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Abstract
We consider a stochastic analysis of non-linear viscous fluid flow problems with smooth and
sharp gradients in stochastic space. As a representative example we consider the viscous
Burgers’ equation and compare two typical intrusive and non-intrusive uncertainty quantifi-
cation methods. The specific intrusive approach uses a combination of polynomial chaos and
stochastic Galerkin projection. The specific non-intrusive method uses numerical integra-
tion by combining quadrature rules and the probability density functions of the prescribed
uncertainties. The twomethods are compared in terms of error in the estimated variance, com-
putational efficiency and accuracy. This comparison, although not general, provide insight
into uncertainty quantification of problems with a combination of sharp and smooth vari-
ations in stochastic space. It suggests that combining intrusive and non-intrusive methods
could be advantageous.

Keywords Uncertainty quantification · Stochastic data · Polynomial chaos · Stochastic
Galerkin · Intrusive methods · Non-intrusive methods · Burgers’ equation

Mathematics Subject Classification 65D30 · 65M06 · 35R60 · 35Q53

1 Introduction

The two main approaches for solving partial differential equations with random inputs can
roughly be categorized in intrusive and non-intrusive methods. Semi-intrusive methods do
exist, combining intrusive and non-intrusive techniques [1], but are rare. Non-intrusive meth-
ods solve the original problem multiple times using fixed samples of the inputs [5,7]. Next,
numerical integration (NI) and interpolation techniques are used to compute statistics of
the solution. Intrusive methods based on a polynomial chaos (PC) expansion and Galerkin
projection, result in a system of equations for the expansion coefficients [18]. Non-intrusive
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versions of spectral projection and polynomial chaos expansion also exist [12], but are not
considered here. Non-intrusive methods, unlike intrusive ones, typically relies on already
existing deterministic solvers.

The aim of this note is to compare the performance of a typical non-intrusive sample-
based method using NI with a typical intrusive method using PC with the stochastic Galerkin
approach. We focus on problems related to fluid dynamics and as representative exam-
ple, study the viscous Burgers’ equation (a well known scalar model problem for the
Navier–Stokes equations) [2,3]. The results are compared in terms of efficiency, error in
the estimated variance and accuracy. A comparison between these techniques is of course
problem-dependent and several versions of both methods exist. Nevertheless, a comparison
like this could provide insights and inspiration for further investigations.

The rest of the paper proceeds as follows. Section 2 introduces the non-linear viscous
Burgers’ equation. Next, we construct the system of expansion coefficients of the continuous
problem using the PC technique with the stochastic Galerkin approach and introduce the
NI technique used throughout the paper. Section 4 presents a stable and accurate semi-
discrete finite difference formulation based on summation-by-parts (SBP) operators with
simultaneous approximation terms (SATs). In Sect. 5, numerical results and comparisons are
presented, and conclusions are drawn in Sect. 6.

2 The Continuous Problem

We consider the viscous Burgers’ equation in one space dimension

ut + uux = εuxx , x ∈ Ωx , t > 0,
Lu = g(x, t, ξ), x ∈ ∂Ωx , t > 0,
u = f (x, ξ), x ∈ Ωx , t = 0.

(1)

The solution is denoted u = u(x, t, ξ), where, ξ = (ξ1, ξ2, . . . , ξP ) is the vector of variables
representing the uncertainty in the solution. The viscosity ε is a positive constant. Further,
Ωx denotes a general spatial domain with boundary ∂Ωx andΩξ a P-dimensional stochastic
domain. The boundary operator defined on the boundary ∂Ωx is denoted by L . Further, the
initial and boundary data f (x, ξ) and g(x, t, ξ) are smooth stochastic initial and boundary
data which results in a smooth solution u.

3 The Intrusive and Non-intrusive Method

The foundation of polynomial chaos was first introduced in [6] and later generalized in
[17]. We will for simplicity and clarity only consider one random variable. A generalization
including multiple random variables is straightforward but cumbersome and would increase
the complexity of the analysis.

Performing a stochastic Galerkin projection of (1) yields

(uk)t +
M∑

i=0

M∑

j=0

ui (u j )x 〈ψiψ j , ψk〉 = ε(uk)xx , x ∈ Ωx , t > 0,

Luk = 〈g(x, t, ξ), ψk〉, x ∈ ∂Ωx , t > 0,
uk = 〈 f (x, ξ), ψk〉, x ∈ Ωx , t = 0,

(2)
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for k = 0, 1, . . . , M , where the ψ’s are the usual PC expansion coefficients. Hence, a
deterministic system of partial differential equations of dimension M + 1 multiplied by the
size of the original system is obtained. From (2), the deterministic coefficients u0(x, t),
u1(x, t), . . . , uM (x, t) are computed. For details about the PC expansion and stochastic
Galerkin procedure, see [10].

The system (2) can be written in the general form as

ut + A(u)ux = εuxx , x ∈ Ωx , t > 0,
Lu = g, x ∈ ∂Ωx , t > 0,
u = f , x ∈ Ωx , t = 0,

(3)

where Ωx = (0, 1). By choosing orthonormal basis functions, A(u) becomes symmetric

u = [u0, . . . , uM ]T , A(u) jk =
M∑

i=0

ui 〈ψiψ j , ψk〉,
g = [ĝ0, . . . , ĝM ], f = [ f0, . . . , fM ],
ĝk = 〈g(t, ξ), ψk〉, fk = 〈 f (x, ξ), ψk〉.

(4)

An energy estimate for the problem (3) can derived using the procedure in [8,11].
To compute statistics (e.g. mean and variance) of statistical quantities using sample-based

non-intrusive methods, integrals need to be approximated using quadrature rules [13]. The
4th-order accurate Simpson’s rule [4] is used as the integration technique in the rest of the
paper.

4 The Semi-discrete Formulation

The problem (2) or equivalently (3) is solved using a finite difference formulation based on
the SBP–SAT technique [9,14,15]. A stable and accurate semi-discrete formulation of (3) on
SBP–SAT form using a split form is

vt + 1

3
(D ⊗ IM )Av + 1

3
A(D ⊗ IM )v − ε(D2 ⊗ IM )v

= (P−1E0 ⊗ IM )�0(L0v − e0 ⊗ g̃0)

+ (P−1EN ⊗ IM )�1(L1v − eNx ⊗ g̃1)

v(0) = f, (5)

where ⊗ denotes the Kronecker product, g̃0 = [gT0 , 0]T and g̃1 = [0, gT1 ]T . In (5), v is
the numerical approximation of u, in the same way as g0, g1 and f are approximations of
〈g0(t, ξ), ψl〉, 〈g1(t, ξ), ψl〉, and 〈 f (x, ξ), ψl〉 for l = 0, 1, . . . , M , respectively. The penalty
matrices �0 and �1 are chosen to ensure stability as

�0 = diag
( − LT

0 , 0
)
, �1 = diag

(
0,−LT

1

)
. (6)

The numerical solution v is arranged in a tensor product fashion where its components
vim approximates the polynomial chaos coefficient um(xi , t). Further, vi is an approximation
of u[x=xi ].

Remark 1 The problem of computing the quadrature points in NI can be written in an equiv-
alent form where the vector vim approximates u(xi , t, ξm). Moreover, for NI, the system (5)
is uncoupled and hence can be solved in parallel.
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The approximate derivative in the x-direction is approximated by the SBP operator D =
P−1Q. The matrix P is a positive definite diagonal matrix and Q is almost skew-symmetric
satisfying Q+QT = EN −E0 = B = diag[−1, 0, . . . , 0, 1]. We denote the identity matrix
of dimension M + 1 by IM . The matrices E0 and EN are zero except for the element (1, 1)
and (Nx + 1, Nx + 1) respectively, which is 1. Finally, eNx denotes a zero vector with the
exception of the last element which is 1.

The data f , g̃0 and g̃1 are grid functions consisting of the projections of the original initial
and boundary data. The inner products are computed numerically using numerical integration
(making sure that the error related to the quadrature was small compared to the truncation
errors related to the PC expansion). The matrix A in (5) is given by

A = diag
(
Ā0, . . . , ĀNx

)
, ( Āi ) jk =

M∑

l=0

vil〈ψl , ψ j , ψk〉. (7)

Remark 2 When using a sample-based method together with NI, the vectors g0, g1 and
f instead denote g0,1 = [ḡ0,1(t, ξ0), . . . , ḡ0,1(t, ξM )]T and f = [ f̄ (x0, ξ0), . . . , f̄ (x0, ξM ),

. . . , f̄ (xNx , ξ0), . . . , f̄ (xNx , ξM )]T . Consequently, the boundary and initial data ḡ0(ξ), ḡ1(ξ)

and f̄ (ξ) are grid functions in ξ . Moreover, the matrix blocks Āi in the NI framework
correspond to

( Āi ) = diag(vi0, . . . , viM ). (8)

To prove stability, the procedure in [8] was used.

5 Numerical Experiments

To exemplify the difference betweenNI and PC, we consider (5) with characteristic boundary
conditions. The initial and boundary data are given by the manufactured solution

w(x, t, ξ) = 5 + e−ξ/2 sin
(
μπe−ξ2/2x − t

)
, with ξ ∼ U (−1, 1) (9)

In (9), an increased μ leads to an increased variation in stochastic space.
The model problem considered for the numerical experiments is (1) augmented with the

forcing function F = wt + wwx − εwxx , and ε = 0.01. As a measure of comparison, the
error in the variance is used

VarV =
∫ T

0
‖Var [U ] − Var [V ]‖2 dt . (10)

In (10), U denotes a PC computation using 25 basis functions. The deterministic errors are
reduced by using the same deterministic grid. U becomes a sufficiently accurate representa-
tion of the “exact” solution, while V denotes the computed numerical solution.

Remark 3 Both problems are written as a system of equations as stated in Sect. 4 and are
solved in the same way to ensure a fair comparison. We made sure that the deterministic
errors from the discretization were negligible.

The comparison is done using a slow (μ = 1) and fast (μ = 5) varying stochastic solution.
The different scenarios in the comparison could for example arise when having a smooth or
rough surface in a flow problem [16]. In the calculations below a 3rd-order SBP-operator
with 40 grid points in space, and a 4th-order Runge–Kutta scheme in time is used. To ensure
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(a) The error of the variance as a
function of M using µ = 1.

(b) The error of the variance as a
function of M using µ = 5.

(c) The total CPU time as a
function of M using µ = 1.

(d) The total CPU time as a
function of M using µ = 5.

(e) The error of the variance as a
function of the CPU time using µ = 1.

(f) The error of the variance as a
function of the CPU time using µ = 5.

Fig. 1 The uncertainty in all computations is uniformly distributed in [− 1,+ 1]. M denotes the number of
coefficient and samples for PC and NI, respectively
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a fair comparison, both problems are written as a system of equations and solved in the same
way.

Figure 1a, b illustrate the error of the variance as a function of number of coeffi-
cients/evaluations (M) for PC and NI using μ = 1 and μ = 5, respectively. Figure 1c,
d show the CPU time as a function of M for PC and NI for the same two cases. Finally,
Fig. 1e, f depict the error of the variance as a function of CPU time for PC and NI using
again μ = 1 and μ = 5. Note from Fig. 1e, f that the NI method seems to be more efficient if
large tolerances of the error in the estimated variance is accepted, while the PC seems more
efficient than NI for slow varying problems. This indicate that combining NI and PC could
be advantageous.

6 Summary and Conclusions

We have analyzed and compared the efficiency of PC and NI for fast and slow varying
stochastic solutions. The study has been carried out on the viscous Burgers’ equation as a
representative model for fluid dynamics problems.

The PC framework is employed to the continuous problem, and a stable high-order finite
difference formulation on SBP–SAT form was constructed. A similar but more simplified
numerical formulation was constructed for NI in order to streamline the comparison.

The difference in the variance was used as ameasure of comparison. The numerical results
suggest that the PC procedure outperforms NI for slow varying problems, while NI seems to
be more efficient for fast varying problems. The difference in performance opens the door
for possible gains in efficiency using a combination of PC and NI methods in uncertainty
quantification of fluid problems.
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