
Journal of Scientific Computing (2020) 82:28
https://doi.org/10.1007/s10915-019-01113-y

A Parallel Newton Multigrid Framework for Monolithic
Fluid-Structure Interactions

L. Failer3 · T. Richter1,2

Received: 28 April 2019 / Revised: 27 September 2019 / Accepted: 7 November 2019 /
Published online: 21 January 2020
© The Author(s) 2020

Abstract
We present a monolithic parallel Newton-multigrid solver for nonlinear nonstationary three
dimensional fluid-structure interactions in arbitrary Lagrangian Eulerian (ALE) formulation.
We start with a finite element discretization of the coupled problem, based on a remapping of
the Navier–Stokes equations onto a fixed reference framework. The strongly coupled fluid-
structure interaction problem is discretized with finite elements in space and finite differences
in time. The resulting nonlinear and linear systems of equations are large and show a very
high condition number. We present a novel Newton approach that is based on two essential
ideas: First, a condensation of the solid deformation by exploiting the discretized velocity-
deformation relation dtu = v, second, the Jacobian of the fluid-structure interaction system
is simplified by neglecting all derivatives with respect to the ALE deformation, an approx-
imation that has shown to have little impact. The resulting system of equations decouples
into a joint momentum equation and into two separate equations for the deformation fields
in solid and fluid. Besides a reduction of the problem sizes, the approximation has a positive
effect on the conditioning of the systems such that multigrid solvers with simple smoothers
like a parallel Vanka-iteration can be applied. We demonstrate the efficiency of the resulting
solver infrastructure on a well-studied 2d test-case and we also introduce a challenging 3d
problem.

Keywords Fluid-structure interactions · Finite elements · Multigrid · Parallel computing

B T. Richter
thomas.richter@ovgu.de

L. Failer
lukas.failer@ma.tum.de

1 Otto-von-Guericke Universität Magdeburg, 39106 Magdeburg, Germany

2 Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg,
Germany

3 Technische Universität München, 85748 Garching bei München, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-01113-y&domain=pdf
http://orcid.org/0000-0003-0206-3606

28 Page 2 of 27 Journal of Scientific Computing (2020) 82 :28

1 Introduction

Fluid-structure interactions appear in various problems ranging from classical applications
in engineering like the design of ships or aircrafts, to the design of wind turbines. But they
are also present in bio/medical systems describing the blood flow in the heart or in general
problems involving the cardiovascular system. The typical challenge of fluid-structure inter-
actions is two-fold. First, the special coupling character that stems from the coupling of a
hyperbolic-type equation—the solid problem—with a parabolic-type equation—the Navier–
Stokes equations. Second, the moving domain character brings along severe nonlinearities
that have a non-local character, as geometrical changes close to the moving fluid-solid inter-
face might have big impact on the overall solution.

Numerical approaches canusually be classified intomonolithic approaches,where the cou-
pled fluid-structure interaction system is taken as one entity and into partitioned approaches,
where two separate problems—for fluid and solid—are formulated and where the coupling
between them is incorporated in terms of an outer (iterative) algorithm. This second approach
has the advantage that difficulties are isolated and that perfectly suited numerical schemes
can be used for each of the subproblems. There are however application classes where parti-
tioned approaches either fail or lack efficiency. The added mass effect [10] exactly describes
this special stiffness connected to fluid-structure interactions. It is typical for problems with
similar densities in the fluid and the solid—as it happens in the interaction of blood and tissue
or in the interaction of water and the solid structure of a vessel. Here, monolithic approaches
are considered to be favorable.

Monolithic approaches all give rise to strongly coupled, usually very large and nonlinear
algebraic systems of equations. Although there has been substantial progress in designing
efficient numerical schemes for tackling the nonlinear problems [16,21,23] (usually by New-
ton’smethod) and the resulting linear systems [2,11,13,19,28,32,36], the computational effort
is still immense and numerically accurate results for 3d problems are still rare.

In this contribution we present an approximated Newton scheme for solving nonstation-
ary fluids structure interactions in a strictly monolithic formulation. The idea is based on the
observation that the Newton convergence rate does not significantly worsen, if we neglect
the derivatives with respect to the ALE deformation, see [33, Section 5.2.3]. Although con-
vergence rates slightly suffer, overall computational times can be reduced due to lesser effort
for assembling the matrix. Here, we exploit this structure of the reduced Jacobian to achieve
an exact splitting of the monolithic Jacobian into a coupled problem for the velocities of fluid
and solid and into a second step, where separate update problems are solved for solid and
fluid deformation. Apart from the approximation of the Jacobian, no further splitting error
is introduced. The benefit of this approach is twofold: instead of one large system with 7
coupled unknowns (pressure, velocity field and deformation field in 3d) we solve one coupled
system of four unknowns (pressure and velocities) and two separate problems involving the
deformations of each domain. Second, separating a reduced velocity problem has a posi-
tive effect on the system matrices such that efficient preconditioners and smoothers can be
applied that are suitable for easy parallelization. Finally, we use the newly developed solver
to introduce and test a new three dimensional benchmark configuration that is based on the
configurations described by Hron and Turek [23].

In the following section we give a brief presentation of the fluid-structure interaction
problem in avariationalArbitraryLagrangianEulerian formulation. Section3 shortly presents
the discretization of the equations in space and time. As formulation and discretization are
based on established techniques, these two sections are rather concise. The nonlinear and

123

Journal of Scientific Computing (2020) 82 :28 Page 3 of 27 28

linear solution framework is described in Sect. 4, where we start by an approximation of
the Jacobian that results in a natural partitioning of the linear systems, which in turn are
approximated by parallel multigrid methods. Numerical test-cases demonstrate the efficiency
and scalability in Sect. 5. Here, we also present a new and challenging 3d configuration for
benchmarking fluid-structure interactions. We conclude in Sect. 6.

2 Governing Equations

Here, we present the monolithic formulation for fluid-structure interactions, coupling the
incompressible Navier–Stokes equations and an hyperelastic solid, based on the St. Venant
Kirchhoff material. For details we refer to [33].

On the d-dimensional domain, partitioned in reference configuration Ω = F ∪ I ∪ S,
whereF is the fluid domain, S the solid domain and I the fluid-structure interface, we denote
by v the velocity field, split into fluid velocity v f := v|F and solid velocity vs := v|S , and
by u the deformation field, again with us := u|S and u f := u|F . The boundary of the
fluid domain Γ f := ∂F \ I is split into inflow boundary Γ in

f and wall boundary Γ wall
f ,

where we usually assume Dirichlet conditions, Γ D
f := Γ in

f ∪ Γ wall
f , and a possible outflow

boundary Γ out
f , where we enforce the do-nothing outflow condition [22]. The solid boundary

Γs = ∂S \ I is split into Dirichlet part Γ D
s and a Neumann part Γ N

s .
We formulate the coupled fluid-structure interaction problem in a strictly monolithic

scheme by mapping the moving fluid domain onto the reference state via the ALE map
T f (t) : F → F(t), constructed by a fluid domain deformation T f (t) = id+u f (t). In the
solid domain, this map Ts(t) = id+us(t) denotes the Lagrange-Euler mapping and as the
deformation field uwill be defined globally onΩ we simply use the notation T (t) = id+u(t)
with the deformation gradient F := ∇T and its determinant J := det(F). We find the global
(in fluid and solid domain) velocity and deformation fields v and u and the pressure p in the
function spaces

v(t) ∈ vD(t) + H1
0 (Ω;Γ D

f ∪ Γ D
s)d , u(t) ∈ uD(t)

+ H1
0 (Ω; (∂F \ I) ∪ Γ D

s)d , p ∈ L2(F)

as solution to
(
J (∂tv + (F−1(v − ∂tu) · ∇)v), φ

)
F + (

Jσ f F−T ,∇φ
)
F

+ (ρ0
s ∂tv, φ)S + (FΣ s,∇φ)S = (Jρ f f, φ)F + (ρ0

s f, φ)S
(
JF−1 : ∇vT , ξ

)
F = 0

(∂tu − v, ψs)S = 0

(∇u,∇ψ f)F = 0,

(1)

where the test functions are given in

φ ∈ H1
0 (Ω;Γ D

f ∪ Γ D
s)d , ξ ∈ L2(F), ψ f ∈ H1

0 (F)d , ψs ∈ L2(S)d .

By ρ0
s we denote the solid’s density, by u

D(t) ∈ H1(Ω)d and vD(t) ∈ H1(Ω)d extensions of
the Dirichlet data into the domain. The Cauchy stress tensor of the Navier–Stokes equations
in ALE coordinates is given by

σ f (v, p) = −p f I + ρ f ν f (∇vF−1 + F−T∇vT)

123

28 Page 4 of 27 Journal of Scientific Computing (2020) 82 :28

with the kinematic viscosity ν f and the density ρ f . In the solid we consider the St. Venant
Kirchhoff material with the Piola Kirchhoff tensor

Σ s(u) = 2μsEs + λs tr(Es)I , Es := 1

2
(FTF − I)

and with the shear modulus μs and the Lamé coefficient λs . In (1) we construct the ALE
extension u f = u|F by a simple harmonic extension. A detailed discussion and further
literature on the construction of this extension is found in [33,40].

For shorter notation, we denote by U := (v,u, p f) the solution and by Φ :=
(ξ, φ, ψ f , ψs) the test functions.

3 Discretization

We give a very brief presentation on the numerical approximation of System (1). In time, we
use the theta time-stepping scheme, which includes the backward Euler method, the Crank-
Nicolson scheme and variants like the fractional step theta method, see [37]. In space we use
conforming finite elements.

3.1 Temporal Discretization

For discretization in time we split the temporal interval I = [0, T] into discrete time steps
0 = t1 < t2 < · · · < tN = T with the step size k := tn − tn−1. For simplicity we assume
that the subdivision is uniform. By Un ≈ U (tn) we denote the approximation at time tn .
We choose the theta time-stepping method for temporal discretization with θ ∈ [0, 1]. To
simplify the presentation we introduce

AF (U , φ) := (
J (F−1v · ∇)v, φ

)
F

+ (
ρ f ν f J (∇vF−1 + F−T∇vT)F−T ,∇φ

)
F − (

Jρ f f, φ
)
F

AS(U , φ) := (
FΣ s,∇φ

)
S − (

ρ0
s f, φ

)
S , AALE (U , ψ f) := (∇u,∇ψ f

)
F

Ap(U , φ) := (
J pF−1,∇φ

)
F , Adiv(U , ξ) := (

JF−1 : ∇vT , ξ
)
F .

(2)

Then, one time step tn−1 �→ tn of the theta scheme is given as
(
J̄n(vn − vn−1), φ

)
F − (

(J̄nF̄−1(un − un−1) · ∇)v̄n, φ
)
F︸ ︷︷ ︸

FNS(Un ,φ)

+ k Ap(Un, φ) + kθ AF (Un, φ)
︸ ︷︷ ︸

FNS(Un ,φ)

+ (
ρ0
s (vn − vn−1), φ

)
S + kθ AS(Un, φ) = −k(1 − θ)AF (Un−1, φ)

− k(1 − θ)AS(Un−1, φ)

k Adiv(Un, ξ) = 0

k AALE (Un, ψ f) = 0
(
un, ψs

)
S − kθ

(
vn, ψs

)
S = (

un−1, ψs
) + k(1 − θ)

(
vn−1, ψs

)
S ,

(3)

with J̄n = 1/2(Jn−1 + Jn) and F̄n = 1/2(Fn−1 + Fn). Note that the ALE extension equation
AALE , the divergence equation Adiv and the pressure coupling Ap are completely implicit. A

123

Journal of Scientific Computing (2020) 82 :28 Page 5 of 27 28

discussion of this scheme and results on its stability for fluid-structure interactions are found
in [33,35]. We consider θ = 1/2 + O(k) to get second order convergence and good stability
properties.

The last equation in (3) gives a relation for the new deformation at time tn

un = un−1 + kθvn + k(1 − θ)vn−1 in S (4)

and we will use this representation to eliminate the unknown deformation un and base the
solid stresses purely on the last time step and the unknown velocity vn , i.e. by expressing the
deformation gradient as

Fn = F(un) =̂F(un−1, vn−1; vn) = I + ∇(
un−1 + kθvn + k(1 − θ)vn−1

)
in S. (5)

Removing the solid deformation from the momentum equation will help to reduce the alge-
braic systems in Sect. 4. A similar technique within a Eulerian formulation and using a
characteristics method is presented in [30,31].

3.2 Finite Elements

In space, we discretize with conforming finite elements by choosing discrete function spaces
Uh ∈ Xh and Φh ∈ Yh . We only consider finite element meshes that resolve the interface
I in the reference configuration, such that the ALE formulation will always exactly track
the moving interface. In our setting, implemented in the finite element library Gascoigne 3D
[5] we use quadratic finite elements for all unknowns and add stabilization terms based on
local projections [4,18,29,33] to satisfy the inf-sup condition. Where transport is dominant,
additional stabilization terms of streamline upwind type [23,34,38] or of local projection type
[14,33] are added.As the remainder of thismanuscript only considers the fully discrete setting,
we refrain from indicating spatial or temporal discrete variables with the usual subscripts.

For each time step tn−1 �→ tn we introduce the following short notation for the system of
algebraic equations that is based on the splitting of the solution into unknowns acting in the
fluid domain (v f ,u f), on the interface (vi ,ui) and those on the solid (vs,us). The pressure
variable p acts in the fluid and on the interface.

A(U) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

D(p, v f ,u f , vi ,ui , vs,us)
M f (p, v f ,u f , vi ,ui)

Mi (p, v f ,u f , vi ,ui , vs)
Ms(p, vi ,ui , vs)

E(u f ,ui)
U i (vi ,ui , vs,us)
U s(vi ,ui , vs,us)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1

B2

B3

B4

B5
B6

B7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=: B (6)

D describes the divergence equation which acts in the fluid domain and on the interface,M
the two momentum equations, acting in the fluid domain, on the interface and in the solid
domain (which is indicated by a corresponding index), E describes the ALE extension in the
fluid domain and U is the relation between solid velocity and solid deformation, acting on
the interface degrees of freedom and in the solid. Note thatMi andMs , the term describing
the momentum equations, do not directly depend on the solid deformation us as we express
the deformation gradient by the velocity, see (5).

123

28 Page 6 of 27 Journal of Scientific Computing (2020) 82 :28

4 Solution of the Algebraic Systems

In fluid-structure interactions the solid and fluid problem are coupled via interface conditions.
Forces in normal direction along the interface have to be equal (dynamic coupling condition)
and the fluid domain has to follow the solid motion (kinematic and geometric coupling
condition). If the solid motion is rather small and slow the energy exchange happens mainly
via the dynamic coupling conditions. This allows the use of explicit time-stepping schemes
for the mesh motion and ALE transformation for these examples. We want to follow a
different approach and use a fully implicit time-stepping with an inexact Jacobian in the
Newton algorithm.We neglect the derivatives with respect to the ALE deformation. Thereby,
we have to solve in every Newton step a linear system of the same complexity as in the case
of a partitioned time-stepping scheme.

In [33, chapter 5] we give a numerical study on different linearization techniques. It is
found that the overall computational time can be reduced by neglecting the ALE derivatives
in the Jacobian. Even for the fsi-3 benchmark problem of Hron and Turek [24] it is more
efficient (in terms of overall computational time) to omit these derivatives at the cost of some
additional Newton steps. Neglecting the ALE derivatives will be crucial for the reduction
step described in the following section.

As we only change the Jacobian, we still apply a fully implicit time-stepping scheme and
take advantage of its stability properties. Furthermore the transport due to the mesh motion is
well approximated. For small time step sizes wewill still observe super-linear convergence as
with an exact Newton algorithm. In addition, the simplified structure of the matrix simplifies
the development of preconditioners significantly as we will see later.

4.1 Relation to Approaches in Literature

Many (perhapsmost)works on solvers for fluid-structure interactions are based on partitioned
schemes, where highly tuned schemes can be applied to the two subproblems and acceleration
methods are developed for the coupling. For an overview on some methods we refer to
contributions in [8,9] and the literature cited therein. We focus on problems with a dominant
added mass effect, where monolithic approaches are believed to be more efficient [21].

In the following we assume that the monolithic problem is approximated with a Newton
scheme. It has been documented [2,32] that the Jacobian is very ill-conditionedwith condition
numbers exceeding those in fluid or solid mechanics by far. Furthermore, the systems are
(in particular in 3d) so large that direct solvers are not applicable. In addition we found [32]
that the condition numbers may be so large that direct solvers do not even converge well.1

All successful solution strategies will therefore feature some kind of partitioning, usually be
means of a decoupled preconditioner within a GMRES iteration. In [28] an overview on state
of the art precondition techniques for iterative fluid-structure interaction solvers is given.

Multigrid solvers have first been used to accelerate the solution of the subproblems within
an iterative scheme. A fully monolithic geometric multigrid approach was presented in [23]
for 2d fsi problems. Here, the multigrid smoother was based on a Vanka iteration. In [7] the
authors analyzed a highly simplified model problem and showed that a partitioned iteration
as smoother should result in ideal multigrid performance with improved convergence rates
on deeper mesh hierarchies. An algebraic multigrid method with applications in 2d and 3d

1 These results where found in [32] for the direct solver UMFPACK [12]. As similar study in [2] could
validate our estimates for the condition numbers but did not experience a deterioration of convergence rates
in the solver MUMPS [1].

123

Journal of Scientific Computing (2020) 82 :28 Page 7 of 27 28

[19] was based on a Gauss-Seidel splitting in the smoother. In [32] we presented a fully
geometric monolithic multigrid method with a smoother that is based on a partitioning into
fluid and solid problem and a block decomposition of each equation. This approach has been
extended to incompressible materials and also to direct-to-steady-state solutions [2].

Some of these contributions employ parallelism. Recently, a block-preconditioned parallel
GMRES iterationwas presented [25] and showed good performance on various 2d and 3d test
cases.AGauss-Seidel decouplingwith highly efficient andmassively parallel preconditioners
based on the SIMPLE scheme for the fluid and multigrid for a linear elasticity problem is
presented in [13].

4.2 Linearization and Splitting

Each time step of the fully discrete problem is solved by Newton’s method. Evaluating the
Jacobian is cumbersome due to the moving domain character of the fluid problem. First
presentations of the derivatives of the fsi problem with respect to the mesh motion based on
the concept of shape derivatives have been given by Fernandez and Moubachir [17]. Details
in the spirit of our formulation in ALE coordinates are given in [33, Section 5.2.2]. Based on
the notation (6) let U (0) be an initial guess (usually taken from the last time step) we iterate
for l = 0, 1, 2, . . .

A′(U (l))W (l) = B − A(U (l)), U (l+1) := U (l) + ω(l)W (l), (7)

with a line search parameter ω(l) > 0 and the Jacobian A′(U) evaluated at U . Each linear
problem can be written as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 Dv f Du f Dvi Dui 0 0

M f
p M f

v f M f
u f M f

vi vM f
ui 0 0

Mi
p Mi

v f
Mi

u f
Mi

vi Mi
ui Mi

vs Mi
us

Ms
p 0 0 Ms

vi Ms
ui Ms

vs Ms
us

0 0 E f
u f 0 E f

ui 0 0
0 0 0 U i

vi U i
ui U i

vs U i
us

0 0 0 U s
vi U s

ui U s
vs U s

us

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δp
v f

u f

vi
ui
vs
us

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1
b2
b3
b4
b5
b6
b7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (8)

where the right hand side vectorB = B−A(U (l)) is theNewton residual. The Jacobian shows
the coupling structure of the nonlinear problem (6). The indicesM f ,Mi ,Ms correspond to
the degrees of freedom, whether it belongs to a Lagrange node in the fluid, on the interface or
in the solid. The subnodes correspond to the dependency on the unknown solution component,
pressure, velocity and deformation, each in the different domains.

Three of the entries in bold letters, Ms
ui ,Ms

us and Mi
us are zero. As the deformation

gradient is expressed in terms of the velocity, see (5), the dependency of the solid equation
on the solid’s deformation does not appear. The entry Mi

ui belongs to test functions φ that
live on the interface. Thus, it contributes to both the solid equation and the fluid equation,
e.g.

〈Mi
ui (ψ), φ〉 =

(
d

dui
(Jσ f F−T)(ψ),∇φ

)

F
+

⎛

⎜⎜
⎝

d

dui
(FΣ s)(ψ)

︸ ︷︷ ︸
=0

,∇φ

⎞

⎟⎟
⎠

S

,

123

28 Page 8 of 27 Journal of Scientific Computing (2020) 82 :28

where only the solid part will vanish, compare (2). The remaining part belongs to the ALE
map and these terms require the highest computational effort.

Corresponding terms are found in M f
u f ,Mi

u f
,M f

ui and also in Du f and Dui , which are
all highlighted and marked in gray. We will set these matrix entries to zero and note once
more that this is the only approximation within our Newton-multigrid scheme. Sorting the
unknowns as (p, v f , vi , vs,u f ,ui ,us), the reduced system takes the following form and
reveals a block structure

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Dv f Dvi 0 0 0 0

M f
p M f

v f M f
vi 0 0 0 0

Mi
p Mi

v f
Mi

vi Mi
vs 0 0 0

Ms
p 0 Ms

vi Ms
vs 0 0 0

0 0 0 0 E f
u f E f

ui 0
0 0 U i

vi U i
vs 0 U i

ui U i
ui

0 0 U s
vi U s

vs 0 U s
ui U s

ui

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δp
v f

vi
vs
u f

ui
us

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1
b2
b3
b4
b5
b6
b7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

The dropped ALE derivatives (bold face zeros) are the most costly parts in matrix assembly.
While skipping these terms doesworsenNewton convergence rates, the overall computational
time can still benefit. This has been shown in [33, Section 5.2.3] considering a benchmark
problemwith large deformation. This reduced linear system decomposes into three sub-steps.
First, the coupledmomentum equation, living in fluid and solid domain and acting on pressure
and velocity

⎛

⎜⎜⎜
⎝

0 Dv f Dvi 0

M f
p M f

v f M f
vi 0

Mi
p Mi

v f
Mi

vi Mi
vs

Ms
p 0 Ms

vi Ms
vs

⎞

⎟⎟⎟
⎠

⎛

⎜⎜
⎝

δp
v f

vi
vs

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

b1
b2
b3
b4

⎞

⎟⎟
⎠ . (10)

Second, the update equation for the deformation on the interface and within the solid domain
(U i

ui U i
ui

U s
ui U s

ui

) (
ui
us

)
=

(
b6
b7

)
−

(U i
vi U i

vs
U s
vi U s

vs

)(
δvi
δvs

)
, (11)

which, as a finite element discretization of the zero-order equation un = un+1 + k(1 −
θ)vn−1 + kθvn , only involves the mass matrix on both sides, such that this update can be
performed by one vector-addition. Finally it remains to solve for the ALE extension equation

E f
u f δu f = b5 − E f

ui δui (12)

a simple elliptic equation, usually either the vector Laplacian or a linear elasticity problem,
see [33, section 5.2.5]. The main effort lies in the momentum equations (10), which is still a
coupled fluid-solid problem with saddle-point character due to the incompressibility.

Details on the derivatives appearing in (10) are given in [17,41,42] and in [33, Section
5.2.2] in the framework of this work. Note however that most of these terms, including all
derivatives of the Navier–Stokes equations in direction of the fluid domain deformation u f

are dropped.

4.3 Solution of the Linear Problems

The efficient solution of the linear systems arising in Newton approximations to nonlinear
fluid-structure interaction problems is still an open problem. Lately some progress has been

123

Journal of Scientific Computing (2020) 82 :28 Page 9 of 27 28

done in the direction of multigrid preconditioners for the monolithic problem [2,19,32,33]. In
all these contributions it has proven to be essential to apply a partitioning into fluid-problem
and solid-problem within the smoother.

We shortly present the linear algebra framework used in the software library Gascoigne
3D [5]. We are using equal-order finite element for all unknowns, namely pressure, velocity
and deformation such that we can locally block all degrees of freedom in each Lagrange
point. The solution Uh is written as

Uh(x) =
Nh∑

i=1

Uiφ
(i)
h (x), Ui =

⎛

⎝
pi
vi
ui

⎞

⎠ ∈ R2d+1.

By Nh we denote the number of degrees of freedom (for every unknown), by d the dimension.
Likewise, the system matrix A is a matrix with block structure, i.e. A ∈ RNh(2d+1)×Nh(2d+1)

with Ai j ∈ R(2d+1)×(2d+1). Considering the approximation scheme described in (10), (11)
and (12), the coupled momentum equation has nMc = d + 1 components and the extension
problem consists of nEc = d components. In general, the complete linear algebra module is
acting on generic matrices and vectors with a block structure and local blocks of size nc ×nc
and nc, respectively. The linear solver is designed by the following approach:

(I) As outer iteration we employ a GMRES method. Usually very few (< 10) iterations
are required such that restarting strategies are not used.

(II) The GMRES solver is preconditioned by a geometric multigrid method in V-cycle
[3,26]. The finite elementmesh on eachmultigrid level resolves the fluid-solid interface.

(III) As smoother in the multigrid solver we use a Vanka type iteration which we will outline
in some detail.

The smoother for the velocity problem and the smoother for the ALE extension problem
is of Vanka type. LetNh be the set of degrees of freedom of the discretization on mesh level
Ωh . By P = {P1, . . . , PnP } with Pi ⊂ Nh we denote a partitioning of unknowns into local
patches. In the most simple case, Pi includes all degrees of freedom in one element of the
mesh. Larger patches, e.g. by combining 4 adjacent elements in 2d or 8 elements in 3d are
possible. By nP we denote the number of patches and by n p the size of each patch, which is
the number of degrees of freedom in the patch. For simplicity, we assume that all patches in
P have the same size. ByRi : RN → Rn p we denote the restriction of a global vector to the
degrees of freedom in one patch, by RT

i the prolongation. Given a block vector x ∈ RNhnc

and a block matrix A ∈ RNhnc×Nhnh we denote by

xi := Rix, Ai := RiART
i

the restrictions to the degrees of freedom of one patch Pi . We iterate

d(l)
h = bh − Ahx

(l)
h ,

x (l+1)
h = x (l)

h + ωV

∑

P⊂Ωh

RT
i A

−1
i Ri d

(l)
h , (13)

with a damping parameter ωV ≈ 0.8. This smoother can also be considered as a domain
decomposition iteration with minimal overlap. Numerical tests have shown that this simple
Jacobi coupling is more efficient than a corresponding Gauss-Seidel iteration.

The local matrices Ai are inverted exactly using the library Eigen [20]. They are of
substantial size, for d = 3, the local matrices corresponding to the momentum equations (10)
have dimension 108× 108, if small patches are used, and 500× 500 if the smoother is based
on the larger patches.

123

28 Page 10 of 27 Journal of Scientific Computing (2020) 82 :28

Table 1 Parameters of the
benchmark problems in 2d (left)
and 3d (right): average inflow
velocity, fluid- and
solid-parameters, reference
length L and resulting Reynolds
number

2d configuration 3d configuration

v̄ 2m s−1 1.75m s−1

ρs , ρ f 1000 kg m−3 1000 kg m−3

μs 2 × 106 kg m−1 s−2 2 × 106 kg m−1 s−2

λs 8 × 106 kg m−1 s−2 8 × 106 kgm−1 s−2

ν f 0.001m2 s−1 0.001m2 s−1

L 0.1m 0.1m

Re 200 175

4.4 Parallelization

Basic features ofGascoigne3D [5] are parallelizedbasedonOpenMP [27]. For parallelization
of the assembly of residuals and the matrix as well as application of the Vanka smoother (13)
weuse a coloringof the patchesP such that no collisions appear. Theusualmemorybottleneck
of finite element simulations will limit the parallel efficiency of matrix vector product and
Vanka smoother. We will present some data on the parallel performance in Sect. 5.5.4.

5 Numerical Results

5.1 Problem Configuration

Two different test-cases are considered to study the performance of the discretization and the
solvers that have been presented in Sects. 3 and 4 . First, we perform a numerical study based
on the 2d fsi-3 benchmark problem that has been defined by Hron and Turek [24]. Second,
we present a new 3d benchmark configuration that is based on the Hron & Turek problem.

5.1.1 2d Configuration

As two dimensional configuration we solve the nonstationary 2d fsi-3 benchmark problem
that has been introduced by Hron and Turek [24] and since then has been revisited in many
contributions [21,34] or [33, chapter 7].Wepresent results for thiswell established benchmark
problem in order to validate the discretization and to compare the performance of the solver
with results published in literature. The material parameters are given in Table 1 and the
parameters yield a Reynolds number Re=200 showing a periodic flow pattern.

5.1.2 3d Configuration

Figure 1 shows the geometric configuration of the 3d benchmark problem. The computational
domain with dimension 2.8 m× 0.41 m× 0.41 m is hexahedral with a cylinder cut out of it

Ω = {(x, y, z) ∈ R3 | 0 < x < 2.8, 0 < y < 0.41, 0 < z < 0.41} \ Ω̄cyl,

Ωcyl = {(x, y, z) ∈ R3 | (x − 0.5)2 + (y − 0.2)2 < 0.052, 0 < z < 0.41}.
The midpoint of the cylinder is slightly non-symmetric to allow for a stable oscillatory flow
at low Reynolds numbers. Attached to the cylinder is an elastic beam with approximate
dimension 0.35 × 0.02 × 0.2 given in initial state at time t = 0 as

123

Journal of Scientific Computing (2020) 82 :28 Page 11 of 27 28

y

x

z

2.8

0.41

0.41

0.5
0.2

0.21

0.4

0.1

0.1

0.11

0.2

(0, 0, 0)

Width 0.02

Fig. 1 Configuration of the 3d benchmark problem

S = {(x, y, z) ∈ R3 | 0.5 < x < 0.9, 0.19 < y < 0.21, 0.1 < z < 0.3} \ Ω̄cyl

The reference fluid domain at time t = 0 is given by

F = Ω \ S̄.

Boundary conditions The boundary of the domain is split into the inflow boundary Γ in
f at

x = 0, the outflow boundary Γ out
f at x = 2.8, the wall boundaries at z = 0 and z = 0.41 as

well as y = 0 and y = 0.41 as well as the cylinder boundaryΓ
cyl
f at (x−0.5)2+(y−0.2)2 =

0.052. On the inflow boundary Γ in
f we prescribe a bi-parabolic profile

vin = v̄
36y(0.41 − y)z(0.41 − z)

0.414
,

that satisfies |Γ in
f |−1

∫
Γ in

f
vin ds = v̄, where v̄ is the average velocity. For regularization we

suggest to introduce a transient start-up of the inflow

vin(t) = vin
{(1

2 − 1
2 cos(π t)

)
0 ≤ t < 1

1 t ≥ 1.

On the remaining boundaries Γ wall
f ∪Γ

cyl
f the no-slip condition v = 0 is prescribed. For the

deformation u (both the solid deformation and the ALE extension), a no-slip condition u = 0
is prescribed on all boundaries. On the outer boundaries Γwall, Γin and Γout this condition
can be relaxed to allow for larger mesh deformations, see [33, Section 5.3.5].

Material Parameters Similar material parameters as for the 2d set are taken and the values
are given in Table 1. These parameters give a Reynolds number of Re = 175 and a periodic
flow pattern arises.

5.2 Quantities of Interest

For the 2d configuration, we present the displacement at the tip of the flag at the point
A = (0.6, 0.2) in x- and y-direction. In the case of the 3d configuration we take the point
B = (0.9, 0.2, 0.3) on the back face of the beam and present the displacement in x-, y- and

123

28 Page 12 of 27 Journal of Scientific Computing (2020) 82 :28

z-direction. These values are evaluated at every time-point. In addition we compute the drag
and lift values around the beam and cylinder. To compute the lift f · e1 and drag forces f · e2
with ei = (δi j)

3
j=1 ∈ R3 and

f =
∫

Γ
cyl
f ∪I

Jσ f F−T n dΓ , (14)

we evaluate the residual representation

fn = (
J̄n(vn − vn−1), 1Γcyl

)
F − (

J̄nF̄−1(un − un−1) · ∇v̄n, 1Γcyl

)
F

+ Ap(Un, 1Γcyl) + kθ AF (Un, 1Γcyl) + k(1 − θ)AF (Un−1, 1Γcyl)

+ k(1 − θ)AS(Un−1, 1Γs)) + kθ AS(Un, 1Γs)

where 1Γcyl is a finite element testfunction which is one along the cylinder Γcyl and zero
elsewhere. Thereby we can compute the mean drag and lift value on every time interval
In = [tn, tn+1] with very high precision. Details on the evaluation of such surface integrals
for flow problems are given in [6] and in [33, Section 6.6.2] in the case of fluid-structure
interactions.

5.3 Approximative Newton Scheme (2d benchmark)

We start by investigating the effect of the approximation of the Jacobian in our reduced
Newton scheme. The 2d fsi-3 benchmark problem by Hron and Turek is evaluated on the
time interval I = [5, 5.5], where the dynamic is fully evolved and large deformations appear.
A similar study with the same parameters and discretization has been performed in [33,
chapter 5.2.3], however, based on the full monolithic Jacobian and using a direct solver for
the linear problems. The comparison with the results in [33] enables to evaluate the effects of
the presented inexact Jacobian on the Newton scheme. On the time interval I = [5, 5.5] the
oscillations are fully developed such that significant oscillations appear and the geometric
nonlinearities, that come from the ALE mapping, have to be taken into account.

Weonly update the Jacobian of (10), themomentumequation, if the nonlinear convergence
rate, that is measured as

ρl = ‖B − A(U (l))‖∞
‖B − A(U (l−1))‖∞

, (15)

is above a given threshold γnt . The Jacobian of (12), the mesh motion problem, is only
assembled once in the first time step, as we use a linear elasticity law. Like in [33], we
investigate the behavior for the parameters

γnt ∈ {0, 0.2, 0.5},
where γnt = 0 corresponds to the assembly of the approximated Jacobian in every Newton
step. We solve the linear systems in every Newton step using a direct solver without any
parallelization. The computations are performed on an Intel(R) Core(TM) i7-7700 CPU @
3.60GHz. For the time-stepping we use the suggested implicitly shifted Crank-Nicolson
scheme with θ = 0.5 + 2k and the time step size k = 0.005s. For spatial discretization
we choose equal-order biquadratic elements on a mesh with 80 960 dofs (mesh level 4).
The Newton algorithm is stopped if the relative error reduces by eight orders of magnitude
(relative tol = 10−8).

123

Journal of Scientific Computing (2020) 82 :28 Page 13 of 27 28

0 10 20 30 40 50 60 70 80 90 100

5

10

15

20
Number of Newton iterations

γnt=0
γnt=0.05
γnt=0.5

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8
Number of Jacobians assembled

γnt=0
γnt=0.05
γnt=0.5

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

Overall Computational Time

γnt=0
γnt=0.05
γnt=0.5

Fig. 2 Study on the effect of the non-exact Newton scheme for the 2d benchmark problem. The Jacobian is
only reassembled, if the Newton rate is above γnt . Top: number of Newton iterations per time step. Middle:
Number of Jacobians assembled in each time step. Bottom: overall computational time in each time step

In Fig. 2 we show the results for each time step in the interval I = [5, 5.5]. The top
row shows that the least number of Newton steps are required, if γnt = 0 is used. This
is expected as γnt = 0 corresponds to the full Newton scheme that allows for quadratic
convergence. While the effect is small for γnt = 0.05, the resulting Newton iteration count
strongly increases for γnt = 0.5, where up to 20 steps are required, compared to a limit of 5
steps for γnt = 0 and 6 steps for γnt = 0.05. In the middle plot of Fig. 2 we give the number
of Jacobians that have to be assembled. For γnt = 0 these numbers obviously correspond to
the number of Newton steps, as the Jacobian is newly assembled in each step. For γnt = 0.05
and γnt = 0.5 the required number of assemblies is strongly limited. Finally, the lower plot
shows the resulting computational time. Although γnt = 0 yields the best convergence rates,

123

28 Page 14 of 27 Journal of Scientific Computing (2020) 82 :28

Table 2 Accumulated number of Newton steps, assemblies of the Jacobian in Equation (10) and the total time
(in seconds) for all 100 time steps for different values of γnt

Matrix ass. tolerance γnt = 0.0 γnt = 0.05 γnt = 0.2 γnt = 0.5

Total Newton steps 460 559 741 800

Jacobians assembled 460 164 110 85

Total Time (seconds) 1753 950 899 936

Table 3 Degrees of freedom for 2d and 3d configuration on every refinement level

Mesh level 1 2 3 4 5 6

dofs 2d 1440 5360 20,640 80,960 320,640 1,276,155

dofs 3d 63,826 463,988 3,531,304 – – –

it requires the highest computational time. The choice γnt = 0.05 reduces the computational
time by a factor of 2while still giving very robust convergence. These results are in agreement
with the study in [33]. With respect to computational time, Table 2 shows that γnt = 0.2 is
most efficient, as the reduced time to assemble the Jacobian and the increased time, due to
more Newton steps balances best. These results also reveal the large computational time that
is required for assembling the Jacobian and preparing the multigrid smoother.

We can see in Table 2, wherewe collect the accumulated numbers for the complete interval
I = [5, 5.5] that we need 460 Newton steps, if we assemble the Jacobian in (10) in every
Newton step. As we neglect the sensitivity information with respect to the mesh motion, we
still have an inexact Newton scheme. Nevertheless, we need less Newton steps compared
to the use of an exact Jacobian as in [33], where 532 Newton steps were required for the
same setting. This is in line with the numerical tests on the inexact Jacobian for the 2d fsi-
3 benchmark results in [33], where in first numerical studies no disadvantages due to the
inexact Jacobian could be observed. Nevertheless, the better convergence rate is surprising.
The direct solver UMFPACK [12] has difficulties to solve the exact Jacobian accurately
enough as reported in [32,33], which could be the reason for the higher number of Newton
steps. The condition numbers for thematrices of the subproblems (10), (11) and (12) aremuch
better then for the exact Jacobian as already analyzed in [33]. To conclude the modification
of the Newton scheme only has minor influences on the Newton convergence rate, at least in
the here presented numerical study.

5.4 Reference Values

All presented results in the following sections are initiated by using a time-stepping scheme
with k = 0.004s to compute a solution on the time interval I = [0, 8] on all mesh levels
indicated in Table 3. The corresponding solutions at time t = 8s act as initial values for
further computations on the interval I = [8, 10] based on the time step sizes k = 0.004s,
k = 0.002s and k = 0.001s. To avoid inaccuracies in the reference values due a rapid change
of the numerical discretization parameters, we only present results on the interval I = [9, 10].
A similar approach on adaptive time-stepping schemes is demonstrated in [15] and shows
accurate results.

123

Journal of Scientific Computing (2020) 82 :28 Page 15 of 27 28

Table 4 Results of the 2d fsi-3 Benchmark with time step size k = 0.004s, k = 0.002s and k = 0.001s. We
indicate the average between maximum and minimum value within the interval I = [9, 10] as well as the
deviation from the average to the maximum and the minimum, see (16)

Level ux × 10−3 uy × 10−3 drag ×102 lift×102

2 −2.5207 ± 2.4006 1.2285 ± 32.6701 4.4132 ± 0.2599 0.0921 ± 1.6816

3 −3.3174 ± 3.1032 1.2753 ± 36.8303 4.5564 ± 0.2941 0.0998 ± 1.4003

4 −2.8430 ± 2.6869 1.4665 ± 34.6516 4.5892 ± 0.2703 0.0363 ± 1.5581

5 −2.8716 ± 2.7174 1.4960 ± 34.8656 4.6031 ± 0.2778 0.0248 ± 1.5730

6 −2.8644 ± 2.7111 1.4995 ± 34.8329 4.6043 ± 0.2787 0.0237 ± 1.5737

Lev ux × 10−3 uy × 10−3 drag ×102 lift×102

2 −2.6363 ± 2.5088 1.1688 ± 33.2886 4.4445 ± 0.2741 0.0667 ± 1.5742

3 −3.2725 ± 3.0748 1.2874 ± 36.7999 4.5753 ± 0.2964 0.0683 ± 1.3963

4 −2.8466 ± 2.6874 1.4604 ± 34.6813 4.5915 ± 0.2702 0.0319 ± 1.5509

5 −2.8850 ± 2.7255 1.4774 ± 34.9795 4.6037 ± 0.2786 0.0252 ± 1.5675

6 −2.8841 ± 2.7250 1.4785 ± 34.9845 4.6050 ± 0.2798 0.0242 ± 1.5699

Lev ux × 10−3 uy × 10−3 drag ×102 lift×102

2 −2.7866 ± 2.6462 1.1851 ± 33.9983 4.4712 ± 0.2887 0.0439 ± 1.4837

3 −3.2432 ± 3.0478 1.2869 ± 36.7179 4.5884 ± 0.2979 0.0531 ± 1.4114

4 −2.8317 ± 2.6716 1.4550 ± 34.6089 4.5925 ± 0.2686 0.0297 ± 1.5425

5 −2.8844 ± 2.7234 1.4674 ± 34.9896 4.6034 ± 0.2775 0.0250 ± 1.5610

6 −2.8900 ± 2.7290 1.4690 ± 35.0322 4.6049 ± 0.2791 0.0245 ± 1.5659

5.4.1 Reference Values for the 2d Configuration

We summarize the results in Table 4. Within the interval I = [9, 10] we indicate for each
functional j(·) the average of minimum and maximum as well as the deviation, i.e.

mint∈I j(t) + maxt∈I j(t)

2
± maxt∈I j(t) − mint∈I j(t)

2
. (16)

The presented values in the table for different time step sizes and spatial mesh sizes indicate
convergence of the algorithm in space and a dominance of the spatial discretization error on
the coarse grids in comparison to the temporal discretization error. These results are in very
good agreement to the values found in literature [36].

5.4.2 Reference Values for the 3d Configuration

In 3d, we evaluate the displacement of the elastic beam in the point B and also compute the
drag and lift coefficients around thewhole cylinder and the flag. In Fig. 3we show the different
functionals as function over the time interval I = [9, 10]. In addition, we summarized the
average of maximal and minimal value as well as the deviation (see 16) for different meshes
and for different time step sizes k. To draw a conclusion on the convergence or to present
reference values, the computation has to be repeated on even finer meshes in the future.

123

28 Page 16 of 27 Journal of Scientific Computing (2020) 82 :28

9 9.2 9.4 9.6 9.8 10

−40

−20

0

20

40

Lift

9 9.2 9.4 9.6 9.8 10

182

184

186

188

190

Drag

9 9.2 9.4 9.6 9.8 10

−4

−2

0

·10−3
Displacement ux

9 9.2 9.4 9.6 9.8 10

−2

0

2

·10−2
Displacement uy

9 9.2 9.4 9.6 9.8 10

0

0.5

1

·10−3
Displacement uz

lev ux · 10−3 uy · 10−3 uz · 10−3 drag ·102 lift

1 -5.131 ± 5.501 1.784 ± 36.391 -0.772 ± 0.772 1.863 ± 0.099 3.752 ± 70.452
2 -2.943 ± 3.157 1.503 ± 30.098 -0.315 ± 0.315 1.863 ± 0.027 -1.491 ± 49.471
3 -2.176 ± 2.419 2.766 ± 25.687 -0.196 ± 0.196 1.857 ± 0.036 -0.704 ± 41.347

lev ux · 10−3 uy · 10−3 uz · 10−3 drag ·102 lift

1 -4.330 ± 4.581 2.941 ± 35.043 0.438 ± 2.423 1.841 ± 0.098 3.063 ± 66.003
2 -2.788 ± 3.011 1.647 ± 29.590 0.484 ± 1.117 1.863 ± 0.025 -1.272 ± 49.646
3 -2.161 ± 2.401 2.750 ± 25.643 0.490 ± 0.881 1.857 ± 0.035 -0.728 ± 41.407

lev ux · 10−3 uy · 10−3 uz · 10−3 drag ·102 lift

1 -3.875 ± 4.114 0.659 ± 35.614 0.135 ± 2.234 1.824 ± 0.091 1.910 ± 64.380
2 -2.650 ± 2.881 1.566 ± 29.224 0.435 ± 1.091 1.861 ± 0.025 -1.119 ± 48.186
3 -2.143 ± 2.383 2.699 ± 25.594 0.486 ± 0.877 1.855 ± 0.035 -0.717 ± 41.299

Fig. 3 3d fsi-3 configuration. Top: functional values as function over the time interval I = [9, 10] for k =
0.001s and mesh level 3. Bottom: results for time step sizes k = 0.004s, k = 0.002s, k = 0.001s and all three
mesh levels. We indicate the average between maximum and minimum value within the interval I = [9, 10]
as well as the deviation from the average to the maximum and the minimum, see (16)

123

Journal of Scientific Computing (2020) 82 :28 Page 17 of 27 28

5.5 Performance of the Linear Solver

To test the linear iterative solver presented in Sect. 4, we recomputed the solution on different
mesh levels for the 2d and 3d benchmark configuration on the time interval I = [9, 9.5]with
time step size k = 0.002s (250 steps). The beam oscillates in this time interval. Hence, due
to the strong coupling, the solution of the Newton system is very challenging and the fluid
as well as the solid elasticity problem have both to be solved very accurately.

The Newton algorithm in every time step terminates, if the residual is reduced by eight
orders of magnitude (relative tol = 10−8) or if the absolute value, so the residual, falls below
10−8. In every Newton step, the iterative solver for the linear problem (10) reduces the error
by a factor of 10−4. The parameter γnt = 0.05 is chosen as in Sect. 5.3 to decide, if the
Jacobian of the momentum equation (10) is reassembled in the next Newton step. The mesh
motion subproblem (12) is a linear elasticity problem and hence can be solved very efficiently
with the geometric multigrid solver. Nevertheless, as we have to solve it after every Newton
step, the solution of the linear system has still a high contribution to the computational time.
The matrix for the linear meshmotion problem (12) only has to be assembled once in the first
step.

In the following, we will only present averaged values. By “mean time per Newton step”
we denote the average time of each step,measured over all 250 time steps. Hence, this average
value also includes the time to reassemble the Jacobian,whose assembly incidence depends on
theNewton rate, see Sect. 5.3. Tomake the values comparablewith other solution approaches,
we additionally present the mean time to assemble one Jacobian of the momentum equation
(10). In the case of the direct solver, this includes the times for preparation and computation
of the LU decomposition. In the case of the ILU and Vanka smoother the assemble times
include the time to compute the ILU or the LU of the block matrices Ai .

5.5.1 Dependency on the Vanka Patch Size (2d fsi-3)

Concerning the Vanka smoother, the question arises, how large we should choose the patches
Pi to solve the linear system coming from the momentum equation (10) most efficiently. The
simple structure of the Vanka solver enables to use different patch sizes in the fluid and solid
domain. To test different blocking strategies we recorded the computational time for the 2d
fsi-3 benchmark on the finest mesh level 6 and present the mean number of Newton steps and
matrix assemblies per time step inTable 5.We either choose patches consisting of one element
(n p = 32 · 3 = 27) or patches stretching over four adjacent elements (n p = 52 · 3 = 75).
This yields local matrices of size Ai ∈ R27×27 or Ai ∈ R75×75 if larger patches are used.

We can observe that the minimal number of GMRES steps to solve (10) in every Newton
step can be obtained, by using n p = 75. If we only use the degrees of freedom of one
element (n p = 27) as block on the solid domain, the number of GMRES steps increases
and the Newton convergence suffers. This effect cannot be observed, if we only use smaller
patches within the fluid domain, but large patches in the solid. As computational times are
reasonable small for 2d computations, we will always use larger patches of size n p = 75 in
the Vanka smoother for all 2d computations to follow.

In 3d the same blocking strategy would correspond to combining 8 elements to one block,
resulting in n p = 53 · 4 = 500 and matrices of size Ai ∈ R500×500. This strategy is
forbiddingly expensive with increasing memory and time consumption for each block-LU.
As the results in Table 5 show that it is sufficient to use small patches in the fluid domain,
we will combine large patches with n p = 500 in the solid with smaller patches of size
n p = 33 · 4 = 108 in the fluid domain for all 3d computations to follow.

123

28 Page 18 of 27 Journal of Scientific Computing (2020) 82 :28

Table 5 Vanka Blocking strategy for the 2d test case. We either choose every element as one block or combine
4 elements to one block on the fluid (F) and solid (S) domain. We present the number of Newton steps, matrix
assembles and number of GMRES steps per linear solve of (10) on mesh level 6 and the computational time
relative to the F : 27/S: 27 case
nP F : 27/S: 27 F : 75/S: 75 F : 75/S: 27 F : 27/S: 75

Newton steps 6.87 5.10 6.83 5.10

Matrix assemblies 2.87 1.23 2.86 1.23

GMRES per Newton 20.58 12.60 17.16 15.26

Relative comp. time 100% 55% 95% 61%

5.5.2 Geometric Multigrid Performance in 2d and 3d (Sequential Computations)

All computations have been carried out on an Intel(R) Core(TM) i7-7700 CPU@ 3.60GHz.
Single Core performance only is used in this section. In Fig. 4 we show the results for both
2d and 3d benchmark problems on sequences of meshes.

In the top row we present the memory consumption (in 3d, the finest mesh level exceeded
the available memory). In particular the 3d results show the expected superiority of iterative
solvers as compared to the direct linear Solver UMFPACK [12] with a non-optimal scaling.
TheVanka smoother requires slightlymorememorywhich comes from the overlap of degrees
of freedom between the different blocks. The middle plot of Fig. 4 shows the resulting
computational time. According to our previous study [32], the multigrid method is not able
to beat the direct solver in 2d. The situation dramatically changes in 3d,where the direct solver
shows a strongly non-optimal scaling. The multigrid solvers shows nearly linear scaling for
both ILU and Vanka smoothing. Concerning the ILU smoother, this is an improvement to
our previous study presented in [32], where the multigrid solver was performed in a purely
monolithic setting and an ILU that consists of local blocks coupling pressure, velocity and
deformation. Here no convergence could be achieved on fine meshes. We note that the 3d
benchmark problem considered in this paper is by far more challenging than the problem
investigated in [32,33] as it comprises very large deformation and hence strong nonlinearities
in the solid and also in the ALE map. The lowest row shows the time for one assembly of
the Jacobian, including the computational times for preparing the direct solver, the ILU
smoother and the Vanka smoother. Here, the main discrepancies between the direct solver
and the multigrid methods arise. Since we do not recompute the Jacobian in every Newton
step (not even in every time step), it is no inconsistency that the assembly time is larger than
the complete time per Newton step. In 2d the results appear slightly sub-optimal. This is due
to the necessity to assemble the matrices along the complete multigrid hierarchy yielding a
scaling of order O(n log n).

The average number of Newton steps and the average number of Jacobians assembled
for all time steps within the intervals are gathered in Table 6. In addition, we present the
mean number of GMRES steps to solve the linearized momentum equation, problem (10),
once. The values show that the average number of matrix assemblies in each time step can
be below 1. This is due to the approximation of the Jacobian by reassembling it, only if the
convergence rates deteriorate. Both multigrid approaches, Vanka and ILU are very robust
with regard to mesh refinement. The linear iteration counts rise only slightly.

Figure 5 shows the average number of GMRES steps required for both Vanka and for ILU
smoothing in every time step. The values fluctuate due to the oscillatory motion of the beam.

123

Journal of Scientific Computing (2020) 82 :28 Page 19 of 27 28

Average memory usage

104 105 106

104

105

106

dofs

kB

direct
ilu
lin
vanka

105 106

106

107

108

dofs

direct
ilu
vanka
lin

Mean time per Newton step

104 105 106

10−1

100

101

dofs

se
co

nd
s

direct
ilu
vanka
lin

105 106

101

102

103

dofs

direct
ilu
vanka
lin

Time for one matrix assembly

104 105 106
10−2

10−1

100

101

dofs

se
co

nd
s

direct
ilu
vanka
lin

105 106

101

102

103

104

dofs

direct
ilu
vanka
lin

Fig. 4 Performance of the multigrid solver in 2d (left) and 3d (right) in comparison to a direct solver. On
different meshes with increasing numbers of degrees of freedom, we compare the performance of the direct
solver UMFPACK [12] with the multigrid solver based on ILU smoothing and based on Vanka smoothing. No
parallelization is employed. From top to bottom: average memory usage, average time per Newton step and
time to assemble one system matrix including preparation of the direct solver and the smoothers. Note that we
do not reassemble the Jacobian in every Newton step, and therefore, assembly times can be higher than mean
Newton times (which include the assembly)

According to Fig. 4 we need 43.88s for each Newton step on mesh level 6 in the 2d config-
uration. And according to Table 6 an average of 5.1 Newton steps. The mean computational
time per time step is 43.88s · 5.1 = 223.49 s, whereby an average of 7.01s · 1.23 = 8.66s are
used to construct the Jacobian. Most of the computational time is spent by the linear solver.
In every Newton step the linear solver needs about (223.9s − 8.66s)/5.1 = 42s.

123

28 Page 20 of 27 Journal of Scientific Computing (2020) 82 :28

Table 6 Average number of Newton steps, matrix assemblies per time step and average number of GMRES
steps within each Newton step. Top: 2d benchmark. Bottom: 3d benchmark

Mesh level 4 Mesh level 5 Mesh level 6
Direct ILU Vanka Direct ILU Vanka Direct ILU Vanka

Newton steps 5.15 5.04 5.14 5.21 5.04 5.16 – 5.17 5.10

Matrix assemblies 1.14 0.90 0.90 1.14 0.97 0.96 – 0.94 1.23

GMRES per Newton – 11.07 9.53 – 11.07 10.65 – 13.08 12.60

Mesh level 1 Mesh level 2 Mesh level 3
Direct ILU Vanka Direct ILU Vanka Direct ILU Vanka

Newton steps 5.27 5.40 5.22 5.27 5.58 5.23 – 5.24 5.15

Matrix assemble 1.00 1.23 0.99 0.95 1.22 0.95 – 1.22 1.00

GMRES per Newton – 13.20 4.81 – 14.52 9.35 – 15.33 10.59

0 50 100 150 200 250

10

12

14

16

18

GMRES steps per Newton step to solve the momentum equation

ILU
Vanka

Fig. 5 3d fsi-3 configuration: Mean number of GMRES steps to solve the momentum equation (10) within
every Newton step plotted over time steps

5.5.3 Dependency on the Time Step Size

The approach for splitting and reducing the Jacobian is based on two steps, skipping the ALE
derivatives in the fluid problem and inserting the discretized velocity-deformation relation (4)
into the solid’s stress tensor, see (5). Both steps rely on time-stepping. Small time steps will
limit the domain motion from step to step, such that the influence of the ALE derivative
and also the update in (4) is small. In Table 7 we investigate the robustness of the solution
approach versus the time step size. Besides average iteration counts we also indicate the
total number of GMRES steps that would be required to advance one time unit (1s), i.e. the
number of steps necessary for 1/k time steps. This value stands for the overall effort of the
method. However, we do not relate this effort to the resulting error. Further, this value does
not include times for assembling the Jacobian that can be essential. The values in Table 7
show an increase of Newton steps with larger time step sizes, in particular for k = 0.01s.
This is expected due to the decreased impact of the mass matrix and since we drop the ALE
derivatives. The number of GMRES iterations per time Newton step is very stable up to
k = 0.004s and starts to increase at k = 0.01s. Despite this, the overall number of GMRES
steps per time unit still shows increased efficiency for larger time step sizes.

123

Journal of Scientific Computing (2020) 82 :28 Page 21 of 27 28

Table 7 Average number of Newton steps, matrix assemblies per time step and average number of GMRES
steps within each Newton step using the Vanka smoother. Further we indicate the average number of GMRES
required to advance one time unit, e.g. for 1/k time steps. Top: 2d benchmark at meshlevel 6. Bottom: 3d
benchmark at meshlevel 3

k = 0.01s k = 0.004s k = 0.002s k = 0.001s

Newton steps 8.16 5.92 5.10 4.82

Matrix assemblies 4.5 1.72 1.23 0.86

GMRES per Newton 21.63 15.34 12.61 10.71

GMRES per time unit 17650 22703 32155 51622

k = 0.01s k = 0.004s k = 0.002s k = 0.001s

Newton steps 8.24 6.09 5.15 4.94

Matrix assemblies 4.32 1.50 1.00 0.80

GMRES per Newton 13.58 10.86 10.59 10.08

GMRES per time unit 11190 16534 27269 49795

To classify these results in the context of the 2d benchmark problem we refer to [35],
where a meta-analysis on the temporal discretization of various solution approaches to this
benchmark problem is given. It is found that time steps k � 0.01s are used by nearly all
contributors to this benchmark and that k ≈ 0.01s must be considered as too large in terms
of the approximation error. A possible explanation for the need of such small time steps is
found in high frequent oscillations of the solid that have to be resolved. With this in mind,
the solution approach presented here can be regarded as highly efficient and appropriate for
nonstationary fluid-structure interactions.

Considering stationary problems the coupling character of fluid-structure interactions
strongly changes. Instead of a parabolic/hyperbolic-type setup, we then deal with a coupling
of elliptic/elliptic character. The velocity-deformation equation vs = ∂tus is not present as
the solid’s velocity, being zero, is not even part of the system. For a direct-to-steady-state
solution approaches with stronger coupling must be considered. We refer to [32] and in
particular to [2], where a variant of the former approach is realized for stationary problems.

5.5.4 Parallelization

The Vanka smoother (based on a Jacobi iteration) has the advantage that it can be easily
parallelized. We introduce a cell wise coloring of the Vanka patches. Colors are attributed
by a simple ad hoc algorithm. We run over all patches; if a patch is not already labeled with
a color, we will label it and block all its neighbours that share a common degree of freedom
for this color. Then, we continue with the next color. This algorithm is not optimal in terms
of “numbers of colors” and also not optimal in terms of “balanced number of elements per
color” but adequate for our purpose with a moderate number of cores. As different patch
sizes for fluid and solid domain are used in 3d, a different color is always allocated to fluid
and solid patches, such that a good load balancing is possible. The finest mesh level in 3d is
partitioned into 22 colors (13 within the fluid, 9 in the solid domain), see Fig. 6, whereby the
number of patches in each color ranges between 6716 and 2 within the fluid domain, and is
constant with 80 patches per color within the solid. About 99% of the fluid patches belong to
colors containing at least 500 patches, such that very little overhead must be expected due to
suboptimality of partitioning the remaining colors (as long as a moderate number of threads

123

28 Page 22 of 27 Journal of Scientific Computing (2020) 82 :28

2,000

4,000

6,000

8,000
Patches in fluid color
Patches in solid color

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

Coloring

Fig. 6 Coloring for avoiding memory collisions in the parallel Vanka smoother for the finest 3d mesh with
about 3.5 · 106 dofs. The fluid patches consist of 108 dofs each, while the solid patches couple 500 dofs. The
smallest fluid color has only 2 patches

Mean time (in seconds) per time step

1 2 4 8 16 32

100

101

102

103
2d benchmark all

NR
As
MS
MV
lin

1 2 4 8 16 32

101

102

103

104
3d benchmark all

NR
As
MS
MV
lin

Fig. 7 Strong scalability test. Mean time per time step (all) to compute the Newton residual (NR), assemble
the Jacobian in (10) (As), multilevel solver (MS), matrix-vector multiplication (MV) in 2d (left) and 3d (right)
using 1–32 threads on mesh level 6 and level 3

is considered). Our algorithms yields solid colors with 80 patches each.While 80 is dividable
by 16, it is not dividable by 32. Hence, the potential efficiency of functions depending on
this coloring is reduced to about 0.8 (for 32 threads).

Furthermore, we parallelized the matrix vector product. Although in principle trivial to
parallelize, we suffer from the usually memory bandwidth restrictions that will limit possible
speedups for matrix vector products. All parallelization is done in OpenMP [27]. We note
that the parallelization is not the focus of this work. Only first steps have been undertaken
and the implementation allows for further optimization.

Similar to Sect. 5.5.2we recompute the 2d and 3dproblemon the time-interval I = [9, 9.5]
with the step size k = 0.002s using the finest refinement levels 6 (in 2d) and 3 (in 3d). The
mean computational time per time step on an Intel(R) Xeon(R) Gold 6150 CPU@ 2.70GHz
is given in Fig. 7 in a strong scalability test. In 3d we can observe that the parallelization
of all ingredients scales rather well. If we double the number of cores the computational
time reduces by a factor of 0.57. With 32 threads we achieve a speed up of about 10 in
comparison to single core performance. The drop in efficiency from 16 to 32 threads (in 3d)
is clearly visible in the assembly of the residual and the application of the Vanka smoother,
two functions that strongly depend on the coloring of the patches.

123

Journal of Scientific Computing (2020) 82 :28 Page 23 of 27 28

Table 8 Distribution of the computational time to the main ingredients of the Newton-multigrid solver:
integration of the nonlinear residual, assembly of the Jacobian, matrix-vector products and application of the
Vanka smoother. The numbers do not add up to 100% as some parts, like the memory management, are not
included in the measurement

Threads Total (%) Residual (%) Matrix (%) MV product (%) Vanka (%)

1 100 11 5 44 39

4 100 10 5 43 40

16 100 8 5 45 36

In Table 8 we show, how the distribution of the computational time to the different ingredi-
ents develops for an increasing numbers of threads. These results belong to the 3d benchmark
problem on the finestmesh level 3. The numbers show thatmore than 80%of the time is spend
in linear algebra routines like sparse matrix-vector products and the application of the Vanka
smoother. These operations are mainly limited by the memory bandwidth. The very low con-
tribution of only 5% for the matrix assembly could lead to the conclusion that a matrix free
implementation might be the proper choice. However, our implementation requires less than
one matrix assembly per time step in average. The multigrid smoother however is applied
many hundred times (about 5 Newton steps, 10 GMRES steps each, several Vanka steps). A
matrix free implementation on such a low number of threads would hence strongly increase
the overall time.

5.5.5 Comparison to Results in the Literature

A direct comparison of the computational times to results published in literature is difficult,
since different numerical test-cases are considered. The complexity depends on the problem
size (number of degrees of freedom) but also on the density of the systemmatrices (depending
on the finite element space). Another important factor is the impact of the nonlinearity which
is influenced by the deformation of the solid and also the time step size. The 3d test case that
wediscussed in [32] features less deformation and is simpler as compared to the 3dbenchmark
problem introduced here. Further, computational times are often not presented in full detail.
Besides the algebraic parts of the solver, assembly times have an important impact. Thereby
the influence due to the strategy for smart Jacobian re-assemblies is significant. Finally,
different hardware is used throughout all contributions.

To give a comparison of the various approaches we compute the ratio of “degrees of
freedom per second for each time step” and indicate an accurate description of the setup
used. Table 9 lists the results for 2d benchmark problems (mostly the fsi-3 problem) and
different 3d problems. We only list contributions that can be regarded as fully monolithic
and that handle nonlinear fluid-structure interactions including geometric nonlinearities by
domain motion.

Due to the reasons mentioned above, these results have to be interpreted with care. They
show however that the 2d benchmark problem is handled well by all approaches with little
room for improvement. In 3d the direct solver clearly fails. Furthermore,multigrid approaches
are superior on finemesheswith a little advantage for the reducedNewton-multigrid approach
presented here.

123

28 Page 24 of 27 Journal of Scientific Computing (2020) 82 :28

Table 9 Comparison of different strategies found in literature. We indicate degrees of freedom, time step size,
number of cores used and the resulting ratio of “degrees of freedom per second computed for each time step”.
Higher values indicate better performance. Finally we give the source for the values

Approach (2D) Dofs k Cores Ratio Source

Direct (UMFPACK) 320,640 0.002 s 1 6463 s−1 Fig. 4, Tab. 6

Direct (MUMPS) 1,800,000 0.01 s 64 4147 s−1 [25, Fig. 8]

Geometric MG 1,202,816 0.01 s 1 2440 s−1 [2, Tab. 1, Tab. 12]1

GMRES 16,000,000 0.01 s 64 65,040 s−1 [25, Fig. 9]2

AMG (BGS) 79,869 0.01 s 4 4991 s−1 [19, Sec. 8.3, Fig. 9]3

Red. Newton-MG 1,276,155 0.002 s 16 27,943 s−1 Fig. 4, Tab. 6

Approach (3D) Dofs k Cores Ratio Source

Direct (UMFPACK) 463,988 0.002 s 1 78.5 s−1 Fig. 4, Tab. 6

Geometric MG 7,600,776 0.01 s 1 3781 s−1 [32, Tab. II, VI, Fig. 4]5

Geometric MG 120,902 0.01 s 1 245 s−1 [2, Tab. 1, Tab. 12]4,5

GMRES 14,000,000 0.005 s 256 1223 s−1 [25, Fig. 14, 15]5

AMG (BGS) 3,063,312 0.0001 s 16 9881 s−1 [19, Tab III, V]5

Red. Newton-MG 3,531,304 0.002 s 32 14,413 s−1 Fig. 4, Tab. 6

1 Matrix assembly times in this approach are very high, the performance of the linear solver alone is very
good and comparable to the other (iterative) approaches, see [2]
2 considers a different 2d test case. [25] only gives computational time per linear iteration with an average of
6 Newton steps per time step [39]
3 different 2d test case. A variant, BGS(AMG) with 6 150 s−1 is presented, see [19, Fig. 9]
4 See remark 1 in the 2d table
5 These contributions consider different test-cases

6 Summary

We have introduced a Newton multigrid framework for monolithic fluid-structure interac-
tions in ALE coordinates. The solver is based on two reduction techniques in the Jacobian:
first, a condensation of the solid deformation by representing the deformation gradient on the
velocity only and second, by skipping the ALE derivatives within the Navier–Stokes equa-
tions. This second steps leads to an approximated Newton method but we could show (also
in preliminary works) that the time-to-solution even benefits from this approximation, as the
computational time for assembling the ALE derivatives is very high. The reduction has two
positive effect: the large system of 7 unknowns (in 3d) decomposes into one fluid-solid prob-
lem in pressure and velocity with 4 unknowns and two partitioned systems with 3 unknowns
each for solving solid and fluid deformation. The second effect is the better conditioning of
the coupled system that allows for the use of very simple multigrid smoothers that are easy to
parallelize. Also, while ILU smoothing applied to the monolithic system was not convergent
in our previous contribution [32], performed well for smoothing the global momentum equa-
tions. Combined with first steps of parallelization and in comparison to our past approaches
based on a monolithic solution of the complete pressure-velocity-deformation system and
partitioned smoothers we could significantly reduce the computational time.

As basis for future benchmarking of 3d fluid-structure interactions we presented an exten-
sion of the 2d benchmark problems by Hron and Turek [24] that is by far more challenging

123

Journal of Scientific Computing (2020) 82 :28 Page 25 of 27 28

(due to larger deformations and a strong dynamic behavior) as compared to a first test case
introduced in our past work [32] which has also been considered in [2,25] in very similar stud-
ies. It will still require further effort to establish reference values for this new 3d benchmark
case.

Our work includes some first simple steps of parallelization which have to be extended
in future work. In particular, in order to overcome the memory bandwidth limitations which
are common in such memory extensive computations, distributed memory paradigms have
to be incorporated [26]. Further, some benefit can be expected by using GPU acceleration
for matrix vector product and Vanka smoother.

Acknowledgements Open Access funding provided by Projekt DEAL. Both authors acknowledge the finan-
cial support by the Federal Ministry of Education and Research of Germany, Grant Number 05M16NMA
(TR) and 05M16WOA (LF). TR further acknowledges the support of the GRK 2297 MathCoRe, funded by
the Deutsche Forschungsgemeinschaft, Grant Number 314838170 and LF acknowledges the support of the
GRK 1754, funded by the Deutsche Forschungsgemeinschaft, Grant Number 188264188.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution
of linear systems. Parallel Comput. 32(2), 136–156 (2006)

2. Aulisa, E., Bna, S., Bornia, G.: A monolithic Ale Newton-Krylov solver with multigrid-Richardson–
Schwarz preconditioning for incompressible fluid-structure interaction. Comput. Fluids 174, 213–228
(2018)

3. Becker, R., Braack, M.: Multigrid techniques for finite elements on locally refined meshes. Numer. Linear
Algebra Appl. 7, 363–379 (2000). Special Issue

4. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on
local projections. Calcolo 38(4), 173–199 (2001)

5. Becker, R., Braack, M., Meidner, D., Richter, T., Vexler, B.: The finite element toolkit Gascoigne. http://
www.gascoigne.uni-hd.de

6. Braack,M., Richter, T.: Solutions of 3DNavier–Stokes benchmark problemswith adaptive finite elements.
Comput. Fluids 35(4), 372–392 (2006)

7. Brummelen, E., Zee, K., Borst, R.: Space/time multigrid for a fluid-structure-interaction problem. Appl.
Numer. Math. 58(12), 1951–1971 (2008)

8. Bungartz, H.J., Schäfer, M. (eds.): Fluid-Structure Interaction. Modelling, Simulation, Optimisation.
Lecture Notes in Computational Science and Engineering, vol. 53. Springer (2006). ISBN-10: 3-540-
34595-7

9. Bungartz, H.J., Schäfer, M. (eds.): Fluid-Structure Interaction II. Modelling, Simulation, Optimisation.
Lecture Notes in Computational Science and Engineering. Springer (2010)

10. Causin, P., Gereau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-
structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)

11. Crosetto, P., Deparis, S., Fourestey, G., Quarteroni, A.: Parallel algorithms for fluid-structure interaction
problems in haemodynamics. SIAM J. Sci. Comput. 33(4), 1598–1622 (2011). https://doi.org/10.1137/
090772836

12. Davis, T.: Umfpack, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 30(2), 196–
199 (2014)

13. Deparis, S., Forti, D., Grandperrin, G., Quarteroni, A.: Facsi: a block parallel preconditioner for fluid-
structure interaction in hemodynamics. J. Comput. Phys. 327, 700–718 (2016). https://doi.org/10.1016/
j.jcp.2016.10.005

123

http://creativecommons.org/licenses/by/4.0/
http://www.gascoigne.uni-hd.de
http://www.gascoigne.uni-hd.de
https://doi.org/10.1137/090772836
https://doi.org/10.1137/090772836
https://doi.org/10.1016/j.jcp.2016.10.005
https://doi.org/10.1016/j.jcp.2016.10.005

28 Page 26 of 27 Journal of Scientific Computing (2020) 82 :28

14. Failer, L.: Optimal control for time dependent nonlinear fluid-structure interaction. Ph.D. thesis, Tech-
nische Universität München (2017)

15. Failer, L., Wick, T.: Adaptive time-step control for nonlinear fluid-structure interaction. J. Comput. Phys.
366, 448–477 (2018)

16. Fernández, M., Gerbeau, J.F.: Algorithms for fluid-structure interaction problems. In: Formaggia, L.,
Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics: Modeling and Simulation of the Cir-
culatory System, MS & A, vol. 1, pp. 307–346. Springer, Berlin (2009)

17. Fernández, M., Moubachir, M.: A newton method using exact Jacobians for solving fluid-structure cou-
pling. Comput. Struct> 83, 127–142 (2005)

18. Frei, S.: Eulerian finite element methods for interface problems and fluid-structure interactions. Ph.D.
thesis, Universität Heidelberg (2016). https://doi.org/10.11588/heidok.00021590

19. Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid-structure interaction. Int. J.
Numer. Method Eng. 85, 987–1016 (2010)

20. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
21. Heil, M., Hazel, A., Boyle, J.: Solvers for large-displacement fluid-structure interaction problems: segre-

gated vs monolithic approaches. Comput. Mech. 43, 91–101 (2008)
22. Heywood, J., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the

incompressible Navier–Stokes equations. Int. J. Numer. Math. Fluids. 22, 325–352 (1992)
23. Hron, J., Turek, S.: Amonolithic FEM/Multigrid solver for an ALE formulation of fluid-structure interac-

tion with applications in biomechanics. In: Bungartz, H.J., Schäfer, M. (eds.) Fluid-Structure Interaction:
Modeling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering, pp. 146–
170. Springer, Berlin (2006)

24. Hron, J., Turek, S.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic
object and laminar incompressible flow. In: Bungartz, H.J., Schäfer, M. (eds.) Fluid-Structure Interaction:
Modeling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering, pp. 371–
385. Springer, Berlin (2006)

25. Jodlbauer, D., Langer, U., Wick, T.: Parallel block-preconditioned monolithic solvers for fluid-structure
interaction problems. Int. J. Numer. Methods Eng. 117(6), 623–643 (2019)

26. Kimmritz, M., Richter, T.: Parallel multigrid method for finite element simulations of complex flow
problems on locally refined meshes. Numer. Linear Algebra Appl. 18(4), 615–636 (2010)

27. Klemm, M., Supinski, B., (eds.): OpenMP Application Programming Interface Specification Version 5.0.
Independently published (2019)

28. Langer, U., Yang, H.: Recent development of robust monolithic fluid-structure interaction solvers. In:
Fluid-Structure Interaction. Modeling, Adaptive Discretization and Solvers. Radon Series on Computa-
tional and Applied Mathematics, vol. 20, pp. 169–192. de Gruyter (2017)

29. Molnar,M.: Stabilisierte Finite Elemente für Strömungsprobleme auf bewegtenGebieten.Master’s thesis,
Universität Heidelberg (2015)

30. Pironneau, O.: An energy preserving monolithic eulerian fluid-structure numerical scheme. Chinese
Annals of Mathematics 39, (2016). https://doi.org/10.1007/s11401-018-1061-9

31. Pironneau, O.: An Energy stable Monolithic Eulerian Fluid-Structure Numerical Scheme with compress-
ible materials (2019). arXiv:1607.08083

32. Richter, T.: A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation.
Int. J. Numer. Meth. Eng. 104(5), 372–390 (2015)

33. Richter, T.: Fluid-structure Interactions. Models, Analysis and Finite Elements. Lecture Notes in Com-
putational Science and Engineering, vol. 118. Springer, Berlin (2017)

34. Richter, T.,Wick, T.: Finite elements for fluid-structure interaction inALE and Fully Eulerian coordinates.
Comput. Methods Appl. Mech. Eng. 199(41–44), 2633–2642 (2010)

35. Richter, T., Wick, T.: On time discretizations of fluid-structure interactions. In: Carraro, T., Geiger,
M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods.
Contributions in Mathematical and Computational Science, vol. 9, pp. 377–400. Springer, Berlin (2015)

36. Turek, S., Hron, J., Madlik, M., Razzaq, M., Wobker, H., Acker, J.: Numerical simulation and bench-
marking of a monolithic multigrid solver for fluid–structure interaction problems with application to
hemodynamics. Technical report, Fakultät für Mathematik, TU Dortmund (2010). Ergebnisberichte des
Instituts für Angewandte Mathematik, Nummer 403

37. Turek, S., Rivkind, L., Hron, J., Glowinski, R.: Numerical study of a modified time-stepping theta-scheme
for incompressible flow simulations. J. Sci. Comput. 28(2–3), 533–547 (2006)

38. Wall, W.: Fluid-structure interaction with stabilized finite elements. Ph.D. thesis, University of Stuttgart
(1999). Urn:nbn:de:bsz:93-opus-6234

39. Wick, T.: Personal communication. University of Hannover (September 2019)

123

https://doi.org/10.11588/heidok.00021590
http://eigen.tuxfamily.org
https://doi.org/10.1007/s11401-018-1061-9
http://arxiv.org/abs/1607.08083

Journal of Scientific Computing (2020) 82 :28 Page 27 of 27 28

40. Yirgit, S., Schäfer,M., Heck,M.: Gridmovement techniques and their influence on laminar fluid-structure
interaction rpoblems. J. Fluids Struct. 24(6), 819–832 (2008)

41. Zee, K., Brummelen, E., Borst, R.: Goal-oriented error estimation and adaptivity for free-boundary prob-
lems: the domain-map linearization approach. SIAM J. Sci. Comput. 32(2), 1074–1092 (2010)

42. Zee, K., Brummelen, E., Borst, R.: Goal-oriented error estimation and adaptivity for free-boundary prob-
lems: the shape-linearization approach. SIAM J. Sci. Comput. 32(2), 1093–1118 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A Parallel Newton Multigrid Framework for Monolithic Fluid-Structure Interactions
	Abstract
	1 Introduction
	2 Governing Equations
	3 Discretization
	3.1 Temporal Discretization
	3.2 Finite Elements

	4 Solution of the Algebraic Systems
	4.1 Relation to Approaches in Literature
	4.2 Linearization and Splitting
	4.3 Solution of the Linear Problems
	4.4 Parallelization

	5 Numerical Results
	5.1 Problem Configuration
	5.1.1 2d Configuration
	5.1.2 3d Configuration

	5.2 Quantities of Interest
	5.3 Approximative Newton Scheme (2d benchmark)
	5.4 Reference Values
	5.4.1 Reference Values for the 2d Configuration
	5.4.2 Reference Values for the 3d Configuration

	5.5 Performance of the Linear Solver
	5.5.1 Dependency on the Vanka Patch Size (2d fsi-3)
	5.5.2 Geometric Multigrid Performance in 2d and 3d (Sequential Computations)
	5.5.3 Dependency on the Time Step Size
	5.5.4 Parallelization
	5.5.5 Comparison to Results in the Literature

	6 Summary
	Acknowledgements
	References

