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Abstract
The scalar wave equation is solved using higher order immersed finite elements. We demon-
strate that higher order convergence can be obtained. Small cuts with the background mesh
are stabilized by adding penalty terms to the weak formulation. This ensures that the condi-
tion numbers of the mass and stiffness matrix are independent of how the boundary cuts the
mesh. The penalties consist of jumps in higher order derivatives integrated over the interior
faces of the elements cut by the boundary. The dependence on the polynomial degree of the
condition number of the stabilized mass matrix is estimated. We conclude that the condition
number grows extremely fast when increasing the polynomial degree of the finite element
space. The time step restriction of the resulting system is investigated numerically and is
concluded not to be worse than for a standard (non-immersed) finite element method.

Keywords Cut elements · Stabilization · Fictitious · Immersed · XFEM

Mathematics Subject Classification 65M60 · 65M85

1 Introduction

The cut finite element method [3] is an immersed method. For a domain immersed in a
background mesh, one solves for the degrees of freedom of the smallest set of elements
covering the domain. The inner products in the weak form are taken over the immersed
domain. That is, on each element one integrates over the part of the element that is inside
the domain. As a result of this, some elements will have a very small intersection with the
immersed domain. This will make some eigenvalues of the discrete system very small and
in turn, result in poorly conditioned matrices. A suggested way to remedy this is by adding
stabilizing terms to the weak formulation. A jump-stabilization was suggested in [4] for the
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case of piecewise linear elements, where the jump in the normal derivative is integrated over
the faces of the elements intersected by the boundary. This stabilization makes it possible to
prove that the condition numbers of the involved matrices are bounded independently of how
the boundary cuts the elements. This form of stabilization has been used with good results
in several recent papers, see for example [3,7,15,21], and has also been used for PDEs posed
on surfaces in [5,9].

Thus, a lot of attention has been directed to the use of lower order elements. Higher
order cut elements have received less attention so far. These are interesting in wave prop-
agation problems. The reason for this is that the amount of work per dispersion error
typically increases slower for higher order methods for this type of problems. In [2] it was
suggested to stabilize higher order elements by integrating also jumps in higher deriva-
tives over the faces. This generalization of the jump-stabilization was further analyzed
in [15].

In this paper, we consider solving the scalar wave equation using higher order cut
elements. Both the mass and stiffness matrix are stabilized using the higher order jump-
stabilization. We present numerical results showing that the method obtains a high
order of accuracy. The time-step restriction of the resulting system is computed numer-
ically and is concluded to be of the same size as for standard finite elements with
aligned boundaries. Furthermore, we estimate how the condition number of the sta-
bilized mass matrix depends on the polynomial degree of the basis functions. The
estimate suggests that the condition number grows extremely fast with respect to the
polynomial degree, which is supported by the numerical experiments. All numerical exper-
iments are performed in two dimensions, but the generalization to three dimensions
is immediate.

One reason why the considered stabilization is attractive is because it is quite easy to
implement. Integrals over internal faces occur also in discontinuous Galerkin methods, thus
making the implementation similar to what is already supported in many existing libraries.

The suggested jump-stabilization is one but not the only possibility for stabilizing an
immersed method. In [10] a higher order discontinuous Galerkin method was suggested
and proved to give optimal order of convergence. Here the problem of ill-conditioning
was solved by associating elements that had small intersections with neighboring ele-
ments. Similar approaches has been used with higher order elements in for example [12,16],
where elements with small intersection take their basis functions from an element inside
the domain. One problem with these approaches is that it is not obvious how to choose
which elements should merge with or associate to one another. A related alternative to
these is the approach in [18], where individual basis functions were removed if they
have a small support inside the domain. A different approach was used in [11] where
streamline diffusion stabilization was added to the elements intersected by the bound-
ary. This was proved to give up to fourth order convergence. However, this approach
is restricted to interface problems. Another alternative is to use preconditioners to try
to overcome problems with ill-conditioning, such as in [13]. However, only precondi-
tioning does not solve the problem of severe time-step restrictions when using explicit
time-stepping. For this reason preconditioning alone is not sufficient in the context of wave-
propagation.

This paper is organized in the following way. Notation and some basic problem setup
are explained in Sect. 2.1, the stabilized weak formulation is described in Sect. 2.2, and the
stability of the method is discussed in Sect. 2.3. Analysis of how fast the condition number
increases when increasing the polynomial degree is presented in Sect. 2.4, and numerical
experiments are presented in Sect. 3.
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2 Problem Statement and Theoretical Considerations

2.1 Notation and Setting

Consider the wave equation

ü = ∇2u + f (x, t) x ∈ Ω, t ∈ (0, t f ), (1)

u = gD(x, t) x ∈ �D, t ∈ [0, t f ], (2)

∂u

∂n
= gN (x, t) x ∈ �N , t ∈ [0, t f ], (3)

u = u0(x) x ∈ Ω, t = 0, (4)

u̇ = v0(x) x ∈ Ω, t = 0, (5)

posed on a given domain Ω , with a smooth boundary ∂Ω = �D ∪ �N . Let Ω ⊂ R
d be

immersed in a mesh, T , as in Fig. 1. We assume that each element T ∈ T has some part
which is inside Ω , that is: T ∩ Ω �= ∅. Furthermore, let ΩT be the domain that corresponds
to T , that is

ΩT =
⋃

T∈T
T . (6)

Let T� denote the set of elements intersected by ∂Ω:

T� = {T ∈ T : T ∩ ∂Ω �= ∅}, (7)

as in Fig. 2. Let F� denote the faces seen in Fig. 3. That is, the faces of the elements in T� ,
excluding the faces that make up ∂ΩT . To be precise, F� is defined as

F� = {F = T̄1 ∩ T̄2 : T1 ∈ T� or T2 ∈ T�, T1, T2 ∈ T }. (8)

We assume that our background mesh is sufficiently fine, so that the immersed geometry
is well resolved by the mesh. Furthermore, we shall restrict ourselves to meshes as the one in
Fig. 1, where we have a mesh consisting of hypercubes and our coordinate axes are aligned
with the mesh faces. That is, the face normals have a nonzero component only in one of the
coordinate directions. Denote the element side length by h.

Consider the situation in Fig. 4, where two neighboring elements, T1 and T2, are sharing
a common face F . Denote by ∂knv the kth directional derivative in the direction of the face
normal. That is, fix j ∈ {1, . . . , d} and let the normal of the face, n, be such that

Fig. 1 Ω immersed in a mesh T ,
covering ΩT
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Fig. 2 Intersected elements T�

Fig. 3 Faces F�

Fig. 4 Two elements sharing a
common face

ni =
{

±1 i = j

0 i �= j,
(9)

then define

∂knv = nkj
∂kv

∂xkj
. (10)

In the following, we shall use the following inner products

(u, v)Ω =
∫

Ω

uvdΩ, (11)

〈u, v〉� =
∫

�

uvd�, (12)

where the subscript indicates over which region we integrate. Note that (11) is used when
we integrate over a d-dimensional subset of Rd , while (12) is used when we integrate over
a d − 1 dimensional region. The L2-norm over some part of the domain, Z , we will denote
as ‖ · ‖Z , or in some places as ‖ · ‖L2(Z) if we want to particularly clear. Let ‖ · ‖Hs (Z) and
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| · |Hs (Z) denote the Hs(Z)-norm and semi-norm. By [v] we shall denote a jump over a
face, F :

[v] = v|F+ − v|F− . (13)

We shall assume that our basis functions are tensor products of one-dimensional polyno-
mials of order p. In particular, we shall use Lagrange elements with Gauss-Lobatto nodes, in
the following referred to as Qp-elements, p ∈ {1, 2, . . .}. Let V p

h denote a continuous finite
element space, consisting of Qp-elements on the mesh T :

V p
h = {

v ∈ C0(ΩT ) : v|T ∈ Qp(T ), T ∈ T
}
. (14)

Define also the following semi-norm

|v|2� = ‖∇v‖2ΩT + 1

h
‖v‖2�D

, (15)

which is a norm on V p
h in the case that �D �= ∅.

2.2 The StabilizedWeak Formulation

Multiplying (1) by a test-function, integrating by parts, and applying boundary conditions by
Nitsche’s method [17] leads to a weak formulation of the following form: find uh such that
for each fix t ∈ (0, t f ], uh ∈ V p

h and

(üh, v)Ω + a(uh, v) = L(v), ∀v ∈ V p
h , (16)

where

a(uh, v) = (∇uh,∇v)Ω −
〈
∂uh
∂n

, v

〉

�D

−
〈
uh,

∂v

∂n

〉

�D

+ γD

h
〈uh, v〉�D

, (17)

L(v) = ( f , v)Ω +
〈
gD,

γD

h
v − ∂v

∂n

〉

�D

+ 〈gN , v〉�N
. (18)

Whatmakes this different from standard finite elements is that the integration on each element
needs to be adapted to the part of the element that is inside the domain. As illustrated in Fig. 5,
some elements will have a very small intersection with the domain. Consider the mass-matrix
from the method in (16):

M̃i j = (φi , φ j )Ω. (19)

Fig. 5 An element having a small
intersection (in gray) with the
domain
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Note that its smallest eigenvalue is smaller than each diagonal entry:

λmin = min
z∈RN : z �=0

zTM̃z

zT z
≤ M̃i i , i = 1, . . . , N . (20)

Depending on the size of the cut with the backgroundmesh some diagonal entries can become
arbitrarily close to zero. Thus, both the mass and stiffness matrix can now be arbitrarily ill-
conditioned depending on how the cut occurs. Because of this, one can not guarantee that
the method is stable.

One way to remedy this is by adding stabilizing terms, j , to the two bilinear forms

M(üh, v) = (üh, v)Ω + γM j(üh, v), (21)

A(uh, v) = a(uh, v) + γAh
−2 j(uh, v), (22)

where γM , γA > 0 are penalty parameters. This gives us the following weak formulation:
find uh such that for each fix t ∈ (0, t f ], uh ∈ V p

h and

M(üh, v) + A(uh, v) = L(v), ∀v ∈ V p
h . (23)

In [2] the following stabilization term was suggested

j(u, v) =
∑

F∈F�

p∑

k=1

h2k+1
〈
[∂kn u], [∂knv]

〉

F
. (24)

This stabilization was analyzed and tested numerically for piecewise linear elements in [4].
The stabilization in (24) was further analyzed for higher order elements in [15]. The bilinear
form (21) can be shown to define a scalar product which is norm equivalent to the L2-norm
on the whole background mesh:

CL‖v‖2ΩT ≤ M(v, v) ≤ CU‖v‖2ΩT , ∀v ∈ V p
h , (25)

and a corresponding equivalence holds for the gradient:

C̃L‖∇v‖2ΩT ≤ ‖∇v‖2Ω + γAh
−2 j(v, v) ≤ C̃U‖∇v‖2ΩT , ∀v ∈ V p

h . (26)

The constants in (25) and (26) depend on the polynomial degree of our basis functions,
but not on how the boundary cuts through the mesh. Let M denote the mass matrix with
respect to the bilinear form M , andMT with respect to the scalar product on the background
mesh, that is:

Mi j = M(φi , φ j ), (27)

(MT )i j = (φi , φ j )ΩT . (28)

Now, (25) implies that the condition number, κ(M), of M is bounded by the condition
number of MT :

κ(M) ≤ CU

CL
κ(MT ). (29)

The property (26) is necessary in order to show that A(·, ·) is coercive in V p
h with respect to

the | · |�-semi-norm on the background mesh:

∃Cc > 0 : Cc|v|2� ≤ A(v, v), ∀v ∈ V p
h . (30)
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As we shall see in Sect. 2.3 this is needed in order to show that the method is stable with
respect to time. The result in (30) follows by the same procedure as in [15], assuming that
the following inverse inequality holds

h1/2
∥∥∥∥

∂v

∂n

∥∥∥∥
�∩T

≤ Cp‖∇v‖T , ∀v ∈ V p
h . (31)

For piecewise linear basis functions, this inequality follows in the same way as the proof of
Lemma 4 in [6]. Related inverse inequalities were proved for planar cuts for higher order
elements in [14]. The inequality (31) follows the same scaling with respect to h and p as the
corresponding standard inverse inequality, which relates the norm over a face to the norm
over the whole element. See for example [22].

The stabilization in (24) is the basic form of stabilization that we shall consider. However,
each time we differentiate we will introduce some dependence on the polynomial degree. It
therefore seems reasonable that each term in the sum should be scaled in some way. Because
of this, we consider a stabilization of the following form:

j(u, v) =
∑

F∈F�

p∑

k=1

wk
h2k+1

(2k + 1)(k!)2
〈
[∂kn u], [∂knv]

〉

F
, (32)

where w j ∈ R
+ are some weights, which we are free to choose as we wish. The choice of

weights will determine how large our constantsCU ,CL in (29) are, and in turn influence how
well conditioned the mass matrix is. Given how the stabilization is derived from a Taylor
expansion (see [15] or Sect. 2.4), it is perhaps most natural to use wk = 1. However, several
papers [2,8,15] discussing high order cut finite elements state the stabilization as in (24).
This would be equivalent to choosing wk = (k!)2(2k + 1) in (32). We think it makes sense
to introduce the weights in (32) to make it possible to analyze what effect different choices
of weights have.

If the solution and the boundary are sufficiently smooth, a standard non-immersed finite
element method with the same type of elements is expected to yield errors which converge
as follows

‖uh − u‖L2(Ω) ≤ Chp+1, (33)

‖uh − u‖H1(Ω) ≤ Chp, (34)

‖uh − u‖L2(�D) ≤ Chp+1, (35)

‖∂nuh − ∂nu‖L2(�N ) ≤ Chp. (36)

This is also what we expect for the considered immersed method.

2.3 Stability

The bilinear forms in (23) are symmetric. This is a quite important property, since this in the
end will guarantee stability of the system. In order to show stability we want a bound over
time on ‖u‖ΩT . Define an energy, E , of the form

E(t) := 1

2
(M(u̇h, u̇h) + A(uh, uh)) . (37)

Since both bilinear forms are at least positive semi-definite, this energy has the property
E ≥ 0. The symmetry now allows us to show that for a homogeneous system,

f (x) = 0, gD(x) = 0, gN (x) = 0, (38)
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the energy is conserved:

dE

dt
= M(üh, u̇h) + A(uh, u̇h)

(23)= 0, (39)

so that
E(t) = E(0). (40)

By the definition of the energy together with (25) and (30) this immediately implies that
‖u̇h‖ΩT and ‖∇uh‖ΩT are both bounded. For the case �D �= ∅ the semi-norm | · |� is a
norm for the space V p

h and (30) implies that ‖uh‖ΩT is also bounded. When �D = ∅ we
can use that

2‖uh‖ΩT
d

dt
‖uh‖ΩT = d

dt
‖uh‖2ΩT = 2(uh, u̇h)ΩT ≤ 2‖uh‖ΩT ‖u̇h‖ΩT , (41)

which gives us
d

dt
‖uh‖ΩT ≤ ‖u̇h‖ΩT . (42)

By integrating we obtain that ‖uh‖ΩT is bounded since ‖u̇h‖ΩT is bounded:

‖uh(t)‖ΩT ≤ ‖uh(0)‖ΩT +
∫ t f

0
‖u̇h‖ΩT dt . (43)

Thus the system is stable.
In total the method (23) discretizes to a system of the form

M
d2ξ

dt2
+ Aξ = L(t), (44)

with M,A ∈ R
N×N , ξ ∈ R

N and L : R → R
N , and where

Ai j = A(φi , φ j ). (45)

When solving this system in time we will have a restriction on the time-step, τ , of the form

τ ≤ αβc f lh, (46)

where α is a constant which depends on the time-stepping algorithm. If we for example use
a classical 4th-order explicit Runge–Kutta α = 2

√
2. The CFL-number, βc f l , is given by

βc f l = h−1

√
λmax

, (47)

where λmax is the largest eigenvalue of the generalized eigenvalue problem: find (x, λ)

such that
Ax − λMx = 0, x ∈ R

N . (48)

One would expect that the added stabilization has some effect on the CFL-number. Because
of this, we will investigate this constant experimentally in Sect. 3. It turns out that the CFL-
number is not worse than for a standard non-immersed method.
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2.4 Analysis of the Condition Number of theMass Matrix

We would like to choose the weights in (32) in order to minimize the condition number of
the mass matrix. This is particularly important when it comes to wave-propagation problems.
For this application one typically uses an explicit time-stepping method. When this is the
case we need to solve a system involving the mass matrix in each time-step.

In order to choose the weights we need to know how the condition number depends on
the weights and the polynomial degree. To determine this, we follow essentially the same
path as in [15] and keep track of the weights and the polynomial dependence of the involved
inequalities. In the following, we denote by C various constants which do not depend on h or
p, unless explicitly stated otherwise.We shall also byw denote the vectorw = (w1, . . . , wp),
where w j are the weights in the stabilization term (32). We can now derive the following
inequality, which is a weighted version of Lemma 5.1 in [15].

Lemma 1 Given two neighboring elements, T1 and T2, sharing a face F (as in Fig. 4), and
v ∈ V p

h , we have that:

‖v‖2T1 ≤ L(w)

(
‖v‖2T2 +

p∑

k=1

wk
h2k+1

(2k + 1)(k!)2 ‖[∂knv]‖2F
)

, (49)

where

L(w) = C1(p) +
p∑

k=1

1

wk
. (50)

Proof Denote by vi the restriction of v to Ti and then extended by expression to the whole
of T1 ∪ T2. As in Fig. 4, let x ∈ T1 and denote by xF (x) the projection of x onto the face.
Let n be the normal pointing towards T1 and let j denote the only nonzero component, as in
(9). We may now Taylor expand from the face:

vi (x) =
p∑

k=0

1

k!∂
k
j vi (xF (x))(x j − xF, j )

k . (51)

Using that
x j − xF, j = n j |x − xF | (52)

gives us

vi (x) =
p∑

k=0

1

k!∂
k
nvi (xF (x))|x − xF (x)|k, (53)

by definition of ∂knv from (10). Consequently we have that

v1(x) = v2(x) +
p∑

k=1

1

k! [∂
k
nv(xF )]|x − xF |k . (54)

Now introduce the following weighted l2(Rp+1)-norm:

‖z‖2α :=
p∑

k=0

αk z
2
k , (55)
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where αk > 0 and z ∈ R
p+1. If ‖ · ‖1 denotes the usual l1(Rp+1)-norm we have that:

‖z‖21 :=
( p∑

k=0

|zk |
)2

≤ Cα‖z‖2α, (56)

where

Cα =
p∑

k=0

1

αk
. (57)

Taking the L2(T1)-norm of (54) and using (56) now results in:

‖v1‖2T1 ≤ Cα

(
α0‖v2‖2T1 +

p∑

k=1

αk
h2k+1

(2k + 1)(k!)2 ‖[∂knv]‖2F
)

. (58)

Since v2 lies in a finite dimensional polynomial space on T1 ∪ T2 the norms on T1 and T2 are
equivalent:

‖v2‖2T1 ≤ C1‖v2‖2T2 , (59)

where C1 = C1(p). Using this in (58) and choosing

α0 = 1/C1, (60)

αk = wk, k = 1, . . . , p (61)

gives us (49). ��
Remark 1 The constant C1(p) will grow rapidly with the polynomial order. By only consid-
ering the highest order term in the polynomial a lower bound on the constant is achieved. We
get an exponential dependence

C1(p) ≥
√√√√

∫ 2h
h x2pdx
∫ h
0 x2pdx

≈ 2p+1/2. (62)

This is however far from sharp. The constant can straightforwardly be computed numerically
for a given p by considering how polynomials, which are orthonormal in one element,
extend to a neighbouring element and are projected to the orthonormal polynomials of the
neighbouring element. The constant equals the norm of the projection matrix. From such
computations we see that C1(p) ∼ e1.75p.

Lemma 1 will now allow us to give a lower bound on the bilinear form M , which was
defined in (21).

Lemma 2 A lower bound for M(v, v) is:

‖v‖2ΩT ≤ Cl L(w)NJ M(v, v), (63)

where L(w) is given by (50), NJ is some sufficiently large integer and Cl is a constant
independent of h and p.

Proof Let T0 ∈ T� and let {Ti }N−1
i=1 (with Ti ∈ T�) be a sequence of elements that need to be

crossed in order to get to an element TN ∈ T \ T� , as in Fig. 6, and let Fi = Ti−1 ∩ Ti . By
using (49) we get

‖v‖2T0 ≤ L(w)N

(
‖v‖2TN +

N∑

i=1

p∑

k=1

wk
h2k+1

(2k + 1)(k!)2 ‖[∂knv]‖2Fi
)

, (64)
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Fig. 6 A sequence of jumps from
a boundary element T0 ∈ T� to
an inside element TN

where we have used that L(w) ≥ 1 (since at least C1 ≥ 1). Let now NJ ≥ 1 denote
some upper bound on the maximum number of jumps that needs to be made in the mesh.
If our geometry is well resolved by our background mesh NJ is a small integer. This
gives us

‖v‖2ΩT =
∑

T∈T�

‖v‖2T +
∑

T∈T \T�

‖v‖2T ≤ CL(w)NJ

⎛

⎝
∑

T∈T \T�

‖v‖2T + j(v, v)

⎞

⎠ , (65)

from which (63) follows. ��
We proceed by estimating how a bound on the jumps depends on the polynomial degree.

Lemma 3 For the jumps in the normal derivative we have that:

‖[∂knv]‖2F ≤ Ck
p4k+2

h2k+1

(
‖v‖2

T+
F

+ ‖v‖2
T−
F

)
, for k = 1, 2, . . . , p (66)

where T+
F and T−

F denotes the two elements sharing the face F.

Proof Note first that
‖[∂knv]‖2F ≤ 2

(
‖∂knv1‖2F + ‖∂knv2‖2F

)
. (67)

We shall need the following inequalities:

‖v‖F ≤ C
p√
h

‖v‖T , (68)

|v|Hs (T ) ≤ Cs p
2s

hs
‖v‖T , s ∈ N0, (69)

which were discussed1 in [20]. Although (69) holds for a whole element we shall use the
corresponding inequality applied to a face:

|v|Hs (F) ≤ Cs p
2s

hs
‖v‖F . (70)

This is valid since a function v in the tensor product space over T will have a restriction v|F
in the tensor product space over the face F . Note that the constants, C , in (69) and (70) are
not necessarily the same. By combining (67), (68) and (70) we obtain (66). ��
Using Lemma 3 we can now bound the bilinear form M(·, ·) from above.

1 In particular, see (4.6.4) and (4.6.5) in Theorem 4.76, together with the reasoning leading to Corollary 3.94.
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Lemma 4 An upper bound for M(v, v) is:

M(v, v) ≤ (1 + CgG(w))‖v‖2ΩT , (71)

where

G(w) =
p∑

k=1

wk
p4k+2

(2k + 1)(k!)2 , (72)

and Cg is a constant independent of h and p.

Proof Using the definition of j(·, ·) and applying Lemma 3 on each order of derivatives in
the sum individually we have

j(v, v) ≤ CG(w)
∑

F∈F�

(
‖v‖2

T−
F

+ ‖v‖2
T+
F

)
. (73)

Let nF denote the number of faces that an element has in Rd . We now have
∑

F∈F�

(
‖v‖2

T+
F

+ ‖v‖2
T−
F

)
≤ 2nF

∑

T∈T
‖v‖2TF ≤ 2nF‖v‖2ΩT , (74)

so we finally obtain:
j(v, v) ≤ CgG(w)‖v‖2ΩT , (75)

which gives us (71). ��
By using Lemmas 2 and 4 we now have the following bound on the condition number.

Lemma 5 An upper bound for the condition number of the mass matrix is

κ(M) ≤ CM (w)κ(M∗), (76)

where
CM = Cl L(w)NJ (1 + CgG(w))κ(M∗). (77)

Proof Denote eigenvalues by λ. From Lemmas 2 and 4 we obtain

λmin(M∗)
Cl L(w)NJ

≤ λmin(M), (78)

λmax(M) ≤ (1 + CgG(w))λmax(M∗), (79)

which gives us (76). ��
Here, wewould like to choose theweights in order tominimize the constantCM . However,

we have the following unsatisfying result, which shows that no matter how we choose the
weights our bound on the condition number increases extremely fast with p.

Lemma 6 The constant CM (w) in Lemma 5 fulfills CM (w) ≥ C0P(p), where C0 does not
depend on p or w. Here P(p) is the function

P(p) =
p∑

k=1

p4k+2

(k!)2(2k + 1)
, (80)

which is independent of the choice of weights w.
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Proof First note that

Cl L(w)NJ (1 + CgG(w)) ≥ ClCgG(w)L(w)NJ ≥ ClCgL(w)G(w). (81)

Now we have

L(w)G(w) ≥
p∑

k=1

(
wk

p4k+2

(2k + 1)(k!)2
) p∑

k=1

(
1

wk

)

≥
√√√√

p∑

k=1

(
w2
k

(
p4k+2

(2k + 1)(k!)2
)2

)√√√√
p∑

k=1

(
1

wk

)2

≥ P(p), (82)

where we first used that the l1(Rp)-norm is greater than the l2(Rp)-norm and finally Cauchy-
Schwartz. From this the result follows. ��

The function P(p) increases incredibly fast when increasing the polynomial degree. This
result could reflect either:

1. The analysis leading to Lemma 5 is not sharp. The bound CM is too generous, and a
better bound exists.

2. The bound in Lemma 5 is not unnecessarily generous, so that the constant CM is in some
sense “tight”. This means that the condition number of the stabilized mass matrix (27)
will grow faster than the function P(p), regardless of the choice of weights.

Alternative 2 is rather devastating from a time-stepping perspective, since in order to time-
step (44) an inverse of themassmatrix needs to be available in each time-step. If this inversion
is done with an iterative method the number of required iterations until convergence is going
to be large.

A combination of these two alternatives is, of course, possible. The estimate in Lemma
5 could be too pessimistic, but even the optimal bound increases incredibly fast. Given the
results in Sect. 3 this appears to be the most plausible alternative.

2.5 ChoosingWeights in the Jump-Stabilization

In order to do a computation, we are forced to make some choice of the weights wi . The
essence of Lemma 6 is that we can bound L(w)G(w) from below. So in order to choose
weights let us assume that:

κ(M) ∝ L(w)G(w). (83)

From Lemma 4 it is seen that choosing wi � 1 makes G(w) very large. In the same
way, Lemma 2 tells us that choosing wi � 1 for some i makes L(w) very large. From
this observation it seems reasonable to try to enforce both bounds to be of about the same
magnitude. In this way, we minimize L(w)G(w) with respect to w and enforce G(w) =
L(w). This leaves us with

∇wL + ∇wG = 0, (84)

where ∇w denotes the gradient with respect to w. This now gives us the following choice
of weights

wk = k!
√
2k + 1

p2k+1 . (85)
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Given the analysis here, we find that this is the choice of weights that is easiest to motivate.
Although, this choice is not necessarily optimal. Numerical tests (not reported here) indicate
that the conditioning is not very sensitive to the choice of weights.

3 Numerical Experiments

In the following, we shall solve both an inner problem and an outer problem using finite
element spaces of different orders. In the inner problem we consider a simple bounded
domain, while in the outer problem, the domain is bounded but exterior to a simple domain,
see for example Figs. 1 and 10, respectively.

The weights from (85) are used. In addition, the following parameters are used

γM = 0.25
√
3, (86)

γA = 0.5
√
3, (87)

γD = 5p2. (88)

The scaling of γD with respect to p follows from the inequality (31). When p = 1 these
parameters coincide with the parameters used in [21]. There the effect of γM on the condition
number of the mass matrix was investigated numerically. For p = 1 this choice of γA and
γD also coincides with the one in [4], where γA was investigated numerically.

The geometry of Ω is approximated as the zero level set of a function, ψh . This level set
function, ψh , is an element in the space

W p
h = {v ∈ C0(ΩTB ) : v|T = Qp(T )}, (89)

where
ΩTB =

⋃

T∈TB

T , (90)

and where TB is the larger background mesh from which T is created. In the experiments ψh

is the L2-projection of an analytic level set function onto the space W p
h . Which elements in

TB that should belong to T is determined by checking the sign of ψh at the nodes on each
element in TB . In order to approximate integrals on elements intersected by the boundary,
we have used the algorithm in [19]. On each element, T , this algorithm generates quadrature
rules for integration over Ω ∩ T and ∂Ω ∩ T . This is done using the level set function,
ψh . It is worth noting that also the errors of the solution are calculated with respect to this
approximation of the geometry. That is, the L2-norms are approximated as

‖ · ‖Ω ≈ ‖ · ‖{x :ψh(x)<0}, (91)

‖ · ‖∂Ω ≈ ‖ · ‖{x :ψh(x)=0}. (92)

Order of accuracy is estimated as

log(ei/ei+1)

log(hi/hi+1)
, (93)

where ei denotes an error corresponding to mesh size hi .
Time-stepping is performed with a classical fourth order explicit Runge–Kutta, after

rewriting the system (44) as a first order system in time. A time step, τ , of size

τ = 0.4

p2
h (94)
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is used. During the time-stepping we need to solve a system involving the mass matrix.
When using higher order elements the condition number of the mass matrix is large, so an
iterative method would require many iterations. However, we can approximate the integrals
in the mass matrix using Gauss-Lobatto quadrature. This choice of reduced integration has
the benefit that the mass matrix becomes almost diagonal. All off-diagonal entries in the
mass matrix are related to degrees of freedom close to the immersed boundary. Since these
are relatively few, it is feasible to use a direct solver.

The library deal.II [1] was used to implement the method.

3.1 Standard Reference Problemwith Aligned Boundary

It is relevant to compare some of the properties of the mass and stiffness matrices with
standard (non-immersed) finite elements. The unstabilized mass and stiffness matrices were
computed on a rectangular grid with size [−1.5, 1.5]×[−1.5, 1.5], with Neumann boundary
conditions. As for the immersed case, quadrilateral Lagrange elements with Gauss-Lobatto
nodes were used. The computed CFL-number is shown in Table 1. The CFL-number was
found by computing the largest eigenvalue of (48) and using this in (47). For a given p the
value in Table 1 is the mean value when calculating the CFL-number over a number of grid
sizes. The condition number of the mass matrix is shown in Fig. 7 and the minimal and
maximal eigenvalues of the mass matrix is shown in Fig. 8. Since all eigenvalues should be
proportional to h2, the eigenvalues have been scaled by h−2 for easier comparison.

3.2 An Immersed Inner Problem

Let Ω be a disk domain, centered at origo, with radius R = 1, and enforce homogeneous
Dirichlet boundary condition along the boundary

u|∂Ω = 0. (95)

Table 1 Computed CFL-numbers
for the non-immersed case in
Sect. 3.1 and the immersed inner
problem in Sect. 3.2

p Non-Immersed Immersed

1 0.20 0.34

2 0.09 0.10

3 0.05 0.05

Fig. 7 Condition number of the
mass matrix for the
non-immersed (N.I.) problem in
Sect. 3.1 and the immersed inner
problem in Sect. 3.2. For
different h and p. The dashed
lines denotes estimates according
to the function P(p)
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Fig. 8 Minimal/maximal eigenvalues (scaled by h−2) of themassmatrix, for the non-immersed (N.I.) problem
in Sect. 3.1 and the immersed inner problem in Sect. 3.2. For different h and p.

Let J0 denote the 0th order Bessel-function and let αn denote its nth zero. By starting from
initial conditions:

u|t=0 = J0

(
αn

‖x‖
R

)
, (96)

∂u

∂t

∣∣∣∣
t=0

= 0, (97)

we can calculate the error in our numerical solution with respect to the analytic solution:

u(x, t) = J0

(
αn

‖x‖
R

)
cos(ωnt), ωn = αn

R
. (98)

Let n = 3. A few snapshots of the numerical solution are shown in Fig. 9. The problem was
solved with the given method until an end-time, t f , corresponding to a three periods:

t f = 3Tp, Tp = 2π

ωn
. (99)

At the end-time the errors were computed.
The calculated errors and estimated orders of accuracy for the different element orders

are shown in Tables 2, 3 and 4. The order of accuracy for each error agrees quite well with
what is expected from (33)–(35).

Computed CFL-numbers for different element orders are shown in Table 1. The values
were computed according to (47). We see that the CFL-number is essentially the same as
for the non-immersed case. In the same way as for the non-immersed case, the values in
Table 1 are the mean values over a number of grid sizes. However, the CFL-number only
varied slightly when varying the grid size. By inserting the values in Table 1 into (46) one
can see that it would have been possible to use a larger time-step than the one in (94).

How the condition number of the mass matrix depend on the grid size is shown in Fig.
7, for the different orders of p. We see that the condition numbers are essentially constant
when refining h, in agreement with (25). We also see that the condition numbers increase
extremely rapidly when increasing the polynomial degree, as predicted by Lemma 6. It is also
clear from Fig. 7 that the condition number increase much faster than in the non-immersed
case. The dashed lines in Fig. 7 denote the function CP(p), where P is the function from
(80). The constant C was chosen so that CP(1) agreed with the mean (with respect to h) of
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t = 0 t ≈ 1
8Tp

t ≈ 1
4Tp t ≈ 3

8Tp

Fig. 9 Snapshots of the vibrating membrane problem

Table 2 Errors and orders of accuracy for the inner problem when using the space V 1
h

h ‖uh − u‖L2(Ω) ‖uh − u‖H1(Ω) ‖uh − u‖L2(∂Ω)

1.200e−01 7.574e−02 – 1.354e+00 – 4.555e−02 –

6.000e−02 1.325e−02 2.52 5.494e−01 1.30 4.156e−03 3.45

3.000e−02 3.068e−03 2.11 2.692e−01 1.03 4.019e−04 3.37

1.500e−02 7.080e−04 2.12 1.340e−01 1.01 1.167e−04 1.78

Table 3 Errors and orders of accuracy for the inner problem when using the space V 2
h

h ‖uh − u‖L2(Ω) ‖uh − u‖H1(Ω) ‖uh − u‖L2(∂Ω)

1.200e−01 3.198e−03 – 1.561e−01 – 3.414e−03 –

6.000e−02 3.490e−04 3.20 3.640e−02 2.10 5.683e−04 2.59

3.000e−02 4.433e−05 2.98 8.897e−03 2.03 7.709e−05 2.88

1.500e−02 5.282e−06 3.07 2.141e−03 2.06 9.352e−06 3.04

the condition numbers for V 1
h . The estimate from Lemma 6 is fairly reasonable for the tested

polynomial orders. It does, however, appear to be slightly too pessimistic.
Theminimal andmaximal eigenvalues for the different polynomial orders and refinements

are seen in Fig. 8. As can be seen, the scaled eigenvalues are essentially constant with respect
to h. Thus the dependence on h is in agreement with the theoretical considerations in Sect,
2.4. We see that the minimal eigenvalues decrease quite fast when increasing the polynomial
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Table 4 Errors and orders of accuracy for the inner problem when using the space V 3
h

h ‖uh − u‖L2(Ω) ‖uh − u‖H1(Ω) ‖uh − u‖L2(∂Ω)

1.200e−01 1.464e−04 – 1.181e−02 – 4.643e−05 –

6.000e−02 9.475e−06 3.95 1.412e−03 3.07 2.097e−06 4.47

3.000e−02 5.470e−07 4.11 1.707e−04 3.05 1.518e−07 3.79

1.500e−02 2.188e−08 4.64 2.304e−05 2.89 7.674e−09 4.31

Fig. 10 Geometry used for the
outer problem

degree, and that they are substantially smaller than in the non-immersed case. The maximal
eigenvalues also decrease but much slower than in the non-immersed case.

3.3 An Immersed Outer Problem

Consider instead an outer problem with the geometry depicted in Fig. 10. The star shaped
geometry is the zero contour of the following level set function

φ(r , θ) = R + R0 sin(nθ) − r (100)

where (r , θ) are the polar coordinates, and R = 0.5, R0 = 0.1, n = 5. So our domain Ω is
given by

Ω = {(x, y) ∈ R
2 : x, y ∈ (−3/2, 3/2) : φ(x, y) < 0}. (101)

Starting from zero initial conditions

u|t=0 = 0, (102)

∂u

∂t

∣∣∣∣
t=0

= 0, (103)

we prescribe homogeneous Neumann boundary condition on the internal boundary

∂u

∂n

∣∣∣∣
�I

= 0, (104)
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t ≈ 1.95 t ≈ 2.63

t ≈ 3.32 t = 4

Fig. 11 Snapshots of the numerical solution for the outer problem

and Dirichlet boundary conditions on the external boundaries

u =
{
gD(x, t) x ∈ �B

0 x ∈ �L ∪ �R ∪ �U .
(105)

Here, gD is the function

gD(x, t) = cos
(π

3
x
)
e−(t−tc)2/σ 2

, (106)

where we have chosen σ = 0.25, tc = 3. A few snapshots of the numerical solution are seen
in Fig. 11.

Here, we don’t have an expression for the analytic solution. So when computing the errors
we compare against a reference solution, uref. The reference solution was computed on a grid
twice as fine as the finest grid that we present errors for.

The computed errors after solving to the end time t f = 4 are shown in Tables 5, 6 and 7.
We see that the convergence is at least h p+1 for the L2(Ω)-error and h p for the H1(Ω)-error.
The last column shows the error in the Neumann boundary condition, which converges close
to what is expected: h p .
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Table 5 Errors and orders of accuracy for the outer problem when using the space V 1
h

h ‖uh − uref‖L2(Ω) ‖uh − uref‖H1(Ω) ‖∂nuh − ∂nuref‖L2(�N )

1.500e−01 2.355e−01 – 2.048e+00 – 5.844e−01 –

7.500e−02 6.160e−02 1.93 6.724e−01 1.61 2.946e−01 0.99

3.750e−02 1.221e−02 2.34 1.952e−01 1.78 1.468e−01 1.00

Table 6 Errors and orders of accuracy for the outer problem when using the space V 2
h

h ‖uh − uref‖L2(Ω) ‖uh − uref‖H1(Ω) ‖∂nuh − ∂nuref‖L2(�N )

1.500e−01 3.335e−02 – 5.085e−01 – 5.956e−01 –

7.500e−02 1.805e−03 4.21 3.771e−02 3.75 1.925e−01 1.63

3.750e−02 1.060e−04 4.09 7.842e−03 2.27 4.159e−02 2.21

Table 7 Errors and orders of accuracy for the outer problem when using the space V 3
h

h ‖uh − uref‖L2(Ω) ‖uh − uref‖H1(Ω) ‖∂nuh − ∂nuref‖L2(�N )

1.500e−01 3.039e−03 – 9.497e−02 – 2.592e−01 –

7.500e−02 9.965e−05 4.93 3.837e−03 4.63 4.885e−02 2.41

3.750e−02 2.273e−06 5.45 4.548e−04 3.08 6.715e−03 2.86

4 Discussion

The results in Sects. 3.2 and 3.3 show that it is possible to solve the wave equation and obtain
up to 4th order convergence. In particular, it is also promising that the CFL-condition is not
stricter than for the non-immersed case. However, both the theoretical results in Lemma 6 and
the results in Sect. 3.2 show that there are problems with the conditioning of the mass matrix.
It should be emphasized that even if the added stabilization creates some new problems it is
by far better than using no stabilization at all. With the added stabilization the method can
be proved to be stable, which is essential.

It would, of course, be advantageous if one would be able to create a stabilization which
does not lead to conditioning problems. However, the prospects for creating a good precon-
ditioner for the mass matrix is rather good, since the stabilization maintains the symmetry of
the mass matrix and since one obtains bounds on its spectrum from the analysis.

The choice of theweights in (85)were based onhand-waving arguments and can, therefore,
be criticized. We have tried other choices of weights but have not presented the results here.
This is mainly because they give similar results and we have no reason to believe that there
exists a choice which makes the condition number significantly better.
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