
r

(
r(1)

)]

2 j
, if f ′

(
U

(1)
2 j−1

)
≥ 0, f ′

(
U

(1)
2 j+1

)
≥ 0,

[
I−
r

(
r(1)

)]

2 j
, if f ′

(
U

(1)
2 j−1

)
≤ 0, f ′

(
U

(1)
2 j+1

)
≤ 0,

[
I+
r

(
r(1)

)]

2 j
, if f ′

(
U

(1)
2 j−1

)
≥ 0 ≥ f ′

(
U

(1)
2 j+1

)
,

and f ′
(
U

(1)
2 j

)
≥ 0,

[
I−
r

(
r(1)

)]

2 j
, if f ′

(
U

(1)
2 j−1

)
≥ 0 ≥ f ′

(
U

(1)
2 j+1

)
,

and f ′
(
U

(1)
2 j

)
≤ 0,

[
Ru

(
r(1)

)]

2 j
, if f ′

(
U

(1)
2 j−1

)
≤ 0 ≤ f ′

(
U

(1)
2 j+1

)
.

(40)

The same arguments hold for the prolongation operator on the excluded nodes I Ep in the

two-grid algorithm (11), whose direction depends on the sign of f ′ evaluated at U
(2)

. In

particular, by introducing b
(2) = U

(2) − RuU
(1)

we can write I Ep
(
b
(2)

)
on the excluded

fine grid node x (1)
2 j+1 as

[
I Ep

(
b
(2)

)]

2 j+1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
I E,+
p

(
b
(2)

)]

2 j+1
, if f ′

(
U

(2)
2 j

)
≥ 0, f ′

(
U

(2)
2 j+2

)
≥ 0,

[
I E,−
p

(
b
(2)

)]

2 j+1
, if f ′

(
U

(2)
2 j

)
≤ 0, f ′

(
U

(2)
2 j+2

)
≤ 0,

[
I E,+
p

(
b
(2)

)]

2 j+1
, if f ′

(
U

(2)
2 j

)
≥ 0 ≥ f ′

(
U

(2)
2 j+2

)
,

and f ′
(
U

(1)
2 j+1

)
≥ 0,

[
I E,−
p

(
b
(2)

)]

2 j+1
, if f ′

(
U

(2)
2 j

)
≥ 0 ≥ f ′

(
U

(2)
2 j+2

)
,

and f ′
(
U

(1)
2 j+1

)
≤ 0,

0, if f ′
(
U

(2)
2 j

)
≤ 0 ≤ f ′

(
U

(2)
2 j+2

)
.

(41)

Remark 14 The prolongation operator I Ep acts on the excluded nodes x (1)
2 j+1, which do not

have a corresponding node on the coarse grid. Hence, the only available information to

determine the direction of a shock at x (1)
2 j+1 is the sign of f ′

(
U

(1)
2 j+1

)
.

The L-grid algorithm for nonlinear problems is based on the interpolation operators given
by (40) and (41).

6.2 A Stable Upwind SBP-SAT Spatial Discretization of the Burgers’ Equation

As an example of a nonlinear conservative law, we consider the Burgers’ equation

ut + uux = 0, 0 < x < 1, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

(42)
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Table 2 Truncation errors and orders of convergence for the upwind SBP operators applied to (43)

N\ Discretization 1st 2nd 3rd 4th 5th 6th

100 2.394e−2 6.892e−5 3.992e−5 8.254e−7 7.982e−7 2.065e−8

200 1.165e−2 1.741e−5 9.920e−6 1.038e−7 1.004e−7 1.308e−9

300 7.702e−3 7.763e−6 4.400e−6 3.082e−8 2.982e−8 2.596e−10

400 5.752e−3 4.374e−6 2.473e−6 1.302e−8 1.259e−8 8.238e−11

500 4.590e−3 2.802e−6 1.581e−6 6.668e−9 6.452e−9 3.381e−11

Order 1.0113 1.9954 2.003 2.997 2.997 3.991

Expected 1 2 2 3 3 4

The orders of convergence are computed for the manufactured solution e−x and with the truncation errors of
the two finest grids
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Fig. 19 Initial data u0(x) (left) and corresponding analytical solution (right) of the Burgers’ equation (42)
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Fig. 20 The steady-state solution U for the semi-discrete problem (43). The left and right figures show the
solution for the 1st and 5th order discretization, respectively

which can be recast as (39)with f (u) = u2/2.A stable spatial discretization of (42)with SBP
upwindoperators can be obtainedbymeans of centeredfinite differences Dc = 1

2 (D+ + D−)

(see Remark 11) in combination with the artificial dissipation P−1S = 1
2 (D+ − D−) such

that D± = Dc ± P−1S. In particular, we write
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Fig. 21 Relative errors for the multigrid algorithm (17) applied to the Burgers’ equation (42) with initial data
u0 (x) in (45) leading to shock. The restriction operators are given by (40) and (41)

ut + 1

3
UDcu + 1

3
DcUu + P−1Su = − P−1e0a0 (u0) (u0 − g0)

+ P−1eNa1 (uN ) (uN − gN ) ,

(43)

with U = diag ([u (x0) , u (x1) , . . . , u (xN )]), g0, gN given boundary data and

a0 (u0) = 1

3
(u0 + |u0|) , a1 (uN ) = 1

3
(uN − |uN |) .

Applying the energy-method to (43) with zero boundary data yields

1

2

d

dt
‖u‖2P + 1

3
uTUQu + 1

3
uT QUu + uT Su = −a0 (u0) u

2
0 + a1 (uN ) u2N . (44)
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Fig. 22 Initial data u0(x) = cos (5πx) (left) and corresponding analytical solution (right) of the Burgers’
equation (42)

Since uTUQu + uT QUu = 1
2u

T
[U (

Q + QT
) + (

Q + QT
)U]

u = u3N − u30, the energy-
rate (44) can be rewritten as

d

dt
‖u‖2P = −2uT Su − 2

3
u20 |u0| − 2

3
u2N |uN |

which leads to stability of (43) since S is positive semi-definite.
The orders of convergence of the semi-discrete problem (43) are shown in Table 2. The

truncation errors were computed by using the smooth steady manufactured solution u (x) =
e−x , which is solution to the inhomogeneous problem ut +uux = −e−2x . The manufactured
solution was also used to provide boundary and initial data. For each test, the steady-state
solution was computed with 5000 iterations of the fourth order Runge-Kutta method with
λ = 0.5. The orders of convergence match the expected order �p/2� + 1 for a discretization
involving pth-order SBP upwind operators [7,8].

6.3 Numerical Results for the Burgers’ Equation

The convergence to steady-state of the spatial discretization (43) can be accelerated by using
the multigrid algorithm (17) modified with the interpolation operators given in (40) and (41).
Here, we consider the two test cases used in [4].

As a first example, we consider a shock problem with initial data

u0 (x) =

⎧
⎪⎨

⎪⎩

1, 0 ≤ x ≤ 1
4 ,

0, 1
4 < x < 3

4 ,

−1, 3
4 ≤ x ≤ 1.

(45)

Both u0 (x) and the analytical steady-state solution for the Burgers’ equation (42) are shown
in Fig. 19. Due to the discontinuity at x = 1

2 , the steady-state solution for the semi-discrete
problem (43) differs slightly from the analytical one in a neighborhood of x = 1

2 , see Fig. 20.
Likewise, also the multigrid solutions exhibit minor differences with respect to each other.
Note that we have not used any specific shock treatment in these calculations. Since the
steady-state solution changes slightly from case to case, the convergence plots below show
the relative error Un+1 − Un in the P-norm. The multigrid convergence for the Burgers’
equation with the discontinuous initial data u0 (x) in (45) is shown in Fig. 21. As for linear
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Fig. 23 Relative errors for the multigrid algorithm (17) applied to the Burgers’ equation (42) with initial data
u0 (x) = cos (5πx) leading to both shocks and rarefactions. The restriction operators are given by (40) and
(41)

problems, the multigrid algorithm leads to approximately 2L times faster wave propagation,
with the only exception of the two-grid procedure applied to the second order discretization.
In this case, the convergence is only twice as fast as the single-grid method.

Next, we consider the initial data u0 (x) = cos (5πx) which develops both shocks and
rarefactions, leading to the same analytical steady-state solution as before, see Fig. 22. The
multigrid convergence for this problem is shown in Fig. 23. Furthermore, in Fig. 24 we show
themultigrid solutionwith five grid levels at different iterations for a fifth order discretization.
The algorithm (17) with the nonlinear modifications in (40) and (41) leads to approximately
2L times faster wave propagation only in the first order case. For higher orders, the speedup
factor drops to approximately 2L−1.
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Fig. 24 Multigrid solution with five grid levels after 30 (top left), 60 (top right), 90 (bottom left) and 120
(bottom right) iterations

Remark 15 The approximation assumption (14) holds only approximately for the nonlinear
residual restriction in (40) applied to the SBP upwind discretization in (43). Nonetheless, we
could in some cases obtain the optimal speedup factor. This results suggests that fulfilling
the approximation assumption (14) is not absolutely necessary in order to obtain L-grid
procedures with 2L times faster wave propagation.

7 Two-Dimensional Problems

Consider the linear advection problem in two space dimensions

ut + aux + buy = f (x, y), 0 < x < 1, 0 < y < 1, t > 0,
u(x, 0, t) = gS (x) , 0 < x < 1, t > 0,
u(0, y, t) = gW (y) , 0 < y < 1, t > 0,
u(x, y, 0) = u0(x, y), 0 < x < 1, 0 < y < 1,

(46)

with a and b positive constants.

Remark 16 Multigrid techniques for two-dimensional hyperbolic problems require a double
full-coarsening [5], for details see “Appendix B”.
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Fig. 25 Convergence plots for the multigrid algorithm (17) with the residual restrictions operators in (47)
applied to the two-dimensional advection equation (46) with a = b = 1

As a first attempt to accelerate the convergence to steady-state, the residual restriction is
computed as a linear combination of the one-dimensional operators as in [5], i.e.

Ir = 1

2

(
Ir ,x ⊗ Ru,y + Ru,x ⊗ Ir ,y

)
. (47)

The resulting multigrid convergence to the manufactured steady-state solution u (x, y) =
cos

(
x2 + y2

)
is shown in Fig. 25 for a = b = 1 in (46). Convergence is achieved for one,

two and three grid levels. For the three level procedure, even though the wave propagation
is accelerated by a factor of 23 = 8 as expected, the convergence to steady-state is mostly
the same as the one of the two level algorithm. Furthermore, overshoots occur for more than
three grid levels. These spurious oscillations both slow down the propagation and lead to an
inaccurate steady-state solution.
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Fig. 26 Convergence plots for the multigrid algorithm (17) with the residual restrictions operators satisfying
the approximation assumption applied to the two-dimensional advection equation (46)

However, the multigrid algorithm with the residual restriction operators satisfying the
approximation assumption (14) prevents overshoots in all the L-level procedures. Moreover,
it provides 2L times faster wave propagation, see Fig. 26. However, the convergence rate
becomes significantly worse for higher order fine grid discretizations. This effect seems to
make the algorithm less effective.We envision that other interpolation operators in (17)might
both overcome this drawback and prevent overshoots in the transient phase.

8 Conclusions and FutureWork

In this paper, we have replicated and extended the first order accurate TVD-MG scheme [4,5]
to upwind Summation-By-Parts (SBP) based high-order accurate finite difference methods
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[6,7] for linear hyperbolic problems. We have reinterpreted the upwind biased interpolation
fromamatrix-vector perspective, leading tomore general residual restriction operators. These
new operators, which satisfy the approximation assumption, allowed us to complement the
wave propagation for high-order discretizations with the TVD-MG scheme for first order
approximations on coarse grids.

Furthermore, we have shown that the restriction operators needed to accelerate wave
propagation for the linear advection equation can be used to improve the procedure for
hyperbolic systems. For characteristic boundary conditions, the new multigrid scheme leads
to wave propagation with increasing speed as the number of grids increases. For other stable
boundary conditions, the effect of this algorithm is to increase the convergence rate.

We have also extended the nonlinear modification of the TVD-MG scheme to higher order
SBP-SATupwind discretizations. Convergence is achieved for all the orders of accuracy, even
when dealingwith shocks and rarefaction fans. For almost all the one-dimensional (linear and
nonlinear) convection-dominated problems that we have investigated, the L-grid algorithm
led to 2L times faster wave propagation. The speedup factor dropped to 2L−1 only for the
multigrid procedure applied to the Burgers’ equation with both shocks and rarefactions.

Finally, two-dimensional problems have been studied. We have shown that fulfilling the
approximation assumption is a sufficient condition for obtaining a speedup factor of 2L for
the wave propagation. However, the resulting procedure is costly. More research is needed
in order to design two-dimensional multigrid algorithms which prevent overshoots and do
not require the approximation assumption to hold.
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Appendix

A Numerical Results for a Variable Coefficient Advection Problem

The multigrid algorithm (17) can also be used to accelerate variable coefficient advection
problems such as

ut + a (x) ux = f (x), 0 < x < 1, t > 0,
u(0, t) = g, t > 0,
u(x, 0) = u0(x), 0 < x < 1.

(48)

Here, we consider a strictly positive coefficient a (x) and the upwind SBP-SAT discretization

U t + AD+U = f − AP−1(U0 − g)e0, t > 0,
U(0) = U0,

(49)
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Fig. 27 The advection coefficient a (x) in (50) (left) and the corresponding steady-state solution to (48) (right)

where A = diag ([a (x0) , a (x1) , . . . , a (xN )]). Similarly to the previous spatial discretiza-
tion (2), this problem can be proved to be stable in the A−1P norm.

Consider the advection coefficient

a (x) =
{ 1

2 (2 + cos (10πx)) , 0 ≤ x < 1
2 ,

2x − 1
2 ,

1
2 ≤ x ≤ 1,

(50)

the forcing function f (x) = 2 + xe−x2 and the boundary data g = 1. The advection
coefficient (50) and the corresponding steady-state solution to (48) are shown in Fig. 27.

For this problem, the approximation assumption (14) is not strictly satisfied. Nonetheless,
the convergence results for the single- and L-grid procedure (17) in Fig. 28 show that thewave
propagation is accelerated approximately by a factor of 2L , as for the constant coefficient
problem (1).

B The Double Full-Coarsening for Two-Dimensional Problems

Consider the one-dimensional advection problem (1) in a two-dimensional domain (0, 1)2.
The standard full-coarsening (shown in the left side of Fig. 29) suggests that wave prop-
agation, which in this case propagates the signal towards the right boundary, can not be
accelerated by multigrid in the lines consisting of only excluded nodes. To address this issue,
a second full-coarsening is needed (see the middle side of Fig. 29). By combining these two
coarse grids, one gets a double full-coarsening (as in the right side of Fig. 29)which allows for
wave propagation through all the lines of the fine grid. As a consequence, two-dimensional
problems require 2k−1 grids for the kth level and a total amount of 2L − 1 grids in order
to accelerate wave propagation with a L-level algorithm. Analogously, a three-dimensional
problem would need 22(k−1) grids for the kth level and a total amount of

(
4L − 1

)
/3 grids

[5].
The double full-coarsening also allows for an easier interpretation of the fine-grid update

step in (17) for two-dimensional problems: the solution at the excluded nodes is reconstructed
by interpolating the known data from the neighboring points. As in the one-dimensional prob-
lems, the direction of the interpolation is determined by the direction of thewave propagation.
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Fig. 28 Convergence plots for the multigrid algorithm (17) applied to the variable coefficient advection
problem (48)

Note that the second full-coarsening in Fig. 29 can not include the boundary nodes. Indeed,
a staggered grid retaining the boundary nodes would lead to the same CFL limitation of the
fine grid. Due to this constraint, a limited amount of interpolation operators must be derived
in order to accelerate the convergence of ut + ux = f to steady-state. For this problem,
which propagates the modes along the x-line, we consider the interpolation operators

Ir = Ir ,x ⊗ Ru,y, I Ep = I Ep,x ⊗ I Ip,y, I Ip = I Ip,x ⊗ I Ip,y Ru = Ru,x ⊗ Ru,y, (51)

where Ir ,α ,Ru,α , I Ip,α , I
E
p,α are the one-dimensional interpolation operators in the coordinate

direction α ∈ {x, y}. These operators depend on the kind of coarsening considered. The four
possible configurations are shown in Fig. 30. In Sect. 4 we have derived the interpolation
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Fig. 29 In the left and middle figure, two single full-coarsenings of a fine grid are presented. The white dots
are not included in any coarse grid, the black dots belong to the standard full-coarsened grid whereas the
staggered full-coarsened grid consists of the crosses. The right figure shows a double full-coarsening, which
is obtained by combining the first two

Fig. 30 The four possible configurations restrict the amount of interpolation operators needed to only four
types. Odd nodes to odd nodes (first kind), odd nodes to even nodes (second kind), even nodes to even nodes
including the first (third kind) or second one (fourth kind)
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Fig. 31 The multigrid algorithm (17) applied to the fifth order discretization of the one-dimensional advection
equation (1) discretized in a two-dimensional domain [0, 1]2. The interpolation operators given in (51) have
been used with single (left) and double (right) coarsening

operators only for the configuration where the boundary nodes are included in both the fine
and coarse grids. With a similar procedure it is possible to obtain the residual restrictions for
the other three cases, as well.

Remark 17 Our multigrid method makes use of high order wave propagation in the fine grid,
while the first order discretization is needed for all the coarse grids. Hence, the interpolation
operators conveying the information between grids involving an even number of nodes are
uniquely determined by the direction of the wave propagation.

The modified two-dimensional L-level algorithm for ut + ux = f was studied, for both
the single standard and double full-coarsenings, in Fig. 31. The standard coarsening fails to
accelerate wave propagation, as expected. The double coarsening leads to 2L times faster
wave propagation as also demonstrated in [5] for first order discretizations. However, the
convergence to steady-state is rather slow.
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