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Abstract
High frequency errors are always present in numerical simulations since no difference stencil
is accurate in the vicinity of the π -mode. To remove the defective high wave number infor-
mation from the solution, artificial dissipation operators or filter operators may be applied.
Since stability is our main concern, we are interested in schemes on summation-by-parts
(SBP) form with weak imposition of boundary conditions. Artificial dissipation operators
preserving the accuracy and energy stability of SBP schemes are available. However, for fil-
tering procedures it was recently shown that stability problemsmay occur, even for originally
energy stable (in the absence of filtering) SBP based schemes. More precisely, it was shown
that even the sharpest possible energy bound becomes very weak as the number of filtrations
grow. This suggest that successful filtering include a delicate balance between the need to
remove high frequency oscillations (filter often) and the need to avoid possible growth (filter
seldom). We will discuss this problem and propose a remedy.

Keywords Numerical filters · Stability · Accuracy · Summation-by-parts · High frequency
oscillations · Semi-bounded · Transmission problem

1 Introduction

For reliable solutions to initial boundary value problems (IBVP), stability is required. This
can be achieved by using schemes on SBP form together with weak imposition of bound-
ary conditions. A central feature with these schemes is that the discrete spatial operator is
associated with a corresponding integration procedure (inner product). Stable and high order
accurate discretizations of SBP type have been known for a long time [10].

High frequency errors are always present in numerical simulations since no difference
stencil is accurate in the vicinity of the π -mode. To remove the defective high wave num-
ber information from the solution, artificial dissipation operators or filter operators may be
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applied. Artificial dissipation operators preserving the accuracy and energy stability of SBP
schemes are available [6,9]. However, for filtering procedures it was recently shown that
stability problems may occur, even for originally energy stable (in the absence of filtering)
SBP based schemes [7].

The application of an oscillation-reducing filter during a numerical simulation can be
seen as one particular type of so-called transmission problems recently studied in [7]. It was
shown that in order to preserve stability of the underlying numerical scheme, the transmission
problem must be contractive with respect to the same inner product for which the discrete
spatial operator is semi-bounded. Unfortunately, the boundary closures for explicit filters
available in the previous literature do not satisfy this contractive property even in the most
simple low order case. On the other hand, for transmission problems involving adaptive mesh
refinement, so-called SBP preserving interpolation operators sometimes satisfy the required
contractive property [5]. In this paper we will demonstrate that the SBP preserving concept
(which we will denote inner product preserving (IPP) in the rest of the paper) is central
also for the problem of constructing stable filters. In particular we will show that an IPP
property is necessary but not sufficient for an explicit filter to be contractive. Sufficiency will
be indicated by a set of separate criteria for filters of finite difference type. If the same filter
operators are implemented in an implicit way, we prove that the IPP property is in itself also
sufficient for stability.

This paper is organized as follows. The filter transmission problem is introduced in Sect. 2,
together with the stability condition for explicit filters derived in [7]. Explicit finite difference
stencils and a previous method for constructing boundary closures are reviewed in Sect. 3. A
necessary IPPcondition for stability is then formulated inSect. 4,which explains the boundary
instabilities previously observed. A solution to the stability problem is proposed in the form
of a new filter construction formula with the IPP property. The new stable filters are extended
to curved multi-dimensional geometries in Sect. 5. In Sect. 6 we investigate the numerical
properties of the new explicit and implicit filter implementations, demonstrating the stability
and excellent oscillation-reducing properties for a boundary layer problem. Finally in Sect. 7,
we draw conclusions.

2 The Transmission Problem

In this section we briefly revisit the setting in [7] and introduce the necessary notation.

2.1 Continuous Model Problem

Consider a possibly nonlinear partial differential equation governing the evolution of a solu-
tion field u(t, x) on the domain Ω ∈ R

d . We write,

ut + D(u) = 0, x ∈ Ω, t ≥ 0

L(u) = g(t), x ∈ ∂Ω

u(0, x) = f (x),

(1)

where D is a differential operator, and L is a boundary operator. We assume that the problem
is semi-bounded, i.e.

∫
Ω

φD(φ) ≥ 0,
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for smooth functionsφ satisfying the homogenous version (g = 0) of the boundary conditions
in (1). Next, we semi-discretize the problem with homogeneous boundary conditions, and
obtain,

Ut + D(U ) = 0, t ≥ 0

U (0) = f (x),

where x is a vector containing the grid points. The operator D approximates D and includes
the weakly imposed boundary conditions.

Further, we assume that the discrete operator is also semi-bounded, i.e. that

(U ,D(U ))P = UTPD(U ) ≥ 0, (2)

where P is a diagonal operator (inner product and norm) containing the quadrature weights
associated with D. Stability then follows, since,

‖U (t)‖P ≤ ‖ f (x)‖P (3)

holds.
Next, we consider the problem of applying an oscillation-reducing filter to the solution

at some arbitrary point t1 in time. This operation can be seen as a so-called transmission
problem [7]. Building directly on the semi-discretized form of the equations, we consider
the problem,

Ut + D(U ) = 0, 0 ≤ t ≤ t1

Vt + D(V ) = 0, t ≥ t1

U (0) = f (x)

V (t1) = Ψ [U (t1), V (t1)] ,

(4)

where Ψ is a general filter function which can be either implicit or explicit (Ψ = Ψ [U (t1)]).
For stability we require the contractive property,

‖V (t1)‖P ≤ ‖U (t1)‖P . (5)

which by (3) yields the desired result,

‖V (t)‖P ≤ ‖ f (x)‖P . (6)

The estimate (6) shows that (4) is estimated in the initial data of the problem (1). We say
that schemes that satisfy (6) are time-stable. It was shown in [7] that schemes that are not
time-stable can lead to erroneous energy growth.

We conclude this section by considering the special case of a linear explicit filter,

V (t1) = Ψ [U (t1)] = FU (t1),

where F is a matrix (see Fig. 1). For such filters, (5) implies that the contractive property of
F first identified in [7],

FTPF − P ≤ 0, (7)

must hold. Note that in (7) there is no distinction made between explicit filters on constant
coefficient or semi-linear (i.e. F = F(U )) form. In both cases, (7) leads directly to time-
stability.
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V = FU

V (t)

0 t1

Fig. 1 Schematic of semi-discrete filter problem

3 Explicit Finite Difference Filters

We specify x = (0,Δx, 2Δx, . . . , 1) to be a uniformly spaced grid vector in 1D with N + 1
grid points, i.e. Δx = 1/N , and let D be a high order SBP finite difference operator with
the inner product P . The highest solution frequency which can be resolved on the grid is the
so-called π-mode,

fπ = cos(Nπx) = (
. . . 1 −1 1 −1 . . .

)T
. (8)

The central feature of most oscillation-reducing explicit filters is to remove the π-mode
from a numerical solution through the application of a dissipative high order derivative
approximation.

It is well known that, down to a scaling factor, compact stencil approximations of even
order derivatives leave the π -mode intact. For example, a symmetric second order accurate
stencil approximating the 2n:th order derivative satisfies,

D2n fπ = (−1)n
2(2n)

Δx (2n)
fπ ,

see e.g. [2]. Since D2n is itself scaled with a factor of 1/Δx (2n), second order accuracy means
that polynomials up to order 2n + 1 are evaluated exactly. In particular, polynomials up to
order 2n − 1 are then differentiated exactly to zero,

D2nx j = 0 j = 0, 1, . . . , 2n − 1, (9)

where the power j should be interpreted as an element-wise operation on x. It follows that
a filter defined by F = I − α(−1)nD2n , where α = Δx (2n)/2(2n), simultaneously cancels
the π-mode while leaving low order frequency modes unaltered to within 2n:th order of
accuracy,

F fπ = 0 (10)

Fx j = x j , j = 0, 1, . . . , 2n − 1. (11)

These filter properties only apply in the interior of the domain. In [2], boundary closures
were constructed for stencils up to sixteenth order (n = 8), leading to operators D2n for a
bounded domain satisfying the symmetry and accuracy conditions,

D2n = DT
2n, (−1)nD2n ≥ 0 (12)

D2nx j = 0 j = 0, 1, . . . , n − 1. (13)

Based on these operators, an explicit filter defined by F = I − α(−1)nD2n then satisfies,

F = FT , λ(F) ≤ 1 (14)

Fx j = x j j = 0, 1, . . . , n − 1. (15)
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where in addition (10) and (11) applies to the interior stencil of F .
The fact that the spectral radius of F is smaller than unity implies that the contractive

property (7) holds if P is proportional to the unit matrix, i.e. if P = Δx I . Unfortunately, this
is typically not the inner product for which semi-boundedness (2) can be proven. For other
P:s, (7) can not be guaranteed based on the design requirements in (12) and (13). As observed
in [7], even in the most simple and lowest order case, the operators in [2] fail to satisfy (7).
Consider for example a second order accurate SBP norm with N = 3 and Δx = 1/3,

P = 1

3

⎛
⎜⎜⎝
1/2

1
1
1/2

⎞
⎟⎟⎠ . (16)

A symmetric filter of the form (14) and (15) for n = 1 is given by,

D2n = 32

⎛
⎜⎜⎝

−1 1
1 −2 1

1 −2 1
1 −1

⎞
⎟⎟⎠ ⇒ F = 1

4

⎛
⎜⎜⎝
3 1
1 2 1
1 2 1
1 3

⎞
⎟⎟⎠ .

The eigenvalues of FTPF − P become [− 0.9375,− 0.5890,− 0.1250, 0.0265]. The pos-
itive eigenvalue indicates that the numerical scheme is not time-stable, which can lead to
unwanted energy growth.

4 Stable Filters: Theory and a NewOperator Definition

Even though in this paper we focus on filters to be used in conjunction with finite difference
schemes, we stress that the formulation of the transmission problem in Sect. 2 is general and
applies to all types of semi-bounded schemes. In this section we will derive stability results
for general filters on both explicit and implicit form.Wewill then apply this theory to propose
a new and improved finite difference filter definition.

4.1 A Necessary Stability Condition for Explicit Filters

The contractivity condition (7) implies that the construction of filter boundary closures must
relate to the inner product P . In Proposition 1 below we will show that the only way to
achieve (7) is to let F be associated with another operator F̃ of the same accuracy, such that
they form a so-called IPP pair, defined by,

F̃ = P−1FTP ⇒ (U ,FV )P = (F̃U , V )P . (17)

This might seem like a counter-intuitive statement. The operator F̃ does not appear in the
scheme (4), but somewhat surprisingly, its existence is necessary for the transmission problem
to be stable. To prove this, we need the following lemma.

Lemma 1 Let M be a symmetric matrix such that for some vector v we have both vT Mv = 0
and Mv �= 0. Then M is indefinite.

Proof See Lemma 14 in [8]. �	
We can now prove
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Proposition 1 Let the operator F in (4) be n:th order accurate, i.e. it satisfies (15). In order
for the contractivity condition (7) to hold with respect to the inner product P , it is necessary
that also the operator F̃ in (17) is n:th order accurate.

Proof Assume that (15) holds, and consider the quadratic form,

(x j )T (FTPF − P)x j = (Fx j )TP(Fx j ) − (x j )TPx j

= (x j )TPx j − (x j )TPx j = 0,
(18)

for j = 0, 1, . . . , n−1. It now follows from Lemma 1 thatFTPF −P must be an indefinite
matrix unless we also have,

(FTPF − P)x j = 0, j = 0, 1, . . . , n − 1.

Inserting (15) again and then multiplying with P−1, this yields,

F̃x j = x j , j = 0, 1, . . . , n − 1, (19)

i.e. F̃ is also n:th order accurate. �	

For a filter defined as before by F = I −α(−1)nD2n , (19) does by no means follow from
the properties (12) and (13). In fact one can easily verify numerically that (19) in general
does not hold, thus showing that the filter definition F = I − α(−1)nD2n together with (12)
and (13) is inadequate. With Proposition 1 in place, we are now equipped to reconsider the
problem of constructing stable filter boundary closures. Indeed, we can rule out all cases
where F̃ as defined in (17) does not satisfy (19).

4.2 AModified Finite Difference Filter Definition

By taking advantage of the fact that high order derivative operators D2n satisfying (12) and
(13) are already available, we consider the new filter definition,

F = I − α(−1)nH−1D2n, α = Δx (2n)/2(2n), (20)

where P = ΔxH.

Remark 1 This modification is similar to the one proposed in [6] for artificial dissipation.

Note that the new definition (20) satisfies the same accuracy conditions (15) as before. Indeed,
(13) implies thatF reduces to an identity operator when applied to polynomials of order n−1.
Moreover, from the symmetry of D2n we have,

PF = P − α(−1)nΔxD2nP−1P = (I − α(−1)nD2nH−1)P = FTP,

i.e. the matrix PF is also symmetric. In the IPP definition (17), this leads to

F̃ = P−1FTP = P−1PF = F, (21)

i.e. F forms an IPP pair together with itself. The condition (19) necessary for stability hence
follows directly by construction from the accuracy of F itself in (15). Note that while (19) is
not sufficient in order to prove that contractivity (7) is satisfied, it is straightforward to verify
numerically if this is the case or not, for a given combination of F and P .
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For example, n = 1 together with the second order accurate norm (16) yields,

D2n = 32

⎛
⎜⎜⎝

−1 1
1 −2 1

1 −2 1
1 −1

⎞
⎟⎟⎠ ⇒ F = 1

4

⎛
⎜⎜⎝
2 2
1 2 1
1 2 1
2 2

⎞
⎟⎟⎠ .

The eigenvalues of FTPF − P are [− 0.875,− 0.625,− 0.25, 0], implying time-stability
of the numerical scheme. One can also easily construct examples where (19) is satisfied
but where (7) is not, for example by adjusting the quadrature weights in (16). To make the
theory complete, we have developed a set of sufficiency criteria to test whether a given filter
of the type (20) is contractive or not. These criteria are independent of the grid size N , see
“Appendix A”. Using these criteria we can prove that no eigenvalue ofFTPF−P is positive
for standard SBP finite difference norms up to eighth order accuracy.

To summarize this section, Proposition 1 was applied to propose a plausible candidate
for a new filter definition (20). Furthermore, for each combination of operators P and D2n ,
the contractivity condition in (7) can be verified using the criteria for sufficiency given in
“Appendix A”.

4.3 A Provably Stable Implicit Implementation

As we have seen, the IPP property (17) for explicit filters defines a new operator F̃ which is
not present in the original transmission problem (4). However, using an implicit formulation
we can use this operator to design a provably contractive scheme. In (4), consider the previous
explicit filter with an added implicit correction term,

Ψ [U (t1), V (t1)] = FU (t1) − F (F̃V (t1) −U (t1)
)
,

leading to (
I + FF̃)

V (t1) = 2FU (t1), (22)

where F̃ is defined as in (17). Note that if (19) holds, then the accuracy of this condition is
of the same order as the operator F itself. As we shall now prove, (17) in combination with
(22) is both necessary and sufficient for contractivity.

Proposition 2 Consider the implicit filter implementation (22). By defining F̃ as in (17), the
estimate

‖V (t1)‖2P = ‖U (t1)‖2P − ‖U (t1) − F̃V (t1)‖2P
holds, i.e. the filter is contractive (5).

Proof Multiplying (22) with V (t1)TP from the left yields,

‖V (t1)‖2P + (V (t1),FF̃V (t1))P = 2(V (t1),FU (t1))P .

From (17), this becomes,

‖V (t1)‖2P + ‖F̃V (t1)‖2P = 2(F̃V (t1),U (t1))P .

After adding and subtracting ‖U (t1)‖2P on the right hand side, we finally get,

‖V (t1)‖2P = ‖U (t1)‖2P − ‖U (t1)‖2P − ‖F̃V (t1)‖2P + 2(F̃V (t1),U (t1))P
= ‖U (t1)‖2P − ‖U (t1) − F̃V (t1)‖2P ,
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which concludes the proof. �	
We recall that the contractivity property (5) together with the estimate (3) of U leads to
time-stability (6) of the transmission problem.

5 Extensions

To accommodate for non-Cartesian geometries in multiple dimensions, SBP finite difference
discretizations of IBVPs can be extended through a combination of tensor products and
curvilinear transformations in such a way that semi-boundedness (2) is preserved. In this
section we will discuss how such extensions relate to filters.

5.1 Multiple Dimensions

Finite difference formulations in 1D can be extended to multi-dimensional Cartesian grids
by the application of tensor products. For example, in the 2D case, let

P = Px ⊗ Py, F = Fx ⊗ Fy,

where ⊗ denotes the Kronecker (or tensor) product, and where Px , Py , Fx and Fy are
integration and filter operators in the two coordinate directions, respectively. The IPP property
(17) immediately extends from 1D to 2D operators, since

F̃ = F̃x ⊗ F̃y =
(
P−1
x FT

x Px

)
⊗

(
P−1
y FT

y Py

)
= P−1FTP,

following elementary rules of the Kronecker product. This means that the implicit filter
implementation (22) extends directly to multiple dimensions in a stable and accurate way.

As for the contractive property (7), consider

FTPF − P = (Fx ⊗ Fy)
T (Px ⊗ Py)(Fx ⊗ Fy) − Px ⊗ Py

= (FT
x PxFx ) ⊗ (FT

y PyFy) − Px ⊗ Py .

By adding and subtracting 1
2

[
Px ⊗ (FT

y PyFy) + (FT
x PxFx ) ⊗ Py

]
, we find,

FTPF − P = 1

2

[
(FT

x PxFx − Px ) ⊗ (FT
y PyFy + Py)

+ (FT
x PxFx + Px ) ⊗ (FT

y PyFy − Py)
]
.

Since FT
x PxFx + Px and FT

y PyFy + Py only have positive eigenvalues, it follows that (7)
is satisfied provided that it is satisfied for the 1D operators, i.e.

FT
x PxFx − Px ≤ 0, FT

y PyFy − Py ≤ 0.

We have thus shown that stability is preserved for both the explicit and implicit implemen-
tations in 2D. By induction, these arguments can be extended to any number of dimensions.

5.2 Curvilinear Coordinates

Let x̂ denote a Cartesian grid in any number of space dimensions, and let x = x(x̂) denote
a curvilinear transformation such that we obtain a new grid vector x. Moreover, let J be the
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diagonal matrix obtained by inserting values from the Jacobian determinant of this transfor-
mation at the grid points. From a discrete inner product P̂ defined on the Cartesian grid, we
can define a new operator P = J P̂ containing the positive quadrature weights on x.

We define the new filter operator on x as,

F = J−1/2F̂J 1/2, (23)

where F̂ is constructed with respect to the Cartesian grid exactly as in the previous section.
An IPP pair is now obtained by analogously defining F̃ as,

F̃ = J−1/2 ˜̂FJ 1/2 = J−1/2
(
P̂−1F̂T P̂

)
J 1/2 = P̂−1J−1FTJ P̂ = P−1FTP,

showing that the implicit implementation (22) of F in (23) is stable and accurate.
Also the contractivity condition (7) extends to the curvilinear case, and we can prove

Lemma 2 If F̂T P̂F̂ − P̂ ≤ 0, then FTPF − P ≤ 0, where F is defined in (23).

Proof Consider,

FTPF − P =
(
J 1/2F̂TJ−1/2

)
J P̂

(
J−1/2F̂J 1/2

)
− J P̂.

Since both P̂ and J are diagonal, they commute, leading to,

FTPF − P = J 1/2
(
F̂T P̂F̂

)
J 1/2 − J P̂ = J 1/2

(
F̂T P̂F̂ − P̂

)
J 1/2,

and the result follows. �	

6 Numerical Calculations

We test the numerical properties of the filter definition in (20), henceforth referred to as the
new filters, and compare to the previous version with F = I − α(−1)nD2n , which we refer
to as the old filters. In both cases, the high order derivative operatorsD2n are taken from [2].
If filtering is carried out repeatedly after each or every few time steps in a simulation, the
errors will accumulate over time. To avoid a reduction in convergence rate, the filter accuracy
should be at least one order higher than that of the numerical scheme itself. To limit the
number of cases considered, we shall for each value of n associate F with a finite difference
operator of order 2(n− 1) in the interior, and order n− 1 in the boundary closure. The lower
order accuracy in the boundary closure is a theoretical upper limit for the type of operators
considered, see [3,4].

6.1 Filter Properties

First we investigate the effect of the explicit (4) and implicit (22) filter implementations to
functions with various frequencies. Consider the test function,

u = cos(ξNx), (24)

where 0 ≤ ξ ≤ π is the so-called wave number. Note that ξ = π yields the π-mode fπ in
(8), i.e. the highest frequency that can be resolved on the grid.

Consider the uniform grid x in 1D with N + 1 grid points, and define the vector U such
thatUi = u(xi ). In Fig. 2 we plotU for a few different frequencies before and after filtering.
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Fig. 2 The old and new filters applied to functions of various frequencies

Here we have used N = 32 and n = 2, i.e. a fourth order derivative D2n together with
a norm P associated with an SBP finite difference operator of order 2 in the interior. As
expected, filtering results in a cancellation of the π -mode in the interior of the domain, while
the damping of low frequencies is small. In order to compare the different methods to one
another, it is convenient to first separate the action in the interior of the domain from that of
the boundary closures.

In Fig. 3 we plot the interior damping as a function of the wave number, using n = 2, 3, 4
and 5. Notice that the new and old explicit filter operators are identical in the interior, which is
why no there is distinction between them here.We observe that all filters succeed in canceling
the π-mode, and that higher order filters are less dissipative than lower order ones for all
wave numbers smaller than π . For the same value of n, the implicit implementation is less
dissipative than the explicit one.

Finally, in Fig. 4 we take a closer look at the results from filtering the π-mode close to a
domain boundary. The cases considered here do not differ significantly from each other, with
the new filters showing slightly better damping for lower values of n, but slightly worse for
n = 5.
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Fig. 3 Amplification factor of interior stencil as a function of wave number
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Fig. 4 New and old filters applied to the π -mode close to one boundary
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Fig. 5 Error distribution at t = 10 for boundary layer calculations on a Cartesian grid

6.2 Boundary Layer Calculation

One possible source for unwanted oscillations in a numerical solution is when a second order
derivative is approximated by applying a central first derivative operator twice, leading to
a non-compact stencil. See e.g. [1] for an analysis of such oscillatory error modes. Since
central difference approximations of odd order derivatives by themselves cancel out the π-
mode, there is no natural mechanism in such schemes to damp out oscillations once they start
appearing.

As amodel problem,we consider the advection-diffusion equationwithwell-posed bound-
ary conditions,

ut + ux = εuxx , 0 ≤ x ≤ 1, t > 0

u(0, t) − εux (0, t) = 1

εux (1, t) = −1

u(x, 0) = f (x).

An exact steady-state solution with a steep boundary layer at x = 1 is given by,

ue(x) = 1 − exp

(
x − 1

ε

)
.

We let ε = 0.1, and use first derivative finite difference SBP operators to approximate
both ux and uxx . More details about this discretization technique can be found in [1]. In Fig. 5
we show examples of error distributions e = U − ue(x), where U is the numerical solution
obtained either with or without filtering. We have used finite difference SBP operators of
fourth order in the interior (and hence n = 3), and compute the steady-state solution using
the classical RK4 method in time. As initial solution we use f(x)=0. The time step size is
chosen to be Δt = Δx2/4ε, and filters are applied after each time step. In Fig. 6 we plot the
error inmaximumnorm (with respect to space) as a function of time, showing that steady-state
is reached at around t = 5 in all cases.

The positive effect of filtering is apparent. Dominated by oscillations, the errors are almost
eliminated outside the boundary layer. For the new time-stable techniques, the oscillations
close to x = 1 are also reduced significantly. The old method on the other hand is showing
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Fig. 6 Maximum error as a function of time for the case N = 32
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Fig. 7 Convergence of maximum error with and without filtering. The dotted line indicates third order con-
vergence

clear problems, and even fails to converge with the same rate as the unfiltered scheme, see
Fig. 7 for convergence plots of the error inmaximumnorm. Since the formal order of accuracy
is the same in all cases, we conclude that this convergence issue is due to an instability caused
by the old filter.

Since the steepest gradients are found within the boundary layer close to x = 1, it makes
sense to reduce the grid spacing in this region. In the final test, we apply the smooth grid
transformation,

xi = tanh(dx̂i )

tanh(d)
,

where d = 3/2, and x̂ is a uniform grid with N + 1 grid points. The filter operators are
modified according to Sect. 5.2, and results are shown in Figs. 8 and 9. The error levels
are significantly reduced compared to the Cartesian grid calculations, and the new filters
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Fig. 8 Error distribution at t = 10 for boundary layer calculations on a stretched grid
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Fig. 9 Convergence of maximum error with and without filtering for the stretched grid calculation. The dotted
line indicates third order convergence

are again superior to the old ones. Close to x = 1, the errors from the explicit and implicit
implementation are comparable. In the interior however, the implicitmethod ismore accurate.

7 Conclusions

A new inner product preserving (IPP) filter definition for finite difference schemes was pro-
posed. The IPP property was shown to be necessary for the stability of explicit filters in
general, while sufficiency was verified for each operator individually. An implicit implemen-
tation of the same operators was also proposed, for which the IPP property was shown to
be sufficient for stability. These theoretical results extend to filters used in conjunction with
other types of schemes as well, and even to nonlinear filters.

The new filters can easily be extended to multiple dimensions and complex geome-
tries in such a way that stability and accuracy is preserved. The advantage compared to
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a previous unstable filter definition was demonstrated by numerical calculations for an
advection-diffusion boundary layer problem, using non-compact stencil second order deriva-
tive approximations.

Acknowledgements Open access funding provided by Linköping University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Sufficient Conditions for Contractivity

In this section we derive sufficient conditions for explicit finite difference filters of the form
(20) to be contractive (7). Due to symmetry, it is sufficient to consider the problem on a
half-line. Thus we denote the diagonal elements inH with h j > 0, j = 0, 1, . . . ,∞. Recall
that the inner product H has been scaled such that h j is independent of Δx .

Let D1 denote the undivided forward difference operator,

D1 =
⎛
⎜⎝

−1 1
−1 1

. . .
. . .

⎞
⎟⎠ . (25)

The symmetric operators D2n utilized to construct the filters in [2] can all be written on the
following form,

D2n = (−1)n(1/Δx)(Dn
1 )

TDn
1 . (26)

Thus, we can write (20) as

F = I − 1

2(2n)
H−1(Dn

1 )
TDn

1 ,

which leads to

FTHF − H = 1

2(2n)
(Dn

1 )
T

[
−2I + 1

2(2n)
Dn
1H−1(Dn

1 )
T
]
Dn
1 .

For contractivity, it is thus sufficient to consider the following matrix associated with each
filter,

M = −2I + 1

2(2n)
Dn
1H−1(Dn

1 )
T . (27)
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Now, let e j be a vector with a single non-zero value of 1 in the j : th position, and 0
everywhere else,

e j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ e j e
T
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
1
0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can now write,

H−1 =
∞∑
0

1

h j
e j e

T
j ,

The second term on the right hand side of (27) can thus be expanded into the sum of outer
products,

Dn
1H−1(Dn

1 )
T = Dn

1

⎛
⎝ ∞∑

j=0

1

h j
e j e

T
j

⎞
⎠ (Dn

1 )
T =

∞∑
j=0

1

h j
Dn
1

(
e j e

T
j

)
(Dn

1 )
T

=
∞∑
j=0

1

h j
(Dn

1e j )(Dn
1e j )

T .

Next, we will expand the unit matrix in (27) in a similar way, so that each term matches the
non-zero structure of the corresponding term (Dn

1e j )(Dn
1e j )

T above. From the definition of
e j , it is clear that the vector Dn

1e j is given by the j : th column of the matrix Dn
1 , and the

structure of Dn
1 is illustrated in “Appendix A.1” through A.5. To accomplish the stated goal,

we expand I as,

I = 1

n + 1

∞∑
j=0

I j ,

where,

I0 =
⎛
⎝
1
0

. . .

⎞
⎠ , I1 =

⎛
⎜⎜⎝
1
1
0

. . .

⎞
⎟⎟⎠ , . . . , In =

⎛
⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .

⎞
⎟⎟⎟⎟⎟⎠

n + 1
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and,

In+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
1

. . .

1
0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, In+2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

. . .

1
0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . .
n + 1 n + 1

We can now write (27) as,

M =
∞∑
j=0

[
− 2

n + 1
I j + 1

h j22n
(Dn

1e j )(Dn
1e j )

T
]

,

where both terms inside the summation have a non-zero part with the same position and
dimension. Moreover, the only eigenvector with a non-zero eigenvalue to the outer product
(Dn

1e j )(Dn
1e j )

T is Dn
1e j itself,[
(Dn

1e j )(Dn
1e j )

T
]
Dn
1e j =

[
Dn
1e j )

T (Dn
1e j )

]
Dn
1e j ,

since all other eigenvectors are given by the orthogonal set to Dn
1e j ,

ΦT (Dn
1e j ) ⇒

[
(Dn

1e j )(Dn
1e j )

T
]
Φ = 0.

The single non-zero eigenvalue λ is thus given by

λ = (Dn
1e j )

T (Dn
1e j ) = ‖Dn

1e j‖2,
where ‖ · ‖ denotes the standard euclidean vector norm. Hence, a sufficient condition forM
to be negative semi-definite is

− 2

n + 1
+ 1

h j22n
‖Dn

1e j‖2 ≤ 0, ∀ j ≥ 0.

In terms of the quadrature weights, we have thus derived the following simple test for con-
tractivity.

Proposition 3 The finite difference filter (20) together with (26) is contractive in the sense of
(7) if the quadrature weights in H satisfy the following set of inequalities,

h j ≥ (n + 1)‖Dn
1e j‖2

22n+1 ,

whereD1 is the undivided forward difference operator in (25), andDn
1e j is given by the j :th

column of Dn
1 .

Note that Proposition 3 provides a condition for contractivity which is sufficient but not
necessary, i.e. the opposite of the situation in Proposition 1. In other words, a filter might
still be contractive even if this condition is not satisfied. For example, in the interior of Dn

1 ,
each column contains the binomial coefficients with respect to n (with positive or negative
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sign, see the examples in “Appendix A.1” through A.5), and the euclidean norm is given by
Vandermonde’s identity as,

‖Dn
1en+1‖2 = ‖Dn

1en+2‖2 =
n∑

k=0

(
n
k

)2

=
(
2n
n

)
.

For sufficiently large values of j (i.e. such that both j > n and h j = 1), the condition in
Proposition 3 thus reduces to,

1 ≥ (n + 1)

22n+1

(
2n
n

)
,

and by inspection this inequality only holds for values of n between one and ten (i.e. for
filters up to order 20). Hence, n = 10 constitutes a hard upper limit above which Proposition
3 is no longer applicable.

As we shall see, the condition in Proposition 3 will be sufficient to prove contractivity
in the large majority of cases with classical finite difference SBP operators (provided that
n ≤ 10). However, there are some cases where it becomes insufficient due to some quadrature
weights in the boundary part of H being much smaller than unity. A more powerful test can
be obtained by considering the complete boundary part of M as a single matrix, which is
given below.

Proposition 4 LetH = Diag(h0, h1, . . . , hr , 1, 1 . . .) be a given quadrature with r + 1 non-
unit weights. Then the associated filter (20) and (26) is contractive in the sense of (7) if
n ≤ 10 (for the interior part), and

max(r ,n)∑
j=0

[
− 2

n + 1
I j + 1

h j22n
(Dn

1e j )(Dn
1e j )

T
]

≤ 0,

for the boundary part.

The principal difference between Propositions 3 and 4 is that the latter is less restrictive.
The reason for this is that a single eigenvalue problem is considered for the whole boundary
contribution in the energy method, whereas in Proposition 3 the contribution is split between
each h j individually. The advantage of Proposition 3 is that it is much easier to apply,
providing a clearly defined interval for each quadrature weight. In most cases this is enough
to verify contractivity. In some cases however, the more powerful test of Proposition 4 is
required.

A.1 Second Order Case

Using the second order derivative D2, i.e. n = 1, we have,

Dn
1 = D1 =

⎛
⎜⎝

−1 1
−1 1

. . .
. . .

⎞
⎟⎠ .

The conditions given in Proposition 3 are,

h0 ≥ 2 · 1/8 = 1/4

h j ≥ 2 · 2/8 = 1/2, j ≥ 1.

123



Journal of Scientific Computing (2020) 82 :16 Page 19 of 21 16

A.2 Fourth Order Case

In the fourth order case (n = 2), we have,

Dn
1 =

⎛
⎜⎜⎜⎝

1 −2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

and Proposition 3 yields the conditions,

h0 ≥ 3 · 1/32 = 3/32

h1 ≥ 3 · 5/32 = 15/32

h j ≥ 3 · 6/32 = 9/16, j ≥ 2.

A.3 Sixth Order Case

The sixth order operator (n = 3) uses,

Dn
1 =

⎛
⎜⎜⎜⎜⎜⎝

−1 3 −3 1
−1 3 −3 1

−1 3 −3 1
−1 3 −3 1

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

and from Proposition 3 we have the conditions,

h0 ≥ 4 · 1/128 = 1/32

h1 ≥ 4 · 10/128 = 5/16

h2 ≥ 4 · 19/128 = 19/32

h j ≥ 4 · 20/128 = 5/8, j ≥ 3.

A.4 Eighth Order Case

The eighth order case (n = 4) is given by,

Dn
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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with the conditions, from Proposition 3,

h0 ≥ 5 · 1/512 = 1/512

h1 ≥ 5 · 17/512 = 85/512

h2 ≥ 5 · 53/512 = 265/512

h3 ≥ 5 · 69/512 = 345/512

h j ≥ 5 · 70/512 = 175/256, j ≥ 4.

A.5 Tenth Order Case

In the tenth order case (n = 5) we have,

Dn
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 5 −10 10 −5 1
−1 5 −10 10 −5 1

−1 5 −10 10 −5 1
−1 5 −10 10 −5 1

−1 5 −10 10 −5 1
−1 5 −10 10 −5 1

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Proposition 3 yields,

h0 ≥ 6 · 1/2048 = 3/1024

h1 ≥ 6 · 26/2048 = 39/512

h2 ≥ 6 · 126/2048 = 189/512

h3 ≥ 6 · 226/2048 = 339/512

h4 ≥ 6 · 251/2048 = 753/1024

h j ≥ 6 · 252/2048 = 189/256, j ≥ 5.

A.6 High Order Quadrature Rules

The non-unit quadrature weights associated with classical finite difference SBP operators of
minimal boundary closure dimension are given by,

h0 = 1/2

[h0, h1, h2, h3] =
[
17

48
,
59

48
,
43

48
,
49

48

]

[h0, h1, h2, h3, h4, h5] =
[
521

1649
,
1129

812
,
647

1031
,
5359

4320
,
1435

1574
,
583

575

]

[h0, h1, h2, h3, h4, h5, h6, h7] =
[
202

685
,
1483

972
,
2349

9124
,
953

530
,
669

1621
,
4522

3537
,
325

352
,
757

750

]
,

for the second, fourth, sixth and eighth order accurate interior cases, respectively. In the tenth
order case and above, some of the quadrature weights are negative and hence do not constitute
a norm. In fact, already in the eighth order case some of the quadrature weights are quite
small (in particular, h2 and h4). Due to this fact, we have found that Proposition 3 can only
be used to prove contractivity using filters of order 18 and 20 (it.e. n = 9 and n = 10). On
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the other hand, Proposition 4 can be applied to prove that contractivity holds even with this
quadrature for all filters down to second order (n = 1).

For the first three quadratures listed above, we have found that Proposition 3 is sufficient
to prove contractivity of all filters of order 20 (i.e. n = 10) or less.
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