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Abstract We introduce a discontinuous finite volume method for the approximation of
distributed optimal control problems governed by the Brinkman equations, where a force
field is sought such that it produces a desired velocity profile. The discretisation of state
and co-state variables follows a lowest-order scheme, whereas three different approaches are
used for the control representation: a variational discretisation, and approximation through
piecewise constant and piecewise linear elements. We employ the optimise-then-discretise
approach, resulting in a non-symmetric discrete formulation. A priori error estimates for
velocity, pressure, and control in natural norms are derived, and a set of numerical examples
is presented to illustrate the performance of the method and to confirm the predicted accuracy
of the generated approximations under various scenarios.
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1 Introduction

Fluid control problems are highly important in diverse fields of science and engineering. For
example, they are encountered in the minimisation of drag, in the design of devices serving to
increase mixing properties, in the reduction of turbulent kinetic energy, and in several other
applications. Some of the earliest references to theoretical aspects of these control prob-
lems can be found in the classical works [1,35]. The literature that relates to their numerical
approximation is quite abundant, especially if associated to finite element methods (see e.g.
[9,26,45,47,48] and the references therein). Works focusing on the approximation of control
problems subject to Stokes and Navier–Stokes flows typically employ conforming discreti-
sations for state, co-state and control variables. It has been found that the convergence rate of

the control approximation is ofO(h) andO(h
3
2 ) for piecewise constant and piecewise linear

discretisations, respectively. On the other hand, using the so-called variational discretisation
approach (cf. [29], in which the control set is not discretised explicitly but recovered by a
projection), it is possible to improve this convergence rate to O(h2). Alternatively, a similar
behaviour is observed if one uses gradedmeshes instead of uniform partitions [44], or if using
piecewise constant control discretisations when state and adjoint variables are approximated
with Lagrangian finite elements [42].

Error bounds for approximations to optimal control problems governed by flow equations
are also available in the context of finite differences [25], spectral [17], mimetic [5], fully-
mixed, discontinuous Galerkin [15,21], and more recently, gradient discretisation methods
[27].

The present paper focuses on finite volume element (FVE) approximations (methods
where one introduces a dualmesh and reformulates a pure finite volume scheme in the form of
a Petrov–Galerkin scheme). A priori error estimates for FVE schemes applied to linear elliptic
and parabolic optimal control problems have been established in [38,39]. These methods are
based on the optimise-then-discretise approach, which we will adopt herein. In this context,
we recall that the order in which the optimisation and discretisation steps are performed,
results in different discrete adjoint equations and the solutions may not coincide (see the
review [9] and the references therein). We will concentrate the analysis on a particular class
of FVE schemes: a hybrid strategy called discontinuous finite volume (DFV) method, where
discontinuous piecewise linear functions conform the trial space, and piecewise constant test
functions are used in a FV fashion. The application of these schemes in the approximation
of Stokes and related fluid problems can be found in e.g. [10–12,24,32,33,54].

Discontinuous approximations will be generally preferable to guarantee preservation of
physically relevant properties. They would also be appropriate when the model exhibits
rough coefficients and where sharp solutions are expected. Permeability fields possess this
behaviour in many applicative scenarios, and DFV schemes would be of special interest.
Other advantages of DFV formulations include flexibility for choosing accurate numerical
fluxes, smaller dual control volumes, and suitability for error analysis in the L2-norm. In
the formulation advanced herein the momentum equation is tested against vector functions
spanned by a basis associated to a dual grid, and the mass conservation equation is tested
against piecewise constants defined on the primal mesh. Integration by parts on each dual
element yields a classical finite volume scheme defined in terms of fluxes across the bound-
aries of dual elements. Then, some particular features of a given lumping map connecting
discrete functions associated with the primal and dual meshes allow us to rewrite the for-
mulation completely in terms of volume integrals involving primal elements, except for the
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zeroth-order term, the right-hand sides of the state and costate equations, and all jump terms
that appear in the off-diagonal bilinear forms.

For non-viscous flow in porous media written in primal (pressure) formulation, the per-
meability tensor manifests itself as an anisotropic diffusion, and some methods are available
for their successful discretisation. These include cell and vertex-centred schemes [23,55],
discrete duality finite volumes [16], high-order gradient reconstruction finite volume meth-
ods [40], mimetic schemes [18], anisotropic FVE methods [36], virtual finite volumes [22],
or discontinuous immerse FVE schemes [37]. Even if the treatment is simpler in our case,
as the inverse permeability is assumed isotropic, and it appears only in the drag term; our
intention is not to perform a thorough comparison against these techniques, but rather to
regard our contribution as a natural extension of the optimal control problems solved using
specifically DFV methods (and having so far being constructed for systems governed by
linear and semilinear elliptic, semilinear parabolic, and hyperbolic equations [49–52]) to
the case of velocity control for the Brinkman equations. We emphasise once more that the
discontinuous character of permeability fields represents a clear motivation for employing
DFV methods. On the other hand, for the approximation of the control variable, we will
discuss three alternatives: a variational discretisation approach, element-wise constant and
element-wise linear discretisation.

The paper is structured in the following manner. The remainder of this section includes
some standard notations, statement of the governing problem along with its weak formu-
lation, and the corresponding optimality condition in continuous form. Next, in Sect. 2 we
formulate the DFV scheme of the considered optimal control problem. Section 3 focuses
on the development of a priori error estimates for different types of control discretisations.
Finally, in Sect. 4 we summarise the solution algorithm and illustrate our theoretical error
bounds and performance of the method by a set of numerical experiments.

Let Ω ⊂ R
d , d = 2, 3, be a bounded convex polygonal domain with boundary ∂Ω . The

outward unit normal vector to Ω is denoted by n. Standard terminology will be employed
for Sobolev spaces: H1(Ω) = H1(Ω)d and H1

0(Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}. The
corresponding norms will be denoted by ‖·‖1,Ω . We also consider the space of integrable
functions with zero mean: L2

0(Ω) = {q ∈ L2(Ω) : ∫
Ω
q dx = 0}, and will write L2(Ω) =

L2(Ω)d . By div we will denote the usual divergence operator div applied row-wise to a
tensor, I will denote the d × d identity matrix, and 0 will be used as a generic null vector.
The Optimal Control Problem Let us consider the following distributed optimal control
problem

min
u∈Uad

J (u) := 1

2
‖ y − yd‖20,Ω + λ

2
‖u‖20,Ω, (1.1)

governed by the Brinkman equations

K−1 y − div (νε( y) − pI) = u + f in Ω, (1.2)

div y = 0 in Ω, (1.3)

y = 0 on ∂Ω, (1.4)

where Uad is the set of feasible controls, defined for −∞ ≤ a j < b j ≤ ∞, j = 1, . . . , d
by

Uad = {u ∈ L2(Ω) : a j ≤ u j ≤ b j a.e. in Ω}.
This model describes the motion of an incompressible viscous fluid within an array of porous
particles, and according to the flow regime characterised by the ratio between permeability
and viscosity, it can represent both the Darcy and Stokes limits. Here y denotes the fluid
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velocity, p is the pressure field, u is the control variable, and λ > 0 is a given Tikhonov
regularisation (or control cost) parameter. The quantity νε( y)− pI is the Cauchy (true stress)
tensor, where ε( y) = 1

2 (∇ y + ∇ yT ) is the infinitesimal rate of strain, ν(x) is the dynamic
viscosity of the fluid, and K(x) stands for the permeability tensor of the medium divided by
the viscosity. The forthcoming analysis requires that this matrix is isotropic. Here the desired
velocity yd and the applied body force f are known data with assumed regularity L2(Ω) or
H1(Ω), depending on the specific case. One seeks to identify an additional source u giving
rise to a velocity y in order to match a target velocity yd . We stress that by proceeding
analogously to the proof of [53, Theorem 2.37] it can be shown that the optimal value of the
control u is in H1(Ω) under the assumption that yd ∈ L2(Ω). A similar observation has
been made in [14], and used in the derivation of error estimates.

We assume that K is symmetric, uniformly bounded and positive definite, i.e., there exist
two positive constants k1 and k2 such that

k1|ξ |2 ≤ K(x)ξ · ξ ≤ k2|ξ |2, ∀ξ ∈ R
d , x ∈ Ω.

We also assume that the variable viscosity satisfies

∃ γ1, νmin, νmax > 0 : ∀s ∈ R+; νmin < ν(s) < νmax, |ν′(s)| ≤ γ1, (1.5)

The weak formulation associated to the state equations (1.2)–(1.4) is given by: find ( y, p) ∈
H1

0(Ω) × L2
0(Ω) such that

a( y, v) + c( y, v) + b(v, p) = (u + f , v)0,Ω ∀v ∈ H1
0(Ω),

b( y, q) = 0 ∀q ∈ L2
0(Ω),

(1.6)

where the bilinear forms a(·, ·) : H1
0(Ω) × H1

0(Ω) → R, c(·, ·) : H1
0(Ω) × H1

0(Ω) → R

and b(·, ·) : H1
0(Ω) × L2

0(Ω) → R are defined as:

a( y, v) :=
∫

Ω

K−1 y · v dx, c( y, v) :=
∫

Ω

νε( y) : ε(v) dx, b(v, q) := −
∫

Ω

q div v dx,

for all y, v ∈ H1
0(Ω) and q ∈ L2

0(Ω). Above (·, ·)0,Ω stands for the scalar product in L2(Ω)

and ‖·‖0,Ω denotes the associated norm. The bilinear form b(·, ·) relating the functional
spaces for velocity and pressure satisfies the following Babuška-Brezzi condition (see [46],
for example): there exists ξ > 0 such that

inf
q∈L2

0(Ω)

sup
0 �=v∈H1

0(Ω)

b(v, q)

‖v‖1,Ω ‖q‖0,Ω
≥ ξ,

and, together with the ellipticity of a(·, ·)+c(·, ·), it implies the unique solvability of problem
(1.6).

The optimal control problem (1.1)–(1.4) under consideration is strictly convex. Hence, it
admits a unique optimal solution, and the first order necessary conditions are also sufficient
for optimality (for details on well-posedness and first order optimality we refer to [35]). The
optimality condition can be formulated as J ′(u)(ũ − u) ≥ 0 ∀ũ ∈ Uad, and also rewritten
as

(w + λu, ũ − u)0,Ω ≥ 0 ∀ũ ∈ Uad, (1.7)
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Fig. 1 Left: sketch of a single primal element T in Th , and sub-elements T ∗
i belonging to the dual partition

T ∗
h . Right: its three-dimensional counterpart, showing a tetrahedron T decomposed into four sub-tetrahedra

where w is the velocity associated with the adjoint equation

K−1w − div(νε(w) + rI) = y − yd in Ω, (1.8)

divw = 0 in Ω, (1.9)

w = 0 on ∂Ω. (1.10)

In turn, the variational inequality (1.7) can be equivalently recast in component-wise manner

u j (x) = P[a j ,b j ]
(−1

λ
w j (x)

)

a.e. in Ω, j = 1, . . . , d,

where the operator P denotes a projection defined for a generic scalar function g as

P[a,b](g(x)) = max(a,min(b, g(x))), a.e. in Ω.

It is not difficult to see that this projection satisfies the following regularity property (see also
[43]) ∥

∥∇P[a,b](g)
∥
∥
L p(Ω)

≤ ‖∇g‖L p(Ω) ∀g ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. (1.11)

2 Discontinuous Finite Volume Formulation

2.1 Meshes, Discrete Spaces, and Interpolation Properties

Let us consider a regular, quasi-uniform partition Th of Ω̄ into closed triangles (or tetrahedra
if d = 3). By hT we denote the diameter of a given element T ∈ Th , and the global meshsize
by h = max

T∈Th
hT . Moreover, let Eh and EΓ

h denote, respectively, the set of all faces and

boundary faces in Th (edges and boundary edges if d = 2), and the symbol he represents the
length of the edge e (or the area of the face e if d = 3). It follows from the definitions of he,
hT and h that he ≤ hd−1

T ≤ hd−1.
In addition to Th (from now on, referred to as primal mesh), we introduce a dual partition

in the following way. Each element T ∈ Th is split into three sub triangles (or four sub-
tetrahedra if d = 3) T ∗

i , i = 1, . . . , d + 1, by connecting the barycentre of the element
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to its corner nodes (see a schematic for d = 2 and d = 3 in Fig. 1). The set of all these
elements generated by barycentric subdivison will be denoted by T ∗

h and will be called the
dual partition of Th . Let e be an interior face shared by two elements T1 and T2 in Th . By n1
and n2 we will denote unit normal vectors on e pointing outwards T1 and T2, respectively.
The average {{·}}e and jump [[·]]e operators defined on e for a generic scalar or vectorial field
v are:

[[v]]e := v|T1 − v|T2 , {{v}}e := 1

2

(
v|T1 + v|T2

)
,

respectively. If e ∈ EΓ
h , then we simply take {{v}}e = [[v]]e = v. Note that jump and averages

are defined so that they preserve the dimension of the argument.
We denote by Pm(T ) the space of polynomials of degree less or equal than m, defined

on T ∈ Th , and Pm(T ) will denote its vectorial counterpart. A finite dimensional trial space
(used for the state and co-state velocity approximation) associated with the primal partition
Th is

Vh = {vh ∈ L2(Ω) : vh |T ∈ P1(T ), ∀T ∈ Th},
while the finite dimensional test space for velocity (and corresponding to the dual mesh T ∗

h )
is

V∗
h = {vh ∈ L2(Ω) : vh |T ∗ ∈ P0(T

∗), ∀T ∗ ∈ T ∗
h }.

Moreover, the discrete space for state and co-state pressure approximation is defined as

Qh = {qh ∈ L2
0(Ω) : qh |T ∈ P0(T ), ∀T ∈ Th},

and we define a space with higher regularity

V(h) = Vh + [H2(Ω) ∩ H1
0(Ω)].

These spaces, associated with the two different meshes, are connected through the transfer
operator γ : V(h) → V∗

h , characterised in the following manner:

γ v|T ∗ = 1

he

∫

e
v|T ∗ ds, for T ∗ ∈ T ∗

h . (2.1)

Some useful properties of this map are as follows.

Lemma 1 Let γ be a transfer operator defined as in (2.1). Then

i) γ is self-adjoint with respect to the L2-inner product, i.e.

(vh, γ zh)0,Ω = (zh, γ vh)0,Ω, ∀vh, zh ∈ Vh .

ii) The operator γ is stable with respect to the norm ‖·‖0,Ω , that is

‖γ vh‖0,Ω = ‖vh‖0,Ω ∀vh ∈ Vh . (2.2)

Moreover, if |||vh |||20,h := (vh, γ vh)0,Ω , then |||·|||0,h and ‖·‖0,Ω are equivalent, with equiv-
alence constants being independent of h.

iii) There exist constants C0 and C1 independent of h such that

‖vh − γ vh‖0,T ≤ C0hT ‖vh‖1,T ∀vh ∈ Vh,

(vh, γ vh) ≥ C1‖vh‖20,Ω ∀vh ∈ Vh (2.3)
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iv) For all v ∈ V(h) and T ∈ Th, we have
∫

e
(v − γ v) ds = 0,

∫

e
[[v − γ v]]e ds = 0,

∫

T
(v − γ v) dx = 0.

Proof The proof of (i) and (i i) are given in [7] for the scalar version of the inter-mesh
operator (2.1), and the same arguments can be used to extend their validity to the vector case.
Property (i i i) follows analogously to the proof of [20, Lemmas 2.3 and 2.6]. For a proof of
(iv) we refer to [31]. ��

Let us stress that throughout the paper, the symbol C will represent a generic positive
constant independent of meshsize h, that can take different values at different instances.

2.2 Discrete Formulation for the State and Adjoint Equations

Let vh ∈ Vh . We proceed to test (1.2) and (1.3) against γ vh ∈ V∗
h and φh ∈ Qh , respectively,

and after integrating by parts the momentum equation on each dual element, and the mass
conservation equation on each primal element, we end up with the following scheme: find
( yh, ph) ∈ Vh × Qh such that

Ah( yh, vh) + ch( yh, vh) + Ch(vh, ph) = (uh + f , γ vh)0,Ω ∀vh ∈ Vh, (2.4)

Bh( yh, φh) = 0 ∀φh ∈ Qh, (2.5)

where the discrete bilinear forms Ah(·, ·), Bh(·, ·), ch(·, ·) and Ch(·, ·) are defined for all
wh, vh ∈ Vh and qh ∈ Qh as (see also [11]):

Ah(wh, vh) := (K−1wh, γ vh)0,Ω, Bh(vh, qh) :=b(vh, qh)−
∑

e∈Eh

∫

e
{{qhn}}e · [[γ vh]]e ds,

ch(wh, vh) := −
∑

T∈Th

d+1∑

j=1

∫

A j+1BA j

νε(wh)n · γ vh ds −
∑

e∈Eh

∫

e
{{νε(wh)n}}e · [[γ vh]]e ds

−
∑

e∈Eh

∫

e
{{νε(vh)n}}e · [[γwh]]e ds +

∑

e∈Eh

∫

e

αd

hδ
e
[[wh]]e · [[vh]]e ds,

Ch(vh, qh) :=
∑

T∈Th

d+1∑

j=1

∫

A j+1BA j

qhn · γ vh ds +
∑

e∈Eh

∫

e
{{qhn}}e · [[γ vh]]e ds, (2.6)

where, Ad+2 = A1. With the help of Fig. 1 we see that, in 2D, for a fixed j the integrals∫
A j+1BA j

are considered over a path of two segments, whereas in 3D they are taken over a
triangular facet. In any case, they contribute to construct the normal fluxes on the interior
faces of each dual sub-element T ∗

j , and so the symbol n also denotes the outer normal on

that sub-triangle or sub-tetrahedron. In addition, the constants αd and δ = (d − 1)−1 are
parameters independent of h commonly used in interior penalty methods.

Proceeding analogously, we can write down a DFV formulation for the adjoint equation
(1.8)–(1.10) as follows: find (wh, rh) ∈ Vh × Qh such that

Ah(wh, zh) + ch(wh, zh) − Ch(zh, rh) = ( yh − yd , γ zh) ∀zh ∈ Vh,

Bh(wh, ψh) = 0 ∀ψh ∈ Qh .
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For the sake of our forthcoming analysis, we introduce the following discrete norms in
V(h), which are naturally associated with the bilinear form ch(·, ·):
|||vh |||21,h :=

∑

T∈Th

|vh |21,T +
∑

e∈Eh
h−δ
e ‖[[vh]]e‖20,e , |||vh |||22,h := |||vh |||21,h +

∑

T∈Th

h2T |vh |22,T ,

and we note that they are equivalent in Vh . Moreover, we also have the following discrete
Poincaré–Friedrichs inequality (see [11, pp. 457])

‖vh‖0,Ω ≤ C |||vh |||2,h ∀vh ∈ Vh, (2.7)

and we can use Cauchy–Schwarz inequality and the definition of γ to readily obtain

1

hδ/2
e

‖[[γ vh]]e‖0,e ≤
(

1

hδ
e

∫

e
[[vh]]2e ds

)1/2

.

Proceeding analogously to [56, Lemma 6], we can establish the coercivity of the bilinear
form Ah(·, ·), stated in the following result.

Lemma 2 Let us assume that K−1 ∈ W1,∞(T ), for a generic element T ∈ Th. Then, for a
sufficiently small meshsize h, there exists a constant C > 0 independent of h, such that

Ah(vh, vh) ≥ C ‖vh‖20,Ω ∀vh ∈ Vh . (2.8)

Proof Let B = K−1 and consider its average tensor, defined on each primal element by

B := 1

meas(T )

∫

T
B(x) dx.

Since B ∈ W1,∞(T ), we can infer that

‖B − B‖[L∞(T )]d×d ≤ C3hT . (2.9)

Then, in view of Cauchy–Schwarz inequality together with properties (2.9) and (2.2), we can
assert that ∫

T
(B − B)vh · γ vh dx ≤ C3h ‖vh‖20,T . (2.10)

Now, let us write
∫

T
Bvh · γ vh dx =

∫

T
Bvh · γ vh dx −

∫

T
(B − B)vh · γ vh dx,

and therefore, relations (2.10) and (2.3) lead to

(Bvh, γ vh) ≥ C1 ‖vh‖20,Ω − C3h ‖vh‖20,Ω ≥ C ‖vh‖20,Ω ,

which holds provided h is sufficiently small, more precisely, if C1 − C3h > 0. ��
Lemma 3 The bilinear forms defined in (2.6) possess the following properties:

i) Ah(·, ·) is continuous: there exists C > 0, independent of h, such that

|Ah(v,w)| ≤ C ‖v‖0,Ω ‖w‖0,Ω ∀v,w ∈ V(h),

and it satisfies the bound

|Ah(vh, zh) − Ah(zh, vh)| ≤ Ch |||vh |||2,h |||zh |||2,h ∀vh, zh ∈ Vh . (2.11)
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ii) For the non-symmetric bilinear form ch(·, ·) it holds that
|ch(v,w)| ≤ C |||v|||2,h |||w|||2,h ∀v,w ∈ V(h),

ch(vh, vh) ≥ C |||vh |||22,h ∀vh ∈ Vh, (2.12)

|ch(vh, zh) − ch(zh, vh)| ≤ Ch |||vh |||2,h |||zh |||2,h ∀vh, zh ∈ Vh, (2.13)

where for (2.12), αd > 0 is assumed sufficiently large.
iii) The choice of approximation spaces Vh and Qh yields the condition

sup
vh∈Vh\{0}

Bh(vh, qh)

|||vh |||2,h ≥ β1 ‖qh‖0,Ω , (2.14)

where β1 > 0 is independent of h.
iv) The bilinear form Ch(·, ·) satisfies

|Ch(v, q)|≤ C |||v|||2,h

⎛

⎜
⎝‖q‖0,Ω +

⎛

⎝
∑

T∈Th

h2T |q|21,T
⎞

⎠

1/2
⎞

⎟
⎠ ∀v,w ∈ V(h), q ∈ L2

0(Ω),

Ch(v, qh) = −Bh(v, qh) ∀v ∈ V(h), qh ∈ Qh . (2.15)

Proof For i) it suffices to apply the definition of Ah(·, ·), together with relation (1.5), and
the norm equivalence between |||·|||0,h and ‖·‖0,Ω . Results in ii) have been established in [33]
and [7], whereas proofs for iii)-iv) can be found in [54]. ��
2.3 Discretisation of the Control Variable

LetUh ⊆ L2(Ω)denote the discrete control space, and let us introduce the discrete admissible
space for the control field asUh,ad = Uh∩Uad. Three approaches are outlined inwhat follows.
Variational Discretisation In the so-called variational approach (cf. [29]), control variables
are not discretised explicitly, that is, one simply takes Uh = L2(Ω) and in this case the
discrete and continuous admissible spacesUh,ad andUad coincide. Consequently, the control
variable does not necessarily lie in a finite element space associated to Th , and typically one
requires a nonstandard implementation andmore involved stopping criteria for the algorithms
of control computation. Discretisation errors using this method will be addressed in Sect. 3.2.
Piecewise Linear Control Discretisation Here we approximate the control variable with
the similar elements as those employed for state and co-state velocity. That is,

U1
h = {uh ∈ L2(Ω) : uh |T ∈ P1(T ) ∀T ∈ Th}.

It is worthy to note that the state velocity space Vh coincides with the control space in the
case of homogeneous Neumann boundary conditions, whereas for Dirichlet boundary data,
we have Vh ⊂ U1

h .
Piecewise Constant Discretisation In this case, the discrete control space is defined as

U0
h = {uh ∈ L2(Ω) : uh |T ∈ P0(T ) ∀T ∈ Th}.

The convergence properties associated with the above two approaches will be derived in
Sect. 3.3, but already at this point we can apply Lemma 3 along with the Babuška–Brezzi
theory for saddle point problems to ensure the unique solvability of (2.4)–(2.5), for a fixed
control uh .

123



J Sci Comput (2019) 78:64–93 73

Using relation (2.15), the DFV approximation of the continuous optimal system (1.1)–
(1.4) can be summarised as: Find ( yh, ph,wh, rh, uh) ∈ Vh × Qh ×Vh × Qh ×Uh,ad such
that

Ah( yh, vh) + ch( yh, vh) − Bh(vh, ph) = (uh + f , γ vh)0,Ω ∀vh ∈ Vh, (2.16)

Bh( yh, φh) = 0 ∀φh ∈ Qh, (2.17)

Ah(wh, zh) + ch(wh, zh) + Bh(zh, rh) = ( yh − yd , γ zh)0,Ω ∀zh ∈ Vh, (2.18)

Bh(wh, ψh) = 0 ∀ψh ∈ Qh, (2.19)

(wh + λuh, ũh − uh)0,Ω ≥ 0 ∀ũh ∈ Uh,ad. (2.20)

3 Convergence Analysis

In this section we provide a priori error estimates for DFV approximations of the state and
adjoint equations, and for the three control discretisation approaches outlined in Sect. 2.3.

3.1 Preliminaries

For a given control u and f , let the pair ( yh(u), ph(u)) be the solution of the following
problem

Ah( yh(u), vh) + ch( yh(u), vh) − Bh(vh, ph(u)) = (u + f , γ vh)0,Ω ∀vh ∈ Vh, (3.1)

Bh( yh(u), φh) = 0 ∀φh ∈ Qh . (3.2)

Similarly, for a given state velocity y, let (wh( y), rh( y)) be the solution of

Ah(wh( y), zh) + ch(wh( y), zh) + Bh(zh, rh( y)) = ( y − yd , γ zh)0,Ω ∀zh ∈ Vh, (3.3)

Bh(wh( y), ψh) = 0 ∀ψh ∈ Qh . (3.4)

We then proceed to decompose total errors in the following manner:

y − yh = y − yh(u) + yh(u) − yh, and w − wh = w − wh( y) + wh( y) − wh,

(3.5)

p − ph = p − ph(u) + ph(u) − ph, and r − rh = r − rh( y) + rh( y) − rh .

(3.6)

Noting that yh = yh(uh), ph = ph(uh), wh = wh( yh), and rh = rh( yh), the following
intermediate result is established.

Lemma 4 There exists a positive constant C independent of h such that the following esti-
mates hold

∣
∣
∣
∣
∣
∣ yh(u) − yh

∣
∣
∣
∣
∣
∣
2,h + ‖ph(u) − ph‖0,Ω ≤ C ‖u − uh‖0,Ω , (3.7)

|||wh( y) − wh |||2,h + ‖rh( y) − rh‖0,Ω ≤ C
∥
∥ y − yh

∥
∥
0,Ω . (3.8)

Proof Subtracting Eqs. (2.16) and (2.17) from (3.1) and (3.2), respectively, we have that the
following relations hold for all vh ∈ Vh and φh ∈ Qh

Ah( yh(u) − yh, vh) + ch( yh(u) − yh, vh) − Bh(vh, ph(u) − ph) = (u − uh, γ vh)0,Ω,

(3.9)

Bh( yh(u) − yh, φh) = 0. (3.10)
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Adding (3.9) and (3.10) after choosing vh = yh(u)− yh and φh = ph(u)− ph , implies that

Ah( yh(u) − yh, yh(u) − yh) + ch( yh(u) − yh, yh(u) − yh)

= (u − uh, γ ( yh(u) − yh))0,Ω .

In turn, using the coercivity of Ah(·, ·) and ch(·, ·) in combination with (2.2) and (2.7), we
obtain

∥
∥ yh(u) − yh

∥
∥2
0,Ω + ∣∣∣∣∣∣ yh(u) − yh

∣
∣
∣
∣
∣
∣2
2,h ≤ C

(
u − uh, γ ( yh(u) − yh)

)
0,Ω,

≤ C ‖u − uh‖0,Ω
∣
∣
∣
∣
∣
∣ yh(u) − yh

∣
∣
∣
∣
∣
∣
2,h ,

which readily yields the bound
∣
∣
∣
∣
∣
∣ yh(u) − yh

∣
∣
∣
∣
∣
∣
2,h ≤ C ‖u − uh‖0,Ω . (3.11)

On the other hand, applying the inf-sup condition (2.14), using (3.9), the boundedness of
Ah(·, ·) and ch(·, ·), along with (3.11), we realise that

‖ph − ph(u)‖0,Ω ≤ 1

β1
sup

vh∈Vh\{0}
Bh(vh, ph − ph(u))

|||vh |||2,h ,

= 1

β1
sup

vh∈Vh\{0}
Ah( yh(u) − yh, vh) + ch( yh(u) − yh, vh) + (uh − u, γ vh)0,Ω

|||vh |||2,h
≤ C ‖u − uh‖0,Ω . (3.12)

Relations (3.11) and (3.12) imply, in particular, that (3.7) holds. Next, we subtract Eqs. (2.18)
and (2.19) from (3.3) and (3.4), respectively, and test the result against zh = wh( y) − wh

and ψh = rh( y) − rh , which yields (3.8) after repeating the same steps as above. ��
Lemma 5 Assume that ν ∈ W 2,∞(Ω) and that u, f , yd ∈ H1(Ω). Then, there exists a
positive constant C, independent of h, such that

{∣
∣
∣
∣
∣
∣ y − yh(u)

∣
∣
∣
∣
∣
∣
2,h + ‖p − ph(u)‖0,Ω ≤ Ch

(‖ y‖2,Ω + ‖p‖1,Ω
)
,

|||w − wh( y)|||2,h + ‖r − rh(y)‖ ≤ Ch
(‖w‖2,Ω + ‖r‖1,Ω

)
,

(3.13)

{∥
∥ y − yh(u)

∥
∥
0,Ω ≤ Ch2

[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω
]
,

‖w − wh( y)‖0,Ω ≤ Ch2
[
‖w‖2,Ω + ‖r‖1,Ω + ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω

]
.

(3.14)

Proof We proceed analogously to the proof of [24, Theorem 3.1] and directly apply Lemma
3 to readily derive the following estimates:

∣
∣
∣
∣
∣
∣ y − yh(u)

∣
∣
∣
∣
∣
∣
2,h + ‖p − ph(u)‖0,Ω ≤ Ch

(‖ y‖2,Ω + ‖p‖1,Ω
)
,

|||w − wh( y)|||2,h + ‖r − rh(y)‖0,Ω ≤ Ch
(‖w‖2,Ω + ‖r‖1,Ω

)
.

Next, the derivation of L2-estimates for y− yh(u) andw−wh( y) follows an Aubin-Nitsche
duality argument. Let us consider the dual problem: find (z, ρ) ∈ H1

0(Ω)× L2
0(Ω) such that

K−1 − div(νε(z) − ρI) = y − yh(u) in Ω,

div z = 0 in Ω,

z = 0 on ∂Ω,

(3.15)

which is uniquely solvable, and moreover the following H2(Ω) × H1(Ω)-regularity is sat-
isfied:

‖z‖2,Ω + ‖ρ‖1,Ω ≤ ∥∥ y − yh(u)
∥
∥
0,Ω . (3.16)
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Let us denote by z I ∈ Vh the usual continuous piecewise linear interpolant of z, satisfying
the following approximation properties:

|||z − z I |||2,h ≤ Ch ‖z‖2,Ω and ‖z − z I ‖0,Ω ≤ Ch2 ‖z‖2,Ω . (3.17)

Also, let Π1 denote the L2-projection from L2
0(Ω) to Qh , satisfying

‖ρ − Π1ρ‖0,Ω ≤ Ch ‖ρ‖1,Ω .

Multiplying (3.15) by y − yh(u), integrating by parts, and using that [[ε(z)n]]e = 0 and
[[ρ]]e = 0, we can obtain
∥
∥ y − yh(u)

∥
∥2
0,Ω = As

h( y − yh(u), z) + csh( y − yh(u), z) − bsh( y − yh(u), ρ). (3.18)

where the auxiliary bilinear forms adopt the following expressions

As
h(wh, vh) := (K−1wh, vh)0,Ω,

bsh(vh, qh) := b(vh, qh) +
∑

e∈Eh

∫

e
{{qhn}}e · [[vh]]e ds,

csh(wh, vh) := c(wh, vh) −
∑

e∈Eh

∫

e
{{νε(wh)n}}e · [[vh]]e ds

−
∑

e∈Eh

∫

e
{{νε(vh)n}}e · [[wh]]e ds +

∑

e∈Eh

∫

e

αd

hδ
e
[[wh]]e · [[vh]]e ds.

Since z I ∈ Vh is a continuous interpolant of z, we note that the pair
(
y− yh(u), p− ph(u)

)

will be a solution of the following problem

Ah( y − yh(u), z I ) + ch( y − yh(u), z I ) + Ch(z I , p − ph(u)) = 0, (3.19)

Bh( y − yh(u),Π1ρ) = 0. (3.20)

Using the definition of ch(·, ·) and Ch(·, ·) we can assert that
Ch(z I , p − ph(u)) = −( div z I , p − ph(u))Th − (∇ p, z I − γ z I )Th , (3.21)

where the inner product over the primal mesh is understood as the sum of the inner products
over each element in Th . On subtracting Eq. (3.19) from the sum of Eqs. (3.18) and (3.20),
and using (3.21), it follows that

∥
∥ y − yh(u)

∥
∥2
0,Ω = [As

h( y − yh(u), z) − Ah( y − yh(u), z I )
]

︸ ︷︷ ︸
R1

+ csh( y − yh(u), z − z I )
︸ ︷︷ ︸

R2

+
⎡

⎣csh( y − yh(u), z I ) − ch( y − yh(u), z I ) +
∑

T∈Th

∫

T
(z I − γ z I ) · ∇ p dx

⎤

⎦

︸ ︷︷ ︸
R3

+ (p − ph(u), div z I )0,Ω︸ ︷︷ ︸
R4

− bsh( y − yh(u), ρ) + Bh( y − yh(u),Π1ρ)
︸ ︷︷ ︸

R5

. (3.22)

Notice that the estimation of R1 results as a combination of the boundedness ofK−1, assump-
tion (1.5), the bounds (3.17), the self-adjointness and approximation properties of γ stated
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in (3.16), and Cauchy–Schwarz inequality. This gives

R1 ≤ |( y − yh(u),K−1z)0,Ω − (K−1( y − yh(u)), γ z I )0,Ω |
≤ C |( y − yh(u), z − z I )0,Ω + ( y − yh(u) − γ ( y − yh(u)), z I )0,Ω |
≤ C(h2

∥
∥ y − yh(u)

∥
∥
0,Ω ‖z‖2,Ω + h

∣
∣
∣
∣
∣
∣ y − yh(u)

∣
∣
∣
∣
∣
∣
2,h ‖z I ‖0,Ω)

≤ Ch2(
∥
∥ y − yh(u)

∥
∥2
0,Ω + ‖ y‖2,Ω

∥
∥ y − yh(u)

∥
∥
0,Ω),

where the last inequality follows from (3.13). For the second term we employ the definition
of ch(·, ·), and relations (3.17),(3.16) to verify that

R2 ≤ Ch2 ‖ y‖2,Ω ‖z‖2,Ω ≤ Ch2 ‖ y‖2,Ω
∥
∥ y − yh(u)

∥
∥
0,Ω .

Bounds for the remaining terms can be obtained following the proof of [33, Theorem 3.4]
and [24, Theorem 3.2], as follows

R3 ≤ Ch2
[‖ y‖2,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω

] ∥∥ y − yh(u)
∥
∥
0,Ω ,

R4 ≤ |(p − ph(u), div (z − z I ))0,Ω | ≤ Ch2 ‖p‖1,Ω
∥
∥ y − yh(u)

∥
∥
0,Ω ,

R5 ≤ Ch2 ‖ y‖2,Ω
∥
∥ y − yh(u)

∥
∥
0,Ω .

Combining the five estimates above with (3.22), we straightforwardly obtain
∥
∥ y − yh(u)

∥
∥
0,Ω ≤ Ch2

[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω
]
,

and very much in the same way, one arrives at

‖w − wh( y)‖0,Ω ≤ Ch2
[
‖w‖2,Ω + ‖r‖1,Ω + ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω

]
.

��

Now, for a given control u, let (wh(u), rh(u)) be the solution of

Ah(wh(u), zh) + ch(wh(u), zh) + Bh(zh, rh(u)) = ( yh(u) − yd , γ zh)0,Ω ∀zh ∈ Vh,

Bh(wh(u), ψh) = 0 ∀ψh ∈ Qh,

and notice that similar arguments as those appearing in the proof of Lemma 5 and in the
derivation of the estimate

∥
∥ y − yh(u)

∥
∥
0,Ω ≤ Ch2, will readily lead to

‖w − wh(u)‖0,Ω ≤ Ch2. (3.23)

The following result plays a vital role in deriving error estimates of the control, state and
co-state variables. Its proof is similar to that in [38, Theorem 4.1].

Lemma 6 Assume that ν ∈ W 2,∞(Ω) and u, f , yd ∈ H1(Ω). Then

(w − wh, uh − u)0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω + ‖w‖2,Ω + ‖r‖1,Ω
+ ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω ] ‖uh − u‖0,Ω + Ch ‖uh − u‖20,Ω ,

(3.24)

where C > 0 is independent of h.
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Proof We split (w − wh, uh − u)0,Ω as

(w − wh, uh − u)0,Ω = (w−wh(y), uh−u)0,Ω + (wh(y)−wh

− γ (wh(y)−wh), uh−u)0,Ω

+ (γ (wh(y) − wh), uh − u)0,Ω . (3.25)

Then, using the approximation property of γ together with Lemmas 4 and 5 implies

(w − wh(y), uh − u)0,Ω + (wh(y) − wh − γ (wh(y) − wh), uh − u)0,Ω

≤ ‖w − wh(y)‖0,Ω ‖uh − u‖0,Ω + Ch
∥
∥ y − yh

∥
∥
0,Ω ‖uh − u‖0,Ω

≤ ‖w − wh(y)‖0,Ω ‖uh − u‖0,Ω + Ch(
∥
∥ y − yh(u)

∥
∥
0,Ω + ‖uh − u‖0,Ω) ‖uh − u‖0,Ω

≤ Ch2
[
‖w‖2,Ω + ‖r‖1,Ω + ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω

]
‖uh − u‖0,Ω

+ Ch(h2
[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω

]+ ‖uh − u‖0,Ω) ‖uh − u‖0,Ω
≤ Ch2

[
‖w‖2,Ω + ‖r‖1,Ω + ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω

]
‖uh − u‖0,Ω + Ch ‖uh − u‖20,Ω .

(3.26)

Now we subtract (3.1) and (3.2) from (2.16) and (2.17), respectively and test the result
against vh = wh( y) − wh and φh = rh( y) − rh to obtain the relation

(γ (wh( y) − wh), uh − u)0,Ω = Ah( yh − yh(u),wh( y) − wh)

+ ch( yh − yh(u),wh( y) − wh)

− Bh(wh( y) − wh, ph − ph(u))

+ B( yh − yh(u), rh( y) − rh). (3.27)

Similarly, subtracting Eqs. (2.18) and (2.19) from (3.3) and (3.4), respectively, and taking
zh = yh − yh(u) and ψh = ph − ph(u), we can assert that

Ah(wh( y) − wh, yh − yh(u)) + ch(wh( y) − wh, yh − yh(u))

= ( y − yh, γ ( yh − yh(u)))0,Ω − Bh( yh − yh(u), rh( y) − rh)

+ B(wh( y) − wh, ph − ph(u)). (3.28)

Adding (3.27) and (3.28) and using that ( yh − yh(u), γ ( yh − yh(u)))0,Ω ≥ 0, we arrive at

(γ (wh( y) − wh), uh − u)0,Ω

≤ [Ah( yh − yh(u),wh( y) − wh) − Ah(wh( y) − wh, yh − yh(u))]
+[ch( yh− yh(u),wh( y)−wh) − ch(wh( y)−wh, yh− yh(u))]

+ ( y− yh(u), γ ( yh− yh(u)))0,Ω

≤ Ch
∣
∣
∣
∣
∣
∣ yh− yh(u)

∣
∣
∣
∣
∣
∣
2,h |||wh( y)− wh |||2,h + ∥∥ y− yh(u)

∥
∥
0,Ω

∣
∣
∣
∣
∣
∣ yh− yh(u)

∣
∣
∣
∣
∣
∣
2,h ,

where we have used relations (2.2), (2.7), (2.11) and (2.13). An application of Lemmas 4 and
5 in the above inequality leads to the following bound

(γ (wh( y) − wh), uh − u)0,Ω ≤Ch2
[‖ y‖2,Ω + ‖p‖1,Ω

+‖u‖1,Ω + ‖ f ‖1,Ω
] ‖uh − u‖0,Ω

+ Ch ‖uh − u‖20,Ω . (3.29)

Finally, inserting estimates (3.26) and (3.29) into (3.25), we get the required result. ��
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Remark 1 (Right-hand side regularity) According to the contributions [8,19,28,30] (see
also the references therein), for linear finite volume element methods applied to second order
elliptic problems, the optimal error estimates (establishing second order accuracy in the L2−
norm) can be achieved under the assumption that the source term is in H1(Ω). However,
assuming that the right-hand side is in H1(Ω) does not imply that the exact solution is in
H3(Ω), as discussed in e.g. [19]. Some counterexamples are actually given in [28,30] to
confirm that optimal L2− error estimates cannot be derived if one only assumes that the
forcing term is in L2(Ω). Proceeding analogously to the analysis of standard finite volume
methods, optimal error estimates in the L2− norm have been derived by taking the source
term in H1(Ω) (see for instance [19,24] and their references, for the specific case of DFV
methods applied to elliptic and Stokes problems). Following the analysis of [31], one can
derive the error estimates given in Lemmas 5 and 6 under the less restrictive assumption that
f and yd are in H1(T ), that is, locally-H1.

3.2 Error Estimates Under Variational Discretisation

Theorem 1 Let ( yh,wh) be DFV approximations of ( y,w) and let uh denote a variational
discretisation of u. Then there exists a positive constant C independent of h, but depending
on λ, such that the following estimates hold:

‖u − uh‖0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω + ‖w‖2,Ω + ‖r‖1,Ω
+ ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω ], (3.30)

∥
∥ y − yh

∥
∥
0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω + ‖w‖2,Ω + ‖r‖1,Ω

+ ‖ y‖1,Ω + ∥∥ yd
∥
∥
1,Ω ], (3.31)

‖w − wh‖0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω + ‖w‖2,Ω + ‖r‖1,Ω
+ ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω ]. (3.32)

Proof We recall the continuous variational inequality

(w + λu, ũ − u)0,Ω ≥ 0 ∀ũ ∈ Uad, (3.33)

and the discrete variational inequality under variational discretisation

(wh + λuh, ũh − uh)0,Ω ≥ 0 ∀ũh ∈ Uad. (3.34)

Choosing ũ = uh and ũh = u in (3.33) and (3.34), respectively, and adding up the resulting
inequalities, yields

(w + λu, uh − u)0,Ω + (wh + λuh, u − uh)0,Ω ≥ 0,

and rearranging terms, we get

λ ‖u − uh‖20,Ω ≤ (w − wh, uh − u)0,Ω . (3.35)

An application of (3.24) in (3.35) implies the required result (3.30). Using (3.5) and the
triangle inequality together with Lemmas 4 and 5, and result (3.30), the remaining estimates
(3.31)–(3.32) follow in a straightforward manner. ��
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3.3 L2-Error Estimates for Fully Discretised Controls

Adiscrete admissible control ũh = (ũh, j )
d
j=1 ∈ Uh,ad is defined component-wise and locally

as

ũh, j =

⎧
⎪⎪⎨

⎪⎪⎩

a j if min
x∈T u j (x) = a j ,

b j if max
x∈T u j (x) = b j ,

Ĩhu j otherwise,

(3.36)

where Ĩhu j is the Lagrange interpolant of u j . To avoid ambiguity, we choose h sufficiently
small so that minx∈T u j (x) = a j and maxx∈T u j (x) = b j do not occur simultaneously
within the same element T ∈ Th . Next, we proceed to group the elements in the primal mesh
into three categories: Th = T j

h,1 ∪ T j
h,2 ∪ T j

h,3 with T j
h,m ∩ T j

h,n = ∅ for m �= n according to
the value of u j (x) on T . These sets are defined as

T j
h,1 = {T ∈ Th : u j (x) = a j or u j (x) = b j ∀x ∈ T },

T j
h,2 = {T ∈ Th : a j < u j (x) < b j ∀x ∈ T }, T j

h,3 = Th \ (T j
h,1 ∪ T j

h,2).

Definition (3.36) implies that for any ũh ∈ Uh,ad, one has (cf. [14, Lemma 2.1]):

(w + λu, ũ − ũh)0,Ω ≥ 0 ∀ũ ∈ Uad. (3.37)

On the other hand, the following assumption will be instrumental in the subsequent analysis.
There exists a positive constant C independent of h such that

d∑

j=1

∑

T∈T j
h,3

|T | ≤ Ch. (3.38)

A similar assumption has been employed in [41–43,48].
We will first focus on error bounds for the control field under piecewise linear discreti-

sation. Before proceeding we state an auxiliary result, whose proof can be found in [41].

Lemma 7 Assume (3.38) and that w ∈ W1,∞(Ω). Then, there exists C > 0 independent of
h such that

∣
∣(w + λu, ũh − u)0,Ω

∣
∣ ≤ C

λ
h3 ‖∇w‖2∞,Ω ,

for any ũh ∈ Uh,ad.

The main result in this section is stated as follows.

Theorem 2 Let u ∈ Uad be the solution of (1.1)–(1.4) and uh ∈ Uh,ad be the solution
of (2.16)–(2.20), under piecewise linear control discretisation. Then, there exists C > 0
independent of h but depending on λ such that

‖u − uh‖0,Ω ≤ Ch3/2 ‖∇w‖∞,Ω .

Proof Testing the continuous and discrete variational inequalities against uh ∈ Uh,ad ⊂ Uad

and ũh ∈ Uh,ad, respectively, and adding them, leads to

(w + λu, uh − u)0,Ω + (wh + λuh, ũh − uh)0,Ω ≥ 0.
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Addition and subtraction of ũh in the first term above yields

λ(u − uh, uh − ũh)0,Ω + (w − wh, uh − ũh)0,Ω + (w + λu, ũh − u)0,Ω ≥ 0,

and after rearranging terms we obtain

λ ‖u − uh‖20,Ω ≤ λ(u − uh, u − ũh)0,Ω + (w − wh, uh − u)0,Ω + (w − wh, u − ũh)0,Ω
+ (w + λu, ũh − u)0,Ω . (3.39)

In view of estimating the term ‖u − ũh‖0,Ω , we proceed to rewrite it as

‖u − ũh‖20,Ω =
d∑

j=1

∑

T∈Th

∥
∥u j − ũ j,h

∥
∥2
0,T

=
d∑

j=1

∑

T∈T j
h,2

∥
∥u j − ũ j,h

∥
∥2
0,T +

d∑

j=1

∑

T∈T j
h,3

∥
∥u j − ũ j,h

∥
∥2
0,T

=: T1 + T2,

(3.40)

where we have used that ũ j,h = u j on T j
h,1, and hence

∑

T∈τ
j
h,1

∥
∥u j − ũ j,h

∥
∥2
0,T = 0, for

j = 1, . . . , d . In order to bound T1 we use the relation u j = −1
λ

w j on all triangles T ∈ T j
h,2,

to obtain

d∑

j=1

∑

T∈T j
h,2

∥
∥
∥ui − Ĩhui

∥
∥
∥
2

0,T
≤ Ch4

d∑

j=1

∑

T∈T j
h,2

∥
∥∇2u j

∥
∥2
0,T ≤ C

λ2
h4

d∑

j=1

∥
∥∇2w j

∥
∥2
0,Ω ,

whereas for T2, we employ the projection property (1.11) together with (3.38) to get

d∑

j=1

∑

T∈T j
h,3

∥
∥
∥u j − Ĩhu j

∥
∥
∥
2

0,T
≤ C

d∑

j=1

∑

T∈T j
h,3

|T |
∥
∥
∥u j − Ĩhu j

∥
∥
∥
2

L∞(T )

≤ Ch3
d∑

j=1

∥
∥∇u j

∥
∥2∞,Ω

≤ C

λ2
h3

d∑

j=1

∥
∥∇w j

∥
∥2∞,Ω

.

Inserting the bounds of T1 and T2 in (3.40) we arrive at

‖u − ũh‖0,Ω ≤ C

λ
h2

d∑

j=1

∥
∥∇2w j

∥
∥+ C

λ
h3/2

d∑

j=1

∥
∥∇w j

∥
∥∞,Ω

. (3.41)

Finally, applying Cauchy–Schwarz and Young’s inequalities, the estimates (3.24), (3.41),
and Lemmas 5 and 7 into (3.39), we readily obtain the required result. ��

We now turn to the L2−error analysis for the control field under element-wise constant
discretisation. The main idea follows from [14], using an L2−projection Π0 : L2(Ω) −→
Uh,0 that has the following property: there exists a positive constantC independent of h such
that

‖u − Π0u‖0,Ω ≤ Ch ‖u‖1,Ω . (3.42)
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Theorem 3 Let u be the unique solution of (1.1)–(1.4) and uh be the unique control, solution
of the discrete problem (2.16)–(2.20) under an element-wise constant discretisation. Then
there exists a positive constant C independent of h but dependent on λ such that

‖u − uh‖0,Ω ≤ Ch ‖u‖1,Ω .

Proof SinceΠ0Uad ⊂ Uh,ad, the continuous and discrete optimality conditions readily imply
that

(w + λu, uh − u)0,Ω + (wh + λuh,Π0u − uh)0,Ω ≥ 0.

Adding and subtracting u, and rearranging terms, we then obtain

λ ‖u − uh‖20,Ω ≤ (w − wh, uh − u)0,Ω + (wh + λuh,Π0u − u)0,Ω,

and since Π0 is an orthogonal projection and uh ∈ Uh,ad, then the term λ(uh,Π0u − u)0,Ω
vanishes to give

λ ‖u − uh‖20,Ω ≤ (w − wh, uh − u)0,Ω + (wh,Π0u − u)0,Ω =: I1 + I2. (3.43)

For the first term, we use (3.24) to get

I1 ≤ Ch2 ‖u − uh‖0,Ω + Ch ‖u − uh‖20,Ω ,

whereas a bound for I2 follows from the orthogonality of Π0:

I2 = (wh−Π0wh,Π0u − u)0,Ω ≤ ‖wh−Π0wh‖0,Ω ‖Π0u−u‖0,Ω
≤ Ch |||wh |||2,h‖Π0u − u‖0,Ω .

It is left to show that wh is uniformly bounded, which can be readily derived using the
coercivity of Ah(·, ·) and ch(·, ·) and the uniform boundedness of Uh,ad:

|||wh |||2,h ≤ C
(
‖uh‖0,Ω + ‖ f ‖0,Ω + ∥∥ yd

∥
∥
0,Ω

)
≤ C.

Substituting the bounds for I1 and I2 in (3.43), and using (3.42) the desired result
follows. ��
3.4 L2-Error Estimates for Velocity Under Full Discretisation of Control

The main result in this section is given as follows (see similar ideas, based on duality argu-
ments also applied in [43,50]).

Theorem 4 Let ( y,w) be the state and co-state velocities, solutions of (1.1)–(1.4), and
let ( yh,wh) be their DFV approximations under piecewise linear (or piecewise constant)
discretisation of control. Then

∥
∥ y − yh

∥
∥
0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω ],

‖w − wh‖0,Ω ≤ Ch2[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω + ‖w‖2,Ω + ‖r‖1,Ω
+ ‖ y‖1,Ω + ∥∥ yd

∥
∥
1,Ω ].

Proof We start by splitting the total error and applying triangle inequality as:
∥
∥ y − yh

∥
∥
0,Ω ≤ ∥∥ y − yh(u)

∥
∥
0,Ω + ∥∥ yh(u) − yh(Πhu)

∥
∥
0,Ω + ∥∥ yh(Πhu) − yh

∥
∥
0,Ω ,

(3.44)
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whereΠh represents theL2−projection operator onto the discrete control spaceUh . Next, let
(w̃h, r̃h) ∈ Vh × Qh be the unique solution of the auxiliary discrete dual Brinkman problem

Ah(w̃h, z̃h) + ch(w̃h, z̃h) − Bh( z̃h, r̃h) = (γ z̃h, yh(u) − yh(Πhu))0,Ω ∀ z̃h ∈ Vh,

(3.45)

Bh(w̃h, ψ̃h) = 0 ∀ψ̃h ∈ Qh . (3.46)

We then choose z̃h = w̃h and ψ̃h = r̃h in (3.45) and (3.46), respectively, next we add the
result, and we use the coercivity properties (2.8) and (2.12), to derive that

|||w̃h |||2,h ≤ C
∥
∥ yh(u) − yh(Πhu)

∥
∥
0,Ω . (3.47)

After testing (3.45)–(3.46) against z̃h = yh(u) − yh(Πhu) and ψ̃h = ph(u) − ph(Πhu),
respectively, and adding the result, we obtain

Ah(w̃h, yh(u) − yh(Πhu)) + ch(w̃h, yh(u) − yh(Πhu)) − Bh( yh(u) − yh(Πhu), r̃h)

−Bh(w̃h, ph(u) − ph(Πhu)) = (γ ( yh(u) − yh(Πhu)), yh(u) − yh(Πhu))0,Ω .

(3.48)

In addition, employing the discrete state equation for yh(u) and yh(Πhu), we obtain

Ah( yh(u) − yh(Πhu), w̃h) + ch( yh(u) − yh(Πhu), w̃h) − Bh(w̃h, ph(u) − ph(Πhu))

− Bh( yh(u) − yh(Πhu), r̃h) = (u − Πhu, γ w̃h)0,Ω . (3.49)

We then proceed to subtract (3.49) from (3.48) and to rearrange terms, to arrive at

(γ ( yh(u) − yh(Πhu)), yh(u) − yh(Πhu))0,Ω

= Ah(w̃h, yh(u) − yh(Πhu)) − Ah( yh(u) − yh(Πhu), w̃h)

+ ch(w̃h, yh(u) − yh(Πhu))

− ch( yh(u) − yh(Πhu), w̃h) + (u − Πhu, γ w̃h)0,Ω .

Using the definition of the norm |||·|||0,h and its equivalence with the norm ‖ · ‖0,Ω we find
that
∥
∥ yh(u) − yh(Πhu)

∥
∥2
0,Ω

≤ (u − Πhu, γ w̃h)0,Ω + |Ah(w̃h, yh(u) − yh(Πhu)) − Ah( yh(u) − yh(Πhu), w̃h)|
+ |ch(w̃h, yh(u) − yh(Πhu)) − ch( yh(u) − yh(Πhu), w̃h)|.

By virtue of the properties of Πh applied in the above inequality, we can assert that
∥
∥ yh(u) − yh(Πhu)

∥
∥2
0,Ω ≤ (u − Πhu, γ w̃h − w̃h)0,Ω + (u − Πhu, w̃h − Πhw̃h)0,Ω

+ |Ah(w̃h, yh(u) − yh(Πhu)) − Ah( yh(u) − yh(Πhu), w̃h)|
+ |ch(w̃h, yh(u) − yh(Πhu)) − ch( yh(u) − yh(Πhu), w̃h)|

=: S1 + S2 + S3 + S4. (3.50)

Approximation properties of γ and the L2−projection readily yield appropriate bounds for
S1 and S2, respectively:

S1 ≤ Ch ‖u − Πhu‖0,Ω |||w̃h |||2,h , and S2 ≤ Ch ‖u − Πhu‖0,Ω |||w̃h |||2,h .
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Then, a direct application of (3.47) yields

S1 + S2 ≤ Ch ‖u − Πhu‖0,Ω
∥
∥ yh(u) − yh(Πhu)

∥
∥
0,Ω .

We next use relations (2.11), (2.13) and (3.47) to obtain

S3 + S4 ≤ Ch
∣
∣
∣
∣
∣
∣ yh(u) − yh(Πhu)

∣
∣
∣
∣
∣
∣
2,h |||w̃h |||2,h

≤ Ch ‖u − Πhu‖0,Ω
∥
∥ yh(u) − yh(Πhu)

∥
∥
0,Ω .

Consequently, substituting the estimates for the terms S1, S2, S3 and S4 back into (3.50), one
straightforwardly arrives at

∥
∥ yh(u) − yh(Πhu)

∥
∥
0,Ω ≤ Ch ‖u − Πhu‖0,Ω . (3.51)

The third term in (3.44) is bounded using (2.7) and proceeding as in the proof of Lemma 4:
∥
∥ yh(Πhu) − yh

∥
∥
0,Ω ≤ ∣∣∣∣∣∣ yh(Πhu) − yh

∣
∣
∣
∣
∣
∣
2,h ≤ C ‖Πhu − uh‖0,Ω . (3.52)

Using the discrete variational inequality along with the projection property ofΠh and (3.37),
we have the following relation

λ ‖Πhu − uh‖20,Ω = λ(u − uh,Πhu − uh)0,Ω ≤ (w − wh, uh − Πhu)0,Ω

= (w − wh(u), uh − Πhu)0,Ω + (wh(u)

−wh(yh(Πhu)), uh − Πhu)0,Ω

+ (wh(yh(Πhu)) − wh, uh − Πhu)0,Ω

= (w − wh(u), uh − Πhu)0,Ω + (wh(u)

−wh(yh(Πhu)), uh − Πhu)0,Ω

+ (wh(yh(Πhu)) − wh − γ (wh(yh(Πhu)) − wh), uh − Πhu)0,Ω

+ (γ (wh(yh(Πhu)) − wh), uh − Πhu)0,Ω

= J1 + J2 + J3 + J4. (3.53)

Next, we use Cauchy–Schwarz inequality and (3.23) to bound the first term:

J1 ≤ ‖w − wh(u)‖0,Ω ‖uh − Πhu‖0,Ω ≤ Ch2 ‖uh − Πhu‖0,Ω .

For J2, an application of Lemma 4 and (3.51) suffices to get

J2 ≤ ∥∥ yh(u) − yh(Πhu)
∥
∥
0,Ω ‖uh − Πhu‖0,Ω ≤ Ch ‖u − Πhu‖0,Ω ‖uh − Πhu‖0,Ω .

To bound the third term we use the approximation property of γ and Lemma 4

J3 ≤ Ch
∣
∣
∣
∣
∣
∣wh( yh(Πhu)) − wh

∣
∣
∣
∣
∣
∣
2,h ‖uh − Πhu‖0,Ω

≤ Ch
∥
∥ yh(Πhu) − yh

∥
∥
0,Ω ‖uh − Πhu‖0,Ω ≤ Ch ‖uh − Πhu‖20,Ω .

Proceeding analogously to the proof of Lemma 6, using (2.11) and (2.13), the last term of
the expression (3.53) can be estimated as

J4 ≤ Ah( yh − yh(Πhu),wh(Πhu) − wh) − Ah(wh(Πhu) − wh, yh − yh(Πhu))

+ ch( yh − yh(Πhu),wh(Πhu) − wh) − ch(wh(Πhu) − wh, yh − yh(Πhu))

≤ Ch
∣
∣
∣
∣
∣
∣ yh − yh(Πhu)

∣
∣
∣
∣
∣
∣
2,h |||wh(Πhu) − wh |||2,h ≤ Ch ‖uh − Πhu‖20,Ω .
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Plugging the bounds for J1, J2, J3 and J4 in (3.53), putting (3.51) and (3.52) into (3.44),
and using interpolation estimate ‖u − Πhu‖0,Ω ≤ Ch ‖u‖1,Ω along with Lemma 5; we can
assert that

∥
∥ y − yh

∥
∥
0,Ω ≤ Ch2

[‖ y‖2,Ω + ‖p‖1,Ω + ‖u‖1,Ω + ‖ f ‖1,Ω
]
. (3.54)

Finally, splitting the co-state velocity error asw−wh = w−wh( y)+wh(y)−wh , using
triangle inequality and Lemmas 4,5, and relation (3.54), we get the second desired estimate

‖w − wh‖0,Ω ≤‖w − wh( y)‖0,Ω +‖wh( y) − wh‖0,Ω ≤ ‖w − wh( y)‖0,Ω +∥∥ y − yh
∥
∥
0,Ω .

��
3.5 Error Bounds in the Energy Norm

Theorem 5 Let ( y,w, p, r) be the state and co-state velocities, and pressures, solutions of
(1.1)–(1.4), and let ( yh,wh, ph, rh) be their DFV approximations. Then

∣
∣
∣
∣
∣
∣ y − yh

∣
∣
∣
∣
∣
∣
2,h + ‖p − ph‖0,Ω ≤ Ch

(‖ y‖2,Ω + ‖p‖1,Ω
)

|||w − wh |||2,h + ‖r − rh‖0,Ω ≤ Ch
(‖w‖2,Ω + ‖r‖1,Ω

)
.

Proof Using (3.5) and (3.6), applying triangle inequality and Lemma 4, we obtain
∣
∣
∣
∣
∣
∣ y − yh

∣
∣
∣
∣
∣
∣
2,h + ‖p − ph‖0,Ω

≤ ∣∣∣∣∣∣ y − yh(u)
∣
∣
∣
∣
∣
∣
2,h + ∣∣∣∣∣∣ yh(u) − yh

∣
∣
∣
∣
∣
∣
2,h + ‖p − ph(u)‖0,Ω + ‖ph(u) − ph‖0,Ω

≤ ∣∣∣∣∣∣ y − yh(u)
∣
∣
∣
∣
∣
∣
2,h + ‖p − ph(u)‖0,Ω + C ‖u − uh‖0,Ω ,

and

|||w − wh |||2,h + ‖r − rh‖0,Ω
≤ |||w − wh( y)|||2,h + |||wh( y) − wh |||2,h + ‖r − rh( y)‖0,Ω + ‖rh( y) − rh‖0,Ω
≤ |||w − wh( y)|||2,h + ‖r − rh( y)‖0,Ω + C

∥
∥ y − yh

∥
∥
0,Ω .

The proof follows after combining Lemma 5 with the bounds for ‖u − uh‖0,Ω and∥
∥ y − yh

∥
∥
0,Ω . ��

4 Numerical Experiments

In this section we present a set of numerical examples to illustrate the theoretical results
previously described. For sake of completeness, before jumping into the tests we provide
some details about the implementation and algorithms for the efficient numerical realisation
of the DFV method applied to the optimal control of Brinkman equations.
Implementation Aspects We will use the well-known active set strategy (proposed in [6])
involving primal and dual variables (see also [25,44] for its application in Stokes flow).
The principle is to approximate the constrained optimal control problem by a sequence of
unconstrained problems, using active sets as summarised in Algorithm 1. By unh,w

n
h we will

denote the optimal control and adjoint velocity, solutions to the discrete problem (2.16)–(2.20)
at the current iteration. Also, the control constraints are a = (a1, ..ad)T and b = (b1, ..bd)T .
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Algorithm 1 Active set implementation and overall solution strategy.

1: choose and store arbitrary initial guesses for u0h = b, w0
h = −λu0h

2: initialise active and inactive sets Aa
0 = Ab

0 = ∅, I0 = {1, . . . , M}
3: for n = 0, 1, . . . , do
4: From unh and wn

h , construct the new finite sets Aa
n+1, A

b
n+1 and In+1 using (4.2)

5: if

n ≥ 1, and Aa
n+1 = Aa

n , and Ab
n+1 = Ab

n , (4.1)

then
6: stop
7: else
8: find

(
yn+1
h , pn+1

h , wn+1
h , rn+1

h , un+1
h

)
, solution to the coupled system (4.4)

9: end if
10: reinitialise active and inactive sets and control variable

Aa
n ← Aa

n+1, Ab
n ← Ab

n+1, In ← In+1, unh ← un+1
h

11: end for

Let {φi }Ni=1, {ξi }Li=1, {ψ i }Mi=1 be the basis functions for Vh , Qh , and Uh , respectively,
whereas the space V∗

h is spanned by {φ∗
i }Ni=1, with (made precise here for d = 3)

φ∗
i (x) = {χT ∗

i
(1, 0, 0), χT ∗

i
(0, 1, 0), χT ∗

i
(0, 0, 1)},

whereχT ∗
i
is the characteristic function assuming the value 1 on T ∗

i ∈ T ∗
h and zero elsewhere.

We next proceed to define the discrete active and inactive sets, based on the degrees of
freedom of Uh , as follows

Aa
n+1 = {k ∈ {1, . . . , M} : −w

n,k
j,h/λ < a j , for any j ∈ {1, . . . , d}},

Ab
n+1 = {k ∈ {1, . . . , M} : −w

n,k
j,h/λ > b j , for any j ∈ {1, . . . , d}},

In+1 = {1, . . . , M} \ (Aa
n+1 ∪ Ab

n+1),

(4.2)

where, in general, sn,k
j,h stands for the discrete value associated with the degree of freedom at

position k, related to the spatial component j of the vector field s, at the step n of Algorithm 1.
By the definition of the optimal control problem, we have that

unh =

⎧
⎪⎨

⎪⎩

a in Aa
n+1,

−λ−1wn
h in In+1,

b in Ab
n+1,

and if we further introduce the following characteristic sets

χAa
n+1(k,k)

=
{
1 if k ∈ Aa

n+1,

0 else,
χAb

n+1(k,k)
=
{
1 if k ∈ Ab

n+1,

0 else,

then we get

λ−1wn
h

(
1 − χAa

n+1
− χAb

n+1

)
+ unh = a χAa

n+1
+ bχAb

n+1
. (4.3)
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Table 1 Example 1: convergence history and optimisation iteration count for the approximations of the
optimal control of the Brinkman problem

h e0(y) rate e1(y) rate e0(p) rate e0(w) rate e1(w) rate e0(r) rate e0(u) rate it

Piecewise constant control

0.71 0.3025 – 2.2608 – 0.3301 – 0.3025 – 2.2608 – 0.3301 – 0.1824 – 2

0.47 0.1744 1.35 1.5583 0.91 0.3062 0.38 0.1770 1.32 1.5621 0.911 0.3062 0.39 0.1204 1.02 3

0.28 0.0872 1.35 1.0574 0.75 0.1995 0.83 0.0893 1.33 1.0600 0.859 0.1995 0.83 0.0743 0.94 3

0.15 0.0316 1.72 0.6188 0.91 0.1146 0.94 0.0326 1.71 0.6196 0.913 0.1146 0.94 0.0416 0.98 3

0.08 0.0084 2.09 0.3327 0.97 0.0613 0.98 0.0086 2.09 0.3328 0.977 0.0613 0.98 0.0216 1.02 3

0.04 0.0015 2.15 0.1725 0.99 0.0317 0.99 0.0016 2.57 0.1725 0.991 0.0317 0.99 0.0111 1.00 3

0.02 0.0004 2.13 0.0885 0.98 0.0161 0.98 0.0004 2.02 0.0886 0.982 0.0161 0.99 0.0053 1.04 3

0.01 0.0001 2.00 0.0464 0.94 0.0081 0.99 0.0001 2.03 0.0465 0.989 0.0081 0.99 0.0027 1.02 3

Piecewise linear control

0.71 0.3025 – 2.2608 – 0.3301 – 0.3025 – 2.2608 – 0.3301 – 0.1825 – 2

0.47 0.1751 1.34 1.5593 0.91 0.3062 0.38 0.1770 1.32 1.5622 0.91 0.3062 0.38 0.0886 1.78 3

0.28 0.0876 1.35 1.0578 0.75 0.1995 0.83 0.0893 1.33 1.0600 0.75 0.1995 0.83 0.0540 0.96 3

0.15 0.0318 1.72 0.6190 0.91 0.1146 0.94 0.0326 1.71 0.6196 0.91 0.1146 0.94 0.0243 1.36 3

0.08 0.0084 2.08 0.3322 0.97 0.0613 0.98 0.0086 2.09 0.3328 0.97 0.0613 0.98 0.0090 1.55 3

0.04 0.0015 2.17 0.1729 0.99 0.0317 0.99 0.0016 2.17 0.1725 0.99 0.0317 0.99 0.0032 1.56 3

0.02 0.0004 2.13 0.0882 0.98 0.0159 0.99 0.0005 1.99 0.0887 0.99 0.0160 0.99 0.0011 1.55 2

0.01 0.0001 2.01 0.0460 0.94 0.0075 0.94 0.0001 2.02 0.0453 0.97 0.0079 0.99 0.0002 1.57 3

Finally, we define the matrix blocks

A =[Ah(φi,φj)]i, j≤N , C = [ch(φi,φj)]i, j≤N , B = [Bh(ξi ,φj)]i≤L; j≤N ,

M =[(φi,φ
∗
j )0,Ω ]i, j≤N , G = [(φ∗

i ,ψ j )0,Ω ]i≤N ;1 j≤M ,

D =[(ψ i ,ψ j )0,Ω ]i, j≤M , Ê = λ−1(I − χAa
n+1

− χAb
n+1

),

along with the vectors

F = [( f ,φ∗
i )0,Ω ]i≤N , Yd = [( yd ,φ∗

i )0,Ω ]i≤N , Ŝ = [(a χAa
n+1

+ bχAb
n+1

,ψ i )0,Ω ]i≤M ,

so that after testing (4.3) against {ψ i}Mi=1 we end up with the following matrix form of the
discrete optimal control problem (2.16)–(2.20):

⎛

⎜
⎜
⎜
⎜
⎝

A + C −B
T 0 0 −G

B 0 0 0 0
−M 0 A + C B

T 0
0 0 −B 0 0
0 0 ÊG

T 0 D

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

Y
P
W
R
U

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

F
0

−Yd

0
Ŝ

⎞

⎟
⎟
⎟
⎟
⎠

, (4.4)

where Y,P,W,R and U are the coefficients in the expansion of yn+1
h , pn+1

h , wn+1
h , rn+1

h and
un+1
h , respectively, and the hats indicate quantities associated with the previous iteration.

Example 1 We start by assessing the experimental convergence of the proposed scheme
applied to the optimal control problem (1.1)–(1.4) defined on the unit square Ω = (0, 1)2.
Viscosity, permeability and the weight for the control cost assume the following constant
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Fig. 2 Example 1: DFV approximation of state velocity components andmagnitude (top panels), components
and magnitude of the control variable; approximated with piecewise linear elements (centre row), and state
pressure field (bottom row). Contours of the active sets for a1 = a2 (in white curves) and b1 = b2 (red curves)
are displayed (Color figure online)

values ν = 1, K = diag(1, 1.5), λ = 1, respectively. The set of admissible controls is
characterised by the constants a1 = a2 = − 1

10 , b1 = b2 = 1
4 , and manufactured solutions

are explicitly given by

y = w =
(

sin2(πx1) sin(πx2) cos(πx2)
− sin2(πx2) sin(πx1) cos(πx1)

)

, p = −r = sin(2πx1) sin(2πx2),

u = P[a,b]
(−1

λ
w

)

,

(see e.g. [48]) which satisfy the homogeneous Dirichlet boundary conditions under which the
analysis was performed. Source term and desired velocity field of the problem are constructed
according to these exact solutions, that is, respectively
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Fig. 3 Example 1: comparison between errors generated using a P2 − P0, the MINI-element, an interior
penalty DG, and a DFV approximation of velocity and pressure in the primal and adjoint problems

f = K−1 y − div(νε( y) − pI) − u, yd = y − K−1w + div(νε(w) + rI).

A family of nested primal and dual triangulations ofΩ is generated, on which we compute
errors in the L2−and mesh-dependent norm |||·|||1,h for the state and co-state velocity, in the
L2−norm for pressures, and in the L2−norm for the control approximation. Table 1 displays
the error history for this first test, where we observe optimal convergence rates for velocity
and pressure (only those of the state equation are shown) in their natural norms, along with
an O(h) convergence for the control when approximated by piecewise constant elements,
which improves to roughly a O(h3/2) rate under piecewise linear approximations. We can
also confirm that a maximum of three iterations are needed to reach the stopping criterion
that the active sets are equal to those in the previous optimisation step. This indicates a mesh
independence of the method in the sense that the number of iterations needed to achieve
the stopping criterion is independent of the resolution. In addition we portray in Fig. 2 the
obtained approximate solutions at the finest resolution level, where we highlight the active
sets with a contour plot on top of the control and state velocities. In all examples herein we
employ aBiCGSTABmethodwithAMGpreconditioning to solve the linear systems involved
at each step of Algorithm 1. Moreover, the zero-mean pressure condition is applied for both
pressure and adjoint pressure using a real Lagrange multiplier approach (which accounts for
adding one column and one row to the relevant matrix system).

We also present a basic comparison with other classical methods in terms of accuracy. For
instance, we have performed the same test as above but employing model coefficients with
jumps, in order to highlight the need for discontinuous approximations. Both fluid viscosity
and medium permeability have now a discontinuity of five orders of magnitude at x1 = 0.5.
The testedmethods are: a conforming stableP2−P0 andMINI-element pairs for velocity and
pressure approximation, a classical interior penalty DG method using the same stabilisation
parameters as in (2.4)–(2.5), and the proposed DFV formulation. In all cases we consider a
piecewise linear approximation of the control variable.
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Fig. 4 Example 2: DFV approximation of state velocity components and magnitude along with state pressure
(top panels), adjoint velocity and pressure (centre row), components and magnitude of the control variable
under piecewise constant approximation, and state velocity streamlines (bottom row). Contours of the active
sets associated to a1 = a2 (in white curves) and b1 = b2 (red curves) are displayed on each plot (Color figure
online)

The results are collected in Fig. 3, where convergence histories (errors for velocity and
pressure vs. the number of degrees of freedom DoF= 2(N + L) + M) associated to the
studied discretisations are shown. For all fields, the DFV approximation exhibits a slightly
better accuracy than its pure-DG counterpart. This may be explained by the smaller elements
used in the dual mesh (but being associatedwith the same number of DoF). On the other hand,
for coarse meshes the conforming approximation P2 − P0 outperforms all other methods,
but for finer meshes the discontinuous coefficients of the problem imply a badly conditioned
system matrix requiring more iterations of the linear solver and eventually the conforming
methods lose their optimal convergence. For a fixed number of DoF, the proposed DFV
scheme produces smaller errors for the pressure approximation than the other methods.
We stress that some recent theoretical comparison results are available for forward Stokes
problems (see e.g. [13]), but only in the case of smooth solutions and constant coefficients. If
the comparisons are carried out for the case of smooth solutions, then the error estimates in
e.g. Theorem 5 are indeed of the same order as their finite element counterpart. However the
constants in the estimates are not necessarily the same. As mentioned above, since the dual
elements are in principle smaller than the primal ones, the approximate solutions and the
corresponding errors generated with discontinuous finite volume schemes are still slightly
more localised, implying that the errors themselves are smaller than those produced with
methods based on the primalmesh.Complexity, implementation, andCPU times for assembly
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Table 2 Example 2: iteration count versus the regularisation parameter for the DFV approximations of the
optimal control of the Brinkman problem

λ 1 0.2 0.04 0.008 0.0016 0.00032 0.000064

it 5 6 7 8 12 19 34

Fig. 5 Example 3: streamlines of the DFV approximate state and co-state velocities, along with control field
(top row), iso-surfaces of approximate state and co-state pressures together with iso-surfaces of the second
component of the control variable associated to a = a1 = a2 = a3 (in red) and b = b1 = b2 = b3 (blue)
(bottom panels) (Color figure online)

and solution of the linear systems are, on the other hand, comparable to those associated with
classical finite elements.

Example 2 Our second test focuses on the optimal control problem applied to thewell-known
lid driven cavity problem. The objective function still corresponds to (1.1), but no analytic
exact solution is available. Again the domain consists of the unit square, and the data of
the problem are given by a traction boundary condition on the top of the lid, the applied
body force, and an observed velocity field y = (1, 0)T on the top and zero elsewhere, and
f = yd = 0 in Ω . The adjoint problem is subject to homogeneous Dirichlet data. The
viscosity is set to ν = 0.1, the control weight is now λ = 0.2, the admissible control space
is characterised by a1 = a2 = −0.15, b1 = b2 = 0.15, and the permeability exhibits a
discontinuity on the line x2 = 0.4: K(x) = κ

ν
I, with κ(x) = {10,000 if x2 ≥ 0.4; 10

elsewhere in Ω} (see also [2,3] for the simulation of Brinkman flows with sharp interfaces).
The domain is discretised into 20,000 primal triangular elements, and Fig. 4 portrays all fields
obtained with our DFV scheme, where the stabilisation parameter is αd = 10. From Fig. 4
we observe that the controlled velocity approaches the desired velocity, that is, it goes to zero
and the movement of the fluid concentrates in the upper section of the cavity. In addition,
we study the influence of the Tikhonov regularisation in the iteration count of the active set
algorithm applied to a coarse solve of this test. As in [25], we immediately observe that a
larger number of iterations are required for smaller values of λ (see Table 2).

Example 3 Next we turn to the numerical solution of a three-dimensional optimal control
problem (see also [34]). The domain is a cylinder with height 4 and radius 1, aligned with the
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x2 axis. The permeability field is anisotropic K = diag(0.1, 10−5χB + 0.1χBc , 0.1), where
B is a ball of radius 1/4 located at the centre of the domain. A Poiseuille inflow profile is
imposed as state velocity at x2 = 0: y = (0, 10(1−x12−(x3−1/2)2), 0)T , a zero-pressure is
considered on x2 = 4, whereas homogeneous Dirichlet data are enforced on the remainder of
∂Ω . The viscosity is ν = 0.005, theTikhonov regularisation isλ = 1/2, the desired velocity is
zero yd = 0, the bounds for the control are a j = a = −0.1 and b j = b = 0.2, and a smooth
body force is set as in [4]: f = K−1(exp(−x2x3) + x1 exp(−x22 ), cos(πx1) cos(πx3) −
x2 exp(−x22 ),−x1x2x3 − x3 exp(−x23 ))

T . The primal meshes has 78,631 internal tetrahedral
elements and 13,593 vertices.Weobserve that five iterations are required to reach the stopping
criterion (4.1). Snapshots of the resulting approximate fields are collected in Fig. 5.
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