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Abstract
This article presents a new numerical method for approximately computing the ergodic
projector of a finiteMarkov chain. Our approach requires neither structural information on the
chain, such as, the identification of ergodic classes, transient states, or qualitative information,
such as whether the chain is nearly decomposable or not. The theoretical deduction of the
new method is corroborated by an extensive numerical study.

Keywords Power method · Numerical evaluation · Markov multi-chains · Transient states ·
Nearly decomposable

1 Introduction

This paper studies aperiodic Markov chains defined on discrete state space S = {1, . . . , S},
with S ∈ N. For ease of presentation we will consider the case of aperiodic Markov chains.
The extension of our results to the case of periodic chains is postponed to the “Appendix”.
The steady-state behavior of an aperiodicMarkov chain P is characterized through its ergodic
projector ΠP , where

ΠP = lim
n→∞ Pn,

see [17,23]. Computing ΠP in the above way, i.e., by taking powers of P , is known as the
power method (PM). Any finite aperiodicMarkov chain P is geometrically ergodic, i.e., there
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exist finite numbers r , c and β ∈ (0, 1) such that

∀n ≥ r : ‖Pn − ΠP‖ ≤ cβn,

where || · || denotes the maximum absolute row sum norm (note that any matrix norm may
be used), β is called the rate and r is called the transient phase, see, for example, [14,17].
Geometric ergodicity implies that PMenjoys a geometric rate of convergence once the powers
exceed r .

The main advantages of the power method are that PM is easy to implement and that it
requires no further information on P . In addition, PM can be efficiently implemented for
large sparse matrices, which is the main reason why PM is used for the acclaimed Google
PageRank algorithm introduced by Brin and Page [7], and for more detail see [4,9,20]. PM
has two main versions. In the vector-updating version of PM, one computes μPn for given
vector μ. Vector-updating applies in case a given Markov chain P̂ with known stationary
distribution πP̂ is updated (due to a change in the underlying hyperlink structure of the
network) to a new Markov chain P . Then, computing πP̂ P

n converges faster towards πP .
An advantage of vector updating is that it only requires vector-matrix multiplications. The
downside of this approach is that one cannot change the initial vector without a complete
recalculation. The matrix-updating version directly computes Pn in order to approximate
ΠP . The advantage of the matrix-updating PM is that by squaring a matrix power Pn , i.e.,
going from Pn to (Pn)2 = P2n , high powers of P can be relatively easily computed. Indeed,
computing Pn only requires log2(n) matrix multiplications. Moreover, applying different
initial vectors to ΠP allows to model different initial distributions which is of particular
interest in case of multi-chains, see the subsequent section for details. The downside is
that even with the log2(n) advantage, matrix updating may require a significant number of
matrix multiplications and as the power increase these matrices are not sparse. In case P is
periodic, both the vector-updating and the matrix-updating do not converge unless a convex
combination of the original P with the identity matrix is used which comes at the expense
of reduced convergence speed.

In this paper, we mainly focus on matrix-updating PM, from now on simply referred to
as PM. Iterative methods, such as PM converge slowly in case the subdominant eigenvalue
of P is close to 1, see [13,15]. This typically happens if either the P-chain only jumps with
small probability from the transient states to (one of) the ergodic class(es) or if P is nearly
decomposable. Roughly speaking, an irreducible chain P is called nearly decomposable if
the state-space can be divided into classes so that the interactions between states are relatively
frequent compared to interactions between the classes (a formal definition will be provided
later in the text). It can be shown that an irreducible Markov chain without transient states
is nearly decomposable if and only if the subdominant eigenvalue is close to 1, see [11]. A
famous example of a nearly decomposable Markov chain is the so-called Courtois matrix,
which is a 6 × 6 transition matrix for which PM requires n ≈ 69.000 in order to provide
an approximation of ΠP that is correct in first 6 digits, [25]. In case the ergodic classes
and the transient states are known, one may compute the ergodic projector directly by first
computing the equilibriumdistribution for each ergodic class, and then the long-termbehavior
of the transient states, see [5,17] and the detailed discussion in Sect. 2. For a comprehensive
overview of numerical methods for computing the ergodic projector of a finite Markov chain,
we refer to [25].

Our research on Markov chains is stimulated by the growing interest in the analysis of
social networks (where theMarkov chain is used to model relationships among social agents,
see [22]) and by the analysis of the world wide web, were based on the (bored-) random-
surfer-concept, the Markov chain models the probability of randomly going from one page
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to another, [9,20]. A key feature of these networks is that they are large and that neither
their structure (transient states, ergodic classes) nor their balancedness (nearly decomposable
or not) are known a priori. Other examples of these type of complex networks include
telecommunication networks, cognitive and semantic networks and biological networks.

In this paper, we develop a novel approach for approximating the ergodic projector of an
aperiodic Markov chain. We firstly establish a new representation of the ergodic projector
of P through constructing an alternative Markov chain and then make this result useful for
numerical computation. Starting point of our analysis is the known analytical relation

ΠP = lim
α↓0 α(I − (1 − α)P)−1,

see, for example, Theorem 1.5 in [16], where the term α(I − (1 − α)P)−1 is recognizable
as the resolvent kernel of P . See also [19] for applications of the resolvent kernel in stability
theory of Markov chains. We call the transformation

Hα(P) = αP(I − (1 − α)P)−1,

for α ∈ (0, 1], the modified resolvent kernel of P . In particular, the resolvent kernel is
modified so that it allows for efficient numerical evaluation. To see this note that in case of
large P one solves a system of linear equations, for which P can be used as a basis, rather than
computing the inverse explicitly. Letting Xα be a geometrically distributed random variable
with parameter α ∈ (0, 1), the modified resolvent kernel can be written as

Hα(P) = E[PXα+1],
since ‖(1 − α)P‖ < 1, which suffices to show that Hα(P) is again a Markov transition
matrix with the same ergodic projector as P for any α ∈ (0, 1), and since at α = 1 it holds
Hα(P) = P , the statement holds for α = 1 as well. In formula,

ΠP = ΠHα(P) = lim
k→∞ (Hα(P))k , α ∈ (0, 1]. (1)

The main contribution of this paper is that we take (1) as starting point for developing a new
numerical algorithm for computing ΠP . As main technical result we will show that

‖ΠP − (Hα(P))k ‖ ≤ (αγ (P))k, (2)

where γ (P) a finite (possibly large) constant depending on P , to be defined later in the text.
Letting α < 1/γ (P), the result put forward in (2) implies that the Markov kernel Hα(P)

is geometrically ergodic with transient phase r = 1 and rate αγ (P). Put differently, the
transformation P �→ Hα(P) provides a jump start for PM as the desired contraction property
is immediately effective. Moreover, we will show that iterating the transformation yields a
geometric reduction in the geometric rate, so that, for example, Hα(Hα(P)) has a rate that
is proportional to α2. The above theoretical results lead to a new numerical approach for
approximately computing ΠP , called jump start power method.

The main contributions of this paper are as follows.

– The error of approximatingΠP by powers of the modified resolvent (Hα(P))k is of order
(αγ (P))k . We use this fact to introduce the jump start power method (JSPM) that enjoys
the robustness of PMbut overcomes the numerical deficiency of PM. JSPMworkswell for
multi-chains, nearly decomposable chains, and chains that jump with small probability
from the transient states to (one of) the ergodic class(es).
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– An adapted version of JSPM is developed for large-scale Markov chains which utilizes
the structure of the Markov chain and takes only ‘one jump’ towards ΠP , i.e., k = 1
together with a carefully chosen α ∈ (0, 1).

– An extensive numerical study is provided that corroborates the form of the analytical
bound for the decay of the error and illustrates the numerical advantages of JSPM.

The article is organized as follows. Section 2 formally introduces Markov multi-chains,
nearly decomposable Markov chains, and defines concepts used throughout the article. Sec-
tion 3 presents the main technical results of the paper. Specifically, the approximate formula
in (2) is derived. JSPM is presented in Sect. 4 together with a numerical study on the perfor-
mance of the algorithm. The article concludes with a discussion of potential further research.
The extension of our results to the case of periodic chains is presented in the “Appendix”.

2 A Brief Review of Markov Chains

This paper studies aperiodic Markov chains defined on discrete state space {Xt }t=0,1,..., with
S = {1, . . . , S}; see [17] for definitions. For ease of presentation we will first consider
the case of aperiodic Markov chains. The extension of our results to the case of periodic
chains is postponed to the “Appendix”. For the (i, j)-th element of P it holds that P(i, j) =
Pr(Xt+1 = j |Xt = i) is independent of t and the past states, i.e., the probability distribution
of the next state only depends on the current state. This leads to

(Pn)(i, j) = Pr(Xn = j |X0 = i), for all (i, j) ∈ S × S,

which reads as the n-step transition probability of the Markov chain, where transition matrix
Pn is simply obtained from taking the n-th matrix power of P . Taking n to infinity leads to
the (i, j)-th element of the ergodic projector, denoted by ΠP , and defined by

ΠP (i, j) = lim
n→∞(Pn)(i, j), for all (i, j) ∈ S × S.

Entry ΠP (i, j) represents the probability of the chain being in state j in the long-run when
starting in state i . For more details we refer to [17].

In case the Markov chain has only one closed irreducible set of states, also called ergodic
class, and a (possibly empty) set of transient states, it is called a Markov uni-chain (in short:
uni-chain). For uni-chains it holds that the chain will eventually be trapped in the (unique)
ergodic class, independent of the initial state. The unique distribution to which a uni-chain
converges is described by the stationary distribution of P denoted as π�

P which can be found
by solving π�

P P= π�
P . Since the stationary distribution is independent of the initial state, all

rows of ΠP equal π�
P in case P describes a Markov uni-chain.

Markovmulti-chains (in short: multi-chains) havemultiple ergodic classes and a (possibly
empty) set of transient states. Other than for uni-chains, for multi-chains the initial state has
an impact on the resulting limiting distribution, which stems from the fact that once the chain
enters one of the several ergodic classes it remains there permanently. First of all, one has to
uncover the ergodic classes and the transient states using, for example, the alreadymentioned
algorithm in [8]. After possible relabelling of states, the transition matrix and the ergodic

123



Journal of Scientific Computing (2019) 78:1691–1723 1695

projector of a multi-chain can be written in the following canonical forms, respectively,

P =

⎡
⎢⎢⎢⎢⎢⎣

P1 0 0 · · · 0
0 P2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 PI 0
PT 1 PT 2 · · · PT I PTT

⎤
⎥⎥⎥⎥⎥⎦

and ΠP =

⎡
⎢⎢⎢⎢⎢⎣

Π1 0 0 · · · 0
0 Π2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 ΠI 0
R1 R2 · · · RI 0

⎤
⎥⎥⎥⎥⎥⎦

,

where I is the number of ergodic classes. For the i-th ergodic class, Pi gives the one step
transition probabilities between ergodic states from the i-th ergodic class and Πi gives a
square matrix of which all rows equal the unique stationary distribution of the chain inside
the i-th ergodic class. Specifically, all rows in ΠPi equal π

�
Pi
, which is the unique probability

vector satisfying π�
Pi
Pi = π�

Pi
. Note that all diagonal values of ΠP corresponding to ergodic

states are non-zero contrary to the diagonal values of transient states which are zero, an
insight that will be elaborated in Sect. 4.3. Hence, whether state i is ergodic or transient can
be concluded from the value of entry (i, i) of ΠP . We call this criterion for ergodicity of a
state the diagonal criterion.

Moreover, Ri ( j, k) gives the equilibrium probability of ending in ergodic state k (which
is part of the i-th ergodic class) when starting in transient state j . In order to calculate Ri ,
define J as the number of transient states, IT as the unity matrix of size J and Z( j, i) as the
probability of ending in the i-th ergodic class when starting in transient state j . Note that Z
is a J × I matrix Z . It then holds that

Z = (IT − PTT )−1 [PT 1e1 PT 2e2 . . . PT I eI ] ,

where ei is a column vector of ones of size equal to the number of states in ergodic class i ;
see, e.g., [5]. Denote the i-th column of Z with Z(•, i), then it holds that Ri = Z(•, i)π�

Pi
.

In case there are multiple ergodic classes the stationary distribution fails to be unique.
Indeed, any row of ΠP is a stationary distribution of the Markov chain. More specifically,
denote the i-th row ofΠP byΠP (i, •), then it holds thatΠP (i, •) is a probability distribution
which satisfiesΠP (i, •)P = ΠP (i, •). This implies that any convex combination of the rows
is also a stationary distributionof theMarkov chain, i.e., for (γi )i∈S :∑S

i=1 γi = 1 andγi ≥ 0,
for all i ∈ S, it holds that

∑S
i=1 γiΠP (i, •) is a probability distributionwhich is invariant with

respect to P . When an initial distribution μ� is considered, this convex combination is fixed
(and given by μ�) meaning that there exists a unique stationary distribution for the chain
started inμ� (describing the long-run behavior of the chain started inμ�), or, more formally,
μ�ΠP is the unique stationary distribution satisfying (μ�ΠP )P = (μ�ΠP ) when starting
in μ�. Literature concerning Markov multi-chains includes Markov decision processes from
[23], series expansion of Markov chains [2,5,6] and singular perturbation analysis [1,12]
where the underlying multi-chain structure is often known beforehand.

A Markov chain P is called nearly decomposable if P is irreducible and after possible
relabeling of states can be written

P =

⎡
⎢⎢⎢⎢⎣

P11 P12 · · · P1k

P21 P22
. . .

...
...

. . .
. . . P(k−1)k

Pk1 · · · Pk(k−1) Pkk

⎤
⎥⎥⎥⎥⎦

,

where the diagonal blocks Pii , i = 1, 2, . . . , k, are square and have rows that sum up to 1−ε,
with ε > 0 small.
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A Markov chain may belong to all of the above types simultaneously. For example, a
multi-chain with transient states may have an ergodic class that for itself constitutes a nearly
decomposable chain. Below we illustrate this by means of a simple Markov chain.

Example 1 Let p, q, r1, r2, r3 ∈ (0, 1) and define transition matrix P on state-space
{1, 2, 3, 4} as

P =

⎛
⎜⎜⎝

1 − p p 0 0
q 1 − q 0 0
0 0 1 0
r1 r2 r3 1 −∑3

i=1 ri

⎞
⎟⎟⎠ ,

where 0 <
∑3

i=1 ri ≤ 1.
Markov chain P is noticeably a multi-chain with ergodic classes {1, 2} and {3}. State 4 is

transient. If p, q are small, then the submatrix describing the transitions within the ergodic
class {1, 2} becomes nearly decomposable. Similar when

∑3
i=1 ri is small, state 4 is only

weakly connected to states {1, 2, 3}.
The ergodic projector of P can be computed to be

ΠP =

⎡
⎢⎢⎢⎢⎣

q
p+q

p
p+q 0 0

q
p+q

p
p+q 0 0

0 0 1 0
(r1+r2)q(∑3
i=1 ri

)
(p+q)

(r1+r2)p(∑3
i=1 ri

)
(p+q)

r3∑3
i=1 ri

0

⎤
⎥⎥⎥⎥⎦

.

Note that when p = q =∑3
i=1 ri = 0, we obtain P = I and ΠP = I .

Recall that throughout this paper we let || · || denote the maximum absolute row sum norm.
For any finite-state, aperiodic Markov chain P , there exists a finite number r such that

∀n ≥ r : ‖Pn − ΠP‖ ≤ cβn,

where c = supl=0,1,...,r−1 ‖Pl −ΠP‖ < ∞ and β ∈ (0, 1); see for details [14]. This property
is called geometric ergodicity and we will call r the transient phase and β the rate. For ease
of references, we call r , c, β ergodicity parameters of P .

In this paper we will also study the impact of starting with a power Pq for the evaluation
of ΠP and we introduce the following additional ergodicity parameters

γ (P, q) = κ(P, q)φ(R, q) + cβq(φ(P,q)+1)

1 − βq
, (3)

where

κ(P, q) = sup
n=q,q+1,...,qφ(P,q)

‖Pn − ΠP‖,

and

φ(P, q) =
⌈
max{r − q, 0}

q

⌉
.

For simplicity, we wrote in the introduction γ (P) instead of γ (P, 1).
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3 Bounding the Approximation Error

Starting point of our analysis is the equality

ΠP = (1 − α)ΠP + αΠP , for α ∈ [0, 1].
Adding and subtracting αPq to the right hand side gives

ΠP = αPq + (1 − α)ΠP P
q + α(ΠP − Pq),

where we used for the second term on the right hand side that ΠP P = ΠP . Inserting N
times this last expression for ΠP into the first ΠP on the right hand side leads to

ΠP = αPq
N∑

n=0

((1 − α)Pq)n + ΠP ((1 − α)Pq)N+1 + α(ΠP − Pq)

N∑
n=0

((1 − α)Pq)n .

(4)

For N , q ∈ N and α ∈ (0, 1) let

Gα(N , Pq) =
∑N

n=0((1 − α)Pq)n

1 − (1 − α)N+1 .

Note that for α ∈ (0, 1) and q ≥ 1 it holds that

Gα(Pq) := lim
N→∞Gα(N , Pq) =

∞∑
n=0

((1 − α)Pq)n = (I − (1 − α)Pq)−1,

where existence of the Neumann series is guaranteed since ‖(1−α)Pq‖ < 1, for α ∈ (0, 1).
Equation (4) can be rewritten in succession via (i) simplifying the second term, (ii) bringing
the second term of the right hand side to the other side, (iii) dividing by 1− (1− α)N+1 and
(iv) using the Gα(N , Pq)-notation:

ΠP = αPqGα(N , Pq) + α(ΠP − Pq)Gα(N , Pq). (5)

Remark 1 The (i, j)-th element of Gα(N , Pq) gives the scaled (1−α)-discounted expected
number of visits of the Markov chain with transition matrix Pq to the j-th state in the first
N + 1 number of discrete time steps (including the state i at time zero) when starting in state
i . Intuitively, the discounting ensures that the weights of the visits after many discrete time
steps of the Markov chain with transition matrix Pq becomes smaller and smaller, ensuring
existence of Hα(Pq) since ‖(1 − α)Pq‖ < 1, for α ∈ (0, 1).

Post-multiplying Eq. (5) with
(
αPqGα(N , Pq)

)k−1
, for k ∈ N

i.e., the k − 1 power of the first term of the right hand side of (5), gives

ΠP = (αPqGα(N , Pq)
)k + αk(ΠP − Pqk)

(
Gα(N , Pq)

)k
, (6)

where we used that

(
αPqGα(N , Pq)

)k−1
ΠP =

(
α
∑N

n=0(1 − α)n

1 − (1 − α)N+1

)k−1

ΠP = ΠP .

Taking the limit N → ∞ in (6) leads to

ΠP = (Hα(Pq))k + αk(ΠP − Pqk)
(
Gα(Pq)

)k
,
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where we use the notation

Hα(Pq) := αPqGα(Pq),

which is the modified resolvent kernel of P . Analogous to Gα(·) let in the following

Hα(N , Pq) := αPqGα(N , P).

Lemma 1 For k, q ∈ N, N ≥ φ(P, q), and α ∈ (0, 1) it holds that

∥∥∥ΠP − (Hα(N , Pq))k
∥∥∥ ≤

(
αγ (P, q)

1 − (1 − α)N+1

)k

.

Proof From (6) it follows that

ΠP − (Hα(N , Pq)
)k = αk(ΠP − Pq)Pq(k−1)(Gα(N , Pq))k . (7)

Since (ΠP − Pq)ΠP = 0, it holds that

(ΠP − Pq)Pq(k−1) = (−1)k−1(ΠP − Pq)k,

so that (7) can be written as

ΠP − (Hα(N , Pq))k = αk(−1)k−1(ΠP − Pq)k
(
Gα(N , Pq))

)k

= −
[
−α(ΠP − Pq)

∑N
n=0((1 − α)Pq)n

1 − (1 − α)N+1

]k
, (8)

where the definition of Gα(N , Pq) is filled in in the last equation. Applying norms to Eq. (8)
we get

‖ΠP − (Hα(N , Pq))k‖

≤
∥∥∥∥∥α(ΠP − Pq)

∑N
n=0((1 − α)Pq)n

1 − (1 − α)N+1

∥∥∥∥∥
k

(9)

≤
(

α
∑N

n=0(1 − α)n
∥∥ΠP − Pq(n+1)

∥∥
1 − (1 − α)N+1

)k

=
(

1

1 − (1 − α)N+1

)k
⎧⎨
⎩α

min{N ,φ(P,q)−1}∑
n1=0

(1 − α)n1
∥∥∥ΠP − Pq(n1+1)

∥∥∥

+α

N∑
n2=φ(P,q)

(1 − α)n2
∥∥∥ΠP − Pq(n2+1)

∥∥∥
⎫⎬
⎭

k

, (10)

where the summation is split atφ(P, q) into two summations, onewhere geometric ergodicity
does not apply and one where it does, respectively. Continuing calculations from (10) shows

‖ΠP − (Hα(N , Pq ))k‖

≤
(

1

1 − (1 − α)N+1

)k
{

sup
n=0,1,...,min{N ,φ(P,q)−1}

∥∥∥ΠP − Pq(n+1)
∥∥∥
[
1 − (1 − α)min{N+1,φ(P,q)}]

+ αcβq ((1 − α)βq )φ(P,q) 1 − ((1 − α)βq )max{N−φ(P,q)+1,0}

1 − (1 − α)βq

}k

. (11)

123



Journal of Scientific Computing (2019) 78:1691–1723 1699

So we may conclude from (11) that for

1. N ≤ φ(P, q) − 1 (geometric ergodicity does not apply):

‖ΠP − (Hα(N , Pq))k‖ ≤
(

sup
n=0,1,...,N

∥∥∥ΠP − Pq(n+1)
∥∥∥
)k

(12)

2. N ≥ φ(P, q) (geometric ergodicity applies): since

1 − (1 − α)φ(P,q) ≤ αφ(P, q), for α ∈ (0, 1) and φ(P, q) = 0, 1, . . . ,

it holds that

‖ΠP − (Hα(N , Pq))k‖ ≤
(

αγ (P, q)

1 − (1 − α)N+1

)k

,

where γ (P, q) is a finite constant defined in (3).

Note that it is necessary for the bound to be meaningful that N ≥ φ(P, q) so that the
geometric ergodicity applies. �
Remark 2 For notational easiness define the bound found in Lemma 1 in case N ≥ φ(P, q)

as f (α) =
(

αγ (P,q)

1−(1−α)N+1

)k
. It holds that

lim
α↓0 f (α) =

(
γ (P, q)

N + 1

)k

,

and

lim
α↑1 f (α) = (γ (P, q))k ,

so that limα↓0 f (α) < limα↑1 f (α) for k, q ∈ N and N ≥ φ(P, q). Furthermore, since1

d

dα
f (α) = kαk−1γ (q)k

1 − (1 + αN )(1 − α)N

[1 − (1 − α)N+1]k+1 > 0, for α ∈ (0, 1),

it holds that for any choice of k, q and N ≥ φ(P, q) it is optimal to choose α ∈ (0, 1) as
small as possible.

The following theorem summarizes some properties of Hα(Pq).

Theorem 1 It holds for k, q ≥ 1 and α ∈ (0, 1) that
∥∥∥ΠP − (Hα(Pq)

)k∥∥∥ ≤ (αγ (P, q))k (13)

and

ΠP = lim
α↓0(Hα(Pq))k = lim

q→∞(Hα(Pq))k = lim
k→∞(Hα(Pq))k . (14)

Proof Inequality (13) follows directly from Lemma 1 by letting N → ∞. The first two
equalities from (14) follow from Inequality (13) and the third equality from (1). �

1 Note that (1 + αN )(1 − α)N ≤ (1 + α)N (1 − α)N = (1 − α2)N < 1 for α ∈ (0, 1) and N ∈ N.
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Remark 3 Theorem 3 in the “Appendix” shows that the results put forward in Lemma 1 and
Theorem 1 apply to periodicMarkov chains with period d for q = 1when γ (P, 1) is replaced
by γ̄ (P, d) defined in the “Appendix”.

The result put forward in Theorem 1 shows that for α < γ (P, q) it holds that the modified
resolvent Hα(Pq) is geometrically ergodic with rate αγ (P, q), transient phase r = 1, and
ergodic projector ΠP .

As our numerical study in the second part of the paper shows, the modified resolvent is
potentially more efficient than PM, which makes it, apart from the fact that it directly applies
to multi-chains, an attractive alternative to PM. In the following, Hα(P) is illustrated for
Example 1.

Example 2 We revisit Example 1 where we assume that p, q, r1, r2 and r3 are non-zero
probabilities. For this chain Hα(P) can be explicitly solved to be

Hα(P) =
⎡
⎢⎢⎢⎢⎢⎣

α(1−p)+(1−α)q
α+(1−α)(p+q)

p
α+(1−α)(p+q)

0 0
q

α+(1−α)(p+q)
α(1−q)+(1−α)p
α+(1−α)(p+q)

0 0
0 0 1 0

αr1+(1−α)q(r1+r2)

(α+(1−α)(p+q))
(
α+(1−α)

(∑3
i=1 ri

)) αr2+(1−α)p(r1+r2)

(α+(1−α)(p+q))
(
α+(1−α)

(∑3
i=1 ri

)) r3
α+(1−α)

(∑3
i=1 ri

) α
(
1−∑3

i=1 ri
)

α+(1−α)
(∑3

i=1 ri
)

⎤
⎥⎥⎥⎥⎥⎦

.

Hence, letting α tend to zero yields element-wise convergence of Hα(P) to ΠP , which is in
accordance with Theorem 1. For example, the absolute error of the (1, 1)-th element equals

α p|p + q − 1|
(p + q)(α + (1 − α)(p + q))

so that the corresponding relative error is

|Hα(P)(1, 1) − ΠP (1, 1)|
ΠP (1, 1)

= α p|p + q − 1|
q(α + (1 − α)(p + q))

,

where Hα(P)(i, j) indicates the (i, j)-th element of Hα(P). It shows that the relative error
of Hα(P)(1, 1) can be bounded by the linear function αc1(p, q), where c1(p, q) = p|p +
q − 1|/min{q, q(p + q)} is a (p, q)-dependent constant.

Furthermore, the asymptotic probabilities of going from one ergodic class to another (or
to a transient state) are zero. This shows that Hα(P) uncovers the structure of the ergodic
classes. In addition, the approximation assigns in general a positive mass to jumps from a
transient state to itself, e.g.,

Hα(P)(4, 4) =
α
(
1 −∑3

i=1 ri
)

α + (1 − α)
(∑3

i=1 ri
) ,

which is strictly larger than zero if
∑3

i=1 ri < 1, while clearly ΠP (4, 4) = 0. Note that,
besides the case

∑3
i=1 ri = 1, the approximation may give the wrong impression that a

transient state, say i , is ergodic. However, when α is chosen sufficiently small (for example
of the order 10−8), together with the fact that there are no transitions from ergodic states
towards i , the fact that i is transient becomes apparent.

In the following, we analyze the effect that taking a power of the modified resolvent has
on the convergence. Denote (Hα(P))2(1, 1) as the (1, 1)-th element from (Hα(P))2. It then
holds that
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(Hα(P))2(1, 1) = (α(1 − p) + (1 − α)q)2 + pq

(α + (1 − α)(p + q))2
,

the relative error of which can be computed to be equal to
∣∣(Hα(P))2(1, 1) − ΠP (1, 1)

∣∣
ΠP (1, 1)

= α2
∣∣(p + q)

(
(1 − p)2 + pq

)− q
∣∣

q(α + (1 − α)(p + q))2
,

which can be bounded by the quadratic function α2c2(p, q) where

c2(p, q) = α2
∣∣(p + q)

(
(1 − p)2 + pq

)− q
∣∣

q(min{1, p + q})2 .

Note that when p + q = 1 or p = q = 0 the relative errors of approximation Hα(P)(1, 1)
and (Hα(P))2(1, 1) are zero. For p + q ∈ (0, 2] \ {1} and α ∈ (0, 1) the relative error
of (Hα(P))2(1, 1) is strictly smaller than that of Hα(P)(1, 1). Furthermore, comparing
the relative error bounds αc1(p, q) and α2c2(p, q) shows the quadratic improvement of
(Hα(P))2(1, 1), which is in accordance with Theorem 1. This illustrates the improvement
that can be achieved through the power k in the generalization. The other entries of Hα(P)

can be analyzed along the same lines.

In the following example, we discuss the convergence of Hα(P) in case of a nearly
decomposable Markov chain.

Example 3 In the light of nearly decomposable Markov chains it is interesting to see what
happens in case p + q ↓ 0 for the Markov chain in Example 1, i.e., when p and q are both
close to 0. L’Hôpital’s rule shows that the relative error of the (1, 1)-th element for p+q ↓ 0
in the limit equals

α

1 − α

p

q
,

see also the relative errors from Example 1. Similar, the relative error of Hα(P)(1, 2) con-
verges for p + q ↓ 0 towards

α

1 − α
.

Both relative errors show that arbitrary accuracy can be achieved by using the modified
resolvent with α small even in case of nearly decomposable Markov chains.

Now consider the case where
∑3

i=1 ri = ε, for ε > 0 small. In that case the Markov chain
breaks almost up into 3 ergodic classes. For the (4, 4)-th element it holds that

Hα(P)(4, 4) = α(1 − ε)

α + (1 − α)ε
,

which equals the absolute error, since ΠP1(4, 4) = 0. Choosing α such that

α <
εδ

1 − δ − (1 − δ)ε

leads to an absolute error smaller than δ, showing that arbitrary accurate precision can be
achieved with Hα(P) even in case the Markov chain almost breaks up into 3 ergodic classes.
Similar for the (4, 3)-th element of Hα(P) it can be shown that the relative error equals

|Hα(P)(4, 3) − ΠP (4, 3)|
ΠP (4, 3)

= 1 − ε

α + (1 − α)ε
,
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showing that in order to obtain a relative error smaller than η one should choose α ≤
εη, again showing that any accuracy can be achieved in theory. Note that Hα(P)(4, 1) =
Hα(P)(4, 2) = Hα(P)(4, 3) = 0 in case

∑3
i=1 ri = 0, i.e., in case theMarkov chain consists

of three ergodic classes this is correctly detected.

Alternatively to PMapplied to Hα(P), onemay compute themodified resolvent of Hα(P).
More specifically, one may construct recursively a sequence {Hα(P; n) : n ∈ N} of nested
modified resolvents with Hα(P; 0) = P and, for n ≥ 1

Hα(P; n) = Hα(Hα(P; n − 1)).

As the following theorem shows, the norm error of Hα(Pq ; n) can be bounded by a geometric
function with power n and rate α.

Theorem 2 For α ∈ (0, 1) such that αγ (P, q) < 1 it holds that

‖ΠP − Hα(Pq ; n)‖ ≤ γ (P, q)αn

1 − αγ (P, q)(1 − αn−1)
, n ∈ N,

and

lim
n→∞ Hα(Pq ; n) = ΠP .

Proof Proof via mathematical induction. Because αγ (P, q) < 1 it is clear that the bound
holds true for n = 1 via Theorem 1. Now suppose it holds true for general n − 1 ≥ 1, then

‖ΠP − Hα(Pq ; n)‖ = ‖ΠP − Hα(Hα(Pq ; n − 1))‖
since ‖(1 − α)Hα(Pq ; n − 1)‖ < 1 we can write out the inverse and bring ΠP inside the
summation

=
∥∥∥∥∥α

∞∑
l=0

(1 − α)l(ΠP − (Hα(Pq ; n − 1))l+1)

∥∥∥∥∥
straightforward bounding

≤ α

∞∑
l=0

(1 − α)l
∥∥∥ΠP − (Hα(Pq ; n − 1))l+1

∥∥∥

since ΠP Hα(Pq ; n − 1) = ΠP

≤ α

∞∑
l=0

(1 − α)l
∥∥ΠP − Hα(Pq ; n − 1)

∥∥l+1

filling in the induction hypothesis

= γ (P, q)αn

1 − αγ (P, q)(1 − αn−2)

∞∑
l=0

(
(1 − α)γ (P, q)αn−1

1 − αγ (P, q)(1 − αn−2)

)l

for all n − 1 ≥ 1 when αγ (P, q) < 1 it holds that (1−α)γ (P,q)αn−1

1−αγ (P,q)(1−αn−2)
< 1 and thus

= γ (P, q)αn

1 − αγ (P, q)(1 − αn−2) − (1 − α)γ (P, q)αn−1
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taking out αγ (P, q) in the denominator gives

= γ (P, q)αn

1 − αγ (P, q)(1 − αn−1)

thereby showing that it holds for n and thus ends the proof. �
Corollary 1 For α ∈ (0, 1) such that αγ (P, q) < 1 it directly follows from the above theorem
that

‖ΠP − Hα(P; n)‖ ≤ ε

1 − ε
αn−1, n ≥ 1, (15)

when we define ε = αγ (P, q). Furthermore, since Hα(P; n)ΠP = ΠP it holds for k ≥ 1
that

‖ΠP − (Hα(P; n))k ‖ = ‖ (ΠP − Hα(P; n))k ‖
≤ (‖ΠP − Hα(P; n)‖)k

=
(

ε

1 − ε
αn−1

)k

,

where in the last Eq. (15) is used.

Remark 4 The results put forward in Theorem 2 and Corollary 1 apply for the case q = 1 also
to periodic Markov chains with period d when γ (P, 1) is replaced by γ̄ (P, d). For details
see the “Appendix”.

Theorem 2 shows that repeated application of the modified resolvent yields a geometric
improvement of the rate of geometric ergodicity. Example 4 illustrates Theorem 2.

Example 4 We revisit the instance from Examples 1 and 2 where we assume that p, q, r1, r2
and r3 are non-zero probabilities. For this chain Hα(P; 2) can be explicitly solved to be

Hα(P; 2)

=

⎡
⎢⎢⎢⎢⎢⎣

q+α2(1−p−q)

p+q+α2(1−p−q)

p
p+q+α2(1−p−q)

0 0
q

p+q+α2(1−p−q)

p+α2(1−p−q)

p+q+α2(1−p−q)
0 0

0 0 1 0
(r1+r2)q(1−α2)+r1α2

((p+q)(1−α2)+α2)
(
(1−α2)

∑3
i=1 ri+α2

) (r1+r2)p(1−α2)+r2α2

((p+q)(1−α2)+α2)
(
(1−α2)

∑3
i=1 ri+α2

) r3
(1−α2)

∑3
i=1 ri+α2

(1−∑3
i=1 ri )α

2

(1−α2)
∑3

i=1 ri+α2

⎤
⎥⎥⎥⎥⎥⎦

.

This shows that Hα(P; 2) converges with quadratic rate in terms of α towards ΠP . Conse-
quently, a larger rate of convergence is achieved for Hα(P; 2) than for Hα(P); compare with
Example 2. More specifically, the relative error of the (1, 1)-th element equals

|Hα(P; 2)(1, 1) − ΠP (1, 1)|
ΠP (1, 1)

=
∣∣∣∣

p(1 − p − q)

q(p + q) + α2q(1 − p − q)

∣∣∣∣α2,

where the absolute term converges to constant p|1−p−q|
q(p+q)

for α small. Similar, the relative
error of Hα(P; 3)(1, 1) equals

|Hα(P; 3)(1, 1) − ΠP (1, 1)|
ΠP (1, 1)

=
∣∣∣∣

p(1 − p − q)

q(p + q) + α3q(1 − p − q)

∣∣∣∣α3,

showing that the relative error error is approximately a factor α smaller than that of
Hα(P; 2)(1, 1) in accordance with what can be expected from Theorem 2.
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Unfortunately, as γ (P, q) is not available, it is neither clear what a good initial choice
for α is, nor when to terminate (Hα(P))k or the repeated application of Hα(P; n). In the
following, we will address these two issues in more detail.

Remark 5 In [24] the resolvent of a Markov chain P is defined as

Rρ = (ρ I + (I − P))−1 = ((1 + ρ)I − P)−1,

for ρ > 0. Let ρ = α/(1 − α), then

Rρ = (1 − α)(I − (1 − α)P)−1,

which yields

Gα(P) = 1

1 − α
Rρ.

Puterman develops in [24] the resolvent into a Laurent series yielding

ρRρ = ΠP −
∞∑
n=0

(−ρDP )n+1,

in our notation with ρ = α/(1 − α)

ΠP − αGα(P) =
∞∑
n=0

(
− α

1 − α
DP

)n+1

.

Note that the series on the above right hand side involves the deviation matrix DP = (I −
P + ΠP )−1 − ΠP and that deriving efficient bounds for the norm of the deviation is itself a
demanding task in case of multi-chains. As the norm of the deviation matrix typically takes
large values, the above series only applies for significantly small values of α.

4 The Jump Start Power Method

In the previous section, we have shown that going from P to the modified resolvent Hα(P)

potentially yields a geometrically ergodic Markov chain with no transient phase (i.e., r = 1).
In this section we show how this result can be made fruitful for numerical computations. In
particular, Sect. 4.1 illustrates the modified resolvent theory through numerical experiments,
Sect. 4.2 develops a practical method that exploits the developed theory by introducing the
jump start power method (JSPM) and provides numerical results. Lastly, Sect. 4.3 discusses
and numerically illustrates the use of JSPM in case of large (sparse) systems.

4.1 Motivating Numerical Experiments

As a first step we analyze the effect of mapping P to Hα(P) by comparing numerically
Pn with Hα(P). The considered instances cover a wide range of Markov chains and for
an overview, we refer to Table 1. Each row in Table 1 corresponds to an instance defined
by its transition matrix (Tr. Matrix). The instances are based on random graph models that
capture key properties of real-life networks. The instances vary in terms of size S (given
in the ’S’ column), structure (given in the ’Ergodic Structure’ column), connectivity (as
indication, column ’p’ gives the smallest non-zero element of P), and parameters used for

123



Journal of Scientific Computing (2019) 78:1691–1723 1705

random graph models (given in the ’Description’ column). The ergodic structure is denoted
by ([v1, v2, . . . , vI ], T ), where I is the number of ergodic classes, vi the number of states
in the i-th ergodic class and T = S −∑I

i=1 vi is the number of transient states. In case of
transient states, the corresponding part in P is randomly filled such that transient states most
likely point towards each other and multiple ergodic classes (if possible). The description
column gives the relevant reference of the instance together with parameters given in the
same order as they appeared in the original reference, where altered labels are used in case
of conflicting notation (e.g., if α is used as parameter in the original reference, we refer to
this parameter as β). For the implementation of the different instances, the code provided in
MATLAB toolbox CONTEST [26] was used. The CONTEST toolbox generates symmetric
adjacency matrices which are in many cases periodic. In order to obtain the corresponding
transition matrix P , the rows are first normalized ensuring that each row sums up to one.
Afterwards, the transition matrix P is mixed with the identity matrix to achieve aperiodicity,
which does not affect the ergodic behavior of the chain.

Comparison of Pn and Hα(P) In the first numerical experiment, we compute for a series
of Markov chains Pi , with 1 ≤ i ≤ 4 in Table 1, the power nα(P) such that

∣∣∣‖ΠP − Hα(P)‖ − ‖ΠP − Pnα(P)‖
∣∣∣ < 10−12.

In words, nα(P) is the power of P that is substituted by Hα(P). Note that a power nα(P) can
be obtained via log2 nα(P) matrix multiplications. The numerical results depicted in Fig. 1
show that the modified resolvent can replace PM approximations for large powers.

In particular for the Courtois matrix P1, in order to approximately achieve a norm error of
7.92 · 10−7 a power is needed of 216 while the same norm error is obtained via the modified
resolvent with α ≈ 10−10. For P4 the modified resolvent with α ≈ 10−11.18 leads to the same
norm error (of approximately 1.63 · 10−5) as PM with power 20655175 (≈ 224.3). As for
computation times, experiments showed that on average PM (P4)k with power k = 20655175
takes on average 73.12 seconds in a sparse matrix setting whereas the modified resolvent
Hα=10−11.18(P4) takes on average 2.68 seconds, i.e., a difference of factor 27.28 on average
(the experiments were performed in MATLAB R2011b on a 64-bit Windows desktop PC
with Intel(R) Core(TM) i5-2310 CPU @ 2.90GHz processor).

Length of Transient Phase for Hα(P) Figure 2 illustrates the effect that powers of Hα(P)

have on the norm error for the Courtois matrix. Different values for α are considered and for
each α the exponential decay location is determined and thereby the length of the transient
phase is identified. Note that Hα=1(P) equals P . A heuristic approach is used to find the
exponential decay location where for each α an exponential function is repeatedly fitted to the
data until the coefficient of determination R2 is close enough to 1 (where R2 = 1 represents
a perfect fit). After each fit which leads to an insufficient coefficient of determination, the
dataset is reduced by increasing the value of the first considered power n and the fitting
repeats. The found exponential decay locations (i.e., the smallest power in the dataset that
led to R2 sufficiently close to 1) are denoted with the large dots and labeled, where the labels
correspond to the fitted functions given under the graph together with the R2 in parenthesis
behind the function.

The main observation from Fig. 2 is that the exponential decay locations shift to the left
(and thereby the transient phase becomes smaller) for decreasing values of α.

This phenomenon has been theoretically shown in the previous section. It is worth noting
for α ≤ 10−3 there is no transient phase, i.e., r = 1 in these cases. Furthermore, from the
fitted functions it follows that smaller α values lead to stronger norm error reduction for
increasing powers.
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Fig. 1 Combinations of α and nα(Pi ) such that
∣∣∣‖ΠPi − Hα(Pi )‖ − ‖ΠPi − (Pi )

nα(Pi )‖
∣∣∣ < 10−12 for

i = 1, 2, 3, 4

The Nested Modified Resolvent Hα(P; n) Similar to Figs. 2, 3 illustrates the effect of the
nested modified resolvent Hα(P; n) for varying n in case P = P1.

It shows that relatively large values for α already lead to small norm errors after a few
iterations. In particular, the fitted relation between the norm error of Hα=0.01(P; n) and n is
approximately 4901e−4.6n whereas that of (Hα=0.01(P))n and n is approximately e−0.0198n

(see also Fig. 2), showing that the effect of an increase in the number of iterations in the
nested modified resolvent is far more effective than an increase in the power of the modified
resolvent for the same α. It therefore illustrates the sharper bound found for the nested
modified resolvent in comparison with powers of the modified resolvent.

4.2 Jump Start Power Method (JSPM)

In this section,wewill develop a power-method like algorithmbased on the theory established
in the previous section. To that endwe discuss how to chooseα andwe provide a stopping rule

123



1708 Journal of Scientific Computing (2019) 78:1691–1723

Fig. 2 Development norm errors for powers of modified resolvent in case of the Courtois matrix

for the algorithm. Our recommendations are based on numerical experiments and balance
avoiding numerical issues with achieving good numerical approximations.

Numerical experiments indicate that in order to achieve high accuracy it is best to choose
relatively large α and take powers of the resulting modified resolvent. Unfortunately, the
modified resolvent is no sparse matrix and computing powers is rather costly. Alternatively,
one may choose α (very) small and calculate the modified resolvent only once (without
taking powers). This, however, may lead to numerical issues when approaching the machine
precision. In particular, the condition number of matrix (I − (1−α)P) grows for decreasing
α, therefore, choosing α significantly small leads to an ill-conditioned matrix which is more
difficult to invert accurately. For purpose of illustration consider the Courtois matrix P1. It
then holds that
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Fig. 3 Development norm errors for nested modified resolvent in case of the Courtois matrix

‖ΠP1 − Hα=10−10(P1)‖ ≈ 5.09 · 10−7.

According to the theoretical results decreasing α to, say, α = 10−12 should improve the
quality of the approximation (see Theorem 1). But the contrary is true as

‖ΠP1 − Hα=10−12(P1)‖ ≈ 3.48 · 10−5.

This shows that numerical issues come into play when computing the modified resolvent for
α = 10−12 for P1. A similar effect can be observed for the nested modified resolvent

‖ΠP1 − Hα=10−3 (P1; 3)‖ ≈ 5.00 · 10−6 compared to ‖ΠP1 − Hα=10−4 (P1; 3)‖ ≈ 3.62 · 10−5,
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Fig. 4 Illustration of the norm errors for (Hα(P1))
k with varying α and k

and even for PM with P1 rounding errors can lead to numerical issues, i.e.,

‖ΠP1 − P105
1 ‖ ≈ 2.06 · 10−9 compared to ‖ΠP1 − P1010

1 ‖ ≈ 1.22 · 10−5.

In Fig. 4 the norm errors of (Hα(P1))k , i.e., ‖ΠP1 − (Hα(P1))k‖, are plotted for varying
α ∈ (0, 1) and powers k. From Fig. 4 it follows for each k that choosing α too small leads
to numerical issues and consequently leading to an increase of norm errors, contrary to
what can be expected from theory. For example, for k = 1 numerical issues appear when
choosing α smaller than 10−10 from where the norm errors start increasing in a zig-zag
pattern. Furthermore, the figure shows that the smallest norm errors can be achieved by
larger powers k and relatively larger α.

Based on the above results, we advise to use the modified resolvent in a PM framework
with a carefully chosen α. When to terminate the power iterations is a delicate matter. A
natural stopping rule is to terminate the algorithmwhen the improvement of an extra iteration
becomes insignificant.More specifically, in order to find a power k such that ‖ΠP −Pk‖ ≤ ε,
one may terminate PM if ‖Pk P − Pk‖ < ε, for ε > 0 small. Unfortunately, this stopping
rule may stop the algorithm too early as is illustrated in Example 5 below.

Example 5 For δ ∈ (0, 1) and k ∈ N let

P =
[
1 − δ δ

0 1

]
so that ΠP =

[
0 1
0 1

]
and Pk =

[
(1 − δ)k 1 − (1 − δ)k

0 1

]
.
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It can be shown that ‖Pk P − Pk‖ = 2δ(1 − δ)k and ‖ΠP − Pk+1‖ = 2(1 − δ)k , which
implies that

δ ‖ΠP − Pk+1‖ = ‖Pk P − Pk‖.
Hence, ‖Pk P − Pk‖ ≤ ε only implies

‖ΠP − Pk+1‖ ≤ ε

δ
,

which for small values of δ (e.g., δ < ε/2) provides no insight and thereby showing that the
stopping rule is insufficient.

To prevent a similar pitfall when using ‖(Hα(P))k Hα(P)−(Hα(P))k‖ < ε for α ∈ (0, 1)
as stopping rule, we recommend choosing α such that

α = min{αmax, p/N }, (16)

where αmax is a user-defined upper bound for α, p denotes the minimal non-zero value of
P , formally given by,

p := min
i, j

{P(i, j) : P(i, j) > 0},

and N is a user-defined scaling to ensure that α is significantly smaller than p. The intuition
is that by choosing α << p the effect of the smallest transition is taken into account. As
illustrated by our numerical examples, even for a nearly decomposable matrix, the minimal
non-zero entry is typically not so small that α given in (16) leads to numerical instabilities
for Hα(P). In addition, choosing α as in (16) typically leads to Hα(P) having no transient
phase (i.e., r = 1).

The above considerations lead to the following jump start power method (JSPM).

(1) Choose α = min{αmax, p/N } and select numerical precision ε.
(2) Initialize k = 1 and calculate Hα(P).
(3) Set k = k + 1.
(4) If

‖(Hα(P))k−1Hα(P) − (Hα(P))k−1‖ ≥ ε

go to step 3. Otherwise go to step 5.
(5) Return (Hα(P))k .

It is worth noting that rather than computing the resolvent in Step 2 of the JSPM directly,
which requires evaluating the inverse of I − (1 − α)P , it is numerically more efficient to
solve X(I − (1−α)P) = αP , which reduces the problem to that of solving systems of linear
equations.

In Table 3 some numerical results for JSPM are shown. For an overview of the instances
see Table 1. Two parameter choices for α and ε are considered, see Table 2. Parameter Setting
1 aims at achieving higher accuracy of the approximation (i.e., a small value for ε), which
is numerically possible by choosing α not too small. Parameter Setting 2 focuses more on a
quick convergence of the algorithm, i.e., a larger value for ε compared to setting 1 and small
α.

From the results put forward in Table 3, it follows that significantly smaller norm errors
can be achieved using Parameter Setting 1 but at the cost of more iterations (read, powers of
Hα(P)). Since themodified resolvent is typically not sparse taking powers of Hα(P) becomes
impractical for large Markov chains. This issue will be the topic of the next subsection.
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Table 2 Parameter settings used for JSPM in numerical experiments

α ε Aim

Parameter setting 1: min{10−4, p/100} 10−8 High accuracy

Parameter setting 2: min{10−8, p/S} 10−6 Fast computation

Table 3 Results of JSPM for two parameter settings given in Table 2

Parameter setting 1 Parameter setting 2
Tr. Matrix Norm error # Iterations Norm error # Iterations

P1 2.4461e−010 4 4.8780e−009 3

P2 4.3119e−012 4 1.8567e−008 2

P3 1.1869e−012 4 1.0155e−008 2

P4 1.6029e−008 42 1.3002e−008 5

P5 4.3520e−009 3 1.9519e−008 2

P6 5.3403e−010 4 2.5750e−008 3

P7 4.7504e−010 8 5.9758e−009 3

P8 2.4177e−010 3 1.6035e−008 2

P9 4.6657e−010 3 5.9593e−008 2

4.3 JSPM for LargeMarkov Chains

This final subsection discusses JSPM for large Markov chains. A common feature of large
chains is that the transition matrix P is sparse but the ergodic projector ΠP is not due to
connectivity [22]. This leads to numerical issues in approximatingΠP . In particular for JSPM:
when the approximation (Hα(P))k approaches ΠP as k is increasing, iterations become
computational more expensive and a memory burden emerges due to the loss of sparsity.

Therefore, in case of large instances, our advice based on numerical experiments is to
choose α significantly small and return Hα(P) as approximation, i.e., apply the JSPM for
k = 1. In addition, instead of calculating Hα(P) as a whole, we recommend to calculate a
concentrated version of Hα(P), denoted by Hc

α(P), where the computation of Hc
α(P) utilizes

the structural properties of ΠP such as the fact that all rows corresponding to ergodic states
from the same ergodic class are identical. In particular, when row i of Hα(P), denoted by
Hα(P)(i, •), is calculated, then based on this approximation it can be decided whether i
is ergodic or transient by inspecting the value of Hα(P)(i, i). Indeed evoking the diagonal
criterion, see Sect. 2, state i is ergodic if and only if Hα(P)(i, i) is significantly larger than 0.
In case i is identified as ergodic, all indexes corresponding to (significantly) positive entries
of Hα(P)(i, •) are identified as belonging to the same ergodic class. Vector Hα(P)(i, •) is
saved in Hc

α(P) as approximation for the rows of the particular ergodic class and we are
done considering all the indexes from this ergodic class. In case i is identified as transient,
Hα(P)(i, •) is saved in Hc

α(P) as approximation for the i-th row of ΠP . We will refer to
this procedure as the adapted JSPM version for large instances.

In the following, we introduce the adapted JSPM algorithm, where E j denotes the set of
indexes identified as part of the j-th ergodic class, I denotes the number of identified ergodic
classes, and C denotes the set of considered/evaluated indexes. The user-defined value to
decide whether a state is ergodic or not is denoted by ι, with ι > 0. For large instances P ,
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Table 4 Large instances used for numerical experiments

Tr. Matrix Description S Ergodic structure p

P10 Preferential attachment network, [3],
with parameter d = 2.

10,000 ([10,000],0) 1.1e−3

P11 Kleinberg’s network, [18], with
parameters p = 1, q = 1 and
β = 1.5.

15,625 ([15,625],0) 4.6e−2

P12 Block diagonal transition matrix of
P10 and P11 with weak connection
between P10 and P11. I.e., two
random nodes from P10 and P11,
resp., are connected with
probability 1.5e−9.

25,625 ([25,625],0) 1.5e−9

P13 Block diagonal transition matrix of
P10 and P11 with 30 transient
states.

25,655 ([10,000 15,625],30) 1.9e−6

It has the same setup as Table 1, see also the corresponding description in Sect. 4.1. For implementation the
MATLAB code provided by CONTEST [26] was used

the adapted JSPM for computing Hc
α(P) can be summarized as follows (recall that S is the

state space of the Markov chain under consideration):

(1) Choose ι > 0.
(2) Initialize I = 0 and C = ∅.
(3) If S \ C �= ∅:
(3.1) Select i ∈ S \ C .
(3.2) Calculate Hα(P)(i, •).

Otherwise go to step 6.
(4) If Hα(P(i, i)) > ι:

(4.1) State i is identified as ergodic, set I = I + 1.
(4.2) EI = { j : Hα(P)(i, j) > ι}.
(4.3) C = C ∪ EI .

Otherwise i is identified as transient, set C = C ∪ {i}.
(5) Save Hα(P)(i, •) in Hc

α(P) and go to step 3.
(6) Return Hc

α(P).

For instances P10, P11, P12 and P13 from Table 4 the adapted JSPM is applied where we
have chosen α = min{10−10, (p)2} and ι = (1/S)2. The philosophy behind the choice of
α is similar to Parameter Setting 2 in the previous section, i.e., small α is chosen such that
one iteration is most likely sufficient. Our experience for real life networks is that ι = (1/S)2

ensures correct distinctions between transient and ergodic states. In Table 5 the norm errors
and computation times in seconds (sec.) of the experiments can be found.

From the results it follows that high accuracy is achieved in a relatively small amount
of time, i.e., a unique row of Hα(P) in case of 25625 states is calculated with MATLAB
R2011b in 1.37 seconds on a 64-bit Windows desktop PC with Intel(R) Core(TM) i5-2310
CPU @ 2.90GHz processor with norm error 3.524 · 10−8. To put the results into context,
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Table 5 Results for adapted
JSPM, with
α = min{10−10, (p)2} and
ι = (1/S)2, in case of large
instances

‖ΠPi − Hc
α(Pi )‖ Computation time (in s) Hc

α(Pi )

i = 10 2.0553e−010 0.24

i = 11 1.6724e−010 1.14

i = 12 3.5243e−008 1.37

i = 13 6.1897e−006 45.80

for instance P12 it takes on average 2.49 seconds to calculate μ�(P12)4, i.e., two sparse
matrix multiplications, to obtain (P12)4, with norm error ‖μ�ΠP12 − μ�(P12)4‖ = 0.1794,
where μ� equals the first row of an appropriate sized identity matrix. It becomes even more
counterproductive ifwe calculateμ�(P12)8,which takes on average 593.75 seconds and leads
to norm error ‖μ�ΠP12 −μ�(P12)8‖ = 0.079. The significant increase in computation time
is due to loss of sparsity. In this case, the vector-updating version of PM might be more
efficient. Indeed, performing 7 sparse vector-matrix multiplications to obtain μ�(P12)8 =
P12(1, •)(P12)7, requires only 0.0109 seconds. However, evaluating μ�(P12)10000 in this
way, leading to norm error ‖μ�ΠP12 − μ�(P12)10000‖ = 0.0048, already requires 15.63
seconds. Clearly, this demonstrates the potential of the adapted JSPM in evaluating the
ergodic projector. Similar observations can be expected for the other large instances.

A way to (most likely) improve accuracy of the adapted JSPM without significantly
increasing computation time is to calculate Hc

α(Pq), for q > 1. The intuition is that for
relatively small q , Pq may not affect the sparsity too much (increase in computation time
is limited) but may increase the accuracy (which is likely according to the theory). Note
that although it is common, it is not necessary that larger q increases accuracy, theory only
provides upperbounds for the norm error. Example 6 provides an instance for which a larger
q does not increase accuracy of Hα(P).

Example 6 Take

P =
⎡
⎣
0.1 0.45 0.45
0.9 0.1 0
0.9 0 0.1

⎤
⎦ so that ΠP =

⎡
⎣
1/2 1/4 1/4
1/2 1/4 1/4
1/2 1/4 1/4

⎤
⎦ and

P2 =
⎡
⎣
0.82 0.09 0.09
0.18 0.415 0.405
0.18 0.405 0.415

⎤
⎦ .

It holds that‖ΠP−Hα=10−6(P)‖ ≈ 4.44·10−7,whereas‖ΠP−Hα=10−6(P2)‖ ≈ 1.78·10−6,
which is due to the periodic behavior of P (visible by comparing P and P2).

For the instances put forward in Table 4 we tested the effect of considering (Pi )2 instead
of Pi , where i = 10, 11, 12, 13,. Most of the time taking a power increased the accuracy but
more significantly increased computation time so that practical usability of taking powers is
questionable.

5 Conclusion

This paper introduces JSPM which is a generalization of PM. JSPM is a highly accurate
approximation method for the ergodic projector of a general finite Markov chain, includ-
ing periodic Markov multi-chains. Convergence analysis and numerical experiments show
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that it can provide a viable generalization of PM. Especially in case of large-scale Markov
chains, JSPM works well and can deal with nearly decomposable chains without running
into numerical instabilities.

Further research includes extending the techniques used for analyzing JSPM to the devi-
ation matrix and achieving higher accuracy via numerical ingenuity.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proof of Results for Periodic Markov Chains

The main results of this paper can be extended to periodic Markov chains, also known as
cyclic Markov chains. As standard literature is in general not concerned with cyclic Markov
multi-chains, required technical toolbox with respect to cyclic Markov multi-chains will be
developed first.

The Cesaro limit (of order one) version of the ergodic projector is given by

ΠP = lim
N→∞

1

N

N−1∑
n=0

Pn .

Property ΠP P = ΠP also holds for the Cesaro limit version. When P is aperiodic,
limN→∞ Pn exists and equals ΠP , see, e.g., the appendix in [23].

For i ∈ S, define

A(i) = {n ∈ N : Pn(i, i) > 0}.
Using this notion, let the period of state i ∈ S be described as

d(i) =
{
GCD(A(i)), A(i) �= ∅
1, A(i) = ∅,

where GCD(·) denotes the greatest common divisor (GCD) of a set. The period d of aMarkov
multi-chain with P is defined as

d = LCM({d(i), i ∈ S}),
where LCM(·) denotes the least common multiple (LCM) of a set.

The communicating class of i ∈ S is denoted by C(i) and can be formalized as

C(i) = { j ∈ S | ∃ n1, n2 ≥ 0, Pn1(i, j) > 0, Pn2( j, i) > 0}.
Note that A(i) is closed under addition, i.e.,

n1 ∈ A(i), n2 ∈ A(i) �⇒ n1 + n2 ∈ A(i),

and it follows from number theory that A(i) contains all but a finite number of positive
multiples of d(i):

∃ K = K (i), ∀k ≥ K : Pkd(i)(i, i) > 0. (17)

This allows us to prove the following connection between periodic and aperiodic Markov
chains.
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Lemma 2 Let P be a Markov multi-chain with period d. Then Pd is aperiodic.

Proof Showing that

∀i ∈ S, ∀ j ∈ C(i), ∃ N , ∀n ≥ N : (Pd)n(i, j) > 0,

suffices to prove that Pd is aperiodic. To see this, choose i ∈ S and j ∈ C(i). Then it holds
that

∃m : Pm(i, j) > 0

and furthermore due to (17)

∃ K = K ( j), ∀k ≥ K : Pkd( j)( j, j) > 0.

This means that

(Pd)n(i, j) = Pdn(i, j) ≥ Pm(i, j)Pdn−m( j, j) > 0

for

dn − m ≥ Kd( j) ⇐⇒ n ≥ Kd( j) + m

d
d≥d( j),∀ j�⇒ n ≥ N ,

where N = K + m
d . �

Relying on Lemma 2, the following lemma establishes a geometric ergodicity result for
periodic Markov chains.

Lemma 3 For any finite-state Markov chain with P with period d, there exist a finite number
r such that

n ≥ r :
∥∥∥∥∥
d−1∑
l=0

(Pn+l − ΠP )

∥∥∥∥∥ ≤ cβn,

for c < ∞ and β ∈ (0, 1). In particular, r = rdd, c = dcd(βd)
1−d
d and β = (βd)

1
d , where

rd , cd and βd denote the geometric ergodicity parameters of (aperiodic) Pd .

Proof Assume without losing of generality that n = xd + y for 0 ≤ y ≤ d − 1, where d
denotes the periodicity of P . Then,

d−1∑
l=0

(Pn+l − ΠP ) =
d−1∑
l=0

(Pxd+y+l − ΠP ) = Py
d−1∑
l=0

(Pxd+l − ΠP ).

From Eq. (3) in the proof of Theorem 5.1.4 in [17], it follows that

ΠP = 1

d

d−1∑
i=0

ΠPd Pi .

123



Journal of Scientific Computing (2019) 78:1691–1723 1717

Using this expression for ΠP gives

d−1∑
l=0

(Pn+l − ΠP ) = Py
d−1∑
l=0

(
Pxd+l − 1

d

d−1∑
i=0

ΠPd Pi

)

= Py

(
d−1∑
l=0

Pxd+l −
d−1∑
i=0

ΠPd Pi

)

= Py

(
d−1∑
l=0

(Pxd − ΠPd )Pl

)

= Py(Pxd − ΠPd )

(
d−1∑
l=0

Pl

)
.

Since Pd is aperiodic (and finite), see Lemma 2, geometric ergodicity of aperiodic Markov
chains implies that there exists a finite rd such that

x ≥ rd : ‖(Pd)x − ΠPd ‖ ≤ cd(βd)
k,

where finite rd , cd and βd ∈ (0, 1) are the ergodicity parameters of Pd . Therefore, it holds
for x ≥ rd �⇒ n ≥ rdd that

∥∥∥∥∥
d−1∑
l=0

(Pn+l − ΠP )

∥∥∥∥∥ ≤ ||Py ||cd(βd)
x
d−1∑
l=0

∥∥∥Pl
∥∥∥

= dcd(βd)
x ,

where the equality follows because ‖ · ‖ represents the ∞-norm by assumption. Since y ≤
d − 1,

n = xd + y �⇒ x ≥ n

d
+ 1 − d

d
,

and thus

(βd)
x ≤ (βd)

n
d + 1−d

d = (βd)
1−d
d ((βd)

1
d )n,

note that (βd)
1
d ∈ (0, 1). This leads to

∥∥∥∥∥
d−1∑
l=0

(Pn+l − ΠP )

∥∥∥∥∥ ≤ dcd(βd)
1−d
d ((βd)

1
d )n, for n ≥ rdd.

Labeling r = rdd , c = dcd(βd)
1−d
d and β = (βd)

1
d proves the result. �

Remark 6 Note that for d = 1, Lemma 3 reduces to the geometric ergodicity result for
aperiodic Markov chains (r = rd , c = cd and β = βd for d = 1).

In the following theorem, the above results will be applied to prove a sharp bound for the
norm error also applicable to periodic Markov chains. As parameter q affects the periodicity
of a Markov chain, only the case q = 1 will be considered for simplicity. The theorem uses
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the following generalized geometric ergodicity parameters, indicated with a bar,

γ̄ (P, d) = κ̄(d, P)d(φ̄(d, P) − 1) + cβdφ̄(d,P)+1

1 − βd
+ (d + 2)(d − 1),

κ̄(d, P) = sup
n1=0,1,...,min{φ̄(d,P)−1, x}

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
,

and

φ̄(d, P) =
⌈
r − 1

d

⌉
.

The generalized geometric ergodicity parameters are ‘generalized’ in the sense that they
reduce to γ (P, q = 1), κ(P, q = 1), and φ(P, q = 1), resp., in case of periodicity d = 1.
As a result, the same holds for the following theorem, i.e., Theorem 3 reduces to the results
from Lemma 1 and Theorem 2 when periodicity d = 1 (and q = 1).

Theorem 3 For N ≥ dφ̄(d, P),

‖ΠP − (Hα(N , P))k‖ ≤
(

αγ̄ (P, d)

1 − (1 − α)N+1

)k

so that for N → ∞ it holds

‖ΠP − (Hα(P))k‖ ≤ (αγ̄ (P, d))k .

Proof Inequality (9) (which holds for a periodic Markov chain with P) for q = 1 gives

‖ΠP − (Hα(N , P))k‖ ≤
∥∥∥∥∥α
∑N

n=0(1 − α)n(ΠP − Pn+1)

1 − (1 − α)N+1

∥∥∥∥∥
k

. (18)

Without loss on generality, assuming that N = Nd = xd + y, for 0 ≤ y ≤ d − 1 and d the
periodicity of Markov chain P , allows to rewrite the summation from (18) as

N∑
n=0

(1 − α)n(ΠP − Pn+1) =

((19).i)︷ ︸︸ ︷
x∑

n1=0

(1 − α)n1d
d−1∑
n2=0

(1 − α)n2(ΠP − Pn1d+1+n2)

−
d−1∑

n3=y+1

(1 − α)xd+n3(ΠP − Pxd+1+n3)

︸ ︷︷ ︸
((19).ii)

, (19)

where ((19).ii) is a compensation term that allows the first term ((19).i) to sum up to n1 = x .
Equation (19) implies that

∥∥∥∥∥
N∑

n=0

(1 − α)n(ΠP − Pn+1)

∥∥∥∥∥ ≤ ‖((19).i)‖ + ‖((19).ii)‖, (20)

where the two termswill be bounded sequentially. The boundingwill utilize that ‖P1−P2‖ ≤
2 for all stochastic matrices P1 and P2 (since ‖ · ‖ describes the ∞-norm, i.e., ‘the maximum
over all absolute row sums’).
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For the first term ‖ ((19).i) ‖ it holds that

‖((19).i)‖ ≤
x∑

n1=0

(1 − α)n1d

∥∥∥∥∥∥
d−1∑
n2=0

(1 − α)n2(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
,

in order to apply the geometric ergodicity result for periodic Markov chains from Lemma 3,
the norm of the inner summation can be bounded as∥∥∥∥∥∥

d−1∑
n2=0

(1 − α)n2(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥

≤
∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
+
∥∥∥∥∥
d−1∑
i=0

((1 − α)i − 1)(ΠP − Pn1d+1+i )

∥∥∥∥∥

≤
∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
+ 2

d−1∑
i=0

(1 − (1 − α)i )

≤
∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
+ α(d − 1)d,

where the last inequality follows from 1 − (1 − α)i ≤ αi for α ∈ (0, 1) and i = 0, 1, . . .,
which leads to

‖((19).i)‖ ≤
x∑

n1=0

(1 − α)n1d

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
+

x∑
n1=0

(1 − α)n1dα(d − 1)d,

since, for α ∈ (0, 1) and d ≥ 1,

x∑
n1=0

(1 − α)n1d ≤
x∑

n1=0

(1 − α)n1 = 1 − (1 − α)x+1

α
≤ 1

α

this means that

‖((19).i)‖ ≤
x∑

n1=0

(1 − α)n1d

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
+ (d − 1)d.

Since y ≥ 0 in N = Nd = xd + y and α ∈ (0, 1), the second term (19).ii can be bounded
as

‖((19).ii)‖ ≤ 2
d−1∑

n3=y+1

(1 − α)xd+n3 ≤ 2
d−1∑
n3=1

1 = 2(d − 1).

Inserting the boundings of ‖((19).i)‖ and ‖((19).ii)‖ into (20) leads to
∥∥∥∥∥

N∑
n=0

(1 − α)n(ΠP − Pn+1)

∥∥∥∥∥ ≤
x∑

n1=0

(1 − α)n1d

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
︸ ︷︷ ︸

((21).)

+(d + 2)(d − 1), (21)
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in which the norm terms of ((21).) can be replaced for the bound from Lemma 3 for n1 large
enough. In particular, for n1d + 1 ≥ r , Lemma 3 can be used, i.e., for

n1 ≥ r − 1

d
�⇒ n1 ≥

⌈
r − 1

d

⌉
=: φ̄(d, P),

where φ̄(d, P) is defined as the nearest integer larger than r−1
d , denoted by � r−1

d �. Note that
φ̄(1, P) = φ(P, 1). Similar as in the proof of Lemma 1, the summation of ((21).) will be
split into two parts: One part for which the geometric ergodicity result from Lemma 1 does
not apply and one part where it does, respectively. Specifically,

((21).) =
min{φ̄(d,P)−1, x}∑

n1=0

(1 − α)n1d

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
︸ ︷︷ ︸

((21)..i)

+
x∑

n3=φ̄(d,P)

(1 − α)n3d

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn3d+1+n2)

∥∥∥∥∥∥
︸ ︷︷ ︸

((21)..ii)

,

where parts ((21)..i) and ((21)..ii) will be bounded, respectively.
It holds that

((21)..i) ≤ sup
n1=0,1,...,min{φ̄(d,P)−1, x}

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥
1 − (1 − α)d min{φ̄(d,P), x+1}

1 − (1 − α)d
,

defining

κ̄(d, P) = sup
n1=0,1,...,min{φ̄(d,P)−1, x}

∥∥∥∥∥∥
d−1∑
n2=0

(ΠP − Pn1d+1+n2)

∥∥∥∥∥∥

gives

((21)..i) ≤ κ̄(d, P)
1 − (1 − α)d min{φ̄(d,P), x+1}

1 − (1 − α)d
.
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Regarding (21)..ii, the result from Lemma 3 applies. This gives

((21)..ii) ≤
x∑

n3=φ̄(d,P)

(1 − α)n3dcβn3d+1

= cβ
x∑

n3=φ̄(d,P)

((1 − α)dβd)n3

= cβ((1 − α)dβd)φ̄(d,P)

x−φ̄(d,P)∑
n3=0

((1 − α)dβd)n3

= cβ((1 − α)dβd)φ̄(d,P) 1 − ((1 − α)β)d max{x−φ̄(d,P)+1, 0}

1 − (1 − α)dβd

≤ cβdφ̄(d,P)+1 1 − βd max{x−φ̄(d,P)+1, 0}

1 − βd
,

where property α ∈ (0, 1) was used in the last inequality.
Inserting ((21)..i) and ((21)..ii) into (21) gives

∥∥∥∥∥
N∑

n=0

(1 − α)n(ΠP − Pn+1)

∥∥∥∥∥

≤ κ̄(d, P)d min{φ̄(d, P), x + 1} + cβdφ̄(d,P)+1 1 − βd max{x−φ̄(d,P)+1, 0}

1 − βd

+ (d + 2)(d − 1).

This result can be used in (18) to bound, for x + 1 ≤ φ̄(d, P) (geometric ergodicity does not
apply),

‖ΠP − (Hα(N , P))k‖ ≤
⎛
⎝α

κ̄(d, P)
1−(1−α)d(x+1)

1−(1−α)d
+ (d + 2)(d − 1)

1 − (1 − α)N+1

⎞
⎠

k

which reduces to (12) in case d = 1 (and thus N = x). In case x ≥ φ̄(d, P) (geometric
ergodicity does apply),

‖ΠP − (Hα(N , P))k‖

≤
⎛
⎜⎝α

κ̄(d, P)d(φ̄(d, P) − 1) + cβdφ̄(d,P)+1 1−βd(x−φ̄(d,P)+1)

1−βd + (d + 2)(d − 1)

1 − (1 − α)N+1

⎞
⎟⎠

k

≤
⎛
⎜⎝α

κ̄(d, P)d(φ̄(d, P) − 1) + cβdφ̄(d,P)+1

1−βd + (d + 2)(d − 1)

1 − (1 − α)N+1

⎞
⎟⎠

k

=≤
(

αγ̄ (P, d)

1 − (1 − α)N+1

)k
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where we defined

γ̄ (P, d) = κ̄(d, P)d(φ̄(d, P) − 1) + cβdφ̄(d,P)+1

1 − βd
+ (d + 2)(d − 1).

Observing that

x + 1≥ φ̄(d, P) ⇔ dx + d ≥ dφ̄(d, P) ⇔ N ≥dφ̄(d, P)+y − d �⇒ N ≥dφ̄(d, P)

ends the proof. �
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