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Abstract
We study numerical methods that are inspired by the active flux method of Eymann and
Roe and present several new results for one and two-dimensional hyperbolic problems. For
one-dimensional linear problems we show that the unlimited active flux method can be inter-
preted as an ADERmethod. This interpretation motivates the construction of new third order
accurate methods for nonlinear hyperbolic conservation laws. In the two-dimensional case,
equivalent methods are only obtained for scalar linear problems. For two-dimensional linear
systems the methods are no longer equivalent. For the two-dimensional acoustic equations
we compare the accuracy of the two resulting approaches. While commonly used methods
for hyperbolic problems are based on discontinuous reconstructions, the active flux method
uses a continuous, piecewise quadratic reconstruction. For nonlinear problems we identify
a situation in which the continuous reconstruction leads to an unstable approximation. We
propose a limiting strategy which overcomes this problem. Our limited version of the active
flux method uses the same local stencil as the original method.

Keywords Finite volume methods · Hyperbolic conservation laws · Active flux method ·
ADER method · High-order methods

Mathematics Subject Classification 65M08 · 65M25

1 Introduction

Recently, Eymann, Roe and coauthors [2–4,12,14] introduced a new numerical method for
hyperbolic conservation laws, which they called the active flux method. For sufficiently
smooth linear problems the method is third order accurate [4]. In [12], third order accurate
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approximations were also obtained for Burgers’ equation. The method has also been used
to discretise nonlinear systems of conservation laws, in particular the Euler equations of gas
dynamics, by employing a splitting approach [4,14].

Eymann and Roe [4] proposed to reconsider all main components of todays CFD codes.
Their goal is to construct methods which are truly multidimensional, more than second order
accurate and which have a compact stencil.

The degrees of freedom of the active flux method, which consist of cell average values
as well as interface values of the conserved quantities, are chosen in such a way that the
method leads to third order accurate approximations using only the most local stencil. Note
that interface values are point values of the conserved quantities located at the interfaces.
Since the interface values are used by two or more grid cells, this choice of the degrees of
freedom reduces memory requirements and computational expense. In the recent paper [14],
Roe, Maeng and Fan showed that the active flux method produces accurate results at lower
computational costs than other high-order accurate methods. In particular they studied the
advection equation, the two-dimensional acoustic equations as well as the pressureless Euler
equations.

The choice of the degrees of freedom suggests a continuous reconstruction of the con-
served quantities. This continuous reconstruction distinguishes the active flux method from
commonly used methods for hyperbolic problems such as Godunov type schemes [8], dis-
continuous Galerkin schemes [5] or WENO methods [15].

The time evolution of the interface values is performed before the time evolution of the
cell average values. Interface value updates should respect the multidimensional physics and
the accuracy requirements. A finite volume method is used to evolve average values of the
conserved quantities. This guarantees that the method is conservative. The numerical fluxes
use the point values at the interfaces at different time levels. The name of the scheme refers
to the fact that the interface values are updated independently of the conserved quantities,
see [4].

Here we consider methods which use the same degrees of freedom, the same piecewise
quadratic reconstruction (whenever possible as explained later) as well as the same finite
volume update for the cell average values as suggested in the original active flux method by
Eymann and Roe. We show that for linear one-dimensional problems the active flux method
can be interpreted as a new version of an ADER scheme, as introduced by Titarev and Toro
[17]. We are not aware of an ADER method which uses these same degrees of freedom. In
regions where we use the continuous reconstruction, our ADER version does not require the
solution of Riemann problems for the conserved quantities but only for certain derivative
values of the conserved quantities. The ADER interpretation of the active flux method allows
us to construct new third order accurate methods for nonlinear systems of conservation laws,
which share many if not all the attractive features of the active flux method. Furthermore, this
interpretation provides a strategy for the construction of active flux methods for nonlinear
problemswhich does not rely on a splitting approach. For theEuler equations of gas dynamics,
a splitting method might be the best approach for the evolution of the interface values of the
active flux method, see Roe [12]. Other authors have also explored splitting methods for the
Euler equations, in particular in order to obtain better methods for low Mach number flows,
see for example [6,18]. However, in order to construct finite volume methods for general
hyperbolic problems, that use the same degrees of freedom as the active flux method, we
believe that it is useful to have a general approach for the evolution of the interface values.

Numerical methods for hyperbolic problems use some form of limiting in order to avoid
unphysical oscillations near shock waves or steep gradients of the solution profile. In [4],
Eymann and Roe suggested a limiting based on neighbouring points of the solution in time as
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well as space. In [4,12] they point out that the development of appropriate limiting strategies
is still ongoing work. In Sect. 5 we present different possibilities for the use of limiters
in the active flux method. For linear problems we suggest new continuous reconstructions
which use the same stencil as the original active flux method but avoid the occurrence of
new minima or maxima in the reconstructed function. These new continuous reconstructions
can be used in the original active flux method after some changes, as discussed in Sect. 5.1.
They can not be used in the ADER version of the method. For Burgers’ equation we identify
a situation in which a continuous reconstruction without further modification leads to an
unstable approximation. For this situation we propose a discontinuous reconstruction which
cures this failure. This limiting approach can be used both in the original active flux method
as well as in the ADER version.

It is interesting to note, that 1977 van Leer [20] mentioned a method (scheme V) for the
one-dimensional advection equation, which agrees with the active flux method. Although he
pointed out advantages in terms of accuracy and efficiency, he wrote: “its value for the ideal
compressible flow equations at present seems doubtful”. A related but second order accurate
finite volume method for advective transport problems, which uses the same compact stencil
and distinguishes between the interface update and the update of the cell average values was
much more recently proposed by Karabasov and Goloviznin [7]. Furthermore, Zeng [21]
proposed related, up to fifth order accurate, hybrid finite difference–finite volume methods.

Our paper is organised as follows: In Sect. 2 we briefly introduce the original form of
the active flux method for the advection equation as well as the acoustic equations. In Sect.
3 we show that in the linear case the active flux method can be interpreted as an ADER
method. In Sect. 4 we use this interpretation to derive new methods for nonlinear hyperbolic
problems and in particular for the Euler equations. In Sect. 5 we present different concepts to
introduce limiters for our new one-dimensional schemes. In Sect. 6 we explore the extension
of our one-dimensional results to the two-dimensional case. Throughout the paper we show
numerous numerical results which illustrate our findings.

2 Brief Review of the Active FluxMethod

We study one-dimensional hyperbolic problems of the form

qt + f (q)x = 0 − ∞ < x < ∞, t > 0

q(x, 0) = q0(x) − ∞ < x < ∞,
(1)

where q : R × R
+ → R

m is a vector of conserved quantities and f : Rm → R
m is a vector

valued flux function. We assume that the system (1) is hyperbolic, i.e. we assume that the
flux Jacobian matrix is diagonalisable with real eigenvalues for all q of interest.

The degrees of freedom of the active fluxmethod are cell averaged values of the conserved
quantities as well as point values of the conserved quantities at the grid cell interfaces. We
denote these quantities by Qn

i and Qn
i+ 1

2
, i.e.

Qn
i ≈ 1

�x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx

Qn
i+ 1

2
≈ q(xi+ 1

2
, tn).

Since each interface value belongs to two grid cells but is only counted once, the one-
dimensional active flux method has two degrees of freedom per grid cell. This is the same
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freedom employed by the discontinuous Galerkin method with linear reconstruction, which
can be shown to be the semidiscrete limit of scheme V and active flux respectively, see Roe
[11].

In order to describe one time step of the active flux method, we assume that we have third
order accurate approximations Qn

i+ 1
2
and Qn

i at the previous time level tn . The cell averaged

values of the conserved quantities at the new time level are obtained via a finite volume
approach. On an equidistant grid the method is written in the form

Qn+1
i = Qn

i − �t

�x

(
Fi+ 1

2
− Fi− 1

2

)
, (2)

where Fi+ 1
2
denotes the numerical flux across the grid cell interface located at xi+ 1

2
. The

numerical flux Fi+ 1
2
is an approximation to the time averaged flux, i.e.

Fi+ 1
2

≈ 1

�t

∫ tn+1

tn
f
(
q

(
xi+ 1

2
, t

))
dt . (3)

In the active flux method the integral on the right hand side of (3) is approximated by using
Simpson’s formula

1

�t

∫ tn+1

tn
f
(
q

(
xi+ 1

2
, t

))
dt ≈ 1

6

(
f
(
q

(
xi+ 1

2
, tn

))
+ 4 f

(
q

(
xi+ 1

2
, tn+ 1

2

))

+ f
(
q

(
xi+ 1

2
, tn+1

)))
.

We recall that the degree of accuracy of Simpson’s formula is p = 3, since p = 3 is the
largest integer such that the quadrature formula is exact for xk for all k = 0, . . . , p. This
means that we could obtain fourth order accurate approximations of the cell average values
if the point values q(xi+ 1

2
, tn + τ) for τ ∈ {0,�t/2,�t} would be fourth order accurate.

Here the point values are obtained from a piecewise quadratic reconstruction and are thus
only third order accurate. This limits the overall accuracy to third order.

Note that the methods considered in this paper only differ in the way how the point values
of the conserved quantities are computed. We denote the approximations of the conserved

quantities at the grid cell interface by Qn
i+ 1

2
, Q

n+ 1
2

i+ 1
2
and Qn+1

i+ 1
2
. The numerical flux of the

finite volume method has the form

Fi+ 1
2

= 1

6

(
f

(
Qn

i+ 1
2

)
+ 4 f

(
Q

n+ 1
2

i+ 1
2

)
+ f

(
Qn+1

i+ 1
2

))
. (4)

From the cell averaged values Qn
i and the interface values Qn

i+ 1
2
of the conserved quan-

tities, we can construct a continuous, piecewise quadratic function u(x) for −∞ < x < ∞.
In grid cell i , the reconstructed function has the form

ui (ξ) = Qn
i− 1

2
(2ξ − 1)(ξ − 1) + (6Qn

i − Qn
i− 1

2
− Qn

i+ 1
2
)ξ(1 − ξ) + Qn

i+ 1
2
ξ(2ξ − 1)

= Qn
i− 1

2
(3ξ2 − 4ξ + 1) + Qn

i (6ξ − 6ξ2) + Qn
i+ 1

2
(3ξ2 − 2ξ),

(5)

with ξ := (x−xi− 1
2
)/�x and0 ≤ ξ ≤ 1.Note that it is the piecewise quadratic reconstruction

which limits the method in its current form to third order accuracy. Eymann and Roe [3,4]
used characteristic theory in order to compute q(xi+ 1

2
, tn+ 1

2
) and q(xi+ 1

2
, tn+1). For linear

hyperbolic problems, they computed exact solutions at (xi+ 1
2
, tn+ 1

2
) and (xi+ 1

2
, tn+1) of the
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tn

ξ = 0

ξ = 1 − aΔt/2/Δxξ = 1 − aΔt/Δx

a > 0

ξ = 1

tn+1

ξ = 1

ui(ξ)

ξ = 0

ξ = 1 − aΔt/2/Δxξ = 1 − aΔt/Δx

a > 0

Fig. 1 Illustration of the computation of interface values for the advection equation with positive advection
speed. Left: space time diagram and characteristics; Right: reconstruction in grid cell i with reference to the
values which contribute to the flux at the interface i + 1

2 ;

initial value problem with continuous, piecewise quadratic data u(x) at time tn . We will now
illustrate the method for two linear examples.

2.1 Advection

For the advection equation

qt + aqx = 0, (6)

with q : R × R
+ → R and a ∈ R, the conserved quantity at the interface is approximated

by

q(xi+ 1
2
, tn + τ) ≈

{
ui (1 − a τ/�x) : a > 0
ui+1(−a τ/�x) : a < 0.

For the advection equation with positive advection speed a > 0, the averaged flux at xi+ 1
2

satisfies

a

�t

∫ tn+1

tn
q(xi+ 1

2
, t)dt = a

�t

∫ tn+1

tn
q(xi+ 1

2
− a(t − tn), tn)dt

= 1

�t

∫ x
i+ 1

2

x
i+ 1

2
−a�t

q(x, tn)dx

≈ �x

�t

∫ 1

1− a�t
�x

ui (ξ)dξ

= a

6

(
ui

(
1 − a�t

�x

)
+ 4ui

(
1 − a�t

2�x

)
+ ui (1)

)

(7)

An approximation is only introduced when we replace q(x, tn) by the piecewise quadratic
function u. The spatial integration of the quadratic reconstruction using Simpson’s rule pro-
vides the exact integral value. Figure 1 illustrates the flux computation.

The active flux method is stable provided that the standard CFL condition a�t/�x ≤ 1
is satisfied. In [4], Eymann and Roe explained why this time step restriction is necessary. We
are not aware of a formal proof that the method is in fact stable for all according time steps.
For the advection equation we can write the method in the form

Qn+1 = A(�t)Qn,
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Fig. 2 Eigenvalues of the matrix A(�t), which describes the one-dimensional active fluxmethod for advective
transport with periodic boundary conditions

where Qn is a vector which contains all the degrees of freedom at time tn . If we impose
periodic boundary conditions, then eigenvalues of the matrix A(�t) can be studied in order
to understand the stability. While we do not have an analytical formula for the eigenvalues,
we plot them for a fixed grid in Fig. 2. All the eigenvalues are inside the unit circle, which
experimentally confirms the linear stability of the method. We performed this test for many
more CFL numbers in the range 0 < CFL ≤ 1 and show the results of three examples.

2.2 Acoustics

In our second example we consider a linear hyperbolic system of the general form

qt + Aqx = 0.

As an example for such a linear system we consider the acoustic equations [8], i.e. we set

q =
(
p
v

)
, A =

(
0 K0

1/ρ0 0

)
. (8)

Here p and v denote the pressure and the velocity component in the x-direction, ρ0 is a
constant density, K0 is called the bulk modulus of compressibility, Z0 = ρ0c0 is called the
impedance and c0 = √

K0/ρ0 is the speed of sound.
Using (5), the piecewise quadratic reconstruction for the acoustic equations is a vector

valued function. We use an upper index to denote the two components of u. With the active
flux method, the solution of the acoustic equations at (xi+ 1

2
, tn + τ) is approximated by

q
(
xi+ 1

2
, tn + τ

)
≈ 1

2

(
u1i

(
1 − c0τ

�x

) + u1i+1

( c0τ
�x

) + Z0
(
u2i

(
1 − c0τ

�x

) − u2i+1

( c0τ
�x

))
1
Z0

(
u1i

(
1 − c0τ

�x

) − u1i+1

( c0τ
�x

)) + u2i
(
1 − c0τ

�x

) + u2i+1

( c0τ
�x

)
)

.

(9)

Formula (9) computes the exact solution of a modified problem, obtained by replacing the
exact solution at time tn by the piecewise quadratic reconstruction. For τ = �t/2 and τ = �t

we obtain the values of the conserved quantities at the half time step, i.e. Q
n+ 1

2

i+ 1
2
, as well as at

the full time step, i.e. Qn+1
i+ 1

2
. Those values are used in Simpson’s rule to obtain the numerical

flux of the finite volume method. By applying this numerical flux in (2) we compute the cell
averaged values at the new time level. This completes the description of one time step.
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Fig. 3 Comparison of the Lax–Wendroff method (first row) and the active flux method (second row) for
acoustics. Results of p at time t = 7.5 with 400 (left column) and 800 (right column) degrees of freedom are
shown. The solid line is the exact solution, the red circles indicate the cell average values of p as computed
by the two different methods (Color figure online)

In Fig. 3 we show numerical results of an accuracy study for the acoustic equations. For
this computation the parameters in (8) are set to ρ0 = K0 = 1.4, which leads to c0 = 1. The
initial values are given by

p(x, 0) = exp(−100x2) sin(80(x − 0.5))

u(x, 0) = 0.

We impose the periodicity condition q(−1, t) = q(1, t). The initial wave package is split
into two waves, one moving to the left and one moving to the right with the speed of sound
c0 = 1. Due to the periodicity condition, the exact solution agrees with the initial condition at
times t = 2n, n ∈ N.We show numerical results at time t = 7.5, e.g. shortly before the waves
overlap in the center of the domain for the fourth time. With the active flux method, the wave
package is located at the correct position. This is not the case if we use the Lax–Wendroff
method. Furthermore, we note that the numerical results of the active flux method with 200
and 400 grid cells are more accurate than the results of the Lax–Wendroff method with 400
and 800 grid cells, respectively. Recall that the active flux method with 200 grid cells has
400 degrees of freedom. This example clearly shows the advantages of third order accurate
methods, in particular if one is interested in the resolution of small scale features.
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The active flux method in the form presented so far relies on exact or third order accurate

evolution formulas to compute Q
n+ 1

2

i+ 1
2
and Qn+1

i+ 1
2
from the piecewise quadratic function u.

For one-dimensional linear hyperbolic problems, exact evolution formulas can easily be
derived. For the nonlinear Euler equations, Eymann and Roe used a splitting approach,
which decomposes the Euler flux in a part that describes acoustic wave propagation and a
part which describes advective transport. This allowed them to use evolution formulas for
the simpler subproblems. We will consider an alternative unsplit approach in Sect. 4.

3 Alternative Derivation of the Active FluxMethod for Linear Problems

In this sectionwe derive a numericalmethodwhich shares basic propertieswith the active flux
method. In particular, the method uses the same degrees of freedom and the same piecewise
quadratic spatial reconstruction.

While the original active flux method uses exact evolution formulas to approximate
q(xi+ 1

2
, tn+ 1

2
) and q(xi+ 1

2
, tn+1), we now instead perform a Taylor series expansion with

respect to the time variable

q
(
xi+ 1

2
, tn + τ

)
= q

(
xi+ 1

2
, tn

)
+ τqt

(
xi+ 1

2
, tn

)
+ 1

2
τ 2qtt

(
xi+ 1

2
, tn

)
+ O(τ 3) (10)

and replace time derivatives on the right hand side of (10) by spatial derivatives.

3.1 Advection

For the advection equation (6) the time derivatives are replaced by

qt
(
xi+ 1

2
, tn

)
= −aqx

(
xi+ 1

2
, tn

)
, qtt

(
xi+ 1

2
, tn

)
= a2qxx

(
xi+ 1

2
, tn

)
. (11)

Now we need approximations for qx and qxx at the interface, which we denote by
Qx (xi+ 1

2
, tn) and Qxx (xi+ 1

2
, tn). Using the reconstruction (5) we compute

Qx

(
xi+ 1

2
, tn

)
=

{
1

�x u
′
i (1) : a > 0

1
�x u

′
i+1(0) : a < 0,

Qxx

(
xi+ 1

2
, tn

)
=

{
1

�x2
u′′
i (1) : a > 0

1
�x2

u′′
i+1(0) : a < 0,

(12)

with

u′
i (ξ) = Qn

i− 1
2
(4ξ − 3) +

(
6Qn

i − Qn
i− 1

2
− Qn

i+ 1
2

)
(1 − 2ξ) + Qn

i+ 1
2
(4ξ − 1)

u′′
i (ξ) = 6Qn

i− 1
2

− 12Qn
i + 6Qn

i+ 1
2
.

(13)

Thus, the conserved quantity at the grid cell interface can be approximated by

q
(
xi+ 1

2
, tn + τ

)
≈ Qn

i+ 1
2

− τaQx

(
xi+ 1

2
, tn

)
+ 1

2
τ 2a2Qxx

(
xi+ 1

2
, tn

)
. (14)
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For τ = �t/2 and τ = �t , we insert these approximations into Simpson’s formula and
obtain the numerical flux

Fi+ 1
2

= aQn
i+ 1

2
− 1

2
�ta2Qx

(
xi+ 1

2
, tn

)
+ 1

6
�t2a3Qxx

(
xi+ 1

2
, tn

)
.

Theorem 3.1 The two formulations of the active flux method for the advection equation
described in Sects. 2.1 and 3.1 are equivalent.

Proof It is enough to show that both approaches lead to the same approximation of
q(xi+ 1

2
, tn + τ). We consider the case a > 0 and assume that aτ/�x ≤ 1. The method

from Sect. 2.1 leads to

q(xi+ 1
2
, tn + τ) ≈ ui (1 − aτ/�x)

= Qn
i− 1

2

(
3

(
1 − aτ

�x

)2 − 4

(
1 − a�t

�x

)
+ 1

)

+ Qn
i

(
6

(
1 − aτ

�x

)
− 6

(
1 − aτ

�x

)2)

+ Qn
i+ 1

2

(
3

(
1 − aτ

�x

)2 − 2
(
1 − aτ

�x

))

= Qn
i− 1

2

(
−2aτ

�x
+ 3a2τ 2

�x2

)

+ Qn
i

(
6aτ

�x
− 6a2τ 2

�x2

)
+ Qn

i+ 1
2

(
1 − 4aτ

�x
+ 3a2τ 2

�x2

)

= Qn
i+ 1

2
− a

τ

�x

(
2Qn

i− 1
2

− 6Qn
i + 4Qn

i+ 1
2

)

+ 1

2
a2

τ 2

�x2

(
6Qn

i− 1
2

− 12Qn
i + 6Qn

i+ 1
2

)

Using (14) and (12), the method from the current section leads to

q(xi+ 1
2
, tn + τ) ≈ Qn

i+ 1
2

− a
τ

�x
u′
i (1) + 1

2
a2

τ 2

�x2
u′′
i (1)

= Qn
i+ 1

2
− a

τ

�x

(
Qn

i− 1
2

− (6Qn
i − Qn

i− 1
2

− Qn
i+ 1

2
) + 3Qn

i+ 1
2

)

+ 1

2
a2

τ 2

�x2

(
6Qn

i− 1
2

− 12Qn
i + 6Qn

i+ 1
2

)

Thus, both approaches are equivalent. The case a < 0 can be considered analogously.

	


3.2 Acoustics

For linear hyperbolic systems of the general form

qt + Aqx = 0, (15)

we use the relations

qt (xi+ 1
2
, tn) = −Aqx (xi+ 1

2
, tn), qtt (xi+ 1

2
, tn) = A2qxx (xi+ 1

2
, tn)
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to replace the time derivatives in (10) by terms involving spatial derivatives. The vector valued
conserved quantities at the grid cell interface are now approximated using the relation

q
(
xi+ 1

2
, tn + τ

)
≈ Qn

i+ 1
2

− τ AQx

(
xi+ 1

2
, tn

)
+ 1

2
τ 2A2Qxx

(
xi+ 1

2
, tn

)
. (16)

For linear systems, the interface values of the derivatives are obtained by solving Riemann
problems of the form

(Qx )t + A(Qx )x = 0

Qx (x, tn) =
{

1
�x u

′
i (1) : x < xi+ 1

2
1

�x u
′
i+1(0) : x > xi+ 1

2

(17)

as well as

(Qxx )t + A(Qxx )x = 0

Qxx (x, tn) =
{

1
�x2

u′′
i (1) : x < xi+ 1

2
1

�x2
u′′
i+1(0) : x > xi+ 1

2

(18)

For the acoustic equations (8), the solution of the Riemann problem with data of the
general form

q(xi+ 1
2
, tn) =

{
(pL , vL) : xi+ 1

2
< x

(pR, vR) : xi+ 1
2

> x

consists of three constants states, which are separated by two contact discontinuities moving
with speed −c0 and c0. The interface value is given by

q(xi+ 1
2
, tn + τ) = 1

2

(
(pL + pR) − Z0(vR − vL)

(vL + vR) − (pR − pL )/Z0

)
.

This formula can also be used to compute the interface values for the Riemann problems (17)
and (18).

This alternative derivation of the active flux method shares basic properties with both the
original active flux method of Eymann and Roe as well as the ADER method of Titarev
and Toro [17]. It uses the same degrees of freedom and the same piecewise quadratic recon-
struction as well as Simpson’s rule for the flux computation as proposed by Eymann and
Roe. However, the quantities q(xi+ 1

2
, tn+ 1

2
) and q(xi+ 1

2
, tn+1) are computed in analogy to

the ADER approach. It is straightforward to show that both formulations lead to the same
numerical results.

Theorem 3.2 For one-dimensional linear hyperbolic systems the ADER version of the active
flux method is equivalent to the active flux method that uses the exact evolution formula.

Proof By transforming the system to characteristic variables and using the results for advec-
tion, it is straight forward to show that both approaches lead to the samevaluesq(xi+ 1

2
, tn+τ).

	

In particular the two formulations of the active flux method for the acoustic equations

described in Sects. 2.2 and 3.2 are equivalent. In the next section we will see that the ADER
interpretation of the active flux method can be extended to nonlinear problems. The resulting
method is no longer equivalent with existing active flux methods.

123



Journal of Scientific Computing (2019) 80:1463–1497 1473

4 New Active FluxMethods for Nonlinear Problems

In this section we present new active flux methods for nonlinear problems, which use an
ADER approach in order to compute the conserved quantities at the nodes of Simpson’s rule.

4.1 Burgers’ Equation

We start our consideration of nonlinear problems with the Burgers equation, i.e. we consider

qt +
(
1

2
q2

)
x

= 0. (19)

Our method is again based on the Taylor series expansion of the exact solution (10). For
sufficiently smooth solutions, we can replace time derivatives of the conserved quantity by
terms involving spatial derivatives, using the relations

qt
(
xi+ 1

2
, tn

)
= −q

(
xi+ 1

2
, tn

)
qx

(
xi+ 1

2
, tn

)
,

qtt
(
xi+ 1

2
, tn

)
= 2q

(
xi+ 1

2
, tn

) (
qx (xi+ 1

2
, tn)

)2 +
(
q(xi+ 1

2
, tn)

)2
qxx

(
xi+ 1

2
, tn

)
.

The conserved quantities at the grid cell interfaces are approximated in the form

q
(
xi+ 1

2
, tn + τ

)
≈ Qn

i+ 1
2

− τQn
i+ 1

2
Qx

(
xi+ 1

2
, tn

)

+1

2
τ 2

(
2Qn

i+ 1
2

(
Qx (xi+ 1

2
, tn)

)2 +
(
Qn

i+ 1
2

)2

Qxx

(
xi+ 1

2
, tn

))
.

(20)

The derivatives of q at the grid cell interfaces are again obtained by solving generalised
Riemann problems. We get

Qx (xi+ 1
2
, tn) =

⎧⎨
⎩

1
�x u

′
i (1) : Qn

i+ 1
2

> 0
1

�x u
′
i+1(0) : Qn

i+ 1
2

< 0,

Qxx (xi+ 1
2
, tn) =

⎧⎨
⎩

1
�x2

u′′
i (1) : Qn

i+ 1
2

> 0
1

�x2
u′′
i+1(0) : Qn

i+ 1
2

< 0,

(21)

with u′
i (ξ) and u′′

i (ξ) as defined in (13).

Evaluations of the right hand side of (20) for τ = �t/2 and τ = �t provide Q
n+ 1

2

i+ 1
2
and

Qn+1
i+ 1

2
. Now the numerical flux of the resulting finite volume method has the form

Fi+ 1
2

= 1

6

(
f

(
Qn

i+ 1
2

)
+ 4 f

(
Q

n+ 1
2

i+ 1
2

)
+ f

(
Qn+1

i+ 1
2

))
, (22)

with f (q) = 1
2q

2.
Most recently, Roe [12] discussed active flux methods for the one-dimensional Burgers

equation. He computes a wave speed at each grid cell interface, using the relation

si+ 1
2
(τ ) =

{
Qn

i+ 1
2
/(1 + τu′

i (1)) : Qn
i+ 1

2
> 0

Qn
i+ 1

2
/(1 + τu′

i+1(0)) : Qn
i+ 1

2
< 0.

(23)
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Fig. 4 Approximation of Burgers’ equation with initial data (25) at time t = 0.15 using the ADER version
(left) as well as Roe’ version of the active flux method (right). The solid line is a highly resolved reference
solution. The circles indicate cell averaged values and the crosses indicate interface values of the conserved
quantities

These wave speeds are used to calculate the conserved quantity at the grid cell interface:

q(xi+ 1
2
, tn + τ) ≈

{
ui (1 − si+ 1

2
(τ ) τ/�x) : si+ 1

2
(τ ) > 0

ui+1(−si+ 1
2
(τ ) τ/�x) : si+ 1

2
(τ ) < 0

(24)

He compares the approach with a method which instead sets the local wave speed equal to
Qn

i+ 1
2
. Here we only consider the method with wave speed correction according to (23), since

the simpler method without wave speed correction is only second order accurate.
We now present numerical results for Burgers’ equation with initial data of the form

q(x, 0) = sin(2πx). (25)

In Fig. 4, we show numerical results at time t = 0.15 for the ADER version of the active
flux as well as Roe’s version. For this computation we used a grid with 32 grid cells on the
interval [0, 1]. The solid line is a highly resolved reference solution obtained by using 215

grid cells. The time steps were chosen according to the CFL condition CFL ≤ 0.9, with
CFL := maxi |Qn

i+ 1
2
|�t/�x .

In Table 1, we show results of a convergence study using Roe’s method with wave speed
correction as well as our ADER version of the active flux method. The active flux method
with wave-speed correction leads to more accurate results on coarse grids. However, the
ADER approach also performs very well and on well resolved grids the accuracy is almost
the same.

4.2 Euler Equations

In this sectionwe consider approximations of the one-dimensional Euler equations. The Euler
equations can be written in the general form of a conservation law (1) with

q =
⎛
⎝ ρ

ρv

E

⎞
⎠ , f (q) =

⎛
⎝ ρv

ρv2 + p
v(E + p)

⎞
⎠ . (26)
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Table 1 Convergence study for the Burgers equation (19) with data (25) at time t = 0.15, using Roe’ method
with wave-speed correction as well as our ADER version of active flux method

Grid Roe’s method with wave-speed correction ADER version of the AF method

L1-error EOC L1-error EOC

64 5.59063d-5 8.14128d-5

128 8.40714d-6 2.73 4.09186d-5 0.99

256 1.20434d-6 2.80 1.12111d-5 1.86

512 6.08588d-7 0.98 1.47012d-6 2.92

1024 1.47617d-7 2.04 2.04482d-7 2.84

2048 2.27928d-8 2.70 2.61081d-8 2.96

4096 3.11783d-9 2.86 3.19291d-9 3.03

Here ρ, v, p and E denote the density, the velocity component in the x direction, the pressure
and the energy, respectively. We use the ideal gas equation of state

E = p

γ − 1
+ 1

2
ρv2,

with adiabatic exponent γ = 1.4.

We explain our approach for the computation of Q
n+ 1

2

i+ 1
2
and Qn+1

i+ 1
2
, since this is the only

part of the method which needs to be adapted to the specific equations. We again want to use
the Taylor series expansion (10) in order to compute these interface values of the conserved
quantities. For nonlinear hyperbolic systems of the general form (1), we express the time
derivatives of the conserved quantities using the relations

qt = − f (q)x = − f ′(q)qx

qtx = qxt = − (
f ′(q)qx

)
x = − (

f ′′(q)qxqx + f ′(q)qxx
)

qtt = − (
f ′(q)qx

)
t = − (

f ′′(q)qtqx + f ′(q)qxt
)
.

Thus, the conservative quantities at the grid cell interface can be expressed in the form

q
(
xi+ 1

2
, tn + τ

)
≈ Qn

i+ 1
2

− τ f ′ (Qi+ 1
2

)
Qx

(
xi+ 1

2
, tn

)

+ 1

2
τ 2

(
f ′′(Qn

i+ 1
2

)
f ′(Qn

i+ 1
2

)
Qx

(
xi+ 1

2
, tn

)
Qx

(
xi+ 1

2
, tn

)

+ f ′(Qn
i+ 1

2

)
f ′′(Qn

i+ 1
2

)
Qx

(
xi+ 1

2
, tn

)
Qx

(
xi+ 1

2
, tn

)

+
(
f ′(Qn

i+ 1
2
)
)2

Qxx

(
xi+ 1

2
, tn

))
.

(27)

The exact form of f ′(q) and f ′′(q) can be found in “Appendix A”. The values Qx (xi+ 1
2
, tn)

and Qxx (xi+ 1
2
, tn) are obtained by solving Riemann problems of the form

(Qx )t + f ′(Qn
i+ 1

2
)(Qx )x = 0

Qx (x, tn) =
{

1
�x u

′
i (1) : x < xi+ 1

2
1

�x u
′
i+1(0) : x ≥ xi+ 1

2

(28)
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Fig. 5 Approximation of the Euler equations (26) with initial data (30) at time t = 0.25 using the ADER
version of the active flux method. The solid line is a highly resolved reference solution. The circles indicate
cell averaged values and the crosses indicate interface values of the conserved quantities. We show results for
density using 32 (left) and 64 (right) grid cells

Table 2 Convergence study for
Euler equations (26) with data
(30) at time t = 0.25

Grid L1-error in density EOC

32 2.22499d-4

64 2.76332d-5 3.01

128 3.55307d-6 2.96

256 4.57967d-7 2.96

as well as

(Qxx )t + f ′(Qn
i+ 1

2
)(Qxx )x = 0

Qxx (x, tn) =
{

1
�x2

u′′
i (1) : x < xi+ 1

2
1

�x2
u′′
i+1(0) : x ≥ xi+ 1

2
.

(29)

To study the accuracy of the resulting method for smooth solutions of the Euler equations,
we consider initial values of the form

ρ(x, 0) = p(x, 0) = 1 + 1

2
exp

(
−80

(
x − 1

2

)2
)

v(x, 0) = 0

(30)

on the interval [0, 1] with periodicity condition. Our time steps satisfy CFL ≤ 0.9. In Fig. 5
we show numerical results for the density at time t = 0.25 on two-different grids together
with a highly resolved reference solution. In Table 2 we show the results of our convergence
study, which confirm the third order accuracy of the method.

5 Limiters for the Active FluxMethod

Using modified equation analysis, as explained in [19, Chapter 2], it can be shown that
methods for the advection equation with an even order of accuracy behave differently at
discontinuities or steep gradients than odd-ordered methods. While the leading error term in
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Fig. 6 Different reconstructions of the active flux method. The dashed line indicates the cell average value,
the ‘o’ symbols at the boundaries indicate the edge values and the red solid line indicates the reconstruction.
For all of these plots we used Qn

i− 1
2

= 0.1, Qn
i+ 1

2
= 1 and Qn

i = 0.2 (Color figure online)

themodified equation analysis of a secondorder accuratemethod creates dispersivewaves, the
leading error term of a third order accuratemethod provides damping of spurious oscillations.
Thus, in a third order accurate method much less limiting is needed in order to eliminate
oscillations. Nevertheless, it is a challenge to find the appropriate amount of limiting. In this
section we will discuss different limiting strategies for the active flux method.

The piecewise quadratic reconstruction (5), which is used in the unlimited active flux
method, can create newminimaormaxima.Newminimaormaximawill occur ifu′(0)u′(1) <

0. Problems need to be expected if there is a relatively large difference between Qn
i− 1

2
and

Qn
i+ 1

2
, while the cell average value Qn

i is relatively close to one of these interface values.

Such a situation is shown in Fig. 6a.
In order to avoid unphysical oscillations, we want to replace the piecewise quadratic

reconstruction, described in Eq. (5), if needed. We will now discuss different reconstructions
which are shown in Fig. 6b–d and discuss their use in active flux methods.

5.1 Continuous, Piecewise Monotone Reconstructions

In Fig. 6b, c we show reconstructions which are monotone within one grid cell. In Fig.
6b, we show a hyperbola with edge values Qn

i− 1
2
and Qn

i+ 1
2
and average value Qn

i . This

reconstruction is motivated by Marquina’s work [10], who used a hyperbolic reconstruction
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in numerical methods for conservation laws. Here, the degrees of freedom of the active flux
method are used in the definition of the hyperbola. The reconstruction has the general form

ui (ξ) = a + b

ξ − 1
2 + c

. (31)

The coefficients a, b, c are obtained by solving a nonlinear system of equations, which is
obtained from this ansatz by imposing

ui (0) = Qn
i− 1

2
, ui (1) = Qn

i+ 1
2
and

∫ 1

0
ui (ξ)dξ = Qn

i .

We solved the resulting nonlinear equations using an iterative Newton-type method.
In Fig. 6c we show a continuous, piecewise polynomial reconstruction, which (in each

grid cell) consists of a constant part followed by a parabola. This is inspired by a limiter
proposed in Roe et al. [13]. The cell average is maintained and the interpolation condition
at the two boundary points of the domain is satisfied. This reconstruction is much easier to
compute than the hyperbolic reconstruction and can be expressed in the form

If

(
Qn

i − 1
2

(
Qn

i− 1
2

+ Qn
i+ 1

2

)) (
Qn

i− 1
2

− Qn
i+ 1

2

)
> 0, then

ui (ξ) =

⎧⎪⎨
⎪⎩

Qn
i− 1

2
: ξ < ξ∗

Qn
i− 1

2
+

(
Qn

i+ 1
2

− Qn
i− 1

2

)
(ξ − ξ∗)2/(1 − ξ∗)2 : ξ > ξ∗

with ξ∗ =
(
2Qn

i− 1
2

+ Qn
i+ 1

2
− 3Qn

i

)
/

(
Qn

i− 1
2

− Qn
i+ 1

2

)

otherwise

ui (ξ) =

⎧⎪⎨
⎪⎩

Qn
i+ 1

2
: ξ < ξ∗

Qn
i+ 1

2
+

(
Qn

i− 1
2

− Qn
i+ 1

2

)
(ξ − ξ∗)/ξ∗ : ξ > ξ∗

with ξ∗ = 3

(
Qn

i − Qn
i+ 1

2

)
/

(
Qn

i− 1
2

− Qn
i+ 1

2

)
.

We now discuss the use of these reconstructions in an active flux method for the advection
equation. If the reconstruction does not produce new minima or maxima, the same is true for
the exact solution of the advection equation with such data. However, by using the active flux
method as described in Sect. 2, the method would in general produce unphysical oscillations.
The reason for these oscillations is that Simpson’s rule does not integrate the hyperbola or
the piecewise polynomial function exactly. The last equality in (7) does not hold if ui is a
hyperbola or a piecewise defined function.

For the advection equation we can easily replace Simpson’s rule by an exact integration
formula, using the relations described in the first two lines of Eq. (7). For the piecewise
polynomial reconstruction we can alternatively use a combined Simpson’s rule for the two
intervals which are divided by ξ∗. The new value Qn+1

i+ 1
2
is still computed by using the

characteristics but based on the new reconstructions.
These new reconstructions produce very good results as indicated in Fig. 7 (middle) and

(right) for a standard advection test problem. In Fig. 7 (left) we show the results of the
unlimited active flux method. For this test we used initial data
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Fig. 7 Advection test computed with different versions of the active flux method using 200 grid cells. The
solution is shown at time t = 1, i.e. after one rotation. The solution using the unlimited active flux method
is shown in the left plot. In the middle and the right plot we show results for the hyperbolic and piecewise
polynomial reconstruction, respectively

q(x, 0) =
{
1 + exp

(−100(x − 0.3)2
) : x ∈ [0.6, 0.8]

exp
(−100(x − 0.3)2

) : x ∈ [0, 1]\[0.6, 0.8].
The advection speed has been set to one. We used a grid with 200 grid cells and time steps
corresponding to CFL ≤ 0.9. The periodicity condition q(0, t) = q(1, t) is imposed. Thus,
at time t = 1 the exact solution agrees with the initial values.

Unfortunately, these new reconstructions are not well suited if we use the ADER inter-
pretation of the active flux method. Note that the original form of the active flux method and
its ADER interpretation are only equivalent if we use the piecewise parabolic reconstruction
(5). For the hyperbolic reconstructions, the derivatives u(k)

i (ξ) do not decrease fast enough
for k > 2 and the Taylor series expansion does not converge. Therefore, the ADER approach
does not converge. Active flux with exact evolution can still be used. However, the exact
flux can no longer be approximated by Simpson’s rule, since this would be equivalent to
an approach that replaces the hyperbola or the piecewise polynomial reconstruction by a
quadratic function which might introduce new minima or maxima.

For the piecewise polynomial reconstruction, the use of the ADER interpretation is only
valid up to a time which depends on ξ∗. This leads to a reduced time step restriction, with
time steps that might become arbitrarily small since ξ∗ can be located anywhere in the
interval (0, 1). The reason for this time step restriction is that the reconstruction is not twice
continuously differentiable in each grid cell. Therefore, the Taylor series expansion (10) with
(11) is only valid for small time steps.

5.2 Discontinuous Quadratic Reconstruction

In Fig. 6d we show a quadratic reconstruction, which has the correct cell average but inter-
polates only one interface value. We require that the reconstruction uses the interface value
which is closer to the cell average value. Furthermore, we require that the first derivative
of the reconstruction is equal to zero at that boundary point. This implies that the second
boundary point is as close as possible to the original boundary point. The reconstruction can
be expressed in the form

If

(
Qn

i − 1
2

(
Qn

i− 1
2

+ Qn
i+ 1

2

)) (
Qn

i− 1
2

− Qn
i+ 1

2

)
> 0, then

ui (ξ) = Qn
i− 1

2
+ 3

(
Qn

i − Qn
i− 1

2

)
ξ2
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Fig. 8 Advection test computed with the limited discontinuous reconstruction. The solution with (left) 50,
(middle) 100 and (right) 200 grid cells is shown at time t = 1, i.e. after one rotation

otherwise

ui (ξ) = Qn
i+ 1

2
+ 3

(
Qn

i − Qn
i+ 1

2

)
(ξ − 1)2 .

The discontinuous quadratic reconstruction can be used both for the original version of
the active flux method as well as for the ADER version. At interface points where the recon-
struction is discontinuous, i.e. at points xi+ 1

2
with ui (1) = ui+1(0), we need to recompute

the interface value Qn
i+ 1

2
, since this value is used in Simpson’s formula for the flux. This is

done by solving the Riemann problem with data

Q(x, tn) =
{
ui (1) : x < xi+ 1

2

ui+1(0) : x > xi+ 1
2

The values Q
n+ 1

2

i+ 1
2
and Qn+1

i+ 1
2
can be computed as before using the recomputed value Qn

i+ 1
2
.

In Fig. 8 we show numerical results for the advection problem from the previous section
on three different grids.

5.3 Criteria for the Use of a Limited Reconstruction for Linear Problems

For the advection problem we used one of the new reconstructions in grid cell i , if the
reconstruction from Eq. (5) produces a new minima or maxima within the grid cell. This is
the case, if

u′
i (0)u

′
i (1) < 0

⇔
(
Qn

i− 1
2

− 3Qn
i + 2Qn

i+ 1
2

) (
−2Qn

i− 1
2

+ 3Qn
i − Qn

i+ 1
2

)
< 0.

(32)

The only exception in which we continue to use the original piecewise quadratic reconstruc-
tion is, if

Qn
i > max

(
Qn

i− 1
2
, Qn

i+ 1
2

)
or Qn

i < min

(
Qn

i− 1
2
, Qn

i+ 1
2

)
, (33)

In this situation it is not possible to construct a monotone function with the correct cell
average and interface values. Such a situation arises near local extrema of the solution.

For a fixed grid, all of our attempts to reduce the number of cells marked for limiting
lead to oscillations. In Fig. 9, we show again the results of the advection test with limited,
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Fig. 9 Cell average ‘o’ and point values ‘+’ for the last time step of the advection test. The grid cell interfaces
with a discontinuous reconstruction are marked with a black ‘*’. The left plot shows a simulation with 50 grid
cells, the right plot shows a simulation with 100 grid cells

discontinuous reconstruction. Now the grid cell interfaces with discontinuous reconstruction
are marked.

5.4 Limiting Strategies for Burgers’ Equation

For the Burgers equation (19), the wave speed at each grid cell interface is determined by
the conserved quantity q . This requires a change of the limiting strategy compared to the
advection equation. The unlimited active flux method with continuous, piecewise quadratic
reconstruction is unstable in situation where q changes sign from positive to negative, as
explained in Sect. 5.5.

If u′
i (0)u

′
i (1) > 0 with ui described in (5), we use the standard piecewise quadratic

reconstruction (5).
If u′

i (0)u
′
i (1) < 0, the piecewise quadratic reconstruction would lead to new minima or

maxima. In this situation, we use a discontinuous reconstruction. Near shock waves, i.e. if
Qn

i− 1
2

> Qn
i+ 1

2
, we use a piecewise linear reconstruction of the form

ui (ξ) = Qn
i + σi

(
ξ − 1

2

)
, (34)

with

σi = minmod

(
2

(
Qn

i − Qn
i− 1

2

)
, 2

(
Qn

i+ 1
2

− Qn
i

))
(35)

and the standard minmod function

minmod(a, b) =
⎧⎨
⎩
a : ab > 0 and |a| ≤ |b|
b : ab > 0 and |b| ≤ |a|
0 : ab ≤ 0.

This also implies, that in the situations described by (33), a piecewise constant reconstruction
is used. Near rarefaction waves, i.e. if Qn

i− 1
2

< Qn
i+ 1

2
, we continue to use the discontinuous,

piecewise quadratic reconstruction described in Sect. 5.2.
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Fig. 10 Test computation for Burgers’ equation. Top line: using a discontinuous, limited, piecewise quadratic
reconstruction together with the ADER interpretation of the active flux method. Bottom line: using the third
order accurate ADER-DG method of Dumbser. The solid line is a reference solution, computed using 1000
grid cells. The ‘o’ symbols denote cell average values of the conserved quantity for a computation with 100
grid cells

For our test computation we consider Burgers’ equation with initial data

q(x, 0) =
{
1 : 0.4 ≤ x ≤ 0.6
− 0.5 : otherwise

In Fig. 10, we show numerical results using the limited version of the active flux method
based on the ADER approach. We computed the solution at different times using time steps
corresponding to CFL ≤ 0.8.We compare the numerical solutionwith results of the 3rd order
accurate version of a one-step ADER finite volume method with space–time DG predictor
that was kindly provided to us by Michael Dumbser.

5.5 Problems of Continuous Reconstructions

We will now describe a situation in which the active flux method with continuous, piecewise
quadratic reconstruction fails to approximate the correct solution structure. We consider
Burgers’ equation and data of the form illustrated in Fig. 11. In this situation, we have a grid
cell i with Qn

i− 1
2

> 0 and Qn
i+ 1

2
< 0. In the standard form of the active flux method for

Burgers’ equation [i.e. (23) and (24)], the numerical fluxes Fi− 1
2
and Fi+ 1

2
are not influenced

by the cell average value Qn
i . This is indicated in Fig. 12. By interpreting the interface value

as local propagation speed, the approximation of q(xi± 1
2
, tn + τ) is based on a positive

propagation speed at interface i − 1/2 and a negative speed at interface i + 1/2. The values

Q
n+ 1

2

i− 1
2
and Qn+1

i− 1
2
are computed using the reconstruction ui−1, while the values Q

n+ 1
2

i+ 1
2
and

Qn+1
i+ 1

2
are computed using ui+1. Therefore, the reconstruction from cell i is never used in the
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0

i− 1 i i+ 1

Fig. 11 Illustration of initial data for Burgers’ equation, which require a discontinuous reconstruction

Fig. 12 Schematic description of
the active flux method for
Burgers’ equation for a grid cell
with Qn

i− 1
2

> 0 and Qn
i+ 1

2
< 0

Qn
i+1/2 < 0

tn

tn+1

Qn
i−1/2 > 0

update. In the special situation where Qn
i = 0 and Fi− 1

2
= Fi+ 1

2
, the method approximates

the correct solution structure. In general, the fluxes Fi−1/2 and Fi+1/2 will differ and the cell
value Qi will increase or decrease indefinitely during the next time steps. Our discontinuous
reconstruction offers one possibility to cure this failure. In a personal conversation, Roe
pointed out that there might be other possibilities to fix this problem, which still use a
continuous reconstruction.

5.6 Euler Computations

Finally, we show numerical results for the Euler equations, which require the use of limiters.
Again we compare our numerical results with results of the 3rd order accurate version of
Dumbser’s ADER-DG method.

Our first test problem is Sod’s shock tube problem, i.e. we compute solutions of the Euler
equations (26) with initial values of the form

(ρ, v, p)(x, 0) =
{

(1, 0, 1) : x < 1
2

(0.125, 0, 0.1) : x ≥ 1
2 .

Numerical results at time t = 0.17 computed with 100 and 200 grid cells as well as a highly
resolved reference solution are shown in Figs. 13 and 14.

Our second test problem is the well known Shu–Osher test problem [16], i.e. (26) with
initial data

(ρ, v, p)(x, 0) =
{

(3.857143, 2.629369, 10.3333) : x < −4
(1 + 0.2 sin(5x), 0, 1) : x ≥ −4.
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Fig. 13 Test computation for Euler equations using a discontinuous, limited, piecewise quadratic reconstruc-
tion together with the ADER interpretation of the active flux method. The solid line is a reference solution,
computed using 2000 grid cells. The ‘o’ symbols denote cell average and the ‘+’ symbols denote the interface
values computation with 100 grid cells. Time steps correspond to CFL ≤ 0.9. In the first row we show the
results of the new ADER version of the active flux method, in the second row we show results obtained with
the 3rd order accurate ADER-DG method of Dumbser
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Fig. 14 Same as in Fig. 13, but with 200 grid cells

In Fig. 15, we show numerical results for the density at time 1.8, computed on grids with
200, 300 and 400 cells. A highly resolved solution is shown as solid line.

Our goal is to use the unlimited ADER version of the active flux method as described in
Sect. 4.2 in as many grid cells as possible. For all components of the conserved quantities we
use the same type of reconstruction, i.e. either the standard continuous, piecewise quadratic
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Fig. 15 First row: Results for the Shu–Osher test problem using the active flux method with 200, 300 and 400
grid cells. The solid line is a reference solution, which was obtained using 2000 grid cells. In the second row
we show the results using the third order accurate ADER-DG method of Dumbser

reconstruction, the discontinuous, piecewise quadratic reconstruction of Sect. 5.2 or the dis-
continuous, piecewise linear reconstruction (34), (35). For the Euler equations, most of the
structure is seen in density. Therefore, a special consideration is given to this quantity in
our limiting strategy. If in a grid cell i the standard piecewise quadratic reconstruction (5) in
density does not produce a new minima or maxima, i.e. if u′

i (0)u
′
i (1) > 0, then we use the

active flux method in the unlimited form as described in Sect. 4.2. If instead u′
i (0)u

′
i (1) < 0,

then we make further tests in order to decide on the appropriate reconstruction. Along shock
waves, i.e. if velocity and pressure decreases, we use the piecewise linear reconstruction
(34), (35). In smoothly varying regions near local extrema of the flow, we continue to use
the standard reconstruction. Otherwise, we use the discontinuous, piecewise quadratic recon-
struction. The discontinuous, quadratic reconstruction will typically be used at the start or
the end of a rarefaction wave.

The Shu–Osher test confirms that our limited version of the active fluxmethod can capture
both the small-scale smooth flow features aswell as the shockwave. Furthermore, it compares
well with theADER-DGmethod ofDumbser. The unlimited version of the active fluxmethod
is unstable for the two test problems considered in this section, while the limited version is
stable for time steps which satisfy the inequality CFL ≤ 1.

6 Multidimensional Problems

In this section we discuss possible extensions of our scheme to the two-dimensional case.
The equations of interest have the general form

qt + f (q)x + g(q)y = 0 − ∞ < x < ∞,−∞ < y < ∞, t > 0

q(x, y, 0) = q0(x, y) − ∞ < x < ∞,−∞ < y < ∞,
(36)

where q : R2 × R
+ → R

m is a vector of conserved quantities and f , g : Rm → R
m are

vector valued flux functions. Again, we assume hyperbolicity of the system.
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Fig. 16 Left: Configuration in cell (i, j). Right: Area of integration in space–time

In this section, we will first describe the setup of our grid, the degrees of freedom of
the methods as well as the reconstruction which has been used. We will then see that the
equivalence to the active flux method that was derived in the one-dimensional case carries
over to the two-dimensional linear advection equation if we solve one-dimensional Riemann
problems in a certain way described below. For two-dimensional linear systems we did not
find an ADER version which is equivalent with the method proposed by Roe and coauthors.
Nevertheless, we will present a third order accurate ADER type evolution procedure which
leads to numerical results that compare well with the original method.

Herewewill restrict our considerations to two-dimensional Cartesian grids, although other
grids such as triangular grids can certainly be used.Theoriginal activefluxmethodbyEymann
and Roe uses unstructured triangular grids [4,12]. Those grids allow the reconstruction of
piecewise quadratic functions with fewer degrees of freedom. Our restriction to Cartesian
grids simplifies the comparison of the ADER evolution of interface values with the exact
multidimensional evolution that was used by Roe and coauthors. The degrees of freedom
that contribute to any given cell will therefore be the four corners and the midpoints of the
four edges as well as the cell average. As the edge points are used by two cells and the points
in each corner are used by four cells, each grid cell requires the update of four degrees of
freedom.

To simplify the calculations, all cells will be mapped to a reference cell [−1, 1]2. The
cell averages Qn

i, j , cell corners Qn
i+ 1

2 , j+ 1
2
and cell edges Qn

i+ 1
2 , j

, Qn
i, j+ 1

2
will be defined

in the usual way. Figure 16 (left) shows the arrangement in one cell. The reconstruction of
the conserved quantities will be performed with the contributing nine degrees of freedom to
determine in each grid cell a polynomial û of the form

û(ξ, η) = c00 + c10ξ + c01η + c20ξ
2 + c11ξη + c02η

2 + c21ξ
2η + c12ξη2 + c22ξ

2η2,

with ci j ∈ R, i, j ∈ {0, 1, 2}. This polynomial will more conveniently be expressed in the
form

û(ξ, η) =
9∑

i=1

ci Ni (ξ, η). (37)

The basis functions Ni and coefficients ci , i = 1, . . . , 9 can be found in Table 3.
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Table 3 Basis functions and coefficients for the two-dimensional reconstruction (37)

i ci Ni

1 Q
i− 1

2 , j− 1
2

1
4 (ξ2 − ξ)(η2 − η)

2 Q
i, j− 1

2

1
2 (1 − ξ2)(η2 − η)

3 Q
i+ 1

2 , j− 1
2

1
4 (ξ2 + ξ)(η2 − η)

4 Q
i+ 1

2 , j
1
2 (ξ2 + ξ)(1 − η2)

5 Q
i+ 1

2 , j+ 1
2

1
4 (ξ2 + ξ)(η2 + η)

6 Q
i, j+ 1

2

1
2 (η2 + η)(1 − ξ2)

7 Q
i− 1

2 , j+ 1
2

1
4 (ξ2 − ξ)(η2 + η)

8 Q
i− 1

2 , j
1
2 (ξ2 − ξ)(1 − η2)

9 1
16

(
36Qi, j − (Q

i− 1
2 , j− 1

2
+ Q

i+ 1
2 , j− 1

2
+ Q

i+ 1
2 , j+ 1

2
+ Q

i− 1
2 , j+ 1

2
) (1 − ξ2)(1 − η2)

−4(Q
i, j− 1

2
+ Q

i+ 1
2 , j

+ Q
i, j+ 1

2
+ Q

i− 1
2 , j

)

)

The resulting piecewise polynomial reconstruction on the whole grid will be denoted by
u(x, y). This function is not only continuous in the corner and edge points, but on every
point on the edge, as the three points on this edge determine the one-dimensional parabola
uniquely. Therefore, we will have continuity of all partial derivatives with respect to x on the
horizontal interfaces as well as continuity of all partial derivatives with respect to y on the
vertical interfaces. We will use this fact to our advantage later.

In Fig. 16 (right) we show a space time interface for a horizontal grid cell interface. The
dots in this figure indicate the nodes of the two-dimensional Simpson formula. The update
of the cell average values is described by a finite volume method of the form

Qn+1
i, j = Qn

i, j − �t

�x

(
Fi+ 1

2 , j − Fi− 1
2 , j

)
− �t

�y

(
Gi, j+ 1

2
− Gi, j− 1

2

)
, (38)

where Fi± 1
2 , j and Gi, j± 1

2
are approximations of space–time integrals. At a horizontal grid

cell interface, for example, we have

Gi, j− 1
2

≈ 1

�t�x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

g(q(x, y j− 1
2
, t))dxdt .

These integrals are approximated by a two-dimensional version of Simpson’s rule, i.e.

Gi, j− 1
2

:= 1

36

(
g

(
Qn

i− 1
2 , j− 1

2

)
+ 4g

(
Qn

i, j− 1
2

)
+ g

(
Qn

i+ 1
2 , j− 1

2

)

+ 4g

(
Q

n+ 1
2

i− 1
2 , j− 1

2

)
+ 16g

(
Q

n+ 1
2

i, j− 1
2

)
+ 4g

(
Q

n+ 1
2

i+ 1
2 , j− 1

2

)

+ g

(
Qn+1

i− 1
2 , j− 1

2

)
+ 4g

(
Qn+1

i, j− 1
2

)
+ g

(
Qn+1

i+ 1
2 , j− 1

2

))
(39)

and analogously for Fi± 1
2 , j . Note that the same flux approximation is used by the active flux

method on triangular shaped grids, see for example [4].
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For the advection equation as well as the acoustic equations, exact evolution formulas can
be used to update the interface values. Such an approach was used in the original active flux
method and will also be used below for comparison.

For general hyperbolic problems exact evolution formulas are not available and we are
therefore interested in exploring an ADER type approach. Thus, the update of the cell inter-
face values at the intermediate and new time level is obtained by a Taylor series expansion
of the exact solution evaluated at the interface points. Time derivatives are replaced by spa-
tial derivatives using the form of the considered partial differential equation. The spatial
derivatives of the conserved quantities at interface points are approximated by solving one-
dimensional Riemann problems as discussed in more detail below. Especially at the corner
points different approximations seem to be possible.

6.1 Advection

We start with the advection equation

qt + aqx + bqy = 0.

For this simple equation the exact evolution formula, i.e.

q(x, y, tn + τ) = q(x − aτ, y − bτ, tn),

can be used in order to approximate the interface values of the conserved quantity at the
intermediate and new time level. During each time step, we use all the interface values and
all the cell average values at the previous time level, i.e. the level tn , to reconstruct the
piecewise polynomial function u(x, y). Then we can approximate the interface values of the
conservative variable at time tn+ 1

2
and tn+1 by using the approximation

q(x, y, tn + τ) ≈ u(x − aτ, y − bτ).

Once all the interface values for τ = �t/2 and τ = �t are computed, we use the finite
volume method (38) with (39) to compute the cell average values at the new time level tn+1.

If an exact and easy to evaluate evolution formula is available, then it is of course best to
simply use this formula. For general hyperbolic problems such a formula is not available and
it is therefore valuable to explore an alternative approach for the approximation of interface
values. For the advection equation, Taylor series expansion provides an update formula of
the form

q(x, y, tn + τ) = q(x, y, tn) + τ(−aqx − bqy)

+ τ 2

2
(a2qxx + abqxy + abqyx + b2qyy) + O(τ 3), (40)

where the dependencies on the variables in the derivatives were dropped for simplicity.
Across a vertical grid cell interface, the reconstructed quantities q , qy and qyy are contin-

uous. Thus, those interface values can directly be used in the Taylor series expansion in order
to approximate the interface values at the midpoint (i− 1

2 , j) of this vertical interface. All the
other spatial derivatives of the conserved variable are obtained by solving a one-dimensional
Riemann problem in the x direction, for example an approximation of qx (xi− 1

2
, y j , tn + 0)

is obtained by solving the Riemann problem
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qt + aqx = 0

q(x, tn) =
{
ux (xi− 1

2
− 0, y j ) x < xi− 1

2

ux (xi− 1
2

+ 0, y j ) x > xi− 1
2
.

We obtain

qx (xi− 1
2
, y j , tn + 0) ≈

{
ux (xi− 1

2
− 0, y j ) : a > 0

ux (xi− 1
2

+ 0, y j ) : a < 0

Analogously, at a horizontal interface the values q , qx and qxx can be obtained from the
continuous reconstruction and all the other spatial derivatives can be computed by solving a
one-dimensional Riemann problem.

At a corner (i − 1
2 , j + 1

2 ), for each non-mixed derivative, the four initial values of the
two-dimensional Riemann problem will collapse into two values due to the same continuity
argument. We will therefore approximate this two-dimensional Riemann problem by the
resulting one-dimensional Riemann problem as it is done in the edges.We solve twoRiemann
problem in the x-direction in order to compute qx and qxx . Furthermore, we solve two
Riemann problems in the y-direction to compute qy and qyy . The only troublesome terms
are the mixed derivatives qxy and qyx . For the advection equation, there is no difference in
how these two are treated because of the scalar coefficients. Thus, we only consider qxy .
Since we cannot use any continuity of this derivative, we do in fact have four distinct initial
values in the general case. We denote these four values by qBL

xy := uxy(xi− 1
2
−0, y j+ 1

2
−0),

qBR
xy := uxy(xi− 1

2
+0, y j+ 1

2
−0), qT L

xy := uxy(xi− 1
2
−0, y j+ 1

2
+0) and qT R

xy := uxy(xi− 1
2
+

0, y j+ 1
2
+0), where the abbreviations L, R, T, B stand for left, right, top, bottom, respectively.

First we solve two Riemann problems in the x direction, i.e. we solve

qt + aqx = 0

q(x, 0) =
{
q∗L
xy : x ≤ xi− 1

2

q∗R
xy : x > xi− 1

2
,

with ∗ ∈ {B, T }. Again, we are interested in the solution of these Riemann problems at the
interface, i.e. at xi− 1

2
. Thus, for the advection equation these solutions are given by

q∗
xy =

{
q∗L
xy : a > 0

q∗R
xy : a < 0.

Now we use the solutions of these two Riemann problems in order to define initial values for
a Riemann problem in the y-direction, i.e. we solve

qt + bqy = 0

q(y, 0) =
{
qB
xy : y ≤ y j+ 1

2

qTxy : y > y j+ 1
2
.

Finally, we obtain

qxy(xi− 1
2
, y j+ 1

2
, tn + 0) ≈

{
qB
xy : b > 0

qTxy : b < 0.

For the advection equation, the same solutionwould be obtained by first solving twoRiemann
problems in the y-direction, followed by a Riemann problem in the x-direction. We recover
the correct solution of the two-dimensional Riemann problem.
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Notice that, as we want to construct a third order method, we typically cut the Taylor
series expansion after the second derivative. For the one-dimensional method, all derivatives
of the reconstruction past u′′ vanish, i.e. u(n) = 0 , n > 2. This is not the case for our
two-dimensional reconstruction. To obtain a slightly more accurate solution, all the non zero
spatial derivative terms that arise when we replace qttt and qtttt by spacial derivatives can
be approximated analogously. For our reconstruction on a Cartesian grid, these are the terms
qxxy , qxyy and qxxyy . All of these terms can be handled analogously to the terms described
above. If all of these terms are included in the Taylor series expansion then the resulting
ADER approach is again equivalent to the active flux method with exact evolution formula
for the update of the interface values. This is due to the fact that Taylor series expansion
recovers the correct characteristic path for our reconstructed values.

In our accuracy test, we solve the advection equation with a = 1 and b = 0.7 on the
domain [0, 1] × [0, 1] with periodic boundary conditions. The initial data are given by

q(x, y, 0) = sin (4π(x + y)) .

At time t = 1 the numerical solution is compared with the exact solution and the error as a
function of the mesh width is shown in Fig. 17. The yellow curve is obtained by the active
flux with the exact edge update using time steps that satisfy CFL ≤ 0.9, where the CFL
number is given by

CFL := 2max(|a|, |b|)�t

�x
.

A larger error, but still 3rd order accuracy, is observed, if we only include those terms of
the Taylor series expansion that are shown in Eq. (40). We call the resulting method ADER
reduced. The ADERmethod which uses all the non-zero derivative terms in the Taylor series
expansion will be called ADER full. However, it turns out that ADER reduced is less stable.
Therefore, we used smaller time steps corresponding to CFL ≤ 0.45. For comparison, we
also show the error curve of the active flux method with exact evolution for the same reduced
time step size.

6.2 Acoustics

The two-dimensional linear acoustic equations have the form

pt + c0ux + c0vy = 0 (41)

ut + c0 px = 0 (42)

vt + c0 py = 0, (43)

where c0 is the speed of sound, p is the pressure and u, v are the velocity components in
the x and y direction, respectively. Let q = (p, u, v)T denote the vector of the conserved
quantities and q0 = (p0, u0, v0)T the initial condition. Then, we can write this linear system
in the form

qt +
⎛
⎝ 0 c0 0
c0 0 0
0 0 0

⎞
⎠

︸ ︷︷ ︸
=:A

qx +
⎛
⎝ 0 0 c0
0 0 0
c0 0 0

⎞
⎠

︸ ︷︷ ︸
=:B

qy = 0 (44)
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Fig. 17 Accuracy study for the two dimensional advection problem. The yellow curve (AF / ADER full) shows
the error versus mesh if the exact evolution formula with CFL ≤ 0.9 is used to update the interface values.
For advection, the ADER method which uses all the nonzero derivative terms for the update of the interface
values is equivalent to the method which uses the exact evolution formula. The blue curve shows the error
for the ADER update, that uses time steps according to CFL ≤ 0.45 and only those derivative values that are
necessary in order to obtain third order. The red curve shows the error of the method that uses exact evolution
of the interface values and time steps according to CFL ≤ 0.45 (Color figure online)

Following our approach, the Taylor series expansion for the acoustic equations is given by

q(x, y, tn + τ) = q(x, y, tn) + τ(−Aqx − Bqy)

+ τ 2

2

(
A2qxx + ABqyx + BAqxy + B2qyy

) + O(τ 3). (45)

The procedure of solving the two-dimensional Riemann problems is almost the same as it
is for the advection equation. The only difference is the treatment of the mixed derivative
terms. As A and B do not commute, whenever we have to solve a one-dimensional Riemann
problem in x-direction (using matrix A) for the term ABqyx , we first multiply the initial
states of the Riemann problem with B, so they are now (Bqyx )L and (Bqyx )R . The solution
to this Riemann problem is then plugged back into (45) and only multiplied with A, and not
first with B and then with A, as would have been the case if the Riemann problem was solved
for (qyx )L and (qyx )R directly. The case BAqxy is treated in analogy. This concept can be
extended to higher derivative terms.

For the acoustics problem, the exact two-dimensional solution for data with constant
vorticity can be derived by the spherical means formula as was done for example in [4]. This
solution formula has the form

q(x, y, t) = MR{q0}(x, y) + R∂RMR{q0}(x, y) − RMR{Lq0}(x, y) (46)

where R = c0t ,

MR{q}(x, y) = 1

2πR

∫ 2π

0

∫ R

0
q(x + r cos θ, y + r sin θ)

r√
R2 − r2

drdθ (47)
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and

L =
⎛
⎝ 0 ∂x ∂y

∂x 0 0
∂y 0 0

⎞
⎠ . (48)

This is the formula that was proposed to be used to update the interface values in the active
flux method in [4]. Instead of q0 the reconstruction u at the current time is used and t is
replaced by �t . The outer integral in (47) is split up into the integrals over the individual
cells—two for the edges and four for the corners. This demands that time steps are bounded,
such that the circle with radius c0�t around the midpoint of a grid interface is inside the two
neighbouring grid cells. Thus we have a time step restriction of the form CFL ≤ 1, where
the CFL number is defined by

CFL := 2c0�t

min(�x,�y)
.

Note that Barsukow et al. [1] have simultaneously to us developed an active flux method for
the acoustic equations on Cartesian grids using the spherical mean formula for general initial
conditions. In Sect. 6.2, we will compare the active flux method which uses the spherical
mean formula with our ADER approach.

Upon inspection, the solution (46) is a polynomial in �t , as is the Taylor series expansion
that we use for our approach. Hence, it is interesting to compare the terms that are obtained
by the exact evolution formula with the terms obtained by our approximation. We could
not find an approach that was based on the solution of one-dimensional Riemann problems,
which matched all the terms that are approximated by the exact evolution formula. Here we
do not want to present these long and tedious formulas, which show the differences between
the two approaches. Instead we will present some numerical accuracy studies.

6.2.1 Accuracy Study

We consider the acoustic equations (44) with c0 = 1 and use periodic initial data of the form

p0(x, y) = − 1

c0
(sin(2πx) + sin(2π y))

u0(x, y) = 0

v0(x, y) = 0.

The solution at time T = 0.2 was computed on the rectangular computational domain
[−1, 1] × [−1, 1]. This test problem was suggested by Lukáčová et al. [9], where the exact
solution can also be found. We compare the active flux method with exact evolution with
our version of the active flux method that uses the ADER approach to update the interface
values. All the other components of the method were handled in the same manner.

In Fig. 18 we show the error as a function of the mesh width. Note that for this example
the error in u is always equal to the error in v. We again consider two different versions of the
ADER approach, one that uses all the non-zero derivative terms in the Taylor series expansion
(ADER full) and one version, which uses only those terms of the Taylor series expansion
that are needed to get third order accuracy (ADER reduced). In analogy to the advection
case, ADER reduced has a reduced stability. Therefore, we used time steps which satisfy
CFL ≤ 0.45. The error in the velocity components is almost identical for the three different
methods (i.e., exact evolution, ADER full andADER reduced). The exact evolution produced
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Fig. 18 Accuracy study for the two-dimensional acoustic equations.Wecompare results of ourADERapproach
with results where the exact evolution formula was used to update the interface values

the smallest error, followed by ADER full and ADER reduced. For this test problem, the two
ADER versions produced a slightly smaller error in the pressure component than the method
which used the exact evolution formula.

6.2.2 Radial Symmetric Test Problem

Now we study a radial symmetric problem, i.e. we solve the acoustic equations with c0 = 1
and initial values of the form

p(x, y, 0) = 1 + exp
(−μ

(
(x − x0)

2 + (y − y0)
2))

u(x, y, 0) = 0

v(x, y, 0) = 0.

We approximate the problem on the domain [−2, 2] × [−2, 2], set x0 = y0 = 0 and use
μ = 50. Note that the same problem was studied by Roe and Eymann [4]. There, the active
flux method was implemented on a triangular grid and the spherical mean formula was used
in order to compute edge values of the conserved quantities during each time step.

Again we compare two versions of the active flux which only vary in the update formula
of the interface values. We either use the spherical mean formula or the ADER reduced
approach. In Figs. 19 and 20 , we show numerical results at time t = 1.25 on grids with
50×50 as well as 150×150 grid cells. These are scatter plots of the solution, i.e. we plot the
interface values over r = √

(x − x0)2 + (y − y0)2. A scattering of the data indicates grid
effects. Both, on the coarse aswell as on the fine grid, the twomethods produce results that are
comparable in accuracy. Note that the accuracy observed on the Cartesian grid compares well
with the accuracy documented in [4], where the active flux method was used on triangular
grids with comparable resolution.
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Fig. 19 Scatter plots of pressure and velocity magnitude obtained with two different methods on a grid with
50× 50 grid cells. The blue dots (first line) show the results obtained by using the exact evolution formula for
the update of the edge values, the red dots (second line) indicate the results obtained using the ADER update
formula. The black line is the exact solution (Color figure online)

7 Conclusion

We have studied the active flux method of Eymann and Roe and proposed several variations
of this method for one and two-dimensional hyperbolic problems. The active flux method is
very attractive, due to its local stencil as well as its high accuracy, which was documented
for several test problems.

For one-dimensional linear hyperbolic problems, we showed that the active flux method
can be interpreted as a new version of the ADER method. We used this interpretation to
propose new active flux methods for nonlinear problems which do not rely on a splitting
approach.

While discontinuous reconstructions appear in almost all numerical methods for hyper-
bolic problems, Roe [12] raised the question as to whether this is really a good idea. Our
test computations show that in most situations a continuous reconstruction leads to very
accurate results. However, for nonlinear problems we identified a situation where the active
flux method in its original version fails to approximate the correct solution structure and
becomes unstable. For this situation we propose a discontinuous reconstruction which cures
this failure by solving an additional Riemann problem.

Furthermore, we discussed several limiting strategies for the one-dimensional active flux
method. For the original active flux method, we proposed two continuous reconstructions,
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Fig. 20 Scatter plots of pressure and velocity magnitude obtained with two different methods on a grid with
150× 150 grid cells. The blue dots (first line) show the results obtained by using the exact evolution formula
for the update of the edge values, the red dots (second line) indicate the results obtained using the ADER
update formula. The black line is the exact solution (Color figure online)

which led to accurate approximations of linear problems. Unfortunately, these new recon-
structions are not appropriate for the ADER implementation of the active flux method. For
the ADER version, limiting was introduced via the use of discontinuous, piecewise quadratic
reconstructions. Our limiting does not increase the stencil of the active flux method.

Alternatively, we can use a discontinuous, piecewise quadratic reconstruction that is bound
preserving as described by Zhang and Shu [22]. Such a limiting approach can be extended to
multi-dimensional problems and can be incorporated into the original version of the active
flux method as well as into our ADER approach.We are currently investigating this approach
for one and two-dimensional nonlinear problems.

In the two-dimensional case, there are many possibilities to define ADER methods which
use the same degrees of freedom as the original active flux method. We constructed ADER
methods, which use the underlying continuous, piecewise quadratic reconstruction as much
as possible in order to reduce the number of Riemann solves. For the advection equation, the
resulting ADER method is equivalent to the active flux method that uses the exact evolution
formula for the interface update. For the two-dimensional acoustic equations, the exact evo-
lution of interface values could not be obtained by an ADER type approach. However, our
accuracy studies show, that we can still obtain very accurate results.

Roe’s motivation to introduce the active fluxmethod was the construction of truly multidi-
mensional methods which do not rely on the solution of one-dimensional Riemann problems.
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If an exact evolution formula exists, very efficient and accurate active flux methods can be
derived. However, for most hyperbolic problems exact evolution formulas are not available.
Therefore, we believe that a good understanding of the connection between the active flux
method and the ADERmethod can lead to new third order accurate methods for conservation
laws.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Implementation of the Active Flux Method for the Euler
Equations

In this appendix we present some more details, which are needed in order to implement the
ADER version of the active flux method for the Euler equations.

The flux Jacobian matrix f ′(q) has the components

f ′(q) =
⎛
⎝ 0 1 0

1
2 (γ − 3)v2 (3 − γ )v (γ − 1)

1
2 (γ − 1)v3 − vH H − (γ − 1)v2 γ v

⎞
⎠ , (49)

with H = (E + p)/ρ.
In order to compute the interface values Qx (xi+ 1

2
, tn) and Qxx (xi+ 1

2
, tn) with the ADER

version of the active flux method with continuous, piecewise quadratic reconstruction, we
evaluate the flux Jacobian matrix at Qn

i+ 1
2
. At each time step and each grid cell interface,

we then solve Riemann problems of the form (28) and (29). These Riemann problem can be
solved exactly in analogy to the solution of Riemann problems for linear hyperbolic systems,
see for example [8].

At interfaces with discontinuous reconstruction, we solve an additional Riemann problem
of the form

Qt + f ′(Q̂n
i+ 1

2
)Qx = 0

Q(x, tn) =
{
ui (1) : x < xi+ 1

2

ui+1(0) : x ≤ xi+ 1
2
,

where Q̂n
i+ 1

2
is the Roe averaged state based on the values ui (1) and ui+1(0).

The tensor f ′′(q) has the components

(
∂2 f1

∂qi∂q j
(q)

)
i, j=1,...,3

=
⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ ,

(
∂2 f2

∂qi∂q j
(q)

)
i, j=1,...,3

=
⎛
⎜⎝

(3 − γ ) v2

ρ
(γ − 3) v

ρ
0

(γ − 3) v
ρ

(3 − γ ) 1
ρ

0
0 0 0

⎞
⎟⎠ ,

(
∂2 f3

∂qi∂q j
(q)

)
i, j=1,...,3

=

⎛
⎜⎜⎝
2γ E v

ρ2 − 3(γ − 1) v3

ρ
−γ E

ρ2 + 3(γ − 1) v2

ρ
−γ v

ρ

−γ E
ρ2 + 3(γ − 1) v2

ρ
−3(γ − 1) v

ρ
γ 1

ρ

−γ v
ρ

γ 1
ρ

0

⎞
⎟⎟⎠ .
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In regions with continuous reconstruction, we compute f ′′(Qn
i+ 1

2
), i.e. we evaluate the tensor

at the interface value of the conserved quantities, which were computed in the previous time
step. At interfaces with a discontinuous reconstruction, we first recompute Qn

i+ 1
2
by solving

an additional Riemann problem as described in Sect. 5.2. Now the tensor f ′′ is evaluated at
this recomputed interface value.
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