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Abstract
In this article, global stabilization results for the Benjamin–Bona–Mahony–Burgers’ (BBM–
B) type equations are obtained using nonlinear Neumann boundary feedback control laws.
Based on the C0-conforming finite element method, global stabilization results for the
semidiscrete solution are also discussed. Optimal error estimates in L∞(L2), L∞(H1) and
L∞(L∞)-norms for the state variable are derived, which preserve exponential stabiliza-
tion property. Moreover, for the first time in the literature, superconvergence results for the
boundary feedback control laws are established. Finally, several numerical experiments are
conducted to confirm our theoretical findings.

Keywords Benjamin–Bona–Mahony–Burgers’ equation · Neumann boundary feedback
control · Stabilization · Finite element method · Optimal error estimates · Numerical
experiments
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1 Introduction

Consider the Benjamin–Bona–Mahony–Burgers’ (BBM–B) equations of the following type:
seek u = u(x, t), x ∈ I = (0, 1) and t > 0 which satisfies

ut − μuxxt − νuxx + ux + uux = 0, (x, t) ∈ (0, 1) × (0,∞), (1.1)

ux (0, t) = v0(t), t ∈ (0,∞), (1.2)

ux (1, t) = v1(t), t ∈ (0,∞), (1.3)

B Sudeep Kundu
sudeep.kundu@uni-graz.at

Amiya Kumar Pani
akp@math.iitb.ac.in

1 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstr. 36, 8010 Graz,
Austria

2 Department of Mathematics, IIT Bombay, Powai, Mumbai 400076, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-01039-5&domain=pdf
http://orcid.org/0000-0002-3764-1245


846 Journal of Scientific Computing (2019) 81:845–880

u(x, 0) = u0(x), x ∈ (0, 1), (1.4)

where, the dispersion coefficientμ > 0 and the dissipative coefficient ν > 0 are constants; v0
and v1 are scalar control inputs. The problem (1.1) describes the unidirectional propagation
of nonlinear dispersive long waves with dissipative effect. In case, ν = 0 and μ > 0, the
equation (1.1) is known as Benjamin–Bona–Mahony (BBM) equation. When μ = 0 and
ν > 0 in (1.1), then it is called Burgers’ equation. For mathematical modeling and physical
applications of (1.1), see [2,3,21] and references, therein.

Based on distributed and Dirichlet boundary control in feedback form through Riccati
operator, local stabilization results for theBurgers’ equationwith sufficiently small initial data
are established in [4,5]. Moreover, for local stabilization results using Neumann boundary
control, we refer to [7,8,11,12]. For different behavior of steady state solution with anti-
symmetric initial condition, see [6]. It is to be noted that for viscous Burgers’ equation,
global existence and uniqueness results with Dirichlet and Neumann boundary conditions
are derived for any initial data in L2 in [18]. Subsequently, based on nonlinear Neumann
and Dirichlet boundary control laws, global stabilization results for the Burgers’ equation
are proved using a suitable application Lyapunov type functional in Krstic [14], Balogh and
Krstic [1]. Later on, adaptive (when ν is unknown) and nonadaptive (when ν is known)
stabilization results for generalized Burgers’ equations are established in [17,24,25] with
different types of boundary conditions. For existence of solution to the problem (1.1)–(1.4),
when μ = 0, we refer to [1,17].

For stabilization of the BBM–B equation, the authors in [10] have shown global stabi-
lization results corresponding to μ = 1 with zero Dirichlet boundary condition at one end
and Neumann boundary control on the other end. Using a reduced order model, distributed
feedback control for the BBM–B equation is discussed in [22]. Also, quadratic B-spline finite
element method followed by linear quadratic regulator theory to design feedback control,
is used to stabilize in [23] without any convergence analysis. In [15], we have shown that,
under the uniqueness assumption of the steady state solution, the steady state solution of the
problem (1.1) with zero Dirichlet boundary condition is exponentially stable.

In this paper, we discuss global stabilization results using nonlinear Neumann feedback
control law. Our second objective is to apply C0-finite element method to the stabilization
problem (1.1)–(1.4) using nonlinear Neumann boundary control laws and discuss conver-
gence analysis. Since to the best of our knowledge, there is hardly any discussion in the
literature on the rate of convergence, hence, in this paper, an effort has been made to prove
optimal order of convergence of the state variable along with superconvergence result for the
feedback control laws. The main contributions of this article are summarized as:

• Global stabilization for problem (1.1)–(1.4), that is, convergence of the unsteady solu-
tion to the problem (1.1) to its constant steady state solution under nonlinear Neumann
boundary control laws (1.2)–(1.3) is proved (see Theorem 2.1).

• Based on the C0-conforming finite element method, global stabilization results for
the semidiscrete solution are discussed and optimal error estimates are established in
L∞(L2), L∞(H1(0, 1)), and L∞(L∞) norms for the state variable. Moreover, super-
convergence results are derived for the nonlinear Neumann feedback control laws (see
Theorems 3.1 and 3.2).

• Finally, some numerical experiments are conducted to confirm our theoretical results.

For related issues of finite element analysis of the viscous Burgers’ equation using nonlinear
Neumann boundary feedback control law, we refer to our recent article [16]. Compared to
[16], special care has been taken to establish global stabilization results in L∞(Hi (0, 1))(i =
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0, 1, 2) norms as μ → 0. It is further observed that the decay rate for the BBM–B type
equation is less than the decay rate for the viscous Burgers’ equation and as the dispersion
coefficientμ approaches zero, the decay rate also converges to the decay rate for the Burgers’
equation. Finite element error analysis holds for fixed μ.

For the rest of this article, we denote Hm by Hm(0, 1) the standard Sobolev spaces with
norm ‖·‖m and for m = 0, ‖·‖ denotes the corresponding L2 norm. For more details, see e.g.
[13]. The space L p((0, T ); X) 1 ≤ p ≤ ∞, consists of all strongly measurable functions
v : (0, T ) → X with norm

‖v‖L p((0,T );X) :=
(∫ T

0
‖v(t)‖p

X dt

) 1
p

< ∞ for 1 ≤ p < ∞,

and

‖v‖L∞((0,T );X) := ess sup
0≤t≤T

‖v(t)‖X < ∞.

When there is no confusion, L p((0, T ); X) is simply denoted by L p(X). Throughout the
paper, we use the following normwhich is equivalent to the usual H1-norm for z ∈ H1(0, 1):

|||z||| =
√

z2(0) + z2(1) + ‖zx‖2. (1.5)

We now recall some results to be use in our subsequent sections.

Lemma 1.1 Poincaré–Wirtinger’s inequality For any z ∈ H1(0, 1), the following inequal-
ity holds:

‖z‖2 ≤ 2z2(i) + ‖zx‖2 , for i = 0 or 1.

Using Agmon’s and Poincaré inequality, the following inequality holds

‖z‖L∞ ≤ √
2 |||z||| , (1.6)

where |||·||| is given in (1.5).
The equilibrium or steady state solution u∞ of (1.1)–(1.3) satisfies

− νu∞
xx + u∞

x + u∞u∞
x = 0 in (0, 1), (1.7)

u∞
x (0) = u∞

x (1) = 0. (1.8)

Note that any constant wd is a solution of the steady state problem (1.7)–(1.8). Without loss
of generality, we assume that wd ≥ 0.

Set w = u − wd , which satisfies

wt − μwxxt − νwxx + (1 + wd)wx + wwx = 0 in (0, 1) × (0,∞), (1.9)

wx (0, t) = v0(t) t ∈ (0,∞), (1.10)

wx (1, t) = v1(t) t ∈ (0,∞), (1.11)

w(x, 0) = w0(x), x ∈ (0, 1), (1.12)

where, w is the state variable and v0 and v1 are feedback control variables. Since for the
problem with zero Neumann boundary condition, the steady state constant solution wd is
not asymptotically stable, we plan to achieve stabilization result through boundary feedback
law. The present analysis can be easily extended to the problem with one side control law
say for example: when w(0, t) = 0, wx (1, t) = v1(t), see [10]. For motivation to choose the
control laws v0(t) and v1(t) using construction of Lyapunov functional, see [14].
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Based on the nonlinear Neumann control law propose in our earlier article for Burgers’
equation, see [16], which is amodification of control law in [14], we now choose the feedback
control law as

wx (0, t) = v0(t) =: 1
ν

(
(c0 + 1 + wd)w(0, t) + 2

9c0
w3(0, t)

)
≡: K0(w(0, t)),

(1.13)

and

wx (1, t) = v1(t) =: −1

ν

(
(c1 + 1 + wd)w(1, t) + 2

9c1
w3(1, t)

)
≡: K1(w(1, t)),

(1.14)

where K0 and K1 represent feedback control laws, and c0 and c1 are positive constants.
The variational formulation of the problem (1.9)–(1.12) is to seek w ∈ L∞(H1), wt ∈
L2(L2) and μwt ∈ L2(H1) such that for almost all t > 0

(wt , χ) + μ(wxt , χx ) + ν(wx , χx ) + (1 + wd)(wx , χ) + (wwx , χ) − μ
(
v1t (t)χ(1)

− v0t (t)χ(0)
)

− ν
(
v1(t)χ(1) − v0(t)χ(0)

)
= 0 ∀ χ ∈ H1 (1.15)

with w(x, 0) = w0(x).

Using (1.13)–(1.14), we obtain a typical nonlinear problem (1.9)–(1.12) with boundary
conditions (1.13)–(1.14). Its weak formulation (1.15) becomes

(wt , χ) + μ(wxt , χx ) + ν(wx , χx ) + (1 + wd )(wx , χ) + (wwx , χ)

+ μ

ν

((
(c0 + 1 + wd )wt (0, t) + 2

3c0
w2(0, t)wt (0, t)

)
χ(0) + (

(c1 + 1 + wd )wt (1, t)

+ 2

3c1
w2(1, t)wt (1, t)

)
χ(1)

)
+

((
(c0 + 1 + wd )w(0, t)

+ 2

9c0
w3(0, t))χ(0) + (

(c1 + 1 + wd )w(1, t) + 2

9c1
w3(1, t)

)
χ(1)

)
= 0 ∀ χ ∈ H1, t > 0.

(1.16)

Throughout the paper C = C(‖w0‖2 , ν, μ) is a generic positive constant. Bellow, we make
the following assumptions
Assumption (A1)
Compatibility conditions at t = 0 (w0x (0) = v0(0), w0x (1) = v1(0), w0xt (0) = v0t (0),
w0xt (1) = v1t (0)) with w0(·) ∈ H2 are satisfied.
Assumption (A2)
There exist unique weak solution w of (1.9)–(1.12) satisfying the following regularity result

‖w(t)‖22 + ‖wt (t)‖2 + μ ‖wxt (t)‖2 +
∫ t

0

(
|||wt (s)|||2 + μ ‖wxxt (s)‖2

)
ds ≤ C . (1.17)

Subsequently for our error estimates in L∞(L∞)norm,we further assumed thatw(t) ∈ W 2,∞
with its norm denoted by ‖·‖2,∞.

Regarding assumption (A2) on existence, uniqueness and regularity results, the proof of
existence and uniqueness result can be easily modeled on the lines of proof of Theorems 1.1
and 2.1 of [19], but the constants appeared there may depend on 1/μr , r ≥ 1. Therefore,
using Bubnov-Galerkin methods and similar a priori bounds as in Theorems 2.1 and 2.2 for
the weak solution u of (1.9)–(1.12) with compactness arguments of J.L. Lions, it is possible
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to rewrite the existential proof so that the constants involved are valid uniformly in μ as
μ �→ 0. We also observe that as a consequence of Lemma 2.6, we obtain easily uniqueness
result. Further, we note that using eigenfunction expansion, Galerkin approximation and
taking limit as in the regularity Theorem 2.1 of [19], proper meaning can be attached to
regularity estimates in Lemmas 2.2–2.5. For more details, see, the appendix. Note that we
need compatibility conditions in (A1) in the proofs of regularity results for Lemmas 2.4–2.5.

The rest of the article is organized as follows. Section 2 deals with global stabilization
results and the existence and uniqueness of strong solution. Section 3 is devoted to optimal
error estimates for the semidiscrete solution with superconvergence results for feedback con-
trollers. Finally in Sect. 4, some numerical examples are considered to confirm our theoretical
results.

2 Stabilization and Continuous Dependence Result

In this subsection, we discuss a priori bounds for the problem (1.16) and derive stabilization
results and its main Theorem 2.1. In addition, these estimates are needed to prove optimal
error estimates for the state variable and feedback controllers. All estimates throughout the
paper are valid for the same α with

0 ≤ α ≤ 1

2
min

{
ν

(μ + 1)
,

ν

(2μ + ν)
,

ν(1 + ci + wd)

(ν + (1 + ci + wd)μ)
(i = 0, 1)

}
. (2.1)

Lemma 2.1 Under assumptions (A1)–(A2), there holds for t > 0

‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t) + βe−2αt

∫ t

0
e2αs

(
E1(w)(s) + ‖wx (s)‖2

)
ds

≤ e−2αt ( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

)
,

where α is given in (2.1),

β = min

{
2
(
ν − α(μ + 1)

)
,
(
1 − 2α

μ

ν

)
,
(
(1 + ci + wd)

− 2α
(
(1 + ci + wd)

μ

ν
+ 1

))
, i = 0, 1

}
, (2.2)

and

E1(w)(t) =
1∑

i=0

(
(ci + 1 + wd) + 1

3ci
w2(i, t)

)
w2(i, t). (2.3)

Proof Set χ = w in the weak formulation (1.16) to obtain

d

dt

(
‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t)

)
+ 2ν ‖wx (t)‖2 + E1(w)(t)

+
(

c0w
2(0, t) + 1

9c0
w4(0, t)

+ (
c1 + 2(1 + wd)

)
w2(1, t) + 1

9c1
w4(1, t)

)
= 2

3

(
w3(0, t) − w3(1, t)

)
, (2.4)
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where E1(w)(t) is given in (2.3). A use of Young’s inequality for the right hand side term
shows

2

3
w3(i, t) ≤ ciw

2(i, t) + 1

9ci
w4(i, t), i = 0, 1. (2.5)

Therefore, using (2.5) and (2.3), we obtain from (2.4)

d

dt

(
‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t)

)

+ E1(w)(t) + 2(1 + wd)w2(1, t) + 2ν ‖wx‖2 ≤ 0. (2.6)

Multiply (2.6) by e2αt to arrive at

d

dt

(
e2αt( ‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t)

))

− 2αe2αt ( ‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t)

)

+ e2αt
(

E1(w)(t) + 2ν ‖wx (t)‖2 + 2(1 + wd)w2(1, t)
)

≤ 0. (2.7)

A use of Poincaré-Wirtinger’s inequality yields

‖w(t)‖2 ≤ w2(0, t) + w2(1, t) + ‖wx (t)‖2 . (2.8)

Substitute (2.8) in (2.7) and expanding E1(w)(t) to find that

d

dt

(
e2αt( ‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t)

))

+ e2αt
( 1∑

i=0

(
(1 + ci + wd) − 2α

(
(1 + ci + wd)

μ

ν
+ 1

))
w2(i, t)

+
(
1 − 2α

μ

ν

) 1∑
i=0

1

3c0
w4(i, t)

)
+ 2

(
ν − α(μ + 1)

)
e2αt ‖wx (t)‖2 ≤ 0. (2.9)

Now choose α as in (2.1), so that all the coefficients on the left hand side are positive. Then
integrating the above inequality from 0 to t andmultiplying the resulting inequality by e−2αt ,

we obtain

‖w(t)‖2 + μ ‖wx (t)‖2 + μ

ν
E1(w)(t) + βe−2αt

∫ t

0
e2αs

(
E1(w)(s) + ‖wx (s)‖2

)
ds

≤ e−2αt( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

)
.

This completes the proof. �
Remark 2.1 Since

E1(w)(t) + ‖wx (t)‖2 ≥ |||w(t)|||2 ,

we obtain from Lemma 2.1

βe−2αt
∫ t

0
e2αs |||w(s)|||2 ds ≤ e−2αt

(
‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

)
.

When α = 0, Lemma 2.1 holds for all t > 0, that is,∫ t

0
|||w(s)|||2 ds ≤

(
‖w0‖2 + μ ‖w0x‖2 + E1(w)(0)

)
≤ C .
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Lemma 2.2 Under assumptions (A1)–(A2), there is a positive constant C such that for t > 0

(
‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
+ βe−2αt

∫ t

0
e2αs ‖wxx (s)‖2 ds

≤ Ce−2αt( ‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E1(w)(0)

)
eC ,

where E2(w)(t) =
(
(c0 + 1 + wd) + 1

9c0
w2(0, t)

)
w2(0, t) +

(
(c1 + 1 + wd) +

1
9c1

w2(1, t)
)
w2(1, t).

Proof Forming the L2- inner product between (1.9) and −wxx , we obtain

d

dt

(
‖wx (t)‖2 + μ ‖wxx (t)‖2

)
+ 2ν ‖wxx (t)‖2 − 2

(
v1(t)wt (1, t) − v0(t)wt (0, t)

)
= 2(wwx , wxx ) + 2(1 + wd)(wx , wxx ). (2.10)

After substituting (1.13)–(1.14) in (2.10), the contributions of the boundary terms in (2.10)
are

− 2
(
wt (1, t)wx (1, t) − wt (0, t)wx (0, t)

)
= 1

ν

d

dt

(
(c0 + 1 + wd)w2(0, t) + (c1 + 1 + wd)w2(1, t)

+ 1

9c0
w4(0, t) + 1

9c1
w4(1, t)

)
= 1

ν

d

dt
(E2(w)(t)). (2.11)

The terms on the right hand side of (2.10) are now bounded by

2(1 + wd)(wx , wxx ) ≤ ν

2
‖wxx (t)‖2 + 2

ν
(1 + wd)2 ‖wx (t)‖2 ,

and

2(wwx , wxx ) ≤ ‖w(t)‖L∞ ‖wx (t)‖ ‖wxx (t)‖ ≤ ν

2
‖wxx (t)‖2 + C |||w(t)|||2 ‖wx (t)‖2 .

Using (2.10) we arrive at

d

dt

(
‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
+ ν ‖wxx (t)‖2

≤ C ‖wx (t)‖2 + C |||w(t)|||2 ‖wx (t)‖2 . (2.12)

Multiplying the above inequality by e2αt , and using

‖wx (t)‖2 ≤ w2
x (0, t) + w2

x (1, t) + ‖wxx (t)‖2
≤ C

(
1 + w2(0, t) + w2(1, t)

)
E2(w)(t) + ‖wxx (t)‖2 ,

and E2(w)(t) ≤ E1(w)(t) we obtain

d

dt

(
e2αt( ‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)) +
(
ν − 2α(μ + 1)

)
e2αt ‖wxx (t)‖2

≤ Ce2αt( ‖wx (t)‖2 + 1

ν
E2(w)(t)

)

+ Ce2αt |||w(t)|||2
(

‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
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≤ Ce2αt (‖wx (t)‖2 + E1(w)(t))

+ C |||w(t)|||2 e2αt
(

‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
.

A use of Gronwall’s inequality now yields

e2αt
(

‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
+

(
ν − 2α(μ + 1)

) ∫ t

0
e2αs ‖wxx (s)‖2 ds

≤
(

‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E2(w)(0) + C

∫ t

0
e2αs( ‖wx (t)‖2 + E1(w)(s)

)
ds

)

× exp
(

C
∫ t

0
|||w(s)|||2 ds

)
. (2.13)

From Remark 2.1 and Lemma 2.1, we bound the right hand side term of (2.13). Therefore,
after multiplying (2.13) by e−2αt , we obtain

(
‖wx (t)‖2 + μ ‖wxx (t)‖2 + 1

ν
E2(w)(t)

)
+ βe−2αt

∫ t

0
e2αs ‖wxx (s)‖2 ds

≤ Ce−2αt( ‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E1(w)(0)

)

× exp
(

C(‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0))

)
.

Since the terms in the bracket in the exponential form are bounded, this completes the rest
of the proof. �
Lemma 2.3 Let assumptions (A1)–(A2) hold true. Then, there exists a positive constant C
such that for t > 0

ν
( ‖wx (t)‖2 + E2(w)(t)

) + e−2αt
∫ t

0
e2αs

(
‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(s)

)
ds

≤ CeC e−2αt( ‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E1(w)(0)

)
,

where

E3(w)(t) =
(
(1 + c0 + wd) + 2

3c0
w2(0, t)

)
w2

t (0, t) +
(
(1 + c1 + wd)

+ 2

3c1
w2(1, t)

)
w2

t (1, t). (2.14)

Proof Set χ = wt in the weak formulation (1.16) to obtain

‖wt (t)‖2 + μ ‖wxt (t)‖2 + 1

2

d

dt

(
ν ‖wx (t)‖2 + E2(w)(t)

)
+ μ

ν
E3(w)(t)

= (1 + wd)(wx ,−wt ) + (wwx ,−wt ), (2.15)

where E3(w)(t) is given in (2.14). Note that

(1 + wd)(wx ,−wt ) ≤ 1

4
‖wt (t)‖2 + (1 + wd)2 ‖wx (t)‖2 ,

and

(wwx ,−wt ) ≤ C ‖w(t)‖L∞ ‖wx (t)‖ ‖wt (t)‖ ≤ 1

4
‖wt (t)‖2 + C ‖wx (t)‖2 |||w(t)|||2 .
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Therefore, from (2.15), we arrive at

d

dt

(
ν ‖wx (t)‖2 + E2(w)(t)

)
+ ‖wt (t)‖2 + 2μ ‖wxt (t)‖2 + 2μ

ν
E3(w)(t)

≤ C ‖wx (t)‖2 |||w(t)|||2 + C ‖wx (t)‖2 .

Multiply the above inequality by e2αt . Now, a use of the Gronwall’s inequality and
Lemma 2.1 completes the rest of the proof. �

Lemma 2.4 Under assumptions (A1) and (A2), there holds for t > 0

(
‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)
+ e−2αt

∫ t

0
e2αs

(
ν ‖wxt (s)‖2 + E3(w)(s)

)
ds

≤ CeC e−2αt
(( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

))
,

where E3(w)(t) is as in (2.14).

Proof Differentiating (1.9) with respect to t and then taking the inner product with χ = wt ,
we obtain

1

2

d

dt

(
‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)
+ ν ‖wxt (t)‖2

+ (1 + wd)(wxt , wt ) + (wtwx + wwxt , wt )

+ 2
μ

ν

( 1

3c0
w(0, t)w3

t (0, t) + 1

3c1
w(1, t)w3

t (1, t)
)

+ E3(w)(t) = 0. (2.16)

The other terms in (2.16) are bounded by

(1 + wd)(wxt , wt ) ≤ ν

4
‖wxt (t)‖2 + 2(1 + w2

d)

ν
‖wt (t)‖2 ,

(wtwx + wwxt , wt ) ≤ ‖wt (t)‖L∞ ‖wx (t)‖ ‖wt (t)‖ + ‖w(t)‖L∞ ‖wxt (t)‖ ‖wt (t)‖
≤ (|wt (0, t)| + ‖wxt (t)‖) ‖wx (t)‖ ‖wt (t)‖

+ √
2 |||w(t)||| ‖wxt (t)‖ ‖wt (t)‖

≤ 1 + c0 + wd

2
w2

t (0, t) + ν

4
‖wxt (t)‖2 + C |||w(t)|||2 ‖wt (t)‖2 ,

and

2μ

ν

1

3c0
w(0, t)w3

t (0, t) ≤ 1

3c0
w2(0, t)w2

t (0, t) + μ2

ν2

1

3c0
w4

t (0, t).

Therefore, from (2.16), we arrive at

d

dt

(
‖wt‖2 + μ ‖wxt‖2 + μ

ν
E3(w)(t)

)
+ ν ‖wxt (t)‖2 +

(
(1 + c0 + wd)w2

t (0, t)

+ 2(1 + c1 + wd)w2
t (1, t) + 2

3c0
w2(0, t)w2

t (0, t) + 2

3c1
w2(1, t)w2

t (1, t)
)

≤ 2
μ2

ν2

( 1

3c0
w4

t (0, t) + 1

3c1
w4

t (1, t)
)

+ C |||w(t)|||2 ‖wt (t)‖2 + C ‖wt (t)‖2 .
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Now multiply the above inequality by e2αt to obtain

d

dt

(
e2αt ( ‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)) + νe2αt ‖wxt (t)‖2 + e2αt E3(w)(t)

≤ Ce2αt |||w(t)|||2 ‖wt (t)‖2 + C(α)e2αt
(

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)

+ C
μ

ν
e2αt E3(w)(t)

(
w2

t (0, t) + w2
t (1, t)

)

≤ Ce2αt
(

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)( |||w(t)|||2 + μ

ν
(w2

t (0, t) + w2
t (1, t)

)

+ Ce2αt
(

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)
.

By the Gronwall’s inequality, it follows from above with a use of Lemmas 2.1 and 2.3 that

e2αt
(

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)
+

∫ t

0
e2αs(ν ‖wxt (s)‖2 + E3(w)(s)

)
ds

≤
(

‖wt (0)‖2 + μ ‖wxt (0)‖2 + μ

ν
E3(w)(0) + C

∫ t

0
e2αs

(
‖wt (t)‖2 + μ ‖wxt (t)‖2

+ μ

ν
E3(w)(s)

)
ds

)
exp

(
C

∫ t

0

( |||w(t)|||2 + μ

ν
(w2

t (0, s) + w2
t (1, s))

)
ds

)

≤ C
(

‖wt (0)‖2 + μ ‖wxt (0)‖2 + μ

ν
E3(w)(0) + ( ‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E1(w)(0)

)

× exp
(

C
( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

))
.

Also after putting χ = wt in the weak formulation (1.16), we arrive at

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t) ≤ 3ν ‖wxx (t)‖2 + C ‖wx (t)‖2 + C |||w(t)|||2 ‖wx (t)‖2 .

Therefore, we can find the value of ‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ
ν

E3(w)(t) at t = 0 as

‖wt (0)‖2 + μ ‖wxt (0)‖2 + μ

ν
E3(w)(0)

≤ C
(

‖w0x‖2 + μ ‖w0xx‖2 + 1

ν
E1(w)(0)

)
exp

(
C

( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

))
.

Hence, we arrive at

e2αt
(

‖wt (t)‖2 + μ ‖wxt (t)‖2 + μ

ν
E3(w)(t)

)
+

∫ t

0
e2αs(ν ‖wxt (s)‖2 + E3(w)(s)

)
ds

≤
(

C
( ‖w0x‖2 + μ ‖w0xx‖2 + μ

ν
E1(w)(0)

))

× exp
(

C
( ‖w0x‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

))
.

Multiply the above inequality by e−2αt to complete the proof. �
Lemma 2.5 Let assumptions (A1) and (A2) hold. Then, there is a positive constant C such
that for t > 0

ν ‖wxx (t)‖2 + e−2αt
∫ t

0
e2αs

(
‖wxt (t)‖2 + μ ‖wxxt (t)‖2 + 2

ν
E3(w)(s)

)
ds

≤ CeC e−2αt
(

C(1 + μ)
( ‖w0‖22 + E1(w)(0)

))
.
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Proof Form the L2-inner product between (1.9) and −wxxt to obtain

‖wxt (t)‖2 + 2μ ‖wxxt (t)‖2 + 2

ν
E3(w)(t) + ν

d

dt
‖wxx (t)‖2

≤ C
(
1 + |||w(t)|||2

)
‖wxx (t)‖2 + C E1(w)(t) ‖wx (t)‖2 + C

(
E1(w)(t) + E3(w)(t)

)
,

(2.17)

where we use the bound of w2(i, t) and w4(i, t) for i = 0, 1 from Lemma 2.2.
Multiply (2.17) by e2αt to obtain

d

dt

(
e2αt(ν ‖wxx (t)‖2

)) + e2αt
(

‖wxt (t)‖2 + 2μ ‖wxxt (t)‖2 + 2

ν
E3(w)(t)

)

≤ Ce2αt
(
1 + |||wx (t)|||2

)
‖wxx (t)‖2 + Ce2αt E1(w)(t) ‖wx (t)‖2

+ Ce2αt
(

E1(w)(t) + E3(w)(t)
)
.

Integrate from 0 to t and then multiply the resulting inequality by e−2αt with a use of
Lemmas 2.2 and 2.4 to arrive at

ν ‖wxx (t)‖2 + e−2αt
∫ t

0
e2αs

(
‖wxt (t)‖2 + μ ‖wxxt (t)‖2 + 2

ν
E3(w)(s)

)
ds

≤ Ce−2αt
(( ‖w0‖2 + μ ‖w0x‖2 + μ

ν
E1(w)(0)

))

× exp
(

C
(
(1 + μ) ‖w0x‖2 + μ ‖w0xx‖2 + μ

ν
E1(w)(0)

))
.

This completes the proof. �
Now combining the above lemmas, we get the global stabilization result in the following
theorem.

Theorem 2.1 Under assumptions (A1) and (A2), there holds for t > 0

‖w(t)‖22 + ‖wt (t)‖21 + e−2αt
∫ t

0
e2αs

(
‖wt (t)‖22 + E3(w)(s)

)
ds ≤ CeC e−2αt .

Proof Proof follows from Lemmas 2.1–2.5. �

2.1 Continuous Dependence Property

Below, we show a continuous dependence property from which uniqueness follows.

Lemma 2.6 For two different initial conditions w10(·) and w20(·) ∈ H1(0, 1), the following
continuous dependence property holds for t > 0

‖z(t)‖2 + μ ‖zx (t)‖2 + E4(t) ≤ CeC( ‖z0‖2 + μ ‖z0x‖2 + E4(0)
)
,

where z = w1−w2 satisfies (2.19)–(2.22); w1 and w2 be two solutions of (1.9)with boundary
conditions (1.13), (1.14) and initial conditions w10 and w20, and

E4(t) =μ

ν

(
(1 + c0 + wd)z2(0, t) + (1 + c1 + wd)z2(1, t)

+ 1

3c0
w2
1(0, t)z2(0, t) + 1

3c1
w2
1(1, t)z2(1, t)

)
. (2.18)
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Proof Since z = w1 − w2, z satisfies

zt − μzxxt − νzxx + (1 + wd)zx + w1w1x − w2w2x = 0, (2.19)

zx (0, t) = 1

ν

(
(1 + c0 + wd)z(0, t) + 2

9c0
(w3

1(0, t) − w3
2(0, t))

)
, (2.20)

zx (1, t) = −1

ν

(
(1 + c1 + wd)z(0, t) + 2

9c1
(w3

1(1, t) − w3
2(1, t))

)
, (2.21)

z(x, 0) = w10(x) − w20(x). (2.22)

In its weak formulation, seek z ∈ H1 such that

(zt , v) + μ(zxt , vx ) + ν(zx , vx ) + (1 + wd)(zx , v) + (w1w1x − w2w2x , v)

+ μ

ν

((
(1 + c0 + wd)zt (0, t)

+ 2

9c0

d

dt

(
w3
1(0, t) − w3

2(0, t)
))

v(0) +
(
(1 + c1 + wd)zt (1, t)

+ 2

9c1

d

dt

(
w3
1(1, t) − w3

2(1, t)
))

v(1)

)
+

(
(1 + c0 + wd)z(0, t)v(0)

+ (1 + c1 + wd)z(1, t)v(1) + 2

9c0

((
w3
1(0, t) − w3

2(0, t)
)
v(0)

+ 2

9c1

(
w3
1(1, t) − w3

2(1, t
)
v(1)

)
= 0. (2.23)

Set v = z in (2.23), and bound the fourth and fifth terms on the left hand side, respectively,
as

(1 + wd)(zx , z) = (1 + wd)

2
(z2(1, t) − z2(0, t)),

and

(w1w1x − w2w2x , z)

= (w1zx , z) + (zw2x , z)

≤ ‖w1(t)‖L∞ ‖zx (t)‖ ‖z(t)‖ + ‖z(t)‖L∞ ‖w2x (t)‖ ‖z(t)‖
≤ √

2 |||w1(t)||| ‖zx (t)‖ ‖z(t)‖ + (|z(0, t)| + ‖zx (t)‖) ‖w2x (t)‖ ‖z(t)‖
≤ ν

4
‖zx (t)‖2 + 1 + c0 + wd

2
z2(0, t) + C(|||w1(t)|||2 + |||w2(t)|||2) ‖z(t)‖2 .

Now to bound the other terms on the left hand side of (2.23), we rewrite the following terms
as for i = 0, 1(

w3
1(i, t) − w3

2(i, t)
)
z(i, t) = z2(i, t)

(
w2
1(i, t) + w1(i, t)w2(i, t) + w2

2(i, t)
)

≥ z2(i, t)
(
w2
1(i, t) − |w1(i, t)||w2(i, t)| + w2

2(i, t)
)

≥ 1

2
z2(i, t)(w2

1(i, t) + w2
2(i, t)) ≥ 0,

and

d

dt

(
w3
1(i, t) − w3

2(i, t)
)
z(i, t) = 3

2

d

dt

(
w2
1(i, t)z2(i, t)

)
− 3w1(i, t)w1t (i, t)z2(i, t)

+ 3z2(i, t)
(
w1(i, t) + w2(i, t)

)
w2t (i, t)
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≤ 3

2

d

dt

(
w2
1(i, t)z2(i, t)

)
+ Cz2(i, t)

(
w2
1(i, t) + w2

1t (i, t)

+ w2
2(i, t) + w2

2t (i, t)
)
.

Therefore, from (2.23), we arrive at

d

dt

(
‖z(t)‖2 + μ ‖zx (t)‖2 + μ

ν

(
(1 + c0 + wd)z2(0, t) + (1 + c1 + wd)z2(1, t)

+ 1

3c0
w2
1(0, t)z2(0, t)

+ 1

3c1
w2
1(1, t)z2(1, t)

))
+ ν ‖zx (t)‖2

≤ C(|||w1|||2 + |||w2|||2) ‖z‖2 + C
μ

ν
z2(0, t)

(
w2
1(0, t) + w2

1t (0, t) + w2
2(0, t)

+ w2
2t (0, t)

)
+ C

μ

ν
z2(1, t)

(
w2
1(1, t) + w2

1t (1, t) + w
(
21, t) + w2

2t (1, t)
)
.

Using (2.18), we obtain

d

dt

(
‖z(t)‖2 + μ ‖zx (t)‖2 + E4(t)

)
+ ν ‖zx (t)‖2

≤ C
(

‖z(t)‖2 + μ ‖zx (t)‖2 + E4(t)
)(

w2
1t (0, t) + w2

2t (0, t)

+ w2
1t (1, t) + w2

2t (1, t) + |||w1(t)|||2 + |||w2(t)|||2
)
.

Applying Gronwall’s inequality to the above inequality yields

‖z(t)‖2 + μ ‖zx (t)‖2 + E4(t)

≤ ( ‖z0‖2 + μ ‖z0x‖2 + E4(0)
)
exp

(
C

∫ t

0

(
w2
1t (0, s) + w2

2t (0, s)

+ w2
1t (1, s) + w2

2t (1, s) + |||w1(t)|||2 + |||w2(t)|||2
)

ds

)
.

A use of Lemmas 2.2–2.4 gives the desired result. �
As a consequence, when w10 = w20, it follows that w1(t) = w2(t) for all t > 0. Hence, the
solution is unique.

3 Finite Element Approximation

In this section, we discuss semidiscrete Galerkin approximation keeping the time variable
continuous. Moreover, optimal error estimates for the state variable and superconvergence
results for feedback controllers are established.

For any positive integer N , let � = {0 = x0 < x1 < · · · < xN = 1} be a partition of I
into subintervals I j = (x j−1, x j ), 1 ≤ j ≤ N with h j = x j − x j−1 and mesh parameter
h = max

1≤ j≤N
h j . We define a finite dimensional subspace Vh of H1 as follows

Vh =
{
vh ∈ C0(I

) : vh

∣∣∣
I j

∈ P1(I j ) 1 ≤ j ≤ N

}
,
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where P1(I j ) is the set of linear polynomials in I j .
Now, the corresponding semidiscrete formulation for the problem (3.3)–(3.6) is to seek

wh ∈ H1(Vh) such that

(wht , χ) + μ(whxt , χx ) + ν(whx , χx ) + (1 + wd)(whx , χ) + (whwhx , χ)

+
((

(1 + c0 + wd)wh(0, t)

+ 2

9c0
w3

h(0, t)
)
χ(0) + (

(1 + c1 + wd)wh(1, t) + 2

9c1
w3

h(1, t)
)
χ(1)

)

+ μ

ν

((
(c0 + 1 + wd)wht (0, t) + 2

3c0
w2

h(0, t)wht (0, t)
)
χ(0) + (

(c1 + 1 + wd)wht (1, t)

+ 2

3c1
w2

h(1, t)wht (1, t)
)
χ(1)

)
= 0 ∀ χ ∈ Vh (3.1)

with wh(x, 0) = w0h(x), an approximation of w0. For our analysis, we assume that w0h is
the H1 projection of w0 onto Vh .

Now since Vh is finite dimensional, the semidiscrete problem (3.1) leads to a system of
nonlinear ODEs. Then an appeal to the Picard’s theorem yields the existence of a unique
solution wh(t) in t ∈ (0, t∗) for some t > 0. Since from Lemma 3.1, wh(t) is bounded for
all t > 0, using a continuation argument, the global existence of wh(t) is established.

Below, we state four Lemmas for the semidiscrete problem (1.9)–(1.12), which imply
global stabilization result for the semidiscrete solution.

Lemma 3.1 Under the assumptions (A1)–(A1) and α as in (2.1), there holds for t > 0

‖wh(t)‖2 + μ ‖whxt (t)‖2 + μ

ν
E1h(wh)(t) + βe−2αt

∫ t

0
e2αs |||wh(t)|||2 ds

≤ Ce−2αt( ‖w0h‖2 + μ ‖w0hx‖2 + μ

ν
E1h(wh)(0)

)
,

where

E1h(wh)(t) =
(
(c0 + 1 + wd)w2

h(0, t) + (c1 + 1 + wd)w2
h(1, t)

+ 1

3c0
w4

h(0, t) + 1

3c1
w4

h(1, t)
)
,

and β is the same as in (2.2).

Proof For the proof we can proceed as in continuous case. �
One dimensional discrete Laplacian �h : Vh −→ Vh is defined by

(−�hvh, wh) = (vhx , whx ) + vhx (0)wh(0) − vhx (1)wh(1) ∀ vh, wh ∈ Vh . (3.2)

The semidiscrete version of the control problem (1.9)–(1.12) satisfies

wht − μ�hwht + ν�hwh + (1 + wd)whx + whwhx = 0, (3.3)

whx (0, t) =: v0h(t) = 1

ν

(
(1 + c0 + wd)wh(0, t) + 2

9c0
w3

h(0, t)
)
, (3.4)

whx (1, t) =: v1h(t) = −1

ν

(
(1 + c1 + wd)wh(1, t) + 2

9c1
w3

h(1, t)
)
, (3.5)

wh(x, 0) = w0h(x) (say), (3.6)
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where following estimates hold:

‖w0 − w0h‖ j ≤ Ch2− j‖w0‖2, j = 0, 1. (3.7)

Using (3.7), we can show that ‖w0h‖ ≤ ‖w0‖ and ‖w0hx‖ ≤ ‖w0x‖. For showing the bound
of ‖�hw0h‖ , we rewrite(

− �hw0h, φh

)
= (w0hx , φhx ) + w0hx (0)φh(0) − w0hx (1)φh(1)

= (−w0xx , φh) −
(
(w0x − w0hx , φhx ) + (w0x (0) − w0hx (0))φh(0)

− (w0x (1) − w0hx (1))φh(1)
)
.

Choose w̃h(0) = w0h so that from Lemma 3.5, we obtain the bound of |w0x (0) − w0hx (0)|
and |w0x (1)−w0hx (1)|. Now a use of inverse inequality yields ‖�hw0h‖ ≤ C ‖w0xx‖ easily.
Lemma 3.2 Under the assumptions (A1)–(A2), there exists a positive constant C such that
for t > 0

(
‖whx (t)‖2 + μ ‖�hwh(t)‖2 + 1

ν
E2h(wh)(t)

)
+ βe−2αt

∫ t

0
e2αs ‖�hwh(s)‖2 ds

≤ C(1 + μ)e−2αt ( ‖w0‖21
)
exp

(
C(1 + μ) ‖w0‖21

)
,

where

E2h(wh)(t) =
(
(c0 + 1 + wd)w2

h(0, t) + (c1 + 1 + wd)w2
h(1, t)

+ 1

9c0
w4

h(0, t) + 1

9c1
w4

h(1, t)
)
.

Lemma 3.3 Let assumptions (A1)- (A2) hold. Then, there is a positive constant C such that
for t > 0

ν
( ‖whx (t)‖2 + E2h(wh)(t)

) + e−2αt
∫ t

0
e2αs

(
‖wht‖2 + μ ‖whxt‖2 + μ

ν
E3h(wh)(s)

)
ds

≤ C(1 + μ)e−2αt ( ‖w0‖22
)
exp

(
C(1 + μ) ‖w0‖21

)
,

where

E3h(wh)(t) =
(
(1 + c0 + wd)w2

ht (0, t) + (1 + c1 + wd)w2
ht (1, t) + 2

3c0
w2

h(0, t)w2
ht (0, t)

+ 2

3c1
w2

h(1, t)w2
ht (1, t)

)
.

Lemma 3.4 Under the assumptions (A1) and (A2), there holds for t > 0(
‖wht (t)‖2 + μ ‖whxt (t)‖2 + μ

ν
E3h(wh)(t)

)

+ e−2αt
∫ t

0
e2αs

(
ν ‖whxt (s)‖2 + E3h(wh)(s)

)
ds

≤ C(1 + μ)e−2αt ( ‖w0‖21
)
exp

(
C(1 + μ) ‖w0‖21

)
,

where E3h(wh)(t) is as in previous Lemma 3.3.

Remark 3.1 The proofs of the above Lemmas 3.2–3.4 follows in a similar fashion as in
continuous case. Also for α = 0, all results in these lemmas hold.
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3.1 Error Estimates

To bound the error, we first introduce an auxiliary projection w̃h(t) ∈ Vh of w(t) through
the following form

(wx − w̃hx , χx ) + λ(w − w̃h, χ) = 0 χ ∈ Vh, (3.8)

where λ is some fixed positive number. For a given w(t) ∈ H1, the existence of a unique
w̃h(t) follows from the Lax–Milgram Lemma. Let η := w − w̃h be the error involved in the
auxiliary projection. Then, the following standard error estimates hold

‖η(t)‖ j ≤ Chmin(2,m)− j ‖w(t)‖m , and ‖ηt (t)‖ j

≤ Chmin(2,m)− j ‖wt (t)‖m , j = 0, 1 and m = 1, 2. (3.9)

and

‖η(t)‖L∞ ≤ Ch2 ‖w(t)‖2,∞ . (3.10)

For a proof, we refer to Thomée [26]. In addition, for proving optimal error estimates, we
need the following estimates of η and ηt at the boundary points x = 0, 1 whose proof can be
found in [9,16,20].

Lemma 3.5 For x = 0, 1, there holds for t > 0

|η(x, t)| ≤ Ch2 ‖w(t)‖2 and |ηt (x, t)| ≤ Ch2 ‖wt (t)‖2 .

Using elliptic projection, write

e := w − wh = (w − w̃h) − (wh − w̃h) =: η − θ.

Choose w̃h(0) = w0h so that θ(0) = 0.
Since estimates of η are known, it is enough to estimate θ . Subtracting (3.1) from (1.16) and
using (3.8), we arrive at

(θt , χ) + μ(θxt , χx ) + ν(θx , χx ) +
1∑

i=0

(1 + ci + wd)θ(i, t)χ(i)

+ μ

ν

1∑
i=0

(1 + ci + wd)θt (i, t)χ(i)

=
(
(ηt , χ) − μλ(ηt , χ) − νλ(η, χ)

)
+ (1 + wd)(ηx − θx , χ) + (wwx − whwhx , χ)

+
1∑

i=0

(
(1 + ci + wd)η(i, t)χ(i) + 2

9ci

(
w3(i, t) − w3

h(i, t)
)
χ(i)

)

+ μ

ν

1∑
i=0

(
(1 + ci + wd)ηt (i, t)χ(i) + 2

9ci

d

dt

(
w3(i, t) − w3

h(i, t)
)
χ(i)

)
, (3.11)

where w3(i, t) − w3
h(i, t) for i = 0, 1 can be rewritten as

w3(i, t) − w3
h(i, t) = η3(i, t) − θ3(i, t) + 3w(i, t)η(i, t)

(
w(i, t) − η(i, t)

)
− 3wh(i, t)θ(i, t)

(
wh(i, t) − θ(i, t)

)
.
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Lemma 3.6 Let assumptions (A1) and (A2) hold true. Then, there exists a positive constant
C independent of h such that for t > 0

(
‖θ(t)‖2 + μ ‖θx (t)‖2 + 1

9

μ

ν
E1(θ)(t)

)
+ β1

2
e−2αt

∫ t

0
e2αs

(
‖θx (s)‖2 + E1(θ)(s)

)
ds

≤ C
1

μ
(‖w0‖2)(1 + μ)h4e−2αt exp

(
C ‖w0‖2

)
,

where β1 = min

{
( 3ν2 − 2α(μ + 1)),

(
1 − 2α

( 2μ
ν

+ 1
))}

> 0.

Proof Set χ = θ in (3.11) to obtain

1

2

d

dt

( ‖θ(t)‖2 + μ ‖θx (t)‖2) + ν ‖θx (t)‖2 +
1∑

i=0

(ci + (1 + wd))θ2(i, t)

+ μ

2ν

d

dt

( 1∑
i=0

(1 + ci + wd)θ2(i, t)
)

=
(
(ηt , θ) − μλ(ηt , θ) − νλ(η, θ)

)
+ (1 + wd)(ηx − θx , θ)

+
(
w(ηx − θx ) + (η − θ)whx , θ

)

+
1∑

i=0

(
(1 + ci + wd)η(i, t)θ(i, t) + 2

9ci

(
w3(i, t) − w3

h(i, t)
)
θ(i, t)

)

+ μ

ν

1∑
i=0

(
(1 + ci + wd)ηt (i, t)θ(i, t) + 2

9ci

d

dt

(
w3(i, t) − w3

h(i, t)
)
θ(i, t)

)

=
5∑

j=1

I j (θ), (3.12)

where I4(θ) and I5(θ) are last two summation term respectively. The first term on the right
hand side of (3.12) is bounded using theCauchy-Schwarz inequality and theYoung’s inequal-
ity in

I1(θ) = (ηt , θ) − μλ(ηt , θ) − νλ(η, θ) ≤ ε

4
‖θ(t)‖2 + C(1 + μ2) ‖ηt (t)‖2 + C ‖η(t)‖2 ,

where constant ε > 0 we choose later. For the second term on the right hand side of (3.12),
integration by parts, the Cauchy-Schwarz inequality, and Young’s inequality yield

I2(θ) = (1 + wd)(ηx − θx , θ) = −(1 + wd)
(
(η, θx ) + η(1, t)θ(1, t) − η(0, t)θ(0, t)

)

− (1 + wd)

2

(
θ2(1, t) − θ2(0, t)

)

≤ ν

8
‖θx (t)‖2 + c0

8
θ2(0, t) + c1

8
θ2(1, t) + C ‖η(t)‖2

+ C(η2(0, t)+ η2(1, t)) − (1 + wd)

2

(
θ2(1, t) − θ2(0, t)

)
.
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For the third term, we note that

I3(θ) = (
w(ηx − θx ) + (η − θ)whx , θ)

= −(wη, θx ) − (wxη, θ) − (wθx , θ) + (
(η − θ)whx , θ

)
+ w(1, t)η(1, t)θ(1, t) − w(0, t)η(0, t)θ(0, t)

≤ ν

8
‖θx (t)‖2 + C ‖w(t)‖2L∞ ‖η(t)‖2 + C ‖η(t)‖2 + c0

8
θ2(0, t)

+ c1
8

θ2(1, t) + C
( ‖wx (t)‖2L∞ + ‖whx (t)‖2L∞ + ‖w(t)‖2L∞

) ‖θ(t)‖2

+ ε

4
‖θ(t)‖2 + C(w2(0, t)η2(0, t) + w2(1, t)η2(1, t)).

First subterms of the fourth and fifth term on the right hand side of (3.12) are bounded by

(1 + c0 + wd)η(0, t)θ(0, t) + (1 + c1 + wd)η(1, t)θ(1, t)

+ μ

ν

(
(1 + c0 + wd)ηt (0, t)θ(0, t) + (1 + c1 + wd)ηt (1, t)θ(1, t)

)

≤ c0
8

θ2(0, t) + c1
8

θ2(1, t) + C
(
η2(0, t) + η2(1, t)

+ μ2(η2t (0, t) + η2t (1, t)
))

.

For second subterm of the fourth term on the right hand side, we note that for i = 0, 1

2

9ci

(
w3(i, t) − w3

h(i, t)
)
θ(i, t)

= − 2

9ci
θ4(i, t) − 2

3ci
w2

h(i, t)θ2(i, t) − 2

9ci
η3(i, t)θ(i, t)

+ 2

3ci

(
w2(i, t)η(i, t) − w(i, t)η2(i, t) + wh(i, t)θ2(i, t)

)
θ(i, t).

Using Young’s inequality, implies that for i = 0, 1

2

9ci
η3(i, t)θ(i, t) ≤ 2

9ci

1

16
θ4(i, t) + Cη4(i, t),

2

3ci
w2(i, t)η(i, t)θ(i, t) ≤ ci

8
θ2(i, t) + Cw4(i, t)η2(i, t)

and

2

3ci
w(i, t)η2(i, t)θ(i, t) ≤ 2

9ci

1

16
θ4(i, t) + C(w(i, t)η2(i, t))

4
3 .

Again, a use of Young’s inequality yields

2

3ci
wh(i, t)θ3(i, t) ≤ 2

3ci
12w2

h(i, t)θ2(i, t) + 2

9ci

1

16
θ4(i, t).

Hence, the contribution of the second subterm of the fourth term on the right hand side of
(3.12) after applying Lemmas 2.2, 2.4 and 3.5, can be bounded as
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1∑
i=0

2

9ci

(
w3(i, t) − w3

h(i, t)
)
θ(i, t)

≤ − 2

9c0

13

16
θ4(0, t) + c0

8
θ2(0, t) + Cη2(0, t)

− 2

9c1

13

16
θ4(1, t) + c1

8
θ2(1, t) + Cη2(1, t) + 8

1∑
i=0

1

ci
w2

h(i, t)θ2(i, t).

Expanding the second subterm of the fifth term, we note that for i = 0, 1

2

9ci

μ

ν

d

dt

(
η3(i, t)

)
θ(i, t) ≤ μ

ν
Cθ2(i, t)η2(i, t) + C

μ

ν
η2(i, t)η2t (i, t),

2

9ci

μ

ν

d

dt

(
θ3(i, t)

)
θ(i, t) = − 1

6ci

μ

ν

d

dt

(
θ4(i, t)

)
,

and using Lemmas 2.2 and 2.4, we obtain

2

3ci

μ

ν

d

dt

(
w2(i, t)η(i, t)

)
θ(i, t) ≤ μ

ν
Cθ2(i, t)w2(i, t) + C

μ

ν
η2(i, t) + C

μ

ν
η2t (i, t).

Also, it holds that

− 2

3ci

μ

ν

d

dt

(
w(i, t)η2(i, t)

)
θ(i, t) ≤ μ

ν
Cθ2(i, t)

(
w2(i, t) + w2

t (i, t)
) + C

μ

ν
η4(i, t)

+ C
μ

ν
η2(i, t)η2t (i, t).

Rewrite and use the Young’s inequality to obtain

− 2

3ci

μ

ν

d

dt

(
w2

h(i, t)θ(i, t)
)
θ(i, t) ≤ − 1

3ci

μ

ν

d

dt

(
w2

h(i, t)θ2(i, t)
)

+ Cθ2(i, t)
(
w2

h(i, t) + μ2w2
ht (i, t)

)
.

Similarly,

2

3ci

μ

ν

d

dt

(
wh(i, t)θ2(i, t)

)
θ(i, t) ≤ 4

9ci

μ

ν

d

dt

(
wh(i, t)θ3(i, t)

) + 2

9ci

1

16
θ4(i, t)

+ C
μ2

ν2
w2

ht (i, t)θ2(i, t).

Hence, from (3.12), we arrive using Lemmas 2.2, 2.4, 3.2, 3.4 and 3.5 at

d

dt

( ‖θ(t)‖2 + μ ‖θx (t)‖2) + 3ν

2
‖θx (t)‖2 +

1∑
i=0

4

3ci
w2

h(i, t)θ2(i, t) + E1(θ)(t)

+ μ

ν

d

dt

(
E1(θ)(t) +

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t)
)

≤ C((1 + μ2)‖ηt (t)‖2 +‖η(t)‖2)+ C
(

|||w(t)|||2 + ‖wxx (t)‖2 + ‖�hwh(t)‖2 + w2
x (0, t)

+ w2
hx (0, t)

)
‖θ‖2 + ε ‖θ‖2 + C(1 + μ)

( 1∑
i=0

η2(i, t)
)

+ 16
1∑

i=0

1

ci
w2

h(i, t)θ2(i, t)
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+ μ

ν

d

dt

( 1∑
i=0

8

9ci
wh(i, t)θ3(i, t)

)
+ C(μ + μ2)

( 1∑
i=0

η2t (i, t)
)

+ C
1∑

i=0

μ

ν
θ2(i, t)

(
w2(i, t) + w2

t (i, t) + w2
h(i, t) + μw2

ht (i, t)
)
.

Multiply the above inequality by e2αt . Use Poincaré–Wirtinger’s inequality

‖θ(t)‖2 ≤ θ2(0, t) + θ2(1, t) + ‖θx (t)‖2 ≤ E1(θ)(t) + ‖θx (t)‖2
with

2α
μ

ν

1∑
i=0

8

9ci
wh(i, t)θ3(i, t) ≥ −2α

μ

ν

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t) − 2α
μ

ν
E1(θ)(t)

This yields

d

dt

(
e2αt

(
‖θ(t)‖2 + μ ‖θx (t)‖2 + μ

ν

(
E1(θ)(t) +

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t)
)))

+ e2αt
1∑

i=0

4

3ci
w2

h(i, t)θ2(i, t) + e2αt
(
1 − 2α

(2μ
ν

+ 1
))

E1(θ)(t)

+
(3ν
2

− 2α(1 + μ)
)

e2αt ‖θx (t)‖2

≤ Ce2αt((1 + μ2) ‖ηt‖2 + ‖w(t)‖21 ‖η(t)‖2 )
+ Ce2αt

(
φ(t) + w2

x (0, t) + w2
hx (0, t)

)
‖θ‖2

+ C
μ

ν

1∑
i=0

θ2(i, t)
(
w2(i, t) + w2

t (i, t) + w2
h(i, t) + μw2

ht (i, t)
)

+ εe2αt
(

E1(θ)(t) + ‖θx (t)‖2
)

+ μ

ν

d

dt

(
e2αt

1∑
i=0

( 8

9ci
wh(i, t)θ3(i, t)

))
+ e2αt (4α

μ

ν
+ 24)

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t)

+ C(1 + μ)e2αt ( 1∑
i=0

η2(i, t)
) + C(μ + μ2)e2αt

( 1∑
i=0

η2t (i, t)
)
,

where φ(t) = |||w(t)|||2 + ‖wxx (t)‖2 + ‖�hwh(t)‖2. Now integrate from 0 to t and choose
ε = β1

2 with

2α
μ

ν

8

9ci
wh(i, t)θ3(i, t) ≥ −2α

μ

ν

2

3ci
w2

h(i, t)θ2(i, t) − 2α
μ

ν

8

27ci
θ4(i, t), i = 0, 1.

to find that

e2αt
(

‖θ(t)‖2 + μ ‖θx (t)‖2 + 1

9

μ

ν
E1(θ)(t)

)
+ β1

2

∫ t

0
e2αs

(
‖θx (t)‖2 + E1(θ)(s)

)
ds

+
∫ t

0
e2αs

( 1∑
i=0

4

3ci
w2

h(i, s)θ2(i, s)
)

ds (3.13)
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≤ Ch4
∫ t

0
e2αs

(
(1 + μ + μ2) ‖wt (t)‖22 + (1 + μ) ‖w(t)‖22

)
ds

+ C
∫ t

0
e2αs

(
φ(t) + w2

x (0, t) + w2
hx (0, t)

)
‖θ(t)‖2 ds

+ C(
μ

ν
+ 1)

∫ t

0
e2αs E1(θ)(s)ψ(s) ds, (3.14)

where ψ(t) = ∑1
i=0

(
w2(i, t) + w2

t (i, t) + w2
h(i, t) + μw2

ht (i, t)
)
. Then, an application of

Gronwall’s inequality to (3.14) shows

e2αt
(

‖θ(t)‖2 + μ ‖θx (t)‖2 + 1

9

μ

ν
E1(θ)(t)

)
+ β1

2

∫ t

0
e2αs

(
‖θx (t)‖2 + E1(θ)(s)

)
ds

+
∫ t

0
e2αs

( 1∑
i=0

4

3ci
w2

h(i, s)θ2(i, s)
)

ds

≤ Ch4
∫ t

0
e2αs

(
(1 + μ) ‖w(t)‖22 + (1 + μ + μ2) ‖wt (s)‖22

)
ds

× exp

( ∫ t

0

(
φ(s) + ψ(s) + (w4(0, s))2 + (w4

h(0, s))2
)

ds

)
. (3.15)

Multiplying (3.15) by e−2αt and using Lemmas 2.2, 2.4, 3.2 and 3.4 with α = 0, it follows
that(

‖θ(t)‖2 + μ ‖θx (t)‖2 + 1

9

μ

ν
E1(θ)(t)

)
+ β1

2
e−2αt

∫ t

0
e2αs

(
‖θx (t)‖2 + E1(θ)(s)

)
ds

+ e−2αt
∫ t

0
e2αs

( 1∑
i=0

4

3ci
w2

h(i, s)θ2(i, s)
)

ds ≤ C
1

μ
(‖w0‖2)h4e−2αt exp

(
C ‖w0‖2

)
.

This completes the proof. �
Lemma 3.7 Under assumptions (A1) and (A2), there exists a positive constant C indepen-
dent of h such that for t > 0

ν ‖θx (t)‖2 + 1

3
E2(θ)(t) + 2e−2αt

∫ t

0
e2αs

(
‖θt (t)‖2 + μ ‖θxt (t)‖2

)
ds

+ μ

ν
e−2αt

∫ t

0
e2αs

(
(1 + c0 + wd)θ2t (0, s) + (1 + c1 + wd)θ2t (1, s)

)
ds

≤ C
1

μ
(‖w0‖2)(1 + μ)h4e−2αt exp

(
C(‖w0‖2)

)
.

Proof Set χ = θt in (3.11) to obtain

‖θt (t)‖2 + μ ‖θxt (t)‖2 + 1

2

d

dt

(
ν ‖θx (t)‖2 +

1∑
i=0

(1 + ci + wd)θ2(i, t)

)

+ μ

ν

( 1∑
i=0

(1 + ci + wd)θ2t (i, t)
)

=
5∑

i=1

Ii (θt ). (3.16)
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The first term on the right hand side of (3.16) is bounded by

I1(θt ) = (ηt , θt ) − μλ(ηt , θt ) + νλ(η, θt ) ≤ 1

4
‖θt (t)‖2 + C(1 + μ2) ‖ηt (t)‖2 + C ‖η(t)‖2 .

For the second term I2(θt ), first rewrite it as

I2(θt ) = (1 + wd)(ηx − θx , θt )

= −(1 + wd)
d

dt
(η, θx ) + (1 + wd)(ηt , θx )

+ (1 + wd)
d

dt

(
η(1, t)θ(1, t) − η(0, t)θ(0, t)

)

− (1 + wd)
(
ηt (1, t)θ(1, t) − ηt (0, t)θ(0, t)

) − (1 + wd)(θx , θt ).

A use of Young’s inequality shows

I2(θt ) ≤ (1 + wd)
d

dt

(
η(1, t)θ(1, t) − η(0, t)θ(0, t)

)
− (1 + wd)

d

dt
(η, θx )

+ C
(

‖ηt (t)‖2 + |||θ(t)|||2 + η2t (1, t) + η2t (0, t)
)

+ 1

8
‖θt (t)‖2 .

For the third term I3(θt ) on the right hand side of (3.16), we first rewrite it as

I3(θt ) = (
w(ηx − θx ) + (η − θ)whx , θt

)
= − d

dt

(
(wη), θx

) + d

dt

(
w(1, t)η(1, t)θ(1, t) − w(0, t)η(0, t)θ(0, t)

)

+ (
(wη)t , θx

) − (
wxη, θt

) −
((

w(1, t)η(1, t)
)

tθ(1, t) − (
w(0, t)η(0, t)

)
tθ(0, t)

)

− (wθx , θt ) + (
(η − θ)whx , θt

)
.

and then an application of Young’s inequality with Lemmas 2.2, 2.4 and 3.2 yields

I3(θt ) ≤ − d

dt

(
(wη), θx

) + d

dt

(
w(1, t)η(1, t)θ(1, t) − w(0, t)η(0, t)θ(0, t)

)

+ C
(

‖ηt (t)‖2 + ‖η(t)‖2 + η2(1, t) + η2(0, t) + η2t (0, t) + η2t (1, t) + |||θ(t)|||2
)

+ C ‖θ(t)‖2
(
w2

h(0, t) + w4
h(0, t) + ‖�hwh(t)‖2

)
+ 1

8
‖θt (t)‖2 .

The first subterm of the fourth term I4(θt ) on the right hand side of (3.16) can be rewritten
for i = 0, 1 as

(1 + ci + wd)η(i, t)θt (i, t) = (1 + ci + wd)
d

dt

(
η(i, t)θ(i, t)

) − (1 + ci + wd)ηt (i, t)θ(i, t)

≤ (1 + ci + wd)
d

dt

(
η(i, t)θ(i, t)

) + C
(
η2t (i, t) + η2t (i, t)

)
.

For second subterm of the fourth term on the right hand side, we note that for i = 0, 1

2

9ci

(
w3(i, t) − w3

h(i, t)
)
θt (i, t)

= − 1

18ci

d

dt
θ4(i, t) − 1

3ci

d

dt

(
w2

h(i, t)θ2(i, t)
)

+ 2

9ci
η3(i, t)θt (i, t)
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+ 2

3ci

(
w2(i, t)η(i, t) − w(i, t)η2(i, t) + wh(i, t)θ2(i, t)

)
θt (i, t)

+ 2

3ci
wh(i, t)wht (i, t)θ2(i, t).

Using Lemma 2.2, it follows that for i = 0, 1

2

9ci
η3(i, t)θt (i, t) − 2

9ci

d

dt

(
η3(i, t)θ(i, t)

) ≤ Cη2(i, t)θ2(i, t) + Cη2(i, t)η2t (i, t),

2

3ci
w2(i, t)η(i, t)θt (i, t) − 2

3ci

d

dt

(
w2(i, t)η(i, t)θ(i, t)

)

≤ C
(
θ2(i, t) + η2(i, t) + η2t (i, t)

)
,

and

− 2

3ci
w(i, t)η2(i, t)θt (i, t) + 2

3ci

d

dt

(
w(i, t)η2(i, t)θ(i, t)

)

≤ C
(
θ2(i, t) + η2(i, t) + η2t (i, t)

)
.

Also, we obtain for i = 0, 1

2

9ci
3wh(i, t)θ2(i, t)θt (i, t) ≤ 2

9ci

d

dt

(
wh(i, t)θ3(i, t)

) + C
(
w2

ht (i, t)θ2(i, t) + θ4(i, t)
)
.

We note that for i = 0, 1

2

3ci
wh(i, t)wht (i, t)θ2(i, t) ≤ C

(
w2

h(i, t) + w2
ht (i, t)

)
θ2(i, t)

)
.

The first subterm of the fifth term I5(θt ) on the right hand side is bounded by

μ

ν
(1 + c0 + wd)ηt (0, t)θt (0, t) + μ

ν
(1 + c1 + wd)ηt (1, t)θt (1, t)

≤ μ

ν

( c0
10

+ 1

2
(1 + wd)

)
θ2t (0, t) + μ

ν

( c1
10

+ 1

2
(1 + wd)

)
θ2t (1, t)

+ μ

ν
C

(
η2t (0, t) + η2t (1, t)

)
,

For the second subterm of the fifth term I5(θt ), we note that for i = 0, 1

2

9ci

μ

ν

d

dt
η3(i, t)θt (i, t) ≤ μ

ν

ci

10
θ2t (i, t) + C

μ

ν
η4(i, t)η2t (i, t),

−μ

ν

2

9ci

μ

ν

d

dt
θ3(i, t)θt (i, t) = −μ

ν

2

3ci
θ2(i, t)θ2t (i, t).

Using Lemmas 2.2 and 3.5, it follows that for i = 0, 1

2

9ci

μ

ν

d

dt

(
w2(i, t)η(i, t) − w(i, t)η2(i, t)

)
θt (i, t)

≤ μ

ν

ci

10
θ2t (i, t) + C

μ

ν

(
η2(i, t) + η2t (i, t)

)
.
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Also, it is valid using Young’s inequality that for i = 0, 1

2

9ci

μ

ν

d

dt

(
3wh(i, t)θ2(i, t)

)
θt (i, t) ≤ μ

ν

ci

10
θ2t (i, t)

+ 2μ

3νci

(
w2

h(i, t)θ2t (i, t) + θ2(i, t)θ2t (i, t)
)

+ C
μ

ν
w2

ht (i, t)θ4(i, t),

−μ

ν

2

3ci

d

dt

(
w2

h(i, t)θ(i, t)
)
θt (i, t) = − 2μ

3νci
w2

h(i, t)θ2t (i, t)

− 4μ

3νci
wh(i, t)wht (i, t)θ(i, t)θt (i, t).

Applying Lemma 3.2, it follows that for i = 0, 1

− 4μ

3νci
wh(i, t)wht (i, t)θ(i, t)θt (i, t) ≤ μ

ν

ci

10
θ2t (i, t) + C

μ

ν
w2

ht (i, t)θ2(i, t).

Hence, from (3.16), we obtain using Lemmas 2.4 and 3.5

( ‖θt (t)‖2 + μ ‖θxt (t)‖2
) + d

dt

(
ν ‖θx (t)‖2 + E2(θ)(t) +

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t)
)

+ μ

ν

( 1∑
i=0

(1 + ci + wd)θ2t (i, t)
)

≤ C
(

‖η(t)‖2 + (1 + μ) ‖ηt (t)‖2
)

+ C(1 + μ)
(

‖θx (t)‖2 +
1∑

i=0

(
η2(i, t) + η2t (i, t)

+ w2
ht (i, t)θ2(i, t)

)) + C ‖θ(t)‖2 ‖�hwh(t)‖2 + C(1 + μ)
( 1∑

i=0

θ4(i, t)
)

− 2(1 + wd)
d

dt
(η, θx ) + 2(1 + wd)

d

dt

( 1∑
i=0

(−1)i+1η(i, t)θ(i, t)
)

− 2
d

dt

(
(wη), θx

) + 2
d

dt

( 1∑
i=0

(−1)i+1w(i, t)η(i, t)θ(i, t)
)

+ 2
1∑

i=0

(1 + ci + wd)
d

dt

(
η(i, t)θ(i, t)

) + d

dt

( 1∑
i=0

E5(i, t)
)
,

where

E5(i, t) = 4

9ci

((
η3(0, t) + w2(0, t)η(0, t) − w(0, t)η2(0, t)

+ wh(0, t)θ2(0, t)
)
θ(0, t)

)
i = 0, 1.
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Multiply the above inequality by e2αt and use Lemmas 2.2–2.3, 3.2 and 3.5 with bounds of
nonlinear boundary terms as in Lemma 3.6 to arrive at

e2αt( ‖θt (t)‖2 + μ ‖θxt (t)‖2
) + d

dt

(
e2αt

(
ν ‖θx (t)‖2 + E2(θ)(t)

+
1∑

i=0

2

3ci
w2

h(i, t)θ2(i, t)
))

+ μ

ν
e2αt

( 1∑
i=0

(1 + ci + wd)θ2t (i, t)
)

≤ Ch4e2αt (1 + μ)
(( ‖w(t)‖22 + ‖wt‖22

)) + C(1 + μ)e2αt
(

‖θx (t)‖2

+
1∑

i=0

(
w2

ht (i, t)θ2(i, t)

+ θ4(i, t)
)) + 2c0

d

dt

(
e2αtη(0, t)θ(0, t)

)
+ 2(2 + c1 + 2wd)

d

dt

(
e2αtη(1, t)θ(1, t)

)

− 2
d

dt

(
e2αt ((w + 1 + wd)η, θx

)) + 2
d

dt

(
e2αt ( 1∑

i=0

(−1)i+1w(i, t)η(i, t)θ(i, t)
))

+ Ce2αt ‖θ(t)‖2 ‖�hwh(t)‖2 + d

dt

(
e2αt (E5(0, t) + E5(1, t)

))
.

Integrate from 0 to t and then multiply the resulting inequality by e−2αt to obtain

(
ν ‖θx (t)‖2 + E2(θ)(t) +

1∑
i=0

2

3ci
w2

h(i, t)θ2(i, t)
)

+ e−2αt
∫ t

0
e2αs

(
‖θt (t)‖2 + μ ‖θxt (t)‖2

)
ds

+ μ

ν
e−2αt

∫ t

0
e2αs

( 1∑
i=0

(1 + ci + wd)θ2t (i, s)
)

ds

≤ C(1 + μ)h4e−2αt
∫ t

0
e2αs

(( ‖w(t)‖22 + ‖wt (t)‖22
))

ds

+ Ce−2αt
∫ t

0
e2αs ‖θ(t)‖2 ‖�hwh(t)‖2 ds + C(1 + μ)e−2αt

∫ t

0
e2αs

(
‖θx (t)‖2

+ w2
ht (0, s)θ2(0, s) + w2

ht (1, s)θ2(1, s) + θ4(0, s) + θ4(1, s)
)

ds

+
((

(2c0 − 2w(0, t))
)
η(0, t)θ(0, t) + (

(4 + 2c1 + 4wd + 2w(1, t))
)

η(1, t)θ(1, t)
)

− 2
(
(w + 1 + wd)η, θx

)
+ E5(0, t) + E5(1, t). (3.17)

A use of the Young’s inequality with Lemma 2.2 shows

−2
(
(w + 1 + wd)η, θx

)
≤ ν

2
‖θx (t)‖2 + C ‖η(t)‖2 .
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Again using the Young’s inequality and Lemma 2.2, we arrive at(
(2c0 − 2w(0, t))η(0, t)θ(0, t) + (4 + 2c1 + 4wd + 2w(1, t))η(1, t)θ(1, t)

)

≤ c0
4

θ2(0, t) + (c1 + 2(1 + wd))

4
θ2(1, t) + C

(
η2(0, t) + η2(1, t)

)
.

Bounding in a similar fashion as in Lemma 3.6, we obtain a bound for the nonlinear boundary
terms as follows

E5(i, t) ≤ 2

3ci
w2

h(i, t)θ2(i, t) + 1

9ci

5

6
θ4(i, t) + ci

4
θ2(i, t) + Cη2(i, t) i = 0, 1.

Finally, applyGrönwall’s inequality to (3.17) to arrive using Lemmas 2.2, 2.4, 3.1–3.3 and 3.6
at

ν ‖θx (t)‖2 +
1∑

i=0

(
(ci + 1 + wd)θ2(i, t) + 1

27ci
θ4(i, t)

+ 2e−2αt
∫ t

0
e2αs

(
‖θt (t)‖2 + μ ‖θxt (t)‖2

)
ds

+ μ

ν
e−2αt

∫ t

0
e2αs

( 1∑
i=0

(1 + ci + wd)θ2t (i, s)
)

ds

≤ C
1

μ
(‖w0‖2)(1 + μ)h4e−2αt exp

(
C(‖w0‖2)

)
.

This completes the proof. �
Remark 3.2 As a consequence of Lemma 3.7, we obtain superconvergence result for |||θ(t)|||
which depends on 1√

μ
. However, for proving optimal estimate, only one modification may

be made to compute
∫ t
0 ‖ηt (t)‖2 ds ≤ Ch2

∫ t
0 ‖wxt (t)‖2 ds. Hence, we obtain

|||θ(t)||| = O(h), (3.18)

which does not depend on 1√
μ
. Now using triangle inequality with Lemmas 3.6 and 3.7 and

(3.18), we obtain the following result.

Theorem 3.1 Let assumptions (A1) and (A2) be satisfied. Then, the following error estimates
hold for both state and control variables and for t > 0

‖(w − wh)(t)‖2r = O
( 1√

μ
h2−2r e−αt

)
, (3.19)

where r = 0, 1 and

|||(w − wh)(t)||| = O
(

he−αt
)
.

Proof The proof follows from Lemmas 2.4, 3.6 and 3.7 with a use of triangle inequality and
(3.9). �
Theorem 3.2 For w0(·) ∈ H2(0, 1), there exists a constant C > 0 such that for t > 0

‖(w − wh)(t)‖L∞ = O
( h2

√
μ

e−αt
)

(3.20)
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and

|vi (t) − vih(t)| := |Ki (w(i, t)) − Ki (wh(i, t))| = O
( h2

√
μ

e−αt
)
, (3.21)

where i = 0, 1.

Proof FromLemma 3.7, we obtain a superconvergence result for |||θ(t)|||. Using the Poincaré–
Wirtinger’s inequality, it follows that

‖θ(t)‖L∞(I ) ≤ C |||θ(t)||| .
Now a use of triangle inequality with estimates of ‖η(t)‖L∞ and‖θ(t)‖L∞ , we arrive at the
estimate (3.20). To find (3.21), we note that the error in the control law is given by

|v0(t) − v0h(t)| := |K0(w(0, t)) − K0(wh(0, t))|
= |1

ν

(
(1 + c0 + wd)(η(0, t) − θ(0, t)) + 2

9c0
(w3(0, t) − w̃3

h(0, t))

− 2

9c0
(w3

h(0, t) − w̃3
h(0, t))

)
|

≤ C
(|η(0, t)| + |θ(0, t)|) + C

c0
|η(0, t)|(w2(0, t) + η2(0, t))

+ C

c0
|θ(0, t)|(w2

h(0, t) + η2(0, t))

≤ C
h2

√
μ

‖w‖2
(
1 + w2(0, t) + ‖w‖22

) + C |θ(0, t)|(1 + w2
h(0, t) + ‖w‖22)

≤ C
h2

√
μ

e−αt exp
(
C ‖w0‖2

)
.

Similarly, it follows that

|v1(t) − v1h(t)| := |K1(w(1, t)) − K1(wh(1, t))|

≤ C
h2

√
μ

e−αt exp
(
C ‖w0‖2

)
.

This completes the proof. �

4 Numerical Experiments

In this section,we discuss the fully discrete finite element formulation of (1.9) using backward
Euler method with Neumann boundary control laws. Here, the time variable is discretized
by replacing the time derivative by difference quotient. Let W n be the approximation of
w(t) in Vh at t = tn = nk, where 0 < k < 1 denote the time step size and tn = nk,

and n is nonnegative integer. For smooth function φ defined on [0,∞), set φn = φ(tn) and

∂̄tφ
n = (φn−φn−1)

k .
Using backward Euler method, the fully discrete scheme corresponding {W n}n≥1 ∈ Vh is a
solution of

(∂̄t W
n, ϕh) + μ(∂̄t W

n
x , ϕhx ) + ν(W n

x , ϕhx ) + (1 + wd)(W n
x , ϕh)

+ (W n W n
x , ϕh) +

(
(c0 + wd)W n(0)
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Fig. 1 Both uncontrolled and
controlled solution

+ 2

9c0
(W n(0))3

)
ϕh(0) +

(
(c1 + wd)W n(1) + 2

9c1
(W n(1))3

)
ϕh(1)

+ μ

ν

((
(c0 + wd)∂̄t W

n(0)ϕh(0) + 2

9c0
∂̄t

(
W n(0)

)3
ϕh(0)

)
+

(
(c1 + wd)∂̄t W

n(1)

+ 2

9c1
∂̄t

(
W n(1)

)3)
ϕh(1)

)
= 0 ∀ϕh ∈ Vh (4.1)

with W 0 = w0h .At each time level tn , the nonlinear algebraic system (4.1) is solved by New-
ton’s method with initial guess W n−1. For implicit scheme (4.1) in our case, CFL condition
is not needed. We take time step k = 0.0001 and mesh size h = 1/60.

Example 4.1 Here, we have taken the initial guess (exact solution at t = 0) w0 = 20(0.5 −
x)3−3,wherewd = 3 is a constant steady solution for the original problem.We do not know
the exact solutionw(t). Choose t = [0, 3.5].We consider zeroNeumann boundary condition,
which is without control andmark it as uncontrolled solution. Then to checkwhether constant
steady state solution wd = 3 is asymptotically stable, we take nonlinear Neumann boundary
feedback controllers which are given in (1.10)–(1.11) for different values of c0 and c1 with
μ = 0.5 and ν = 0.5.

From the line denoted as ‘Uncontrolled solution’ in Fig. 1, we can clearly observe that W n

does not go to zero, that is, constant steady state solutionwd = 3 is not asymptotically stable
with zeroNeumann boundaries.Wenowobserve that for various combination of c0 and c1, the
discrete solution goes to zero exponentially, see Fig. 1. Moreover from Fig. 1, we can see that

the optimal decay rate α (with wd = 3), 0 < α ≤ 1
2 min

{
ν

μ+1 ,
ν

2μ+ν
,

ν(4+ci )
ν+(4+ci )μ

(i = 0, 1)
}

happens when c0 = 1 = c1, which verify our theoretical result in Lemma 2.1. When ci (i =
0, 1) < 1, then decay rate for the state is slow compare to the case when ci (i = 0, 1) ≥ 1.

Now, we present order of convergence for the error in state variable w(t) in L2 and L∞
norms (

∥∥w(tn) − W N
∥∥

L2 and
∥∥w(tn) − W N

∥∥
L∞ respectively) and also for the feedback

controllers v0(t) and v1(t) (|v0(tn) − v0h(tn)| and |v1(tn) − v1h(tn)| ) in L∞ norm at t = 1.
Exact solution is obtained through refined mesh solution.

For Figures 2, 3, 4 and 5, in each plot we have also added reference curve for theoretical
convergence rate to compare with the numerical rate of convergence. Figures 2 and 3 indicate
the error plot for the state variable w in L2 and L∞ norms respectively, for various values
of c0 and c1. We can easily observe from Figure 2 that the convergence rate in the L2- norm
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Fig. 2 Order of convergence plot
in L2 norm for state w

Fig. 3 Order of convergence plot
in L∞ norm for state w

Fig. 4 Convergence plot for
feedback control error at x = 0

for error in state variable is of order 2 as predicted by Theorem 3.1. From Figure 3, it is
also noticeable that the order of convergence for error in state variable in L∞ norm is 2 as
expected from Theorem 3.2.

For error in feedback controllers at x = 0 and x = 1, it is observed from Figures 4 and 5
that for various values of c0 and c1, the order of convergence is 2 which confirms the result
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Fig. 5 Convergence plot for
feedback control error at x = 1

Fig. 6 Control plot at x = 0

Fig. 7 Control plot at x = 1

in Theorem 3.2. In Figures 6 and 7, we present the behavior of the feedback controllers at
x = 0 and x = 1 with respect to time for various positive values of c0 and c1. Absolute
value of the feedback controllers go to zero as time increases. So for ci (i = 0, 1) < 1 in the
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Fig. 8 Controlled and
Uncontrolled solution plot in L2

norm

feedback control law, it will take more time for the control and state to settle down to zero
(See Figs. 1, 6, 7).

The next example consists of different type feedback control which is stated below. In the
following example, we consider the solution of (1.9) with one part zero Dirichlet boundary
and another part different Neumann conditions.

Example 4.2 In this example, we consider the solution of (1.9) with different boundary con-
ditions. Take initial condition as w0 = 15 sin(πx) − 5, where 5 is the steady state solution.
We choose time t = [0, 10] and the time step k = 0.0001 and μ = 0.1 and ν = 0.1.

For the uncontrolled solution, we take w(0, t) = 0 and wx (1, t) = 0. The uncontrolled
solution is denoted by ‘Uncontrolled solution’ in Figure 8.

For the controlled solution we consider w(0, t) = 0 and wx (1, t) = v1(t) = − 1
ν

(
(c1 +

1 + wd)w(1, t) + 2
9c1

w3(1, t)
)
with c1 = 0.1, 1 and 10. Denote the controlled solutions by

‘Controlled solution c1 = 1’, ‘Controlled solution with c1 = 10’, and ‘Controlled solution
with c1 = 0.1’ in Fig. 8.

First draw line in Fig. 8 shows that solution with zero boundary conditions (w(0, t) = 0
and wx (1, t) = 0) oscillate. But using above mentioned type of control with different values
of c1, solution goes to zero. With the initial condition of Example 4.2, decay of the state w

in L2- norm varying μ with fixed ν = 0.1, c0 = 1 = c1 is shown in Fig. 9. We observe that
as μ decreases, L2- norm of the state w for BBM–B equation converges to the L2- norm of
the state w with μ = 0 that is to the L2- norm of the state of Burgers’ equation.

5 Conclusion

In this article, under the assumption of the existence of solution, we show stabilization
estimate in higher order normswhich is crucial to obtain optimal error estimates in the context
of C0- conforming finite element analysis. Optimal error estimates for the state variable w

in L∞(L2), L∞(H1) and L∞(L∞) norms are established. Furthermore, superconvergence
results for error in feedback controllers are also proved. Following points which are itemized
below will be addressed in a separate paper.
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Fig. 9 Decay of state w in L2

norm as μ → 0

• When the coefficient of viscosity is unknown (in the case of adaptive control), we believe
that the control law as in Smaoui [24] will also work for BBM–B equation. Also when
ν = 0, it is interesting to extend the analysis modifying the control law appropriately.

• In addition, for the fully discrete scheme (4.1), it is interesting to know the large time
behavior of the solution and how the corresponding time step size k behaves in error
estimates for fully discrete solution in addition to the space step size h.
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Appendix

Regarding the proof of assumption (A2) on existence and uniqueness of solution w to the
problem (1.9) with boundary conditions:

wx (0, t) − κ0w(0, t) = 2

9c0ν
w3(0, t), (1)

wx (1, t) + κ1w(1, t) = − 2

9c1ν
w3(1, t), (2)

where κi = 1
ν
(ci + 1 + wd) > 0 for i = 0 and 1, and the initial condition (1.12), we apply

Bubnov Galerkin method as follows: Set A = − d2

dx2
with dense domain D(A) in L2(0, 1),

where

D(A) =
{
φ ∈ H2(0, 1) : φx (0) − κ0φ(0) = 0 and φx (1) + κ1φ(1) = 0

}
.
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As κ0 + κ1 > 0, A is linear selfadjoint positive definite with a compact inverse, and hence,
it has a discrete spectrum with 0 < λ1 < λ2 < . . . < λl < . . . and lim

l→∞λl = ∞. The

corresponding eigenvectors {φl(x)}l=1 forms an orthonormal basis in L2(0, 1). For s ≥ 0,

let Hs consist of vector φ ∈ L2(0, 1) such that ‖φ‖Hs =
(∑∞

j=1 λs
j (φ, φ j )

2
)1/2

< ∞. On

Hs , we define an innerproduct

(φ, ψ)s = (As/2φ, As/2ψ). (3)

When s = 1, the norm on H1 can be written as

‖φ‖1 =
( ∫ 1

0
|φx |2dx + κ0|φ(0)|2 + κ1|φ(1)|2

)1/2
. (4)

Since for φ ∈ H1, ‖φ‖2 ≤ λ−1
1 ‖φ‖21, where 0 < λ1 < π2 is the first eigenvalue of A. Then,

H1-norm is equivalent to the standard H1-norm. Let H−s be denoted by the dual space
of Hs .

Let Vm = span{φ1, . . . , φm} ⊂ H1(0, 1). Now seek a Galerkin approximation wm to w

which is of the form wm(x, t) = ∑m
j=1 α jm(t)φ j (x) satisfying

(wm
t , φk) + μ(wm

t , φk)1 + ν(wm, φk)1 + (wmwm
x , φk)

+
1∑

i=0

2μ

3ciν
(wm)2(i, t)wm

t (i, t)φk(i)

+
1∑

i=0

2

9ci
(wm)3(i, t)φk(i) = 0, k = 1, 2, . . . (5)

with α jm(0) = (w0, φ j ), j = 1, 2, . . . , m. Since Vm is finite dimensional, (5) gives rise
to a system of nonlinear ODEs. Therefore, an application of the Picard’s existence theorem
yields a local existence of a unique solution α jm(t) and hence, the existence of a unique
wm(t) for t ∈ [0, t∗m) with t∗m < T . In order to prove global existence, we need a priori
bound to continue the solution to the whole of [0, T ). Multiply (5) by αkm and then, sum up
to obtain

(wm
t , wm) + μ(wm

t , wm)1 + ν(wm, wm)1 + (wmwm
x , wm) +

1∑
i=0

2μ

3ciν
(wm)3(i, t)wm

t (i, t)

+
1∑

i=0

2

9ci
(wm)4(i, t) = 0. (6)

As in Lemmas 2.1, 2.3 and 2.4, we can easily obtain with α = 0 that the sequences {wm},
{wm

x }, {wm
t } are bounded uniformly in L∞(0, T ; L2). Moreover, the sequences {μwm}, {wm}

are also uniformly bounded in L∞(0, T ;H1) and {E1(w
m)}, {E2(w

m)}, {μE2(w
m)} are

bounded uniformly in L∞(0, 1). Finally, to obtain uniform boundedness of {wm
xx }, wemodify

the proof in the Lemma 2.2 with α = 0 as follows. Multiply (5) by λkαm and then, sum over
k = 1, . . . , m, we obtain after integration by parts with respect to x

m∑
k=1

(wm
t , λkαkmφk) =

m∑
k=1

(wm
t , αkm Aφk) = 1

2ν

d

dt

( ∥∥wm(t)
∥∥2
1 +

1∑
i=0

1

9ci
(wm)4(i, t)

)
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= 1

2ν

d

dt

( ∥∥wm
x (t)

∥∥2 + E2(w
m)(t)

)
,

μ

m∑
k=1

(wm
t , λkαkmφk)1 = μ

m∑
k=1

(wm
tx , λkαkmφkx )

+ μ

ν

m∑
k=1

(
wm

t (i, t) + 2

3ci
(wm)2(i, t)wm

t (i, t)
)
λkαkmφk

= −μ

m∑
k=1

(wm
txx , λkαkmφk) = μ

m∑
k=1

(wm
txx , αkmφ′′

k )

= μ

m∑
k=1

(wm
txx , w

m
xx ) = μ

2

d

dt

∥∥wm
txx

∥∥2

and similarly,

ν

m∑
k=1

(wm, λkαkmφk)1 = ν

2

d

dt

∥∥wm
xx

∥∥2 .

Further, use rest of the analysis in the proof of Lemma 2.2 to derive that the sequences {wm
x },

{μwm
xx } are uniformly bounded in L∞(0, T ; L2) and {E2(w

m)(t)} is uniformly bounded in
L∞(0, T ; L2). Then, using weak * compactness argument, there exists subsequence, say,
{wmn } of {wm} such that for wl ⊂ Vl ⊂ Vm with l < m and as mn → ∞.

(w
mn
t , wl) converges to (wt , w

l) weak * in L∞(0, T ),

μ(w
mn
t , wl)1 converges to (wt , w

l)1 weak * in L∞(0, T ),

ν(wmn , wl)1 converges to ν(w,wl)1 weak * in L∞(0, T ).

Since H1 is compactly embedded in L2, there is a subsequence, say again {wmn } such that
{wmn } → w strongly in L2(0, 1) a.e. t ∈ (0, T ). Thus

(wmn wmn
x , wl) → (wwx , w

l) weak * in L∞(0, T ).

In a similar spirit,

2μ

3ν

1∑
i=0

1

ci
(wmn )2(i, t)wmn

t (i, t) converges weak * in L∞(0, T ),

and

2

9

1∑
i=0

1

ci
(wmn )3(i, t)wl(i, t) converges weak * in L∞(0, T ).

Therefore, as mn → ∞ we obtain

(wt , w
l) + μ(wt , w

l)1 + ν(w,wl)1 + (wwx , w
l)

+
1∑

i=0

( 2μ

3νci
w2(i, t)wt (i, t) + 2

9ci
w3(i, t)

)
wl(i) = 0,
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for all l. Since the set of finite linear combinations of wl is dense in H1, we arrive for any
v ∈ H1 at

(wt , v) + μ(wt , v)1 + ν(w, v)1 + (wwx , v)

+
1∑

i=0

( 2μ

3νci
w2(i, t)wt (i, t) + 2

9ci
w3(i, t)

)
v(i) = 0 (7)

To verify that w satisfies the initial data, let us observe that as {wmn }, {wmn
t } converging to

w, wt , respectively weak * in L∞(0, T ; L2), then
∫ T

0
(wmn , v) dt →

∫ T

0
(w, v) dt ∀v ∈ L1(0, T ; L2) (8)

∫ T

0
(w

mn
t , v) dt →

∫ T

0
(wt , v) dt ∀v ∈ L1(0, T ; L2) (9)

Let φ ∈ C1(0, T ) with φ(T ) = 0 and φ(0) = 1. Now, choose v = φ′z in (8) and v = φz in
(9). Then, sum both to obtain lim

mn→∞(wmn (0), z) = (w(0), z) ∀z ∈ L2. Therefore w(0) =
w0. The part of the uniqueness follows from Lemma 2.6.

For the proof of Lemma 2.5 with α = 0, we now multiply (5) by λkα
′
km and sum over

k = 1, . . . , m. We derive in similar way the estimate (2.17) and then, the rest of the estimates
follows as in the proof of Lemma 2.5 with α = 0. Thus, we obtain the uniform boundedness
of the sequence {wm

xx } and then, passing to the limit, we derive the regularity result (1.17).
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