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Abstract
In this paper, a least-squares spectral method and a non-conforming least-squares spectral
element method for three dimensional linear elliptic system will be presented. Differentia-
bility estimates and the main stability theorem for the proposed method are proven. Using
the regularity estimate and the proposed stability estimates, we introduce a suitable precon-
ditioner and show that the condition number of the preconditioned system is O((lnW )2)

(where W is degree of polynomials). Then we establish the error estimates of the proposed
method. Specific numerical results based on linear elasticity problem, fourth order problem
and sixth order problem are discussed to reflect the efficiency of the proposed method.

Keywords Least-squares methods · Non-conforming methods · Spectral element method ·
Linear elliptic system in three dimensional space · Fourth order problems · Sixth order
problem · Linear elasticity problem · Preconditioner · Exponential accuracy

1 Introduction

In applied mathematics, engineering and scientific computing, there are many problems
which attract much attention to compute the numerical solution of linear elliptic system.
Linear elasticity problem, fourth order elliptic problem and sixth order elliptic problem etc.
are some examples. In continuum mechanics, elasticity theory is widely used in continuum
models. The main use of elasticity theory is that it describes the behaviour of the solid
materials after deformation by external forces. In case of relatively small deformation, the
theory of linear elasticity plays an important role. In linear elasticity, we get the stress–strain
relation in form of the constitutive equation. One of the example of the elastic material is
isotropic homogeneous where the constitutive equation is defined in any two terms of the
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six moduli (i.e. bulk modulus, Young’s modulus, Lamé’s first parameter, shear modulus,
Poisson’s ratio and p-wave modulus). The other type of the elastic material is the isotropic
inhomogeneous in which the inhomogeneity is imported from position-dependent Lamé’s
parameters [28]. Some similar models can also get in the elasticity analysis of biomolecules
[34–36].

In last few decades, spectral method is widely used to solve partial differential equations
numerically. The main feature of spectral method is high accuracy. We refer to [3,16,29–31]
for the analysis and various applications of spectral method/spectral element method.

Dutt et al. [8–10] introduced a nonconforming hp/spectral element for three dimensional
elliptic problems with mixed Neumann and Dirichlet boundary conditions on non-smooth
domains. This method is an exponentially accurate method for elliptic problems with mixed
Neumann and Dirichlet boundary conditions on non-smooth domains. Dutt et al. [8–10] used
a geometric mesh and the auxiliary map of the form z = ln ξ to remove the singularities at the
corners and the edges. In the remaining part of the domain usual Cartesian coordinate system
is used. Schötzau et al. [26,27] presented hp-DGFEM for second-order elliptic problems
in polyhedra and established exponential convergence for second-order elliptic problems in
polyhedra.

Recently, Khan et al. [20] presented a spectral element method for scalar valued elliptic
interface problem. In this paper, we introduce a least-squares spectral method and a fully non-
conforming least-squares spectral element method (LSSEM) for three dimensional linear
elliptic system. The proposed theory is valid for the coupled and the decoupled systems.
Thus, we can use this theory to solve elasticity problem and higher order PDE such as fourth
order and sixth order etc. In this paper, we derive the regularity result for 3-D linear elliptic
systems which is main key ingredient to prove the stability theorem. We also discuss a priori
error estimates for the proposed method. Specifically, the proposed formulation is based on
minimizing the quadratic form which consists the sum of the squares of a weighted squared
norm of the residuals in the partial differential equation, the sum of the residuals in the
boundary conditions in fractional Sobolev norms and enforce the continuity along the inter-
element boundary by adding a term which measures the sum of the squares of the jump in
the function and its derivatives in fractional Sobolev norms. We refer to [6–12,15,17–22] for
the analysis and application of LSSEM to solve various types of partial differential equation
in 2-D and 3-D.

One of the popular least-square method is first order based formulation in which the
higher order PDE is reduced into first order PDE system and it is solved by least-square
principle. To solve the first order based least square formulation, we need to compute the
stiffness matrix and the mass matrix. The proposed least-squares formulation is free from
any kind of first order reformulation. For computing the solution, the normal equation is
solved by preconditioned conjugate gradient method. The optimality of condition number
for the preconditioned system is also shown. Integrals which are in the numerical scheme,
are computed efficiently by Gauss-quadrature rule. One of the major advantage to use the
proposed approach is that there is no need to compute the stiffnessmatrix and themassmatrix.
For more details, we refer to Sect. 4. The proposed method is nonconforming in the sense
that the discrete solution space of LSSEM is not subset of H2(Ω) (The definition of H2(Ω)

is given in Sect. 2). This is the reason that we enforce the continuity along the inter-element
boundary by adding a term which measures the sum of the square of the jump of the function
and its derivatives in appropriate norms. The feature of the nonconformity in the proposed
method is the main motivation to use parallelization. An error estimate in H1 norm (if the
solution is continuous across the interface) is proven. In case of analytic data, the proposed
methods achieve exponential accuracy.
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The rest of this paper is organized as follows. In Sect. 2, the required function spaces and
the three dimensional elliptic systemproblemare presented. Section 3 is devoted to discuss the
discretization of the domain and the stability estimate. In Sect. 4, we formulate the numerical
scheme with the help of stability estimate. The preconditioning and parallelization issues are
discussed in Sect. 5. Section 6 is devoted to derive error estimates. To validate the theory,
specific numerical results are presented in Sect. 7.

2 Preliminaries and Problem Formulation

Let Ω be an open bounded, simply-connected domain with boundary ∂Ω = Γ . Assume
that the boundary Γ is smooth (C2 -regularity). We denote vectors in bold letters such as
x = (x1, x2, x3) and so on. By Hm(Ω) = (Hm(Ω))3 we denote the usual Sobolev space of
integer order m furnished with the norm || · ||m,Ω defined by,

||u(x)||2m,Ω =
3∑

j=1

∫

Ω

∑

|α|≤m

|∂αu j |2dx.

where u = (u1, u2, u3)�, α = (α1, α2, α3), |α| = α1 + α2 + α3, ∂α(·) = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 (·) =

(·)xα1
1 x

α2
2 x

α3
3

is the distributional (weak) derivative of u.
Let w be the two dimensional function defined on E , where E is either S (master square)

or T (master triangle). Nowwe define fractional Sobolev space of order σ , where 0 < σ < 1,

‖w‖2σ,E = ‖w‖20,E +
∫

E

∫

E

(
w(x1, x2) − w(x ′

1, x
′
2)

)2
(
(x1 − x ′

1)
2 + (x2 − x ′

2)
2
)1+σ

dx1 dx2 dx
′
1 dx

′
2

However, if E is S then we prefer to use the equivalent norm [23],

‖w‖2σ,Γl
= ‖w‖20,E +

∫ 1

−1

∫ 1

−1

∫ 1

−1

(w(x1, x2) − w(x ′
1, x2))

2

(x1 − x ′
1)

1+2σ dx1 dx
′
1 dx2

+
∫ 1

−1

∫ 1

−1

∫ 1

−1

(w(x1, x2) − w(x1, x ′
2))

2

(x2 − x ′
2)

1+2σ dx2 dx
′
2 dx1.

Moreover,

‖w‖21+σ,Γl
= ‖w‖20,E +

∥∥∥∥
∂w

∂x1

∥∥∥∥
2

σ,E
+

∥∥∥∥
∂w

∂x2

∥∥∥∥
2

σ,E
.

2.1 Linear Elliptic System

Let x = (x1, x2, x3),u = (u1, u2, u3)�, F = (F1(x), F2(x), F3(x))� and g = (g1, g2, g3)�
define as a point in a space, the solution vector, external force and boundary data. Consider
the elliptic system problem

Lu = −∇ · (A∇u) + b · ∇u + c(x)u = F in Ω, (2.1)

u = g on Γ , (2.2)

where A = ({ar ,s}r ,s=1,2,3) and b = (b1, b2, b3)�. The coefficients ar ,s , br , c satisfy the
following assumptions:

123



40 Page 4 of 32 Journal of Scientific Computing (2020) 82 :40

1. The coefficients {ar ,s}r ,s=1,2,3, {br }r=1,2,3, c are smooth.
2. The matrix A = ({ar ,s}r ,s=1,2,3) is symmetric and postive definite.
3. b and c satisfy the following condition:

−1

2
∇ · b(x) + c(x) ≥ 0 ∀x ∈ Ω.

The problem (2.1)–(2.2) is well posed and its solution u satisfies the following regularity
estimate.

Theorem 2.1 (Regularity Estimate) If F ∈ L2(Ω), and g ∈ H
3
2 (Γ ), then the solution u ∈

H2(Ω) and

||u||2,Ω ≤ C(||F||0,Ω + ||g|| 3
2 ,Γ ), (2.3)

where C is a positive constant depending on the domain Ω and the coefficients
{ar ,s}r ,s=1,2,3, b, c.

Proof If g ∈ H3/2(Γ ) then we can find ū ∈ H2(Ω) with ū = g on Γ and it satisfies

||ū||2,Ω ≤ C1||g||3/2,Γ , (2.4)

where C1 is a positive constant. Using the trace theorem [23] gives

||g||3/2,Γ ≤ C2||ū||2,Ω, (2.5)

where C2 is a positive constant. Let w = u − ū, where u solves the problem (2.1)–(2.2).
Then w satisfies the following problem

Lw = F − Lū in Ω

w = 0 on Γ . (2.6)

From [4,5], we have

||w||2,Ω ≤ C3(||F − Lū||0,Ω + ||w||1,Ω), (2.7)

≤ C3||F||0,Ω + C4||g||3/2,Γ + C3||w||1,Ω, (2.8)

where C3 and C4 are positive constants and C4 = C1C3.
Next, we estimate ||w||1,Ω . The weak formulation of the problem (2.6) reads: find w ∈

H1
0(Ω) such that
∫

Ω

A∇w : ∇vdx +
∫

Ω

((b · ∇w) · v + cw · v)dx =
∫

Ω

(F − Lū) · vdx ∀v ∈ H1
0(Ω),

where A : B = ∑
i, j ãi, j b̃i, j with the matrices A = ({ãi, j }i, j=1,2,3) and B =

({b̃i, j }i, j=1,2,3).
Using integration by parts gives

∫

Ω

A∇w : ∇vdx −
∫

Ω

(wb� : ∇v + (c − ∇ · b)w · v)dx =
∫

Ω

(F − Lū) · vdx
∀v ∈ H1

0(Ω). (2.9)

Making specific choice v = w and using the assumption of the coefficients and the Poincaré
inequality, we have

||w||1,Ω ≤ C5(||F||0,Ω + ||g||3/2,Γ ), (2.10)
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where C5 is a positive constant. Combining (2.7) and (2.10) gives

||w||2,Ω ≤ C6(||F||0,Ω + ||g||3/2,Γ ), (2.11)

for a positive constant C6 > 0. Moreover, we have

||u||2,Ω ≤ C7(||w||2,Ω + ||ū||2,Ω),

≤ C(||F||0,Ω + ||g||3/2,Γ ), (2.12)

where C7 and C are positive constants. 
�
Remark 2.1 Throughout the paper positive constants depend either on the domain Ω or the
coefficients {ar ,s}r ,s=1,2,3,b, c, or both.

3 Discretization and Stability Estimate

Assume that Ω is a hexahedron in R
3 with the boundary Γ = ∪6

j=1Γ j . Now, the domain
Ω is divided into a set of finite number of elements consisting of curvilinear hexahedrons,
tetrahedrons and prisms (say) Ω1,Ω2, . . . , ΩL .

Define, Q as the bi-unit cube Q = (−1, 1)3. Now, we define the analytic map Ml from
Q to Ω l [1,8–10,16]

x1 = Xl(λ), x2 = Y l(λ) and x3 = Zl(λ),

where, l = 1, . . . , L and λ = (λ1, λ2, λ3).
Let {ũli } be the spectral element functions as the tensor product of polynomials of degree

W in each variable λ1, λ2 and λ3 as follows

ũli (λ) =
W∑

r=0

W∑

s=0

W∑

t=0

αi
r ,s,tλ

r
1λ

s
2λ

t
3, ∀i = 1, 2, 3.

Now, we define the spectral element functions {ul1, ul2, ul3}l on physical space Ω l

ul1(x) = ũl1((M
l)−1), ul2(x) = ũl2((M

l)−1), ul3(x) = ũl3((M
l)−1).

Let {Fui } be the spectral element representation of the function uli i.e.

{Fu1} =
{
{ũl1(λ)}l

}
, {Fu2} =

{
{ũl2(λ)}l

}
, {Fu3} =

{
{ũl3(λ)}l

}
.

Define {Fu} as the the spectral element representation of whole system i.e.

{Fu} = {
Fu1 ,Fu2 ,Fu3

}
.

The space of spectral element functions on Q is denoted by SW {Fu}.
Remark 3.1 However, we discuss the theoretical results for the general polynomial. But we
use the Legendre polynomial to solve the problem numerically. Thus, the spectral element
functions {ũli }, defined on Q, are given as

ũli (λ) =
W∑

r=0

W∑

s=0

W∑

t=0

αi
r ,s,t Lr (λ1)Ls(λ2)Lt (λ3), ∀i = 1, 2, 3,

where Lr (·) represents the Legendre polynomial of degree r .
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3.1 Stability Estimate

Define Ω l as a typical element in Ω with its faces {Γ l
j }1≤ j≤6. Then we have

∫

Ωl
|Lu|2dx =

∫

Q
|Lũl |2 J ldλ,

where L is the differential operator L in λ = (λ1, λ2, λ3) coordinates and J l(λ) denotes the
Jacobian of the mapping Ml(λ) from Q to Ω l . Choosing Ll = L

√
J l , then

∫

Ωl
|Lu|2dx =

∫

Q
|Ll ũl |2dλ.

Assume that Ωm and Ωn are two adjacent elements in the domain Ω and Γ m
j be a face of

Ωm and Γ n
k be a face of Ωn such that Γ m

j = Γ n
k i.e. Γ m

j is a face common to both Ωm

and Ωn . Let [u]|Γ m
j
denote the jump in u across the face Γ m

j . We assume the face Γ m
j is

the image of λ3 = −1 under the mapping Mm which maps Q to Ωm and also the image of
λ3 = 1 under the mapping Mn which maps Q to Ωn . Then [u]|Γ m

j
is a function of only λ1

and λ2. Moreover, Γ m
j is the image of the master square S = (−1, 1)2 under these mappings.

However, the analysis remains valid if it is the image of T , the master triangle, too. By chain
rule, it follows:

(umi )xk = (ũmi )λ1(λ1)xk + (ũmi )λ2(λ2)xk + (ũmi )λ3(λ3)xk ,

for i, k = 1, 2, 3. Then we define the jump along the inter element boundaries as follows:

||[u]||20,Γ m
j

= ||ũm(λ1, λ2,−1) − ũn(λ1, λ2, 1)||20,S and

||[(u)xk ]||21
2 ,Γ m

j
= ||(ũm)xk (λ1, λ2,−1) − (ũn)xk (λ1, λ2, 1)||21

2 ,S
.

Now along the boundary Γ = ∪6
j=1Γ j , let Γ s

j ⊆ Γ j (for some j) be the image of λ2 = 1
under the mapping Mm which maps Q to Ωm . Then,

||u||20,Γ s
j
+

∣∣∣∣

∣∣∣∣
∂u
∂T

∣∣∣∣

∣∣∣∣
2

1
2 ,Γ s

j

= ||ũ(λ1, 1, λ3)||20,S +
∣∣∣∣

∣∣∣∣
∂ũ
∂T

(λ1, 1, λ3)

∣∣∣∣

∣∣∣∣
2

1
2 ,S

,

where ∂ũ
∂T is tangential derivative of ũ.

Now we define the quadratic form VW ({Fu}) = VW ({ul1, ul2, ul3}l) of spectral element
method by

VW ({Fu}) = VW
residual({Fu}) + VW

jump({Fu}) + VW
boundary({Fu})

with

VW
residual({Fu}) =

L∑

l=1

||(Ll)ũl(λ)||20,Q,

VW
jump({Fu}) =

∑

Γ l
j⊂Ω

(
||[u]||2

0,Γ l
j
+

3∑

ı=1

||[(u)xi ]||21/2,Γ l
j

)
,

VW
boundary({Fu}) =

∑

Γ s
j ⊆Γ

(
||u||20,Γ s

j
+

∣∣∣∣

∣∣∣∣
∂u
∂T

∣∣∣∣

∣∣∣∣
2

1
2 ,Γ s

j

)
.
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Remark 3.2 To define the quadratic form of spectral method, we just define the above
quadratic form VW ({Fu}) for L = 1. Thus, VW

jump({Fu}) disappears in the quadratic form

VW ({Fu}). Then the resulting quadratic form VW ({Fu}) for spectral method is as follows:

VW ({Fu}) = ||(L)ũ(λ)||20,Q +
6∑

j=1

(
||u||20,Γ j

+
∣∣∣∣

∣∣∣∣
∂u
∂T

∣∣∣∣

∣∣∣∣
2

1
2 ,Γ j

)
. (3.1)

Theorem 3.1 (Stability estimate) For W large enough there exists a constant C > 0 such
that

L∑

l=1

||ũl(λ)||22,Q ≤ C(lnW )2VW ({Fu}). (3.2)

Proof From Lemma 3.1, there exists {{ṽl(λ)}l} such that w = u + v ∈ H2(Ω). Then, the
well-known Minkowski inequality gives

L∑

l=1

||ũl(λ)||22,Q ≤ C

(
L∑

l=1

||ũl + ṽl ||22,Q +
L∑

l=1

||ṽl ||22,Q
)

. (3.3)

Applying the regularity result stated in Theorem 2.1 implies

L∑

l=1

||ũl(λ)||22,Q ≤ C

(
L∑

l=1

||(Ll)ũl ||22,Q + ||w||23
2 ,Γ

+
L∑

l=1

||ṽl ||22,Q
)

. (3.4)

Combining Lemmas 3.1 and 3.2 and (3.4) leads to the stated result (3.2). 
�

3.2 Technical Estimates

Lemma 3.1 Let {Fu} ∈ SW . Then there exists {Fv} such that vl ∈ H2(Q), l = 1, 2, . . . , L
and u + v ∈ H2(Ω). Moreover, the following estimate holds:

L∑

l=1

||ṽl ||22,Q ≤ C(lnW )2VW
jump({Fu}). (3.5)

Proof Let Pj , j = 1, . . . , 8 denote nodes of cube Q. Then we do the first correction rl(λ) =
(rl1(λ), rl2(λ), rl3(λ))� on the nodes of Q = (Ml)−1(Ω l). In addition, these node corrections
satisfy the following condition:

(ul + rl)(Pj ) =ū(Pj ) and ((ul)xk + (rl)xk )(Pj ) = ūxk (Pj ),

∀ j = 1, . . . , 8, k = 1, 2, 3, (3.6)

where ū = (ū1, ū2, ū3)� is the averages of the values of ul = (ul1, u
l
2, u

l
3)

� at Pj over all
elements which have Pj as a node.
Assume that rl(λ) = (rl1(λ), rl2(λ), rl3(λ))� have the following values on nodes:

(rl1(Pj ), r
l
2(Pj ), r

l
3(Pj ))

� = rl(Pj ) = a j = (a j,1, a j,2, a j,3)
�,

((rl1)x1(Pj ), (r
l
2)x1(Pj ), (r

l
3)x1(Pj ))

� = (rl)x1(Pj ) = b j = (b j,1, b j,2, b j,3)
�,

((rl1)x2(Pj ), (r
l
2)x2(Pj ), (r

l
3)x2(Pj ))

� = (rl)x2(Pj ) = c j = (c j,1, c j,2, c j,3),
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((rl1)x3(Pj ), (r
l
2)x3(Pj ), (r

l
3)x3(Pj )) = (rl)x3(Pj ) = d j = (d j,1, d j,2, d j,3)

�,

for j = 1, . . . , 8. We can compute a j ,b j , c j and d j from (3.6). Then, it holds:

||rl ||22,Q =
3∑

k=1

||rlk ||22,Q ≤ C
8∑

j=1

3∑

k=1

(|a j,k |2 + |b j,k |2 + |c j,k |2 + |d j,k |2
)
. (3.7)

Using (7.8) of [33] and the result in Appendix C of [14] gives

L∑

l=1

||rl ||22,Q =
L∑

l=1

3∑

k=1

||rlk ||22,Q ≤ C(lnW )VW
jump({Fu}). (3.8)

Now we define (yl1(λ), yl2(λ), yl3(λ))� = yl(λ) = ul(λ) + rl(λ) = (ul1(λ) + rl1(λ), ul2(λ) +
rl2(λ), ul3(λ) + rl3(λ))�. Next, we do the second correction sl(λ) = (sl1(λ), sl2(λ), sl3(λ)) on
the sides of Q = (Ml)−1(Ω l). Let t be a point of a side I j of Q = (Ml)−1(Ω l) then

(yl + sl)(t) = ȳ(t), and ((yl)xi + (sl)xi )(t) = ȳxi (t), for i = 1, 2, 3, (3.9)

where each component ȳk(k = 1, 2, 3) of ȳ(t) = (ȳ1(t), ȳ2(t), ȳ3(t))� represents the aver-
ages of the values of ylk(k = 1, 2, 3) at t over all elements which have I j as a side. In addition,
slj (t) = 0 ( j = 1, 2, 3) if t is a node of Q. Furthermore, we have

||sl ||22,Q =
3∑

k=1

||slk ||22,Q ≤ C
12∑

j=1

3∑

k=1

(
||slk ||20,I j +

3∑

i=1

||(slk)xi ||20,I j
)

. (3.10)

Using Lemma 7.11 of [33] (or Lemma 5.3 of [24]) in (3.10) implies

L∑

l=1

||sl ||22,Q =
L∑

l=1

3∑

k=1

||slk ||22,Q ≤ C(lnW )VW
jump({Fu}). (3.11)

Next, we define (zl1(λ), zl2(λ), zl3(λ)) = zl(λ) = ul(λ) + rl(λ) + sl(λ) = (ul1(λ) + rl1(λ) +
sl1(λ), ul2(λ) + rl2(λ) + sl2(λ), ul3(λ) + rl3(λ) + sl3(λ)). Then we do the third correction fl =
( f l1, f l2, f l3) on the face of cube Q = (Ml)−1(Ω l) such that f lj = 0 ( j = 1, 2, 3) for all

sides and nodes of Q = (Ml)−1(Ω l), and f lj ∈ H2(Q) for all l and j . Let

f lj |F1 = E1, j = 1

2
(zlj − zmj )|F1 ,

( f lj )x1 |F1 = F1, j = 1

2
(zlj − zmj )x1 |F1 ,

( f li )x2 |F1 = G1, j = 1

2
(zlj − zmj )x2 |F1 ,

( f lj )x3 |F1 = H1, j = 1

2
(zlj − zmj )x3 |F1 , (3.12)

for j = 1, 2, 3, where F1 denotes the common face of Q = (Ml)−1(Ω l) and Q =
(Mm)−1(Ωm). In same manner, we can define Ek, j ,Fk, j ,Gk, j and Hk, j for the remain-
ing face k = 2, . . . , 6. If faces Fj ⊆ Γ j , j = 1, . . . , 6, then Ek, j ,Fk, j ,Gk, j and Hk, j are
defined to be identically zero. Now we estimate the following term
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∫ 1

−1

∫ 1

0

|(∂λ2E1, j )(1 − t,−1, λ3) − G2, j (1,−1 + t, λ3)|2
t

dλ3dt

≤ C

{∫ 1

−1

∫ 1

0

|(∂λ2E1, j )(−1 + t,−1, λ3)|2
t

dλ3dt

+
∫ 1

−1

∫ 1

0

|G2, j (−1,−1 − t, λ3)|2
t

dλ3dt

}
.

Applying Theorem 4.79 and Theorem 4.82 of [25] gives
∫ 1

−1

∫ 1

0

|(∂λ2E1, j )(1 − t,−1, λ3) − G2, j (1,−1 + t, λ3)|2
t

dλ3dt

≤ C(lnW )2(||∂λ2E1, j ||1/2,Γ l
j
+ ||G2, j ||1/2,Γ l

j
).

Similarly, we can prove estimates for all the terms given in Theorem 5.2 of [2]. Then, it holds:

L∑

l=1

||zl ||22,Q =
L∑

l=1

3∑

k=1

||zlk ||22,Q ≤ C(lnW )2 VW
jump({Fu}). (3.13)

Finally, we define (vl1(λ), vl2(λ), vl3(λ))� = vli (λ) = rl(λ) + sl(λ) + zl(λ) = (rl1(λ) +
sl1(λ)+ zl1(λ), rl2(λ)+ sl2(λ)+ zl2(λ), rl3(λ)+ sl3(λ)+ zl3(λ))�. Then, combining (3.8), (3.11)
and (3.13) leads to the stated result. 
�
Lemma 3.2 Let w = u+ v ∈ H2(Ω). Here {Fu} ∈ SW and {Fv} is as defined in Lemma 3.1.
Then the estimate

||w||23
2 ,Γ

≤ C(lnW )2
(
VW
jump({Fu}) + VW

boundary({Fu})
)
. (3.14)

holds. Here ||v||23/2,Γ s
j

= infq|Γ s
j
=v{||q||H2(Q)} is as defined in [14].

Proof Using Lemma 3.1, we can find {Fv} such thatw = u+v ∈ H2(Ω). FromMinkowski
inequality, we obtain

||w||23
2 ,Γ

≤ C
∑

Γ s
j ⊆Γ

||u + v||23
2 ,Γ s

j
≤ C

∑

Γ s
j ⊆Γ

(||u||23
2 ,Γ s

j
+ ||v||23

2 ,Γ s
j
). (3.15)

Applying the trace theorem of Sobolev space implies

||w|| 3
2 ,Γ ≤ C

(
VW
boundary({Fu}) +

L∑

l=1

||ṽl ||22,Q
)
. (3.16)

Using Lemma 3.1 in (3.16) gives the desired result. 
�

4 Numerical Scheme

Let F = (F1, F2, F3)� and F̃ = (F̃1, F̃2, F̃3)�. Assume that J l(λ) be the Jacobian of the
mapping Ml(λ) from Q to Ω l . Then

F̃k(λ) = Fk(M
l(λ)) and F̃l

k(λ) = F̃k(λ)
√
J l(λ),

for k = 1, 2, 3.
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In same manner, we define u = (u1, u2, u3)�. Then the boundary condition (u1, u2, u3)�
= u = g on Γ . Let Γ j ∩ ∂Ωm denotes as the image of the mapping Mm of Q onto Ωm

corresponding to the side λ1 = 1 and

(hm1 (λ2, λ3), h
m
2 (λ2, λ3), h

m
3 (λ2, λ3)) = hm(λ2, λ3) := g(Mm(1, λ2, λ3)

for −1 ≤ λ2, λ3 ≤ 1, where g(Mm(λ̃)) = (g1(Mm(λ̃)), g2(Mm(λ̃), g3(Mm(λ̃))) with
λ̃ = (1, λ2, λ3).

Define the functional

RW ({Fu}) = RW
residual({Fu}) + RW

jump({Fu}) + RW
boundary({Fu})

with

RW
residual({Fu}) =

L∑

l=1

||(Ll)ũl(λ) − F̃
l
(λ)||20,Q,

RW
jump({Fu}) =

∑

Γ l
j⊂Ω

(
||[u]||2

0,Γ l
j
+

3∑

ι=1

||[(u)xι ]||21/2,Γ l
j

)
,

RW
boundary({Fu}) =

∑

Γ s
j ⊆Γ

(
||u − hm ||20,Γ s

j
+

∣∣∣∣

∣∣∣∣

(
∂u
∂T

)
−

(
∂hm

∂T

)∣∣∣∣

∣∣∣∣
2

1
2 ,Γ s

j

)
.

Remark 4.1 To define the numerical scheme for spectral method, we just define the above
functionalRW ({Fu}) for L = 1. Thus,RW

jump({Fu}) disappears in the functionalRW ({Fu}).
Then the resulting quadratic form RW ({Fu}) for spectral method is as follows:

RW ({Fu}) = ||(L)ũ(λ) − F̃(λ)||20,Q +
6∑

j=1

(
||u − h||20,Γ j

+
∣∣∣∣

∣∣∣∣
∂u
∂T

−
(

∂h
∂T

)∣∣∣∣

∣∣∣∣
2

1
2 ,Γ j

)
.

(4.1)

Our numerical scheme may be written as follows:
We find Fz ∈ SW which minimizes the functional RW ({Fu}) over all Fu ∈ SW , where

SW is the space of spectral element functions Fu.

4.1 Symmetric Formulation

Our method is a least-squares method. Thus, we solve the normal equation using the precon-
ditioned conjugate gradient method (PCGM). Assume that the normal equations be

AT AU = AT G.

Define

UW
1;(W+1)2k+(W+1)i+ j+1 = ũ1(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,

UW
2;(W+1)2k+(W+1)i+ j+1 = ũ2(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,

UW
3;(W+1)2k+(W+1)i+ j+1 = ũ3(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,
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and

U 2W
1;(W+1)2k+(W+1)i+ j+1 = ũ1(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W ,

U 2W
2;(W+1)2k+(W+1)i+ j+1 = ũ2(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W ,

U 2W
3;(W+1)2k+(W+1)i+ j+1 = ũ3(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W .

Let UW and U2W be denoted as

UW =
⎡

⎣
UW
1

UW
2

UW
3

⎤

⎦ and U2W =
⎡

⎣
U 2W
1

U 2W
2

U 2W
3

⎤

⎦ .

Note that we use Gauss–Lobatto–Legendre (GLL) quadrature formula to compute the inte-
grals given in the minimization formulation. The details regarding computation of numerical
scheme is discussed in “Appendix”. Finally, we obtain the following representation of the
minimization formulation for each element:

(V 2W
α )T O2W

α for α = 1, 2, 3,

where O2W
α is a (2W +1)3 vector. Furthermore, there exist matrices GW

α , where α = 1, 2, 3,
such that

V 2W
1 = GW

1 VW
1 , V 2W

2 = GW
2 VW

2 and V 2W
3 = GW

3 VW
3 .

Then we obtain

(V 2W
α )T O2W

α = (VW
α )T ((GW

α )T O2W
α ) for α = 1, 2, 3.

Assume that γ W
l be the normalizing factors which are used to compute the discrete Legendre

transform as

γ W
l =

{
(l + 1

2 )
−1, if l < W ,

2
W , if l = W .

Define {Oα;i, j,k}0≤i, j,k≤2W , α = 1, 2, 3 as Oα;i, j,k = O2W
α;k(2W+1)2+ j(2W+1)+i

.

1. Define Oα;i, j,k ← Oα;i, j,k/w2W
i w2W

j w2W
k .

2. Compute {Θα;i, j,k}0≤i, j,k≤2W , α = 1, 2, 3 the Legendre transform of {Oα;i, j,k}i, j,k .
Then

Θα;i, j,k ← γ 2W
i γ 2W

j γ 2W
k Θα;i, j,k .

3. Compute θα;i, j,k ← Θα;i, j,k/γ W
i γ W

j γ W
k , 0 ≤ i, j, k ≤ W .

4. Compute Λα , the inverse Legendre transform of θα . Then

Λα;i, j,k ← wW
i wW

j wW
k Λα;i, j,k

5. Define a vector Jα, α = 1, 2, 3 which is of dimension (W + 1)3 as

Jα;k(W+1)2+ j(W+1)+i = Λα;i, j,k .

Hence, Jα = (GW
α )T O2W

α , α = 1, 2, 3. This gives us AT (G − AU ).
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Remark 4.2 Note that the system corresponding RW ({Fu}) is overdetermined because our
approach is least-square. Let A, G andU be them×n matrix withm > n,m×1 vector, and
n×1 vector, respectively. Thus AT (G− AU ) becomes n×1 vector and (G− AU ) becomes
m×1 vector. It is clear from our algorithm that we don’t need to compute the stiffness matrix
and the mass matrix to calculate the AT (G− AU ). The memory of the storing AT (G− AU )

is less compare to store (G − AU ). Hence, the proposed method is cheap and efficient to
compute the residual in comparison of h − p finite element method. For more details, we
refer to [13,32]. Specifically, the comparison between h − p fem and LSSEM for 2 − D
elliptic problems is discussed in Section 5 in [32]. The similar comparison also holds for
3 − D elliptic problems.

5 Preconditioning and Parallelization

First, we define the quadratic form UW ({Fu}) by

UW ({Fu}) =
L∑

l=1

||ul ||22,Q =
L∑

l=1

3∑

k=1

||ulk ||22,Q . (5.1)

UW ({Fu}) is the preconditioner for VW ({Fu}). Note that VW ({Fu}) is equivalent to the func-
tional RW ({Fu}) with zero data. Next we estimate the condition number of preconditioner
UW ({Fu}). To obtain the lower bound, we use the trace theorem for Sobolev spaces. Then

VW ({Fu}) ≤ K UW ({Fu}), (5.2)

where, K is a constant. Using Theorem 3.1 gives

1

C(logW )2
UW ({Fu}) ≤ VW ({Fu}). (5.3)

Combining (5.2) and (5.3) implies

1

C
VW ({Fu}) ≤ UW ({Fu}) ≤ C(logW )2 VW ({Fu}), (5.4)

where C is a positive constant. Thus, the condition number of the preconditioned system is
O((logW )2). For each element, the preconditioner corresponds to the following quadratic
form

B(u) = ||u||22,Q =
3∑

k=1

||uk ||22,Q, (5.5)

where, u = u(λ) = (u1(λ), u2(λ), u3(λ))�. Here each component uk(λ)(k = 1, 2, 3) is a
polynomial of degree W in λ1, λ2 and λ3 separately.
Using the idea of [10], we can define the new quadratic form C(u) and show that C(u)

is spectrally equivalent to B(u). The new quadratic form C(u) can be diagonalized using
the separation of variables. Hence, the action of the matrix corresponding to the quadratic
form C(u) will be easy to compute. In algorithm, each element is mapped onto a single
processor (core) for ease of parallelism. Thus, during the PCGM process, the interchange of
informations based on the value of function and its derivatives at inter-element boundaries
confine the communication between neighbouring processors. Note that there are two global
scalers namely the approximate solution and the search direction which need to compute for
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update in each iterations. Thus, it is clear that the communication between inter-processor is
quite small.We note that PCGM take O(W lnW ) iteration to compute the numerical solution
with exponential accuracy.

6 Error Estimates

Lemma 6.1 Let (Ul
1(λ),Ul

2(λ),Ul
3(λ))� = Ul(λ) = u(Ml(λ)) = (u1(Ml(λ)), u2(Ml(λ)),

u3(Ml(λ)))� for λ ∈ Q, l = 1, . . . , L. Then there exist functions Φl = (φl
1, φ

l
2, φ

l
3)

� such
that each φl

k(λ) is a polynomial of degree W in each variable separately. Then for W large
enough, there exists constant Cs such that the estimate

L∑

l=1

||Φl(λ) − Ul(λ)||22,Q ≤ Cs W
−2s+7(I).

holds, where, I =
L∑

l=1

||Ul(λ)||2s,Q and s ≥ 2 is a positive real number which represent the

regularity index of u.

Proof From the approximation result of [3], we can find a polynomial φl
k(λ) of degree W in

each variable separately such that

||Ul
k(λ) − φl

k(λ)||2n,Q ≤ CsW
4n−2s−1||Ul

k ||2s,Q ∀l = 1, . . . , L, ∀k = 1, 2, 3,

with W > s, Cs = C1e2s , s > 0 and 0 < n ≤ s. Thus, for n = 2, it follows:

||Ul
k(λ) − φl

k(λ)||22,Q ≤ CsW
−2s+7||Ul

k ||2s,Q ∀l = 1, . . . , L, ∀k = 1, 2, 3. (6.1)

Using (6.1), it holds:

||Ul(λ) − Φl(λ)||22,Q =
3∑

k=1

||Ul
k(λ) − φl

k(λ)||22,Q ≤ CsW
−2s+7

3∑

k=1

||Ul
k ||2s,Q

≤ CsW
−2s+7||Ul ||2s,Q .

Summing over l = 1, . . . , L leads to the stated result. 
�
Lemma 6.2 Let (Ul

1(λ),Ul
2(λ),Ul

3(λ))� = Ul(λ) = u(Ml(λ)) = (u1(Ml(λ)), u2(Ml(λ)),

u3(Ml(λ)))� for λ ∈ Q, l = 1, . . . , L. Then there exist functions Φl = (φl
1, φ

l
2, φ

l
3)

� such
that each φl

k(λ) is a polynomial of degree W in each variable separately. Then for W large
enough, there exists constant Cs such that the estimate

RW ({FΦ}) ≤ Cs W
−2s+7(I).

holds, where, I =
L∑

l=1

||Ul(λ)||2s,Q and {FΦ} = {Φl}.

Proof First we consider the set of functions {FΦ} = {{Φl(λ)}l}. Recall the definition of
RW ({FΦ}) is

RW ({FΦ}) = RW
residual({FΦ}) + RW

jump({FΦ}) + RW
boundary({FΦ})
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with

RW
residual({FΦ}) :=

L∑

l=1

||(Ll)Φl(λ) − F̃
l
(λ)||20,Q,

RW
jump({FΦ}) :=

∑

Γ l
j⊂Ω

(
||[Φ]||2

0,Γ l
j
+

3∑

i=1

||[(Φ)xi ]||21
2 ,Γ l

j

)
,

RW
boundary({FΦ}) :=

∑

Γ s
j ⊆Γ

(
||Φ − hm ||20,Γ s

j
+

∣∣∣∣

∣∣∣∣

(
∂Φ

∂T

)
−

(
∂hm

∂T

)∣∣∣∣

∣∣∣∣
2

1
2 ,Γ s

j

)
.

Using the idea of Theorem 6.1 from [20] and Theorem 5.1 from [21], we can conclude that

RW
residual({FΦ}) ≤ CsW

−2s+7(I), (6.2)

RW
jump({FΦ}) ≤ CsW

−2s+7(I), (6.3)

RW
boundary({FΦ}) ≤ CsW

−2s+7(I), (6.4)

where, I =
L∑

l=1

||Ul(λ1, λ2, λ3)||2s,Q .
Combining (6.2), (6.3) and (6.4) implies

RW ({FΦ}) ≤ CsW
−2s+7(I).


�
Theorem 6.1 Let (Ul

1(λ),Ul
2(λ),Ul

3(λ)) = Ul(λ) = u(Ml(λ)) = (u1(Ml(λ)), u2(Ml(λ)),

u3(Ml(λ))) for (λ) ∈ Q, l = 1, . . . , L and letFΘ ∈ SW minimizes the functionalRW ({Fu})
over all Fu ∈ SW . Then for W large enough there exists constant Cs such that the estimate

L∑

l=1

||Θ l(λ) −Ul(λ)||22,Q ≤ Cs W
−2s+7(I).

holds, where, I =
L∑

l=1

||Ul(λ1, λ2, λ3)||2s,Q .

Proof First, the error is divided into two parts as follows:

||Θ l
k(λ) −Ul

k(λ)||22,Q ≤ C
(
||Θ l

k(λ) − φl
k(λ)||22,Q + ||φl

k(λ) −Ul
k(λ)||22,Q

)
(6.5)

Next we estimate the first term of R.H.S. of (6.5). Let FΘ minimizesRW ({Fv}) over all Fv,
then

RW ({FΦ}) = RW ({FΘ }) + VW ({FΦ−Θ }) .

Hence, it holds:

VW ({FΦ−Θ }) ≤ RW ({FΦ}).
Applying the stability Theorem 3.1 and Lemma 6.2 implies

L∑

l=1

||(Θ l(λ) − Φl(λ))||22,Q ≤ CsW
−2s+7(I). (6.6)
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Combining Lemma 6.1, (6.5) and (6.6) gives:

L∑

l=1

||Ul(λ) − Θ l(λ)||22,Q ≤ CsW
−2s+7(I). (6.7)


�
Remark 6.1 Note that If Ul is analytic, then there exist constants C and d such that

||Ul ||2s,Q ≤ (Cdss!)2, ∀l = 1, . . . , L

Applying Stirling’s formula as in [10] with a proper choice of s, we can find a b > 0 such
that

L∑

l=1

||Ul(λ) − Θ l(λ)||22,Q ≤ Ce−bW .

Remark 6.2 To compute the non-conforming spectral element solution, we solve the normal
equations using PCGM. After computing the numerical solution, there is a possibility to get
the conforming solution by a correction. Hence, we can show that the error between the
conforming numerical solution and the exact solution in the H1 norm is also exponentially
small in W . We refer to [9] for more information about these corrections. Moreover, it also
holds:

||u − z||1,Ω ≤ Ce−bW ,

where C and b > 0 are constants and z is the corrected solution.

Now. we estimate the error in terms of number of degrees of freedom. Our algorithm is
quite simple based on O(1) number of elements in Ω . In addition, each element has O(W 3)

degrees of freedom for each component ul = (ul1, u
l
2, u

l
3)

�. In next lemma, we present the
bound of error estimate in terms of degrees of freedom.

Theorem 6.2 Let {FΘ } minimize RW ({Fu}) over all {Fu} ∈ SW (Ω). Then there exist con-
stants C and b (independent of L and W) such that

UW ({F(Θ−u)}
) ≤ Ce−bW 1/3

dof , (6.8)

where UW
({F(Θ−u)}

)
is given in (5.1) and Wdof = dim(SW (Ω)) = # degrees of freedom.

7 Numerical Results

Let uap and uex denote the spectral element solution and the exact solution, respectively.
Next we define the relative error as follows:

||E ||rel = ||uap − uex ||H1

||uex ||H1
.

All numerical results given in this section are computed using a FORTRAN-90 code. We use
a Intel(R) Xeon(R) CPU E7- 8870 @ 2.40GHz based machine for our computations. More
details are as follows: Number of CPU (Physically)-8, Cores per CPU (Physically)-10 and
Threads per CPU -20. Recall that each element is mapped onto a single processor (core) for
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Fig. 1 a Mesh 1, bMesh 2

(a) (b)

ease of parallelism.We useMessage Passing Interface (MPI) based library for inter processor
communication.

Let ε be the tolerance to stop the PCGM. Then the stopping criterion based on the relative
norm of the residual vector for the normal equations is less than ε. Let κ be the condi-
tion number of the preconditioner. To satisfy the stopping criterion, we need to perform

O
(√

κ

2 | log ( 2
ε

) |
)
iterations of the PCGM. Specifically, we need to perform O(W (lnW ))

iterations of the PCGM to compute the numerical solution with an accuracy of O(e−bW ).
Note that each iteration takes O(W 3) operation-time on a parallel computer with O(W ) pro-
cessors. Hence it is clear that the method needs O(W 4(lnW )) operation-time to compute the
solution to an accuracy of O(e−bW ). In all numerical results, we use the same discretization
of the domain as shown in Fig. 1.

Remark 7.1 It is well known that singularities based on corners, edges and edge-corner arise
in 3-D cubic domain. But, in our computations, we take our data in a way that the solution
does not have any singularities.

Example 1 Consider the problem

−Δu = f in Ω = (−1, 1)3,

u = g on Γ ,

The exact solution u = (u1, u2, u3)� is given by:

u =

⎧
⎪⎨

⎪⎩

u1 = cos(πx) sin(π y) sin(π z)

u2 = sin(πx) cos(π y) sin(π z))

u3 = −2 sin(πx) sin(π y) cos(π z).

The computed results based on spectral method and spectral element method are presented
in Tables 1 and 2. Tables 1 and 2 represent the relative error in H1−norm with the number
of iterations and CPU time against W . From Tables 1, 2 and Fig. 2, it is clear that the error
decays exponentially with respect to W . In Table 3, the number of iterations and CPU time
with preconditioner and with out preconditioner are provided with respect toW . It shows the
effectiveness of the proposed preconditioner in terms of time and iteration count. In Fig. 3,
the graph of iteration count grows with O(W lnW ).
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Table 1 Performance of spectral
method for Example 1 on Mesh 1

W Erel Iteration CPU time (s)

4 2.459968 × 10−01 11 1.187

5 7.550887 × 10−02 26 8.344

6 2.255919 × 10−02 34 26.073

7 5.291160 × 10−03 58 139.645

8 1.373605 × 10−03 69 348.462

9 1.627151 × 10−04 87 815.795

10 4.140598 × 10−05 93 1641.159

Table 2 Performance of spectral
element method for Example 1
on Mesh 2

W Erel Iteration CPU time (s)

2 5.614556 × 10−02 21 0.187

3 2.071149 × 10−02 70 2.772

4 3.069273 × 10−03 121 18.530

5 6.519347 × 10−04 180 80.769

6 5.577234 × 10−05 237 244.163

7 1.038625 × 10−05 282 622.601

8 5.157982 × 10−07 337 1220.346

9 9.001227 × 10−08 366 2570.364

10 3.379597 × 10−09 416 5758.650

Table 3 Performance of the
method for Example 1 on Mesh 2

W Iteration Iteration CPU time (s) CPU time (s)
(CGM) (PCGM) (CGM) (PCGM)

2 30 21 0.154 0.187

3 115 70 2.865 2.772

4 296 121 26.649 18.530

5 631 180 182.359 80.769

6 1213 237 875.648 244.163

7 2108 282 3481.745 622.601

8 3346 337 11,562.822 1220.346

9 4909 366 32,880.911 2570.364

10 > 10,000 416 > 100,000 5758.650

Example 2 (Biharmonic problem with simply supported boundary condition) Consider the
problem

Δ2u = f in Ω = (−1, 1)3,

u = g1 on Γ ,

Δu = g2 on Γ .
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Fig. 2 a Error versus W (spectral method), b error versus W (Spectral element method) for Example 1
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Fig. 3 Iteration count versus W (spectral element method)

Let v = −Δu, then

−Δv = f in Ω,

v + Δu = 0 in Ω,

u = g1 on Γ ,

v = g2 on Γ .

The exact solution u is given by:

u = cos(πx) sin(π y) sin(π z).

Here, we first convert the fourth order problem to second order elliptic system. Then, we
solve the problem. Tables 4 and 5 display the computed results based on spectral method and
spectral element method. Specifically, Tables 4 and 5 represent the relative error in H1−norm

123



Journal of Scientific Computing (2020) 82 :40 Page 19 of 32 40

Table 4 Performance of the method for Example 2 on Mesh 1

W Erel (u) Erel (v) Iteration CPU time (s)

2 1.068478 × 10−01 8.260514 × 10−02 12 4.446 × 10−02

3 2.212567 × 10−02 2.170537 × 10−02 37 0.748

4 3.560391 × 10−03 3.466780 × 10−03 57 4.805

5 2.352870 × 10−04 2.347440 × 10−04 80 21.644

6 3.453519 × 10−05 3.537668 × 10−05 93 68.283

7 1.774186 × 10−06 1.789384 × 10−06 112 188.220

8 1.609351 × 10−07 1.618039 × 10−07 122 434.490

9 7.437969 × 10−09 7.473938 × 10−09 137 952.905

10 5.085551 × 10−10 5.102013 × 10−10 148 1898.085

Table 5 Performance of the method for Example 2 on Mesh 2

W Erel (u) Erel (v) Iteration CPU time (s)

2 5.484539 × 10−02 4.619184 × 10−02 61 0.252

3 4.490519 × 10−03 4.501489 × 10−03 144 3.319

4 3.345337 × 10−04 3.395444 × 10−04 206 19.372

5 1.508461 × 10−05 1.528680 × 10−05 260 71.758

6 7.954081 × 10−07 7.996622 × 10−07 371 270.718

7 2.051141 × 10−08 2.056890 × 10−08 429 715.455

8 7.465585 × 10−10 7.481744 × 10−10 488 1715.412

9 1.997998 × 10−11 2.000401 × 10−11 540 3648.224

10 5.288103 × 10−13 5.468628 × 10−13 575 7161.7587

with the number of iterations and CPU time against W . Note that, in Tables 4, 5 and Fig. 4,
the error decays exponentially with respect to W . It is easy to see that the convergence rates
of u and v = Δu are similar. In Fig. 5, the graph of iteration count grows with O(W lnW ).

Example 3 (Linear elasticity problem with non-homogeneous boundary condition) Consider
the following three dimensional steady state linear elasticity problem

∇ · T = −F in Ω = (0, 1)3,

u = g on Γ .

where

T = λtr(σ )I + 2μσ. (7.1)

Here (λ, μ), I and σ are respectively the Lamé’s parameters, 3×3 identity matrix and stress
tensor. The stress tensor and the Lamé’s parameters can also be written as follows:

σ = 1

2
(∇u + (∇u)T ), μ = E

2(1 + ν)
, λ = Eν

(1 + ν)(1 − 2ν)
, (7.2)
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Fig. 4 a Error versus W (spectral method), b error versus W (Spectral element method) for Example 2
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Fig. 5 Iteration count versus W (spectral element method)

where E and ν are Young modulus and Poisson ratio, respectively (Table 6). The exact
solution u = (u1, u2, u3)� is given by:

u =

⎧
⎪⎨

⎪⎩

u1 = (x2 + 1)(y2 + 1)(z2 + 1) exp(x + y + z)

u2 = (x2 + 1)(y2 + 1)(z2 + 1) exp(x + y + z)

u3 = (x2 + 1)(y2 + 1)(z2 + 1) exp(x + y + z).

In this example, we fix E = 1 and the values of ν are as follows:

Here, we are presenting the numerical results of linear elasticity equation with three
different choices of Poisson ratio. Numerical results based on spectral method and spectral
elementmethod for all three cases are presented in Tables 7 and 8. FromTables 7, 8 and Fig. 6,
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Table 6 Values of ν Case 1 Case 2 Case 3

ν 0.3 0.4 0.49

Table 7 Performance of the method for Example 3 on Mesh 1

W Case 1 Case 2 Case 3
Erel Erel Erel

2 7.054725 × 10−02 7.687280 × 10−02 1.253141 × 10−01

3 9.065467 × 10−03 1.038799 × 10−02 1.291777 × 10−02

4 7.973227 × 10−04 8.757511 × 10−04 1.157853 × 10−03

5 4.928645 × 10−05 6.282801 × 10−05 8.626353 × 10−05

6 2.457586 × 10−06 3.002886 × 10−06 4.648406 × 10−06

7 1.033345 × 10−07 1.419567 × 10−07 2.968524 × 10−07

8 3.389777 × 10−09 4.358818 × 10−09 5.840454 × 10−09

Table 8 Performance of the method for Example 3 on Mesh 2

W Case 1 Case 2 Case 3
Erel Erel Erel

2 2.368768 × 10−02 2.437179 × 10−02 4.508515 × 10−02

3 2.243279 × 10−03 2.431539 × 10−03 2.800914 × 10−03

4 9.461090 × 10−05 9.460382 × 10−05 1.182241 × 10−04

5 3.448484 × 10−06 4.154084 × 10−06 4.818554 × 10−06

6 7.673397 × 10−08 9.739528 × 10−08 1.430276 × 10−07

7 1.707100 × 10−09 2.293376 × 10−09 3.737400 × 10−09

8 3.233759 × 10−11 3.522931 × 10−11 4.840454 × 10−11

it is clear that the error decays exponentially with respect to W . Moreover, the convergence
rate of the error in all three choices are similar.

Example 4 (Six order elliptic equation) Consider the problem

Δ3u = f in Ω =
(
0,

1

2

)3

,

u = g1 on Γ ,

Δu = g2 on Γ .

Δ2u = g3 on Γ .

Let v = Δ2u, and w = Δu then

Δv = f in Ω,

−v + Δw = 0 in Ω,

−w + Δu = 0 in Ω,
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Fig. 6 a Error versus W (spectral method), b error versus W (spectral element method) for Example 3

Table 9 Performance of the method for Example 4 on Mesh 1

W Erel (v) Erel (w) Erel (u)

2 1.704887 × 10−01 2.093280 × 10−01 2.189208 × 10−01

3 2.428341 × 10−02 2.558822 × 10−02 2.564032 × 10−02

4 3.446899 × 10−03 3.574406 × 10−03 3.556400 × 10−03

5 1.939569 × 10−04 1.939414 × 10−04 1.937958 × 10−04

6 1.848847 × 10−05 1.805328 × 10−05 1.805575 × 10−05

7 8.009373 × 10−07 7.931784 × 10−07 7.933553 × 10−07

8 4.593054 × 10−08 4.549628 × 10−08 4.549860 × 10−08

u = g1 on Γ ,

v = g2 on Γ .

w = g3 on Γ .

The exact solution u is given by:

u = sin(πx) sin(π y) sin(π z).

We first introduce two new variables v = Δ2u and w = Δu, and convert six order problem
into second order elliptic system. Numerical results based on spectral method and spectral
element method are presented in Tables 9 and 10. From Tables 9, 10 and Fig. 7, it is clear that
the error decays exponentially with respect to W . To convert the six order elliptic equation
to second order elliptic system, we obtain the same convergence order for each components.
Hence, higher order derivative Δ2u = v and Δu = w also obtain same convergence order
as the convergence order of u.

Example 5 Consider the problem

−∇ · (A∇u) = f in Ω = (0, 1)3,

u = g on Γ ,
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Table 10 Performance of the method for Example 4 on Mesh 2

W Erel (v) Erel (w) Erel (u)

2 5.782493 × 10−02 6.088737 × 10−02 6.106057 × 10−02

3 1.527415 × 10−03 1.542752 × 10−03 1.542592 × 10−03

4 2.927083 × 10−04 2.952294 × 10−04 2.949899 × 10−04

5 3.503535 × 10−06 3.500572 × 10−06 3.500115 × 10−06

6 3.944967 × 10−07 3.916350 × 10−07 3.916374 × 10−07

7 3.906041 × 10−09 3.892440 × 10−09 3.892504 × 10−09

8 2.847710 × 10−10 2.839036 × 10−10 2.839346 × 10−10
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Fig. 7 a Error versus W (spectral method), b error versus W (spectral element method) for Example 4

where A = exp(x + y + z)I and I is the 3 × 3 identity matrix. The exact solution u =
(u1, u2, u3)� is given by:

u =

⎧
⎪⎨

⎪⎩

u1 = (x + y + z) exp(x + y + z)

u2 = (x + y + z) exp(x + y + z)

u3 = (x + y + z) exp(x + y + z).

In Table 11, we present the computed results based on spectral method and spectral element
method. Specifically, Table 11 represents the relative error in H1−norm. It is clear from
Table 11 and Fig. 8 that the error decays exponentially with respect to W . Thus, it confirms
that the proposed theory is also valid for the problem with variable coefficients.

Remark 7.2 In this remark, we present the numerical results for the problems discussed in
Examples 3 and 5. Specifically, we solve the problems in the complex domain (unit sphere)
Ω = {(x, y, z) ∈ R

3 : √
x2 + y2 + z2 < 1}. We divided our domain into 7 curvilinear

hexahedrons, for more details see also [20, Example 7.3]. We present the convergence results
for Example 3 in Fig. 9a and for Example 5 in Fig. 9b using spectral element method.
Figure 9a, b reflect that the error decays exponentially in W .
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Table 11 Performance of spectral
method for Example 5 on Mesh 1
and Mesh 2

W Erel (Mesh 1) Erel (Mesh 2)

2 2.434756 × 10−01 4.862660 × 10−02

3 2.054691 × 10−02 2.723224 × 10−03

4 3.061450 × 10−03 2.143952 × 10−04

5 1.687572 × 10−04 3.405932 × 10−06

6 1.808116 × 10−05 1.992187 × 10−07

7 9.621131 × 10−07 3.764200 × 10−09

8 4.260646 × 10−08 9.123992 × 10−11
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Fig. 8 a Error versus W (spectral method), b error versus W (spectral element method) for Example 5

Table 12 Performance of spectral
method for Example 6 on Mesh 1

W Erel with α = 3 Erel with α = 3.5

2 2.651099 × 10−01 3.803867 × 10−01

3 1.361465 × 10−14 3.784672 × 10−02

4 3.166470 × 10−14 3.442490 × 10−03

5 8.849974 × 10−14 7.286903 × 10−04

6 1.095987 × 10−13 3.578489 × 10−04

7 6.874768 × 10−14 1.005196 × 10−04

8 1.693542 × 10−13 6.482934 × 10−05

Table 13 Performance of spectral
method for Example 6 on Mesh 2

W Erel Erel

2 3.218816 × 10−01 4.584722 × 10−01

3 1.600509 × 10−14 5.032405 × 10−02

4 8.461817 × 10−14 5.843555 × 10−03

5 7.818991 × 10−14 8.353848 × 10−04

6 9.226629 × 10−14 5.231934 × 10−04

7 6.874768 × 10−14 1.304468 × 10−04

8 8.222837 × 10−13 9.238366 × 10−05
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Fig. 9 a Error versus W (spectral element method) Example 3 (Case 1), b error versus W (spectral element
method) for Example 5 with the spherical domain
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Fig. 10 a Error versus W (spectral method), b error versus W (spectral element method) for Example 6

Example 6 Consider the problem

−Δu = f in Ω = (0, 1)3,

u = g on Γ .

The exact solution u = (u1, u2, u3)� is given by:

u =

⎧
⎪⎨

⎪⎩

u1 = (xα + yα + zα)

u2 = (xα + yα + zα)

u3 = (xα + yα + zα),

where α ≥ 2 is a positive real number.

In this example, we want to show the convergence rate of the proposed methods for the
solutions that are not smooth enough. The exact solution u has two properties. First, It is
smooth for the positive integer α. Second, it is not analytic for the positive non-integer α. We
denote α̃ by the greatest integer less than or equal to α. If α is not integer, then ∂α̃

x , ∂
α̃
y and ∂α̃

z
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have singularities near to zero. In Tables 12 and 13, we can easily see that the error is equal to
machine accuracy for the polynomial order W ≥ 3 and α = 3. In case of α = 3.5, the error
decays with the low convergence rate. We plot the convergence rate for the different choices
of α in Fig. 10a, b. The convergence rate of the error increases from α = 2.5 to α = 6.5 in
Fig 10a, b.

8 Conclusions and FutureWork

In this article, a least-squares spectral method and a fully non-conforming least-squares
spectral element method are studied for three dimensional elliptic system problems. In both
cases (spectralmethod and spectral elementmethod), it is shown that the error in the computed
solution decays exponentially in polynomial degree W . Computational results for specific
test problems confirm the estimates obtained for the error and computational complexity. Our
algorithm is quite simple and easy to implement on parallel computers. We plan to develop
numerical schemes for three dimensional elliptic system with corner singularity and edge
singularity in future work.
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Appendix

In this section, we briefly discuss the process to compute the integrals that are involved in
numerical scheme. The process is similar to those for elliptic equations (for more details,
see also [14,32]). Thus, we give a brief overview to compute numerical scheme and refer to
[13,14,32] for more details.

Recall that, we compute the integrals on the element domain Ωl . In numerical scheme,
we map to each element Ωl to the cube Q = (−1, 1)3. Thus, we present the computation for
Q. First, we compute the following integral term

||Li ũ − Fi ||20,Q,

where

Li ũ = Li,1ũ1 + Li,2ũ2 + Li,3ũ3

and

Li,k ũk = Ai
k,1(ũk)λ1λ1 + Ai

k,2(ũk)λ2λ2 + Ai
k,3(ũk)λ3λ3 + Ai

k,4(ũk)λ1λ2 + Ai
k,5(ũk)λ2λ3

+ Ai
k,6(ũk)λ1λ3 + Ai

k,7(ũk)λ1 + Ai
k,8(ũk)λ2 + Ai

k,9(ũk)λ3 + Ai
k,10(ũk).

Here Ai
k, j , i, k = 1, 2, 3, j = 1, . . . , 10 are analytic coefficients.
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The variation of the above integral is as follows:

∫

Q
(Li ṽ)(Li ũ − Fi )dλ =

∫

Q
(Li,1ṽ1 + Li,3ṽ2 + Li,3ṽ3)(Li ũ − Fi )dλ

First, we deal with the following integral

∫

Q
(Li,k ṽk)(Li ũ − Fi )dλ.

Using integration by parts, it follows:

∫

Q
(Li,k ṽk)(Li ũ − Fi )dλ =

∫

Q
ṽk(Li,k)

T (Li ũ − Fi )dλ + Rterm,

with

Rterm =
∫

S
I1(1, λ2, λ3)dλ2dλ3 −

∫

S
I2(1, λ2, λ3)dλ2dλ3

+
∫ 1

−1
vk(Ak,4Zi )(1, 1, λ3)dλ3 −

∫ 1

−1
vk(Ak,4Zi )(1,−1, λ3)dλ3

+
∫

S
I3(λ1, 1, λ3)dλ1dλ3 −

∫

S
I4(λ1,−1, λ3)dλ1dλ3

+
∫ 1

−1
vk(Ak,5Zi )(λ1, 1, 1)dλ1 −

∫ 1

−1
vk(Ak,5Zi )(λ1, 1,−1)dλ1

+
∫

S
I5(λ1, λ2, 1)dλ1dλ2 −

∫

S
I6(λ1, λ2,−1)dλ1dλ2

+
∫ 1

−1
vk(Ak,6Zi )(1, λ2, 1)dλ2 −

∫ 1

−1
vk(Ak,6Zi )(−1, λ2, 1)dλ2,

where

I1 =
(
(Ai

k,1(ṽk)λ1 + Ai
k,7ṽk)Zi − ṽk((A

i
k,1Zi )λ1 + (Ai

k,4Zi )λ2 + (Ai
k,6Zi )λ3)

)
,

I2 =
(
(Ai

k,1(ṽk)λ1 + Ai
k,4(ṽk)λ2 + Ai

k,7ṽk)Zi − ṽk((A
i
k,1Zi )λ1 + (Ai

k,6Zi )λ3)
)
,

I3 =
(
(Ai

k,2(ṽk)λ2 + Ai
k,8ṽk)Zi − ṽk((A

i
k,2Zi )λ2 + (Ai

k,4Zi )λ1 + (Ai
k,5Zi )λ3)

)
,

I4 =
(
(Ai

k,2(ṽk)λ2 + Ai
k,5(ṽk)λ3 + Ai

k,8ṽk)Zi − ṽk((A
i
k,2Zi )λ2 + (Ai

k,4Zi )λ1)
)
,

I5 =
(
(Ai

k,3(ṽk)λ3 + Ai
k,9ṽk)Zi − ṽk((A

i
k,3Zi )λ3 + (Ai

k,5Zi )λ2 + (Ai
k,6Zi )λ1)

)
,

I6 =
(
(Ai

k,3(ṽk)λ3 + Ai
k,5(ṽk)λ1 + Ai

k,9ṽk)Zi − ṽk((A
i
k,3Zi )λ3 + (Ai

k,6Zi )λ2)
)
,

Zi = (Li ũ − Fi ), Q = (−1, 1)3 and S = (−1, 1)2. Now, we use the Gauss-Lobatto-
Legendre (GLL) quadrature formula with 2W + 1 points to evaluate the integrals in above
expression. Let λ2Wk,0 , λ2Wk,1 , . . . , λ2Wk,2W (k = 1, 2, 3) be the quadrature points in each direction

and w2W
k,0 , w2W

k,1 , . . . , w2W
k,2W represent the corresponding weights. Let D2W = d2Wi, j represent

the differentiation matrix. If l̃ is a polynomial of degree less than or equal to 2W , then
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dl̃

dλk
(λ2Wk,i ) =

2W∑

j=0

d2Wi, j l̃(λ
2W
k,i ).

Thus, we have
∫

Q
ṽk(Li,k)

T (Li ũ − Fi )dλ

≈
2W∑

i1=0

2W∑

j1=0

2W∑

k1=0

ṽk(λ
2W
1,i1 , λ

2W
2, j1 , λ

2W
3,k1)

(
w2W
1,i1w

2W
2, j1w

2W
3,k1(Li,k)

TZi (λ
2W
1,i1 , λ

2W
2, j1 , λ

2W
3,k1)

)

and
∫

S
I1(1, λ2, λ3)dλ2dλ3 ≈
2W∑

i1=0

2W∑

j1=0

2W∑

k1=0

ṽk(λ
2W
1,i1 , λ

2W
2, j1 , λ

2W
3,k1)

(
w2W
2, j1w

2W
3,k1d

2W
2W ,i1(A

i
k,1Zi )(1, λ

2W
2, j1 , λ

2W
3,k1)

)

+
2W∑

j1=0

2W∑

k1=0

ṽk(1, λ
2W
2, j1 , λ

2W
3,k1)

(
w2W
2, j1w

2W
3,k1(A

i
k,7Zi − (Ai

k,1Zi )λ1 − (Ai
k,5Zi )λ3

− (Ai
k,5Zi )λ2)(1, λ

2W
2, j1 , λ

2W
3,k1)

)
.

Similarly, we can write the expression for the remaining terms of Rterm . To arrange ũ =
(ũ1, ũ2, ũ3) in lexicographic order, we define

UW
1;(W+1)2k+(W+1)i+ j+1 = ũ1(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,

UW
2;(W+1)2k+(W+1)i+ j+1 = ũ2(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,

UW
3;(W+1)2k+(W+1)i+ j+1 = ũ3(λ

W
1,i , λ

W
2, j , λ

W
3,k), for 0 ≤ i, j, k ≤ W ,

and

U 2W
1;(W+1)2k+(W+1)i+ j+1 = ũ1(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W ,

U 2W
2;(W+1)2k+(W+1)i+ j+1 = ũ2(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W ,

U 2W
3;(W+1)2k+(W+1)i+ j+1 = ũ3(λ

2W
1,i , λ2W2, j , λ

2W
3,k ), for 0 ≤ i, j, k ≤ 2W .

In same manner, we define

Z2W
1;(W+1)2k+(W+1)i+ j+1 = L1ũ(λ2W1,i , λ2W2, j , λ

2W
3,k ) − F1(λ

2W
1,i , λ2W2, j , λ

2W
3,k ),

Z2W
2;(W+1)2k+(W+1)i+ j+1 = L2ũ(λ2W1,i , λ2W2, j , λ

2W
3,k ) − F2(λ

2W
1,i , λ2W2, j , λ

2W
3,k ),

Z2W
3;(W+1)2k+(W+1)i+ j+1 = L3ũ(λ2W1,i , λ2W2, j , λ

2W
3,k ) − F3(λ

2W
1,i , λ2W2, j , λ

2W
3,k ).

Thus, the final form is as follows:
∫

Q
(Li,k ṽk)(Li ũ − Fi )dλ ≈ (V 2W

k )T Rk
i Z

2W
i .

Here each Rk
i (i, k = 1, 2, 3) is a matrix such that Rk

i Z
2W
i (i, k = 1, 2, 3) is easily computed.
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Similarly, we have
∫

Q
(Li ṽk)(Li ũ − Fi )dλ =

∫

Q
(Li,1ṽk)(Li ũ − Fi )dλ +

∫

Q
(Li,2ṽk)(Li ũ − Fi )dλ

+
∫

Q
(Li,3ṽk)(Li ũ − Fi )dλ,

≈ (V 2W
1 )T R1

i Z
2W
i + (V 2W

2 )T R2
i Z

2W
i + (V 2W

3 )T R3
i Z

2W
i .

Finally, we can conclude that

3∑

i=1

∫

Q
(Li ṽ)(Li ũ − Fi )dλ ≈ (V 2W

1 )T R1
1Z

2W
1 + (V 2W

1 )T R1
2Z

2W
2 + (V 2W

1 )T R1
3Z

2W
3

+ (V 2W
2 )T R2

1Z
2W
1 + (V 2W

2 )T R2
2Z

2W
2 + (V 2W

2 )T R2
3Z

2W
3

+ (V 2W
3 )T R3

1Z
2W
1 + (V 2W

3 )T R3
2Z

2W
2 + (V 2W

3 )T R3
3Z

2W
3 .

Now we compute the boundary terms in norm H1/2(S). Let l̃ be the polynomial of degree
2W in λ1 and λ2 separately.

||l̃||21
2 ,S

=||l̃||20,S +
∫

Q

(l̃(λ1, λ2)) − l̃(λ
′
1, λ2))

(λ1 − λ
′
1)

2
dλ1dλ

′
1dλ2

+
∫

Q

(l̃(λ1, λ2)) − l̃(λ1, λ
′
2))

(λ2 − λ
′
2)

2
dλ2dλ

′
2dλ1.

Applying the Gauss Lobatto Legendre quadrature rule implies

||l̃|| 1
2 ,S =

2W∑

i=0

2W∑

j=0

w2W
i w2W

j l̃2(λ2W1,i , λ2W2, j )

+
2W∑

j=0

2W∑

i=0,i ′ �=i

2W∑

i ′=0

w2W
i w2W

j w2W
i ′

(l̃(λ2W1,i , λ2W2, j )) − l̃(λ2W
1,i ′ , λ

2W
2, j ))

(λ2W1,i − λ2W1,i ′)
2

+
2W∑

i=0

2W∑

j=0, j ′ �= j

2W∑

j ′=0

w2W
i w2W

j w2W
j ′

(l̃(λ2W1,i , λ2W2, j )) − l̃(λ2W1,i , λ2W2, j ′))

(λ2W2, j − λ2W2, j ′)
2

+
2W∑

i=0

2W∑

j=0

w2W
i w2W

j

( d

dλ1
l̃(λ2W1,i , λ2W2, j ′))

)

+
2W∑

i=0

2W∑

j=0

w2W
i w2W

j

( d

dλ2
l̃(λ2W1,i , λ2W2, j ′))

)
.

Hence, there exists a symmetric positive definite matrix H2W such that

||l̃|| 1
2 ,S =

2W∑

i=0

2W∑

j=0

2W∑

i ′=0

2W∑

j ′=0

l̃(λ2W1,i , λ2W2, j ))H
2W
i, j,i ′, j ′ l̃(λ

2W
1,i ′ , λ

2W
2, j ′)).

Now, we compute the typical boundary term of the following form

||(Tk,1(ũk)λ1 + Tk,2(ũk)λ2 + Tk,3(ũk)λ3)(λ1, λ2, 1) − qk ||21
2 ,S

, (8.1)
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where each Tk,i (i, k = 1, 2, 3) is analytic coefficient and each qk(k = 1, 2, 3) is given
boundary data. The variation of the above term (8.1) is as follows:

≈
2W∑

i, j=0

2W∑

i ′, j ′=0

(Tk,1(ṽk)λ1 + Tk,2(ṽk)λ2 + Tk,3(ṽk)λ3)(λ2W1,i1 , λ
2W
2, j1 , 1)H

2W
i, j,i ′, j ′

×
(
(Tk,1(ũk)λ1 + Tk,2(ũk)λ2 + Tk,3(ũk)λ3)(λ2W1,i1 , λ

2W
2, j1 , 1) − qk(λ

2W
1,i1 , λ

2W
2, j1)

)

Now we define

X2W
k;i1, j1 =

2W∑

i ′, j ′=0

H2W
i1, j1,i ′, j ′

(
(Tk,1(ũk)λ1 + Tk,2(ũk)λ2 + Tk,3(ũk)λ3)(λ2W1,i1 , λ

2W
2, j1 , 1)

− qk(λ
2W
1,i1 , λ

2W
2, j1)

)
.

Then we have

2W∑

i, j=0

2W∑

i ′, j ′=0

(Tk,1(ṽk)λ1 + Tk,2(ṽk)λ2 + Tk,3(ṽk)λ3)(λ2W1,i1 , λ
2W
2, j1 , 1)X

2W
k;i1, j1

=
2W∑

i1=0

2W∑

i2=0

2W∑

j1=0

ṽk(λ
2W
1,i1 , λ

2W
2, j1 , 1)d

2W
i1,i2

(
T1(λ2W1,i1 , λ

2W
2, j1 , 1)X

2W
k;i1, j1

)

+
2W∑

i1=0

2W∑

j1=0

2W∑

j2=0

ṽk(λ
2W
1,i1 , λ

2W
2, j1 , 1)d

2W
j1, j2

(
T2(λ2W1,i1 , λ

2W
2, j1 , 1)X

2W
k;i1, j1

)

+
2W∑

i1=0

2W∑

j1=0

2W∑

k2=0

ṽk(λ
2W
1,i1 , λ

2W
2, j1 , λ

2W
3,k2)d

2W
i1,i2

(
T3(λ2W1,i1 , λ

2W
2, j1 , 1)X

2W
k;i1, j1

)

= (V 2W
k )T Ek X2W

k

where Ek, k = 1, 2, 3, are (2W + 1)3 × (2W + 1)3 matrices and Ek X2W
k , k = 1, 2, 3 can

be easily computed. In same manner, we can evaluate the variation of each term which is
involved in the quadratic form RW . Combining all integrals for an element, we obtain

3∑

i=1

∫

Q
(Li ṽ)T (Li ũ − Fi )dλ + inter element jump term variation

or/and boundary term variation

= (V 2W
1 )T R1

1Z
2W
1 + (V 2W

1 )T R1
2Z

2W
2 + (V 2W

1 )T R1
3Z

2W
3

+ (V 2W
2 )T R2

1Z
2W
1 + (V 2W

2 )T R2
2Z

2W
2 + (V 2W

2 )T R2
3Z

2W
3

+ (V 2W
3 )T R3

1Z
2W
1 + (V 2W

3 )T R3
2Z

2W
2 + (V 2W

3 )T R3
3Z

2W
3 + · · ·

= (V 2W
1 )T O2W

1 + (V 2W
2 )T O2W

2 + (V 2W
3 )T O2W

3 .

Here O2W
1 = R1

1Z
2W
1 + R1

2Z
2W
2 + R1

3Z
2W
3 +· · · , O2W

2 = R2
1Z

2W
1 + R2

2Z
2W
2 + R2

3Z
2W
3 +· · ·

and O2W
3 = R3

1Z
2W
1 + R3

2Z
2W
2 + R3

3Z
2W
3 + · · · are (2W + 1)3 vectors which can be easily

evaluated. Furthermore, there exist matrices GW
α , α = 1, 2, 3, such that

V 2W
1 = GW

1 VW
1 , V 2W

2 = GW
2 VW

2 and V 2W
3 = GW

3 VW
3 .
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Then we have

(V 2W
α )T O2W

α = (VW
α )T ((GW

α )T O2W
α ) for α = 1, 2, 3.
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