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Abstract Stochastic Galerkin finite element methods (SGFEMs) are commonly used to
approximate solutions to PDEs with random inputs. However, the study of a posteriori error
estimation strategies to drive adaptive enrichment of the associated tensor product spaces is
still under development. In this work, we revisit an a posteriori error estimator introduced
in Bespalov and Silvester (SIAM J Sci Comput 38(4):A2118–A2140, 2016) for SGFEM
approximations of the parametric reformulation of the stochastic diffusion problem. A key
issue is that the bound relating the true error to the estimated error involves a CBS (Cauchy–
Buniakowskii–Schwarz) constant. If the approximation spaces associated with the parameter
domain are orthogonal in a weighted L2 sense, then this CBS constant only depends on a pair
of finite element spaces H1, H2 associated with the spatial domain and their compatibility
with respect to an inner product associated with a parameter-free problem. For fixed choices
of H1, we investigate non-standard choices of H2 and the associated CBS constants, with the
aim of designing efficient error estimators with effectivity indices close to one. When H1 and
H2 satisfy certain conditions, we also prove new theoretical estimates for the CBS constant
using linear algebra arguments.
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1 Introduction

Themotivation for this work is the design of efficient a posteriori error estimators for adaptive
Galerkin finite element approximation of solutions to partial differential equations (PDEs).
In particular, we are interested in PDEs with random inputs and so-called stochastic Galerkin
finite element methods (SGFEMs) (see [4,5,14,22,24,31]). When the inputs are represented
by a finite, or countably infinite number of random variables ξm : Ω → R, m = 1, 2, . . . ,
whereΩ is a sample space, it is conventional to reformulate the stochastic problem of interest
as a high-dimensional deterministic one, whose solution depends on a set of parameters
ym = ξm(ω). Unlike sampling methods such as Monte Carlo, in the SGFEM approach,
an approximation is sought in a tensor product space of the form H1 ⊗ P where H1 is
an appropriate finite element space associated with the spatial domain and P is a set of
polynomials associated with the parameter domain. When the number of active parameters
is high, the dimension of H1 ⊗ P for standard choices of H1 and P can become unwieldy.
To remedy this, we can either work with standard approximation spaces and deal with the
resulting very large discrete systems by using smart linear algebra techniques (see [20,21,
25,26,32,33]), or we can use an adaptive approach, starting in a low-dimensional space
H0
1 ⊗ P0, and using a posteriori error estimators to decide whether it is necessary to enrich

H0
1 or P0, or both. This allows us to build up a tailored sequence of approximation spaces

H �
1 ⊗ P�, � = 0, 1, . . . incrementally, so that the dimension of the final space is balanced

against an error tolerance for a quantity of interest.
We consider the steady-state stochastic diffusion problem. Let D ⊂ R

2,3 be a bounded
spatial domain and let y = [y1, y2, . . . ] be a vector-valued parameter which takes values in
Γ = ∏∞

m=1 Γm (the parameter domain).Wewant to approximate the functionu : D×Γ → R

that satisfies

−∇ · (a(x, y)∇u(x, y)) = f (x), x ∈ D, y ∈ Γ, (1a)

u(x, y) = 0, x ∈ ∂D, y ∈ Γ. (1b)

For simplicity,we assume that f = f (x) is independent of y, but themethodologies discussed
herein can be extended to accommodate f = f (x, y). We also assume that the parameters
are bounded, with ym ∈ Γm = [−1, 1]. We denote by π(y) a product measure on (Γ,B(Γ )),
where B(Γ ) is the Borel σ -algebra on Γ , so that π(y) = ∏∞

m=1 πm(ym), where πm(ym) is
a measure on (Γm,B(Γm)). In addition,

∫

Γm

ym dπm(ym) = 0, m ∈ N, (2)

which is true when ym is the image of a mean zero random variable and πm(ym) is the
associated probability measure.

Assumption 1 The coefficient a(x, y) admits the decomposition

a(x, y) = a0(x) +
∞∑

m=1

am(x)ym, x ∈ D, y ∈ Γ, (3)

with a0(x), am(x) ∈ L∞(D). Moreover, there exist real positive constants a0min and a0max
such that

0 < a0min ≤ a0(x) ≤ a0max < ∞ a.e. in D, (4)
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and ||am ||L∞(D) converges sufficiently quickly to zero as m → ∞ so that

∞∑

m=1

||am ||L∞(D) < a0min. (5)

The parameter-free function a0(x) typically represents the mean with each term am(x)ym
representing a perturbation away from the mean, while (5) helps ensure the well posedness
of the weak formulation of (1a)–(1b).

Next,we recall the classical strengthenedCauchy–Buniakowskii–Schwarz (CBS) inequal-
ity (see [1, Theorem 5.4]), a key tool in many areas of numerical analysis.

Theorem 1 Let H be a Hilbert space equipped with inner product (·, ·) and induced norm
|| · || and let U, V be a pair of finite-dimensional subspaces of H satisfying U ∩ V = {0}.
Then, there exists a constant γ ∈ [0, 1), depending only on U and V such that

|(u, v)| ≤ γ ‖u‖‖v‖, ∀ u ∈ U, ∀ v ∈ V . (6)

The smallest constant γ ∈ [0, 1) satisfying (6) is

γmin := sup
u∈U, v∈V

|(u, v)|
‖u‖‖v‖ , (7)

and is known as the CBS constant. In particular, CBS constants appear in the analysis of
hierarchical preconditioners (see [2,3,30]) and certain types of a posteriori error estimators
for Galerkin finite element approximations to PDEs. See, for example, [1,19,27,28].

The design of error estimators for SGFEMs for parameter-dependent PDEs is still under
development. However, there have been a few recent works (see [8–12,16–18,29]) for the
model problem (1a)–(1b). In [12] and [11], algorithms constructing so-called sparse SGFEM
approximations are driven by a priori error analysis, where the error associated with each
discretisation parameter is balanced against the total number of degrees of freedom. In [16]
and [17] a general framework for an explicit residual-based error estimation strategy for
SGFEMs is proposed, where the selection of hierarchical approximation spaces is driven by
a Dörfler marking strategy [15] on both the spatial and parameter domains. In both works,
overestimation up to a factor of 10 of the true error is reported. In [18] a similar approach is
taken, where residuals are computed using an equilibrated fluxes strategy and overestimation
up to a factor of 5 is reported.

We focus on the (implicit) approach taken in [8–10] which is based on solving local
subproblems for the error over a ‘detail’ space. The bound for the effectivity index of the
resulting error estimators depends on a CBS constant. In [8–10] no insight into which choices
of detail space result in a sharp error bound (effectivity indices close to one) is given. In this
paper we provide that analysis. Specifically, we provide detailed information about the CBS
constant and derive theoretical bounds for it, for certain choices of SGFEMsolution and detail
spaces. Due to the way that the spaces associated with the parameter domain are chosen, the
CBS constants needed to analyse the estimators in [8–10] depend only on a pair of finite
element spaces on the spatial domain. Hence, our results are also applicable to the design
of adaptive finite element schemes for deterministic PDEs. We investigate which choices of
detail FEM space result in CBS constants close to zero, to help ensure a sharp error bound.
In particular, due to cost restrictions imposed to avoid high-dimensional detail spaces, we
investigate non-standard choices that aren’t typically considered in the deterministic setting.
The error estimation strategy in [29] also relies on a CBS constant, but in a different setting.
Enrichment of the finite element space is not considered.
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1.1 Outline

In Sect. 2, for the benefit of readers who are not familiar with the area, we review classical
results from [1,6] concerning a posteriori error estimation for Galerkin approximation. In
Sect. 3we demonstrate how those results are applied to SGFEMapproximations of (1a)–(1b),
leading to a simplified analysis of the error estimator introduced in [10] and the associated
error bound. In particular, we show how the bound depends on a CBS constant associated
with two finite element spaces H1 and H2. In Sect. 4 we first remind the reader how to
compute CBS constants numerically. We then study some (non-standard) pairs of H1 and
H2 and compute the associated CBS constants. In Sect. 5 we demonstrate that if H1 is the
space of piecewise bilinear (Q1) functions, theoretical estimates for the CBS constant can be
obtained using a novel linear algebra approach for several choices of H2. Finally, in Sect. 6
we present numerical results demonstrating the quality of the aforementioned error estimator,
and the vital importance of choosing the right detail spaces.

2 Classical a Posteriori Error Estimation

The following classical results from [1,6], along with Theorem 1, form the foundations of
our main investigation in Sects. 3, 4, 5, 6. Let V be a Hilbert space with norm || · ||V and let
B : V × V → R and F : V → R denote a bounded and coercive bilinear form and linear
functional, respectively. Consider the problem:

find u ∈ V : B(u, v) = F(v), for all v ∈ V . (8)

We assume that B(·, ·) is an inner product on V with the ‘energy’ norm

|| · ||B = B(·, ·)1/2

and that (8) is uniquely solvable. We now seek a Galerkin approximation to u ∈ V . Let X
be an NX–dimensional subspace of V . We then solve:

find uX ∈ X : B(uX , v) = F(v), for all v ∈ X. (9)

Computing the error e = u − uX ∈ V is a non-trivial task. Our goal is to estimate the energy
error ||e||B . Clearly, e satisfies the problem:

find e ∈ V : B(e, v) = F(v) − B(uX , v), for all v ∈ V, (10)

where uX ∈ X is the Galerkin approximation satisfying (9).
Now suppose we choose a second subspace W ⊂ V of dimension NW , where X ⊂ W

(i.e., W is richer than X ) and consider the following problem:

find uW ∈ W : B(uW , v) = F(v), for all v ∈ W. (11)

By letting eW = uW − uX we see that

B(eW , v) = B(uW , v) − B(uX , v) = F(v) − B(uX , v), for all v ∈ W. (12)

Note that (12) is simply a restatement of (10) over W . We deduce then that the function
eW ∈ W satisfying (12) estimates the true error e ∈ V satisfying (10). Whilst we do not
compute uW , it is clear that the quality of that Galerkin approximation (and hence the choice
of W ) determines the quality of the estimator eW . To analyse this, we require the following
assumption.

123



1034 J Sci Comput (2018) 77:1030–1054

Assumption 2 Let the functions u, uX and uW satisfy (8), (9) and (11) respectively. There
exists a constant β ∈ [0, 1) (the saturation constant) such that

||u − uW ||B ≤ β||u − uX ||B . (13)

In many applications, Assumption 2 is reasonable (see [1, p. 88]). The relationship between
||e||B and ||eW ||B is summarised in the next result.

Theorem 2 (See [1, p. 89]) Let Assumption 2 hold and let e ∈ V and eW ∈ W satisfy (10)
and (12) respectively, then

||eW ||B ≤ ||e||B ≤ 1
√
1 − β2

||eW ||B , (14)

where β ∈ [0, 1) is the saturation constant satisfying (13).

The interpretation of (14) is as follows; ||eW ||B will never overestimate the true error ||e||B ,
but could underestimate it by a factor of (1 − β2)−1/2.

Problem (12) leads to a linear systemof NW equationswhichmaybe too expensive to solve.
This is the case for the problem considered in Sect. 3. Suppose then that B0 : V × V → R

is an inner product with induced norm || · ||B0 = B0(·, ·)1/2, whose matrix representation on
W is more convenient to work with. We may then consider the alternative problem:

find e0 ∈ W : B0(e0, v) = F(v) − B(uX , v), for all v ∈ W. (15)

The next result summarises the relationship between ||eW ||B and ||e0||B0 .
Theorem 3 (See [1, Theorem 5.3]) Let eW ∈ W and e0 ∈ W satisfy (12) and (15) respec-
tively and suppose that there exist λ,Λ ∈ R

+ such that

λ||v||2B ≤ ||v||2B0 ≤ Λ||v||2B , for all v ∈ V, (16)

(the norms are equivalent) then√
λ||e0||B0 ≤ ||eW ||B ≤ √

Λ||e0||B0 . (17)

Even after replacing B(·, ·) with B0(·, ·), since W ⊃ X , it may be more expensive to
compute e0 ∈ W satisfying (15) than uX ∈ X satisfying (9). To reduce the cost further, we
insist that

W = X ⊕ Y, X ∩ Y = {0}, (18)

where the ‘detail’ space Y ⊂ V has dimension NY and consider the lower-dimensional
problem:

find eY ∈ Y : B0(eY , v) = F(v) − B(uX , v), for all v ∈ Y. (19)

Does ||eY ||B0 provide a good estimate for ||e||B? To answer this, we require Theorem 1.
Since X ∩ Y = {0}, there exists a constant γ ∈ [0, 1) such that

|B0(u, v)| ≤ γ ||u||B0 ||v||B0 , for all u ∈ X, for all v ∈ Y. (20)

The estimates ||eY ||B0 and ||e0||B0 are then related by the following theorem.

Theorem 4 (See [1, Theorem 5.2]) Let e0 ∈ W and eY ∈ Y satisfy (15) and (19) respectively
and suppose that (18) holds. Then

||eY ||B0 ≤ ||e0||B0 ≤ 1
√
1 − γ 2

||eY ||B0 , (21)

where γ ∈ [0, 1) satisfies (20).
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If X and Y are orthogonal with respect to the inner product B0(·, ·) then γ = 0 and ||eY ||B0 =
||e0||B0 . Consolidating Theorems 2–4 yields the final result.

Theorem 5 Let e ∈ V and eY ∈ Y satisfy (10) and (19) respectively, where (18) holds. If
Assumption 2 holds, and there exist λ,Λ ∈ R

+ such that (16) holds, then

√
λ ||eY ||B0 ≤ ||e||B ≤

√
Λ

√
1 − β2

√
1 − γ 2

||eY ||B0 , (22)

where γ ∈ [0, 1) satisfies (20) and β ∈ [0, 1) satisfies (13).
In summary, the quality of the energy error estimate ||eY ||B0 is determined by two constants

β and γ , which both depend on X and Y . Ideally, we want
√
1 − β2

√
1 − γ 2 ≈ 1. Given a

fixed initial approximation space X , what is the best choice of detail space Y , from the point
of view of obtaining the best possible error estimate? This is the essence of our investigation.

3 The Parametric Diffusion Problem

The variational formulation of (1a)–(1b) is:

find u ∈ V = H1
0 (D) ⊗ L2

π (Γ ) : B(u, v) = F(v), for all v ∈ V, (23)

where H1
0 (D) is the usual Hilbert space and L2

π (Γ ) is given by

L2
π (Γ ) =

{

v(y)
∣
∣ 〈v, v〉L2

π (Γ ) :=
∫

Γ

v(y)2 dπ(y) < ∞
}

.

V is equipped with the norm ||·||V , where ||v||2V = ∫
Γ

||v(·, y)||2
H1
0 (D)

dπ(y) and the bilinear

form B : V × V → R and the linear functional F : V → R are given by

B(u, v) =
∫

Γ

∫

D
a(x, y)∇u(x, y) · ∇v(x, y) dx dπ(y), (24)

F(v) =
∫

Γ

∫

D
f (x)v(x, y) dx dπ(y). (25)

To ensure that (23) is well-posed, we make the following assumption.

Assumption 3 There exist real positive constants amin and amax such that

0 < amin ≤ a(x, y) ≤ amax < ∞ a.e. in D × Γ.

If Assumption 3 holds, the bilinear form B(·, ·) defined in (24) induces a norm
|| · ||B = B(·, ·)1/2 (the energy norm). Note that due to (3), we have the decomposition

B(u, v) = B0 (u, v) +
∞∑

m=1

Bm (u, v) , (26)

for all u, v ∈ V , where the component bilinear forms are defined by

B0(u, v) =
∫

Γ

∫

D
a0(x)∇u(x, y) · ∇v(x, y) dx dπ(y), (27a)

Bm(u, v) =
∫

Γ

∫

D
am(x)ym∇u(x, y) · ∇v(x, y) dx dπ(y). (27b)
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If (4) in Assumption 1 holds, then B0(·, ·) in (27a) also induces a norm || · ||B0 = B0(·, ·)1/2.
Moreover, the following norm equivalence holds:

λ||v||2B ≤ ||v||2B0 ≤ Λ||v||2B , for all v ∈ V, (28)

where 0 < λ < 1 < Λ < ∞ and

λ := a0min

amax
, Λ := a0max

amin
. (29)

3.1 SGFEM Approximation

We now seek a Galerkin approximation to u ∈ V satisfying (23). As in Sect. 2, we denote
by X an NX–dimensional subspace of V . Here, we exploit the tensor product structure of V
and choose X := H1 ⊗ P , where H1 ⊂ H1

0 (D) and P ⊂ L2
π (Γ ). We then look for uX ∈ X

satisfying (9).
We choose H1 = span{φi (x)}ni=1 to be a space of finite element functions associated with

a mesh on D and P = span{ϕi (y)}si=1 to be a space of global (multivariate) polynomials
on Γ , so that NX = ns. We choose the basis functions for P to be orthonormal with
respect to 〈·, ·〉L2

π (Γ ). To this end, we introduce the set of finitely supported multi-indices;

J := {μ = (μ1, μ2, . . . ) ∈ N
N

0 ; # supp(μ) < ∞}, where supp(μ) := {m ∈ N; μm �= 0}.
For a given multi-index μ ∈ J we then construct

ϕμ(y) =
∞∏

m=1

ϕμm (ym), (30)

where the families of univariate polynomials {ϕμm (ym), μm = 0, 1, 2 . . .}, for m =
1, . . . ,∞, are chosen to be orthonormal with respect to the inner product associated with
πm(ym). We also assume that ϕ0(ym) = 1 so that ϕμ(y) = ∏

μm �=0 ϕμm (ym) for any μ ∈ J .
Clearly, choosing the subspace P is equivalent to choosing a set of multi-indices JP ⊂ J
with cardinality card(JP ) = s.

To compute a Galerkin approximation uX ∈ X satisfying (9), it is essential that the sum
in (26) has a finite number of nonzero terms. It is not necessary to truncate the diffusion
coefficient a priori. We need only assume that P contains polynomials in which a finite
number of parameters ym are ‘active’. If we assume that the first M parameters are active,
then, provided (2) holds, Bm(uX , v) = 0 for uX , v ∈ X for all m > M (e.g., see [8]). In
other words, the projection onto X = H1 ⊗ P truncates the sum after M terms.

3.2 A Posteriori Error Estimation

Suppose we now choose a second SGFEM space W ⊂ V = H1
0 (D) ⊗ L2

π (Γ ) such that
W ⊃ X := H1 ⊗ P and solve (12) to obtain an estimator eW ∈ W for the error e = u − uX .
If Assumption 2 holds for the chosen spaces X and W , then (14) also holds, where || · ||B is
the energy norm induced by the bilinear form defined in (24). In addition, due to the norm
equivalence (28), the bound (17) also holds, where e0 ∈ W satisfies (15) and || · ||B0 is the
norm induced by the bilinear form defined in (27a).

There are several possible ways to construct W . Following [10], we choose

W := (H1 ⊗ P) ⊕ ((H2 ⊗ P) ⊕ (H1 ⊗ Q)) =: X ⊕ Y,

H1 ∩ H2 = {0}, P ∩ Q = {0}, (31)
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with H2 ⊂ H1
0 (D) and Q ⊂ L2

π (Γ ). ConsequentlyY1∩Y2 = {0} for the spacesY1 := H2⊗P
andY2 := H1⊗Q. Let JQ denote the set of finitely supportedmulti-indiceswhich correspond
to the subspace Q. If JP ∩ JQ = ∅, then we have P ∩ Q = {0} as required. In this case, P
and Q are mutually orthogonal with respect to 〈·, ·〉L2

π (Γ ) since

〈ϕμ(y), ϕν(y)〉L2
π (Γ ) =

∞∏

m=1

∫

Γm

ϕμm (ym)ϕνm (ym) dπm(ym)

=
∞∏

m=1

δμmνm = δμν = 0,

(32)

for all μ ∈ JP and ν ∈ JQ . Furthermore, due to the tensor product structure of Y1 and Y2
and the fact that P ∩ Q = {0}, it can be shown that

B0(u, v) = 0 for all u ∈ Y1, v ∈ Y2. (33)

To see this, expand u ∈ Y1 and v ∈ Y2 in the chosen bases and use (32). Given Y , we can
then compute the error estimate η := ||eY ||B0 by solving (19) and the bound (21) holds.
Combining all these results yields the result of Theorem 5. For completeness, we restate this
for our parametric diffusion problem.

Theorem 6 Let u ∈ V = H1
0 (D) ⊗ L2

π (Γ ) satisfy the variational problem (8) associated
with the parametric diffusion problem (1a)–(1b) and let uX ∈ X := H1 ⊗ P satisfy (9).
Choose H2, Q and Y as in (31). Let eY ∈ Y satisfy (19). If Assumptions 1–3 hold, then
η := ||eY ||B0 satisfies

√
λ η ≤ ||u − uX ||B ≤

√
Λ

√
1 − γ 2

√
1 − β2

η, (34)

where λ and Λ are defined in (29), γ ∈ [0, 1) satisfies (20), and β ∈ [0, 1) satisfies (13).
When Y is chosen as in (31), problem (19) decouples. Since Y1∩Y2 = {0}, eY = eY1 +eY2

for some eY1 ∈ Y1, eY2 ∈ Y2 and thus B0(eY , v) = B0(eY1+eY2 , v) = B0(eY1 , v)+B0(eY2 , v)

for all v ∈ Y . By choosing test functions v ∈ Y1 and v ∈ Y2 in (19) and considering the
identity (33), we find that eY ∈ Y satisfying (19) can be determined by solving the lower-
dimensional problems

find eY1 ∈ Y1 : B0(eY1 , v) = F(v) − B(uX , v), for all v ∈ Y1, (35)

find eY2 ∈ Y2 : B0(eY2 , v) = F(v) − B(uX , v), for all v ∈ Y2. (36)

Moreover, since B0(eY1 , eY2) = 0, we have

η = ||eY ||B0 =
(

||eY1 ||2B0 + ||eY2 ||2B0
) 1

2

. (37)

This is precisely the estimator considered in [10]. In [10] however, (31) is rearranged as
W = ((H1 ⊕ H2)⊗ P)⊕ (H2 ⊗ Q). The analysis in that work relies on the orthogonality of
P and Q, and the decoupling of (15) into two smaller problems over ((H1 ⊕ H2) ⊗ P) and
(H2⊗Q). A CBS constant is introduced into the analysis by splitting the former into H1⊗ P
and H2 ⊗ P . Our approach is subtly different. We introduce a CBS constant by splitting the
augmented spaceW into X and Y , as would be done for the analogous deterministic problem
(for which X = H1 and Y = H2).
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If (4) holds, then H1
0 (D) is a Hilbert space with respect to the inner product

〈a0u, v〉 =
∫

D
a0(x)∇u(x) · ∇v(x) dx, u, v ∈ H1

0 (D), (38)

and since H1 ∩ H2 = {0}, by Theorem 1, there exists a γ ∈ [0, 1) such that

|〈a0u, v〉| ≤ γ 〈a0u, u〉1/2〈a0v, v〉1/2, for all u ∈ H1, for all v ∈ H2. (39)

In [8, Lemma 3.1], it is shown that the γ that features in (39) also satisfies

|B0 (u, v) | ≤ γ ‖u‖B0 ‖v‖B0 , for all u ∈ X, for all v ∈ Y1. (40)

Now consider (20). For each v ∈ Y , we have v = v1 + v2, with v1 ∈ Y1 and v2 ∈ Y2.
Since P and Q are orthogonal with respect to 〈·, ·〉L2

π
, Y1 and Y2 are orthogonal with respect

to B0(·, ·) and so B0(u, v) = B0(u, v1) for all u ∈ X and v ∈ Y . Hence, using ||v1||2B0 =
||v||2B0 − ||v2||2B0 , we have |B0(u, v)| ≤ γ ||u||B0 ||v1||B0 ≤ γ ||u||B0 ||v||B0 , for all u ∈ X,

and v ∈ Y , where γ ∈ [0, 1) is the same constant satisfying (39). Consequently, γ in (34)
can be determined by analyzing the spaces H1 and H2. P and Q do not play a role. They do,
of course, affect the saturation constant β, and this will be discussed in Sect. 6.

3.3 Estimated Error Reductions

The constant γ also plays an important role in adaptivity. Given uX ∈ X , how do we choose
an enriched space X∗ ⊃ X in which to compute a new approximation u∗ which yields a
reduced energy error? Consider the problems;

find uW1 ∈ W1 : B(uW1 , v) = F(v), for all v ∈ W1, (41)

find uW2 ∈ W2 : B(uW2 , v) = F(v), for all v ∈ W2, (42)

whereW1 := (H1 ⊕H2)⊗ P andW2 := H1 ⊗ (P ⊕Q). Let eW1 = u−uW1 denote the error
corresponding to the enhanced approximation uW1 ∈ W1. Due to Galerkin orthogonality we
find;

||eW1 ||2B = ||e||2B − ||uW1 − uX ||2B . (43)

Hence, ||uW1 − uX ||B characterises the energy error reduction that would be achieved by
enriching only the subspace H1 ⊂ H1

0 (D). Similarly, ||uW2 −uX ||B characterises the energy
error reduction that would be achieved by enriching only the subspace P ⊂ L2

π (Γ ). Fortu-
nately, the two components ||eY1 ||B0 and ||eY2 ||B0 of our error estimator provide estimates of
these error reductions, see [8, Theorem 5.1].

Theorem 7 Let uX ∈ X = H1 ⊗ P be the Galerkin approximation satisfying (9) and let
uW1 ∈ W1 and uW2 ∈ W2 satisfy (41) and (42). Then,

√
λ||eY1 ||B0 ≤ ||uW1 − uX ||B ≤

√
Λ

√
1 − γ 2

||eY1 ||B0 , (44)

√
λ||eY2 ||B0 ≤ ||uW2 − uX ||B ≤ √

Λ||eY2 ||B0 , (45)

where eY1 and eY2 satisfy (35) and (36), respectively, λ and Λ are the constants in (28), and
γ ∈ [0, 1) is the constant satisfying (39).
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Given H2 and Q, Theorem 7 allows us to assess whether enrichment of H1 (with functions
in H2) is more beneficial than enrichment of P (with functions in Q). We may choose
X∗ = W1 or X∗ = W2. Our choice is determined bywhich space offers the greatest estimated
error reduction per additional degree of freedom. Note that the bound (44) is independent
of the saturation constant β, and choosing H2 in (31) so that the constant γ in (39) is small
tightens the bound (44). That is, if the CBS constant is small, we can have more confidence
in our decisions when performing adaptivity. We now study this constant for various choices
of H1 and H2.

4 Numerical Estimates of CBS Constants

The constant γ ∈ [0, 1) in (34) and (44), which is equivalent to the constant γ ∈ [0, 1)
satisfying (39), is not unique. Given H1 and H2, we want to find the smallest such constant,
the CBS constant. We now recall a standard result from [19] which leads to a numerical
method for computing the CBS constant associated with (39).

Suppose first that M ∈ R
N×N is symmetric and positive definite with N := m + n for

m, n ∈ N. Then (RN , (·, ·)M ) is a Hilbert space with respect to the inner product (u, v)M :=
u�Mv. Now consider U, V ⊂ R

N given by

U :=
{ (

u1
0

)

, u1 ∈ R
m
}

, V :=
{(

0
v2

)

, v2 ∈ R
n
}

, (46)

which satisfies U ∩ V = {0}. When M has a particular block structure, Theorem 1 along
with U and V in (46), leads to the following result (see [19] for a proof).

Corollary 1 Let M ∈ R
N×N be symmetric and positive definite with

M =
[
B C�
C A

]

, (47)

where N = m + n, B ∈ R
m×m and A ∈ R

n×n. There exists a constant γ ∈ [0, 1) such that

(u�
1 C

�v2)2 ≤ γ 2
(
u�
1 Bu1

) (
v�
2 Av2

)
, ∀u1 ∈ R

m, ∀v2 ∈ R
n . (48)

Furthermore, the smallest such constant, γmin ∈ [0, 1) (the CBS constant), satisfying (48) is
the square root of the largest eigenvalue θmax of the generalised eigenvalue problem

CB−1C�v2 = θ Av2. (49)

We now demonstrate that the CBS constant associated with (39) for various choices of
H1 and H2 can be computed by solving an eigenvalue problem of the form (49). Recall that
H1, H2 ⊂ H1

0 (D) with H1 ∩ H2 = {0}. For now, we assume a0(x) = 1. Note that due to the
symmetry of (38) we may compute the CBS constant associated with the equivalent result;
there exists a γ ∈ [0, 1) such that

|〈u, v〉| ≤ γ 〈u, u〉1/2〈v, v〉1/2 for all u ∈ H2, for all v ∈ H1. (50)

Given H1 := span{φi (x)}ni=1 and H2 := span{ψi (x)}mi=1, we can define the augmented
subspace

H := H2 ⊕ H1 ⊂ H1
0 (D), (51)
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(a) (b) (c)

Fig. 1 Internal (a), edge (b), and corner (c) elements for Example 1. The black and clear markers are the
nodes at which the basis functions of H1 and H2 are defined, respectively

of dimension N = m + n. We have H = span{Φi (x)}Ni=1, where Φi = ψi , for i =
1, 2, . . . ,m, and Φm+i = φi , for i = 1, 2, . . . , n. Then, for all u ∈ H2 and v ∈ H1,
〈u, v〉 = u�Mv for some u ∈ U and v ∈ V in (46).

The matrix M ∈ R
N×N is symmetric and positive definite and has the structure (47)

with [A]i j = 〈φi , φ j 〉, for i, j = 1, . . . , n, [B]i j = 〈ψi , ψ j 〉 for i, j = 1, . . . ,m and
[C]i j = 〈φi , ψ j 〉 for i = 1, . . . , n and j = 1, . . . ,m. By Corollary 1, there exists a constant
γ ∈ [0, 1) such that (48) holds, which is equivalent to (50). Therefore, the CBS constant
γmin satisfying (50) can be computed numerically by solving the eigenvalue problem (49).

Given a fixed space H1 associated with a uniform mesh Th on the spatial domain D, we
construct H2 element-wise. That is, we insist that H2 admits the decomposition

H2 =
⊕

�k∈Th

Hk,2, Hk,2 = span
{
ψk
i (x)

}mk

i=1
, (52)

where �k denotes an element in Th . We choose the functions ψk
i to be bubble functions so

that Hk,2 contains functions which only have non-zero support on �k . The linear system
associated with the estimator eY1 satisfying (35) then decouples. Since eY1 ∈ Y1 := H2 ⊗ P ,
on each �k , we have to solve a problem of size mk × dim(P). Since dim(P) may be large,
to keep costs reasonable, we must restrict the dimension of Hk,2. Note that the necessity to
restrict the dimension of H2 is not as prevalent in the deterministic PDE setting, where each
local problem for the analogous error estimate is of dimension mk , not mk × dim(P). The
goal is to find the best space (the one leading to the tightest error bound), of a fixed small
dimension. Below, we fix H1 and consider various choices of H2 of the same dimension. We
vary the mesh size h, and estimate the CBS constant by solving the eigenvalue problem (49).

Example 1 Let D = [−1, 1]2 and let Th denote a uniform mesh of square elements, with
edge length h. Now let H1 be the space of continuous functions that are piecewise bilinear
on Th (denoted H1 = Q1(h)). On each �k we construct a local space Hk,2 of dimension
mk ≤ 5, by defining bubble functions at the edge midpoints and the element centroid (theQ1

nodes that would be introduced by a uniform mesh refinement). We consider the following
options. The name given to the resulting space H2 is shown in brackets.

1. Biquadratic bubble functions (Q2(h)) Consider the standard set of nine biquadratic (Q2)
element basis functions and keep only those associated with the five selected nodes.

2. Biquartic bubble functions (Q4(h)) Consider the standard set of twenty-five biquartic
(Q4) element basis functions and keep only the desired five.

3. Piecewise bilinear bubble functions (Q1(h/2)) Subdivide each element into four smaller
ones of size h/2, and concatenate the standard Q1 basis functions associated with each
new element at the five chosen nodes.
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Table 1 Computed values of γ 2
min for Example 1, for varying h. H1 is the usual Q1 finite element space and

four choices of H2 are considered

Mesh h N Q2(h) Q4(h) Q1(h/2) Q2(h/2)

4 × 4 2−1 73 0.4106 0.0109 0.3381 0.0401

8 × 8 2−2 337 0.4454 0.0119 0.3673 0.0437

16 × 16 2−3 1441 0.4527 0.0121 0.3735 0.0445

32 × 32 2−4 5953 0.4541 0.0121 0.3747 0.0446

64 × 64 2−5 24193 0.4544 0.0121 0.3749 0.0446

Converged value 0.4545 0.0121 0.3750 0.0446

4. Piecewise biquadratic bubble functions (Q2(h/2)) This is the same as option 3 but with
Q2 basis functions.

Figure 1 displays an arbitrary internal, edge, and corner element. In Table 1 we record γ 2
min

for each choice of H2 for varying h. In [8], the authors choose H2 = Q1(h/2) to define the
error estimator η = ‖eY ‖B0 described in Sect. 3 when uX is computed with H1 = Q1(h).
Hence, when a0 = 1, the associated CBS constant is γmin ≤ √

0.375 = √
3/8. However, of

the four choices considered, H2 = Q4(h) yields the smallest CBS constant.

Example 2 Let D = [−1, 1]2 and let Th denote a uniform mesh of square elements. Now
let H1 be the set of continuous functions that are piecewise biquadratic on Th (denoted
H1 = Q2(h)). On each �k we construct a local space Hk,2 of dimension mk ≤ 16, by
defining a set of bubble functions associated with the additional Q2 nodes that would be
introduced by performing a uniform mesh refinement (see Fig. 2). We consider the following
options.

1. Biquartic bubble functions (Q4(h)) Consider the set of twenty-five Q4 element basis
functions associated with �k but retain only those associated with the nodes indicated
by the clear and grey markers in Fig. 2.

2. Piecewise biquadratic bubble functions (Q2(h/2)) Subdivide each element into four
smaller ones of size h/2, and concatenate the standard Q2 basis functions associated
with the new elements at the nodes indicated by the clear and grey markers in Fig. 2.

For our third and fourth choices of H2 we modify the first two spaces by removing the
basis functions associated with the nodes indicated by the grey markers in Fig. 2. This
configuration is motivated by error estimation results presented in [23, p. 39]. We denote
the resulting ‘reduced’ spaces by Q

r
4(h) and Q

r
2(h/2) and denote the number of degrees of

freedom by Nr .
In Table 2 we record γ 2

min for each choice of H2 for varying h. In [10], the authors choose
H2 = Q

r
4(h) to define the error estimator η = ‖eY ‖B0 described in Sect. 3, when uX is

computed with H1 = Q2(h). When a0 = 1, the CBS constant is γmin ≤ √
0.36. Of the four

spaces considered, H2 = Q
r
4(h) yields the smallest CBS constant.

4.1 Local CBS Constants

Solving the eigenvalue problem (49) to compute the CBS constant when N is large is not
practical. Alternatively, we may derive a small eigenvalue problem associated with a single
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(a) (b) (c)

Fig. 2 Internal (a), edge (b), and corner (c) elements for Example 2. The black and clear/grey markers are
the nodes at which the basis functions of H1 and H2 are defined, respectively

Table 2 Computed values of γ 2
min for Example 2, for varying h. H1 is the usual Q2 finite element space and

four choices of H2 are considered

Mesh h N Q4(h) Q2(h/2) Nr Q
r
4(h) Q

r
2(h/2)

2 × 2 2−0 57 0.3834 0.6764 41 0.3208 0.4904

4 × 4 2−1 273 0.4341 0.6911 209 0.3565 0.5579

8 × 8 2−2 1185 0.4391 0.6911 929 0.3595 0.5723

16 × 16 2−3 4929 0.4399 0.6911 3905 0.3599 0.5758

32 × 32 2−4 20097 0.4401 0.6911 16001 0.3600 0.5766

Converged value 0.4401 0.6911 0.3600 0.5769

element. For all u ∈ H2 and v ∈ H1 we have

〈a0u, v〉 =
∑

�k∈Th

∫

�k

a0(x)∇u|k · ∇v|k dx =:
∑

�k∈Th

〈a0uk, vk〉k, (53)

where uk := u|k ∈ Hk,2 := H2|k, and vk := v|k ∈ Hk,1 := H1|k with Hk,1, Hk,2 ⊂ H1(�k)

having dimensions nk = dim(Hk,1) andmk = dim(Hk,2) (recall that we now list functions in
H2 before functions in H1). Here, |k denotes the restriction to element �k . For all uk ∈ Hk,1

and vk ∈ Hk,2, 〈a0uk, vk〉k = u�
k Mkvk , where the matrix Mk ∈ R

Nk×Nk for Nk := nk +mk

has the same 2 × 2 block structure as before with Ak ∈ R
nk×nk , Bk ∈ R

mk×mk and Ck ∈
R
nk×mk . Since 〈a0·, ·〉k only induces a seminorm on H1(�k), Mk is positive semidefinite and

Corollary 1 is not applicable. For our block matrices of interest, we require the following
result from [19].

Corollary 2 Let Mk ∈ R
Nk×Nk be symmetric and positive semidefinite with

Mk =
[
Bk C�

k
Ck Ak

]

, N (Mk) =
{(

0
v2

)

, Akv2 = 0, CT
k v2 = 0, v2 ∈ R

nk

}

, (54)

where Nk = mk + nk, Bk ∈ R
mk×mk is invertible and Ak ∈ R

nk×nk . Let Uk, Vk ⊂ R
Nk have

the same structure as U and V in (46), but for nk and mk in place of n and m. Then, there
exists a constant γk ∈ [0, 1) such that

(u�
1 C

�
k v2)

2 ≤ γ 2
k

(
u�
1 Bku1

) (
v�
2 Akv2

)
, ∀u1 ∈ R

mk , ∀v2 ∈ R
nk . (55)
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If Hk,1 and Hk,2 are chosen so that Mk satisfies the conditions of Corollary 2, there exists
a constant γk ∈ [0, 1) such that (55) holds, or equivalently

〈a0uk, vk〉2k ≤ γ 2
k 〈a0uk, uk〉k〈a0vk, vk〉k, ∀uk ∈ Hk,2, ∀vk ∈ Hk,1. (56)

Furthermore, the local CBS constant γk,min associated with (56) is the square root of θmax

satisfying

Ck B
−1
k C�

k v2 = θ Akv2, v2 /∈ N (Ak), (57)

see [19]. It is straightforward to show that

〈a0u, v〉 ≤ sup
�k

γk,min

∑

�k

〈a0uk, uk〉1/2k 〈a0vk, vk〉1/2k

and comparing with (39) gives γmin ≤ sup�k
γk,min. When the mesh is uniform and a0(x) is

constant on each element, γk,min does not depend on h or a0|k . To estimate γmin, we only need
to compute γk,min for a single internal element (as this is larger than the constant associated
with corner/edge elements).

We now revisit Example 1 and compute local CBS constants associated with �ref :=
[−1, 1]2. We choose Hk,1 to be the local Q1 finite element space whose basis functions are
associated with the black markers shown in Fig. 3, and ordered as shown. Then, dim(Hk,1) =
4 and, if a0 = 1, we have

Ak =

⎡

⎢
⎢
⎣

2/3 − 1/6 − 1/3 − 1/6
− 1/6 2/3 − 1/6 − 1/3
− 1/3 − 1/6 2/3 − 1/6
− 1/6 − 1/3 − 1/6 2/3

⎤

⎥
⎥
⎦ . (58)

For the four choices of Hk,2 considered in Example 1 (which all have dimension five), we
construct the matrix Mk in (54) and calculate γ 2

k,min by solving the eigenvalue problem (57).
The ordering of the basis functions of Hk,2 is as illustrated by the clear markers in Fig. 3.

First, let Hk,2 = Q2(h). The matrices Ck and Bk are

Ck = 1

3
P, Bk =

⎡

⎢
⎢
⎢
⎢
⎣

88/45 − 16/45 0 − 16/45 − 16/15
− 16/45 88/45 − 16/45 0 − 16/15

0 − 16/45 88/45 − 16/45 − 16/15
− 16/45 0 − 16/45 88/45 − 16/15
− 16/15 − 16/15 − 16/15 − 16/15 256/45

⎤

⎥
⎥
⎥
⎥
⎦

,

where we define

P :=

⎡

⎢
⎢
⎣

1 − 1 − 1 1 0
1 1 − 1 − 1 0

− 1 1 1 − 1 0
− 1 − 1 1 1 0

⎤

⎥
⎥
⎦ . (59)

Solving (57) gives γ 2
k,min = 5

11 ≈ 0.4545, which agrees with the bound reported in [28]. If
we choose Hk,2 = Q4(h) (a non-standard choice), we have

Ck = 1

15
P, Bk =

⎡

⎢
⎢
⎢
⎢
⎣

373/127 − 39/197 1/2326 − 39/197 84/247
− 39/197 373/127 − 39/197 1/2326 84/247
1/2326 − 39/197 373/127 − 39/197 84/247

− 39/197 1/2326 − 39/197 373/127 84/247
84/247 84/247 84/247 84/247 3166/203

⎤

⎥
⎥
⎥
⎥
⎦

,
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1 2

34

5

6

7

8
9

Fig. 3 An arbitrary internal Q1 element �k ∈ Th . The numbering of the solid black and clear makers
illustrates the chosen ordering of the basis functions of Hk,1 and Hk,2, respectively

and γ 2
k,min ≈ 0.0121. Next, if Hk,2 = Q1(h/2), we have

Ck = 1

4
P, Bk =

⎡

⎢
⎢
⎢
⎢
⎣

4/3 − 1/3 0 − 1/3 − 1/3
− 1/3 4/3 − 1/3 0 − 1/3

0 − 1/3 4/3 − 1/3 − 1/3
− 1/3 0 − 1/3 4/3 − 1/3
− 1/3 − 1/3 − 1/3 − 1/3 8/3

⎤

⎥
⎥
⎥
⎥
⎦

,

and γ 2
k,min = 3

8 = 0.3750, which agrees with [27]. Finally, let Hk,2 = Q2(h/2) (another
non-standard choice). Then,

Ck = 1

12
P, Bk =

⎡

⎢
⎢
⎢
⎢
⎣

56/45 −1/45 0 −1/45 −1/15
−1/45 56/45 −1/45 0 −1/15

0 −1/45 56/45 −1/45 −1/15
−1/45 0 −1/45 56/45 −1/15
−1/15 −1/15 −1/15 −1/15 112/45

⎤

⎥
⎥
⎥
⎥
⎦

,

and γ 2
k,min ≈ 0.0446. Comparing with the results in Table 1, we confirm the relationship

γ 2
min ≤ γ 2

min,k .

Remark 1 If a0(x) varies in space, we may assume that a0(x) can be approximated by a
function ah0 (x) that is constant in each element in Th . Then, on each�k , we have a symmetric
and positive semidefinite matrix

Mk = αk

[
Bk C�

k
Ck Ak

]

, αk := ah0 |k,

where Bk is invertible and Bk,Ck, Ak do not depend on αk . The local eigenvalue problem,
equivalent to (57), is (αkCk)(αk Bk)

−1(αkC�
k )v2 = θ(αk Ak)v2 for v2 /∈ N (Ak), and thus

the local CBS constant γk,min satisfying (56) is independent of αk and ah0 (x).

5 Theoretical Estimates of the CBS Constant

In this section we fix Hk,1 to be the local Q1 finite element space so that Ak is given by (58)
and assume that the degrees of freedom are numbered as shown in Fig. 3.We also assume that
Hk,2 is chosen so that dim(Hk,2) = 5 and the resulting matrices Bk and Ck have a particular
structure. Exploiting this structure, and using only linear algebra arguments, we show that
the local CBS constant γk,min can be calculated analytically without assembling and solving
(57). To simplify notation, we drop the subscript k.
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Theorem 8 Let M ∈ R
9×9 be a symmetric and positive semidefinite matrix with the 2 × 2

block structure (47), where B ∈ R
5×5 is symmetric and positive definite and A is the Q1

element stiffness matrix defined in (58). If the matrix CB−1C� ∈ R
4×4 is of the form

CB−1C� = β

⎡

⎢
⎢
⎣

1 0 − 1 0
0 1 0 − 1

− 1 0 1 0
0 − 1 0 1

⎤

⎥
⎥
⎦ =: βQ, (60)

for some constant β ∈ R
+, then there exists a constant γ ∈ [0, 1) such that

(u�
1 C

�v2)2 ≤ γ 2u�
1 Bu1v�

2 Av2, ∀u1 ∈ R
5, ∀v2 ∈ R

4. (61)

Proof It is sufficient to show that N (M) is given by the definition in (54). The result then
follows from Corollary 2. Let xT = (uT1 , vT2 ) ∈ R

9 for u1 ∈ R
5 and v2 ∈ R

4 be such that
Mx = 0. Then

Bu1 + CT v2 = 0, (62)

Cu1 + Av2 = 0, (63)

and Sv2 = 0 for the Schur complement S = A − CB−1CT = A − βQ. Since

S =

⎡

⎢
⎢
⎣

2
3 − β − 1

6 β − 1
3 − 1

6− 1
6

2
3 − β − 1

6 β − 1
3

β − 1
3 − 1

6
2
3 − β − 1

6− 1
6 β − 1

3 − 1
6

2
3 − β

⎤

⎥
⎥
⎦

and A are circulant matrices with zero row sums, we have

N (S) = N (A) = span{(1, 1, 1, 1)T } (64)

and thus v2 ∈ N (A). We now show that u1 = 0 and CT v2 = 0 for all v2 ∈ N (A). If
v2 ∈ N (A), from (63) it follows that Cu1 = 0. Since B is invertible, (62) gives 0 =
vT2 Cu1 = −(CT v2)T B−1(CT v2) and (Bu1)T B−1(Bu1) = 0. Since B−1 is also invertible,
we conclude that Bu1 = 0 and u1 = 0. Finally, u1 = 0 and (62) gives CT v2 = 0. ��
Theorem 9 Let M ∈ R

9×9 be as in Theorem 8, then the smallest constant γ ∈ [0, 1)
satisfying (61), denoted γmin (the CBS constant), is given by

γ 2
min = 2β, (65)

where β ∈ R
+ is the constant in (60).

Proof Recall from (57) that γ 2
min is the largest eigenvalue θmax satisfying

CB−1C�v2 = θ Av2, v2 /∈ N (A). (66)

By considering the expression Qu = 0 it is easy to show that

N (Q) = span
{
(1, 0, 1, 0)�, (0, 1, 0, 1)�

}
, (67)

and so N (A) ⊂ N (Q). Under the stated assumptions, we have

CB−1C� = βQ = β

[
1 − 1

− 1 1

]

⊗
[
1 0
0 1

]

=: βQ1 ⊗ Q2,
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and the set of eigenvalues is {2β, 2β, 0, 0}. The basis vectors ofN (Q) in (67) are eigenvectors
corresponding to the zero eigenvalues. In addition,

P1 =

⎡

⎢
⎢
⎣

1
1

− 1
− 1

⎤

⎥
⎥
⎦ =

[
1

− 1

]

⊗
[
1
1

]

=: p1 ⊗ p2,

is an eigenvector corresponding to θ = 2β. To see this, note that

CB−1C�P1 = β (Q1 ⊗ Q2) (p1 ⊗ p2) = β

[
1 − 1

− 1 1

] [
1

− 1

]

⊗ p2

= β

[
2

− 2

]

⊗ p2 = 2βp1 ⊗ p2 = 2βP1.

The same is true for P2 = [−1, 1, 1,−1]�. Furthermore, the vectors P1 and P2 also satisfy
AP1 = P1 and AP2 = P2 (and clearly do not belong to N (A), see (64)) and hence are
eigenvectors of A with eigenvalue θ = 1. Thus

CB−1C�Pi = βQPi = 2βPi = 2β(1)Pi = 2βAPi , i = 1, 2.

That is, P1 and P2 are eigenvectors in (66) with θ = 2β. If we take u to be amember ofN (Q)

but not N (A), then (66) is trivially satisfied with θ = 0. Hence, γ 2
min = max{0, 2β} = 2β.

��
The next results show that if the matrices B and C have certain structures, then CB−1C�

always has the structure (60) and an explicit expression is available for the constant β in (65),
and hence the CBS constant.

Lemma 1 If the matrix C ∈ R
4×5 has the form

C = α

⎡

⎢
⎢
⎣

1 − 1 − 1 1 0
1 1 − 1 − 1 0

− 1 1 1 − 1 0
− 1 − 1 1 1 0

⎤

⎥
⎥
⎦ =: αP, (68)

for some α ∈ R
+ and if B ∈ R

5×5 is an invertible bordered matrix of the form

B =
[
B̄ b
b� μ

]

, (69)

where B̄ ∈ R
4×4 is a symmetric circulant matrix, b ∈ R

4 is a constant vector, and μ ∈ R is
a constant, then the matrix CB−1C� has the form (60).

Proof First we show that if B has the form (69) then so does B−1. We have

B−1 =
[
B̄−1 + ν−1 B̄−1bb� B̄−1 −ν−1 B̄−1b

−ν−1b� B̄−1 ν−1

]

where ν := μ−b� B̄−1b ∈ R is the Schur complement. Since B̄ is symmetric and circulant,
so is its inverse (see [13]). Consequently, q := B̄−1b ∈ R

4×1 is a constant vector and
qq� ∈ R

4×4 is a constant matrix. This is because b is a constant vector and the row sums of
a circulant matrix are equal. Therefore

B−1 =
[
B̂ b̂
b̂� ν−1

]

(70)
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where B̂ := B̄−1 + ν−1qq� ∈ R
4×4 is a symmetric circulant matrix bordered by b̂ :=

−ν−1q ∈ R
4×1 and ν ∈ R is a constant. Hence, B−1 has the form

B−1 =

⎡

⎢
⎢
⎢
⎢
⎣

α1 α2 α3 α2 ×
α2 α1 α2 α3 ×
α3 α2 α1 α2 ×
α2 α3 α2 α1 ×
× × × × ×

⎤

⎥
⎥
⎥
⎥
⎦

, (71)

for some α1, α2, α3 ∈ R and, for the rest of the proof, the elements marked with × are not
important. Now, elementary matrix multiplication with C gives

CB−1 = (α1 − α3)α

⎡

⎢
⎢
⎣

1 − 1 − 1 1 ×̄
1 1 − 1 − 1 ×̄

− 1 1 1 − 1 ×̄
− 1 − 1 1 1 ×̄

⎤

⎥
⎥
⎦

(again the elements marked with ×̄ are not important) and

CB−1C� = 4(α1 − α3)α
2

⎡

⎢
⎢
⎣

1 0 − 1 0
0 1 0 − 1

− 1 0 1 0
0 − 1 0 1

⎤

⎥
⎥
⎦ = βQ

with β := 4(α1 − α3)α
2. ��

Combining the last two results, we see that to compute the CBS constant, we only need
to know α (one entry of C) and α1 and α3 (two entries of the first column of B−1). We
can determine the latter analytically by exploiting the spectral decomposition for circulant
matrices. Lemma 2 is standard (for example, see [13]) and we apply it to B̄ in (69) in Lemma
3.

Lemma 2 Let D ∈ R
n×n be a circulant matrix with first column given by d =

[d0, d1, . . . , dn−1]� ∈ R
n. The eigenvalues λ j and eigenvectors v j of D are

λ j =
n−1∑

k=0

dkω
k
j , v j = n(−1/2)[1, ω j , ω

2
j , . . . , ω

n−1
j ]� (72)

where ω j = exp(2π i j/n) and i = √−1.

Lemma 3 Let the principle minor B̄ in (69) of the matrix B be given by

B̄ =

⎡

⎢
⎢
⎣

b1 b2 b3 b2
b2 b1 b2 b3
b3 b2 b1 b2
b2 b3 b2 b1

⎤

⎥
⎥
⎦ . (73)

Then the eigenvalues of B̄ are

λ1 = b1 − b3, λ2 = b1 − 2b2 + b3, λ3 = λ1, λ4 = b1 + 2b2 + b3, (74)
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and the eigenvectors of B̄ are given by the columns of the unitary matrix

F∗ = 1

2

⎡

⎢
⎢
⎣

1 1 1 1
i − 1 − i 1

− 1 1 − 1 1
− i − 1 i 1

⎤

⎥
⎥
⎦ .

Moreover, B̄ = F∗diag(λ)F, where λ = [λ1, λ2, λ3, λ4]�.

Proof Since B̄ is circulant, its eigenpairs are given by (72). Here, n = 4 and we have
ω1 = i, ω2 = −1, ω3 = −i, and ω4 = 1. The decomposition is standard (see [34, Corollary
5.16]). ��

Combining the above results, gives the following final result.

Theorem 10 Let the assumptions of Theorem 8 and Lemma 1 hold, with the entries of B̄
labelled as in (73). Then, the square of the CBS constant associated with (61) is given by

γ 2
min = 8α2(b1 − b3)

−1. (75)

Proof From Lemma 1, we have CB−1C� = βQ with β = 4α2(α1 − α3) where α1 and α3

are elements of the matrix B̂ in (70), which depends on the inverse of B̄ in (69). By Lemma
3,

B̄−1 = F∗

⎡

⎢
⎢
⎣

λ−1
1 0 0 0
0 λ−1

2 0 0
0 0 λ−1

1 0
0 0 0 λ−1

4

⎤

⎥
⎥
⎦ F.

Since B̄−1 is circulant, its entries are known once we specify its first column c̄. Furthermore,
since

F = (F∗)∗ = 1

2

⎡

⎢
⎢
⎣

1 − i − 1 i
1 − 1 1 − 1
1 i − 1 − i
1 1 1 1

⎤

⎥
⎥
⎦ ,

we have c̄ := B̄−1e1 = F∗diag(1./λ)Fe1 = 1
2 F

∗(1./λ). It follows that

c̄ = 1

4

⎡

⎢
⎢
⎣

1 1 1 1
i − 1 − i 1

− 1 1 − 1 1
− i − 1 i 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ−1
1

λ−1
2

λ−1
1

λ−1
4

⎤

⎥
⎥
⎦ = 1

4

⎡

⎢
⎢
⎣

2λ−1
1 + λ−1

2 + λ−1
4

λ−1
4 − λ−1

2
λ−1
2 + λ−1

4 − 2λ−1
1

λ−1
4 − λ−1

2

⎤

⎥
⎥
⎦ . (76)

Now, since B̂ := B̄−1+ν−1qq� in Lemma 1, we know that α1 = [c̄]1+τ and α3 = [c̄]3+τ

for some τ ∈ R, and consequently, by considering (76) and the eigenvalues (74), we have

α1 − α3 = [c̄]1 − [c̄]3 = 1

4

(
2λ−1

1 + 2λ−1
1

)
= λ−1

1 = (b1 − b3)
−1 .

Since B is symmetric and positive definite, so is B̄. Consequently, λ1 > 0 and β =
4α2 (b1 − b3)−1 > 0. The result follows by Theorem 9. ��
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Table 3 The constants α, b1, b3 ∈ R required to compute γ 2
k,min = 8α2(b1 − b3), when Hk,1 is the local

Q1 space and Hk,2 is chosen as in Example 1

Hk,2 α b1 b3 γ 2
k,min

Q2(h) 1/3 88/45 0 0.4545

Q4(h) 1/15 373/127 1/2326 0.0121

Q1(h/2) 1/4 4/3 0 0.3750

Q2(h/2) 1/12 56/45 0 0.0446

Table 4 Effectivity indices θ̂eff for Test Problem 1 with H1 = Q1(h) and four choices of H2, for varying h
(with p fixed) and varying p (with h fixed)

h ||uref − uX ||B Q2(h) Q4(h) Q1(h/2) Q2(h/2)

2−2 1.9254 × 10−2 0.97 0.16 0.87 1.04

2−3 1.0244 × 10−2 0.93 0.22 0.84 0.99

2−4 6.2277 × 10−3 0.80 0.31 0.73 0.85

2−5 4.7187 × 10−3 0.62 0.39 0.59 0.65

p ||uref − uX ||B Q2(h) Q4(h) Q1(h/2) Q2(h/2)

2, . . . , 6 ≈ 1.02 × 10−2 0.93 0.22 0.84 0.99

The matrices B and C associated with the examples in Sect. 4.1 (corresponding to the
four choices of Hk,2 from Example 1) all have the desired structure. The associated values
of α, b1 and b3, and the squares of the CBS constants are recorded in Table 3 (to stress that
these are local quantities we reintroduce the subscript k). The results match the numerical
estimates obtained in Sect. 4.1. With the new approach, the matrices A, B and C do not need
to be assembled, and no eigenvalue problem needs to be solved.

6 Numerical Results

We now return to (1a)–(1b) and assess the quality of the energy error estimator η in (37),
extending the discussion in [8] and [10]. First, we select X = H1 ⊗ P and compute uX ∈ X
by solving (9). We choose either H1 = Q1(h) or H1 = Q2(h) on a uniform square partition
of D and fix P to be the space of global polynomials with total degree less than or equal to
p in y1, y2, . . . , yM . Each parameter ym is assumed to be the image of a mean zero uniform
random variable. Hence, for a given multi-index μ ∈ JP we construct the basis functions in
(30) by tensorizing univariate Legendre polynomials. Next, we compute η = η(uX ) in (37) by
solving (35) and (36), choosing H2 and Q so that the conditions in (31) are satisfied. For H2,
we consider the spaces from Examples 1 and 2. We choose Q to be the space of polynomials
associated with JQ := ĴQ\JP where ĴQ is the set of multi-indices associated with the space
of polynomials with total degree less than or equal to p + 1 in y1, y2, . . . , yM , yM+1.

By Theorem 6, the effectivity index θeff := η(uX )/||u − uX ||B satisfies
√
1 − γ 2

√
1 − β2

√
Λ

≤ θeff ≤ 1√
λ

. (77)
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Table 5 Effectivity indices θ̂eff for Test Problem 1 with H1 = Q2(h) and four choices of H2, for varying h
(with p fixed) and varying p (with h fixed)

h ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2−1 4.1729 × 10−3 0.48 0.49 0.46 0.57

2−2,−3,−4 ≈ 4.09 × 10−3 0.44 0.44 0.44 0.44

p ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2 4.1134 × 10−3 0.45 0.45 0.45 0.45

3, . . . , 6 ≈ 4.10 × 10−3 0.44 0.44 0.44 0.44

Table 6 Effectivity indices θ̂eff for Test Problem 1 with H1 = Q2(h) and four choices of H2, for varying h
(with p fixed) and varying p (with h fixed). Modified choice of Q

h ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2−1 4.1729 × 10−3 0.83 0.83 0.81 0.82

2−2,−3,−4 ≈ 4.09 × 10−3 0.81 0.82 0.81 0.81

p ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2 4.1191 × 10−3 0.82 0.82 0.82 0.82

3, . . . , 6 ≈ 4.10 × 10−3 0.81 0.81 0.81 0.81

Since ||u − uX ||B cannot be computed, we examine θ̂eff := η(uX )/||uref − uX ||B , where
uref ∈ Xref is a surrogate solution obtained by solving (9) over a sufficiently rich subspace
Xref ⊂ V where Xref ⊃ X . We define Xref in the same way as X , with Mref = 10, href = 2−7

and pref = 8. Fixing H1, P and Q, we investigate which choice of H2 consistently leads to
θ̂eff ≈ 1.

6.1 Test Problem 1

To start, we consider a test problem from [8]. We choose f (x) = 1
8 (2 − x21 − x22 ) for

x = (x1, x2)T ∈ D := [−1, 1]2 and assume that a(x, y) is the parametric form of a second
order random field with mean E[a](x) and covariance function

C[a](x, x′) = σ 2 exp

(

−|x1 − x ′
1|

l1
− |x2 − x ′

2|
l2

)

, x, x′ ∈ D. (78)

We may then expand a(x, y) using the Karhunen-Loève expansion, namely;

a(x, y) = E[a](x) + σ
√
3

∞∑

m=1

√
λmφm(x)ym, ym ∈ Γm = [−1, 1], (79)

where (λm, φm) are the eigenpairs of the covariance operator. We choose E[a](x) = 1 (the
mean), σ = 0.15 (the standard deviation) and l1 = l2 = 2 (the correlation lengths). In
[8], (79) is truncated a priori after M terms, so that the problem is posed on D × Γ̄ , where
Γ̄ = ∏M

m=1 Γm . In that case, uX and uref are both functions ofM parameters. Here, u depends
on infinitely many parameters and uref is a function of Mref > M parameters.
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In our first experiment we choose H1 = Q1(h) and fix M = 5 in the definition of P . In
Table 4 we record θ̂eff for varying h with fixed p = 4, and varying p with fixed h = 2−3.
We see that H2 = Q2(h/2) yields the best error estimator. Interestingly, H2 = Q4(h)

defines the worst estimator, despite the fact that its associated CBS constant is the smallest
(γ 2

min ≤ 0.0121). Recall from Theorem 7 that ||eY1 ||B0 and ||eY2 ||B0 provide estimates of the
energy error reductions associated with augmenting H1 with H2, and P with Q, respectively.
When H2 = Q4(h), since the CBS constant is small, we know ||eY1 ||B0 is a good estimate.
When both ||eY1 ||B0 and ||eY2 ||B0 are much smaller than ||e||B (which is true when we use
the stated Q and H2 = Q4(h)), the saturation constant β ≈ 1. This causes η to be much
smaller than ||e||B , resulting in a poor effectivity index.

We now repeat the experiment with H1 = Q2(h). Note that for a fixed h, the spatial error
associated with uX is smaller than for H1 = Q1(h).Results are presented in Table 5. Now, as
we vary both h (for p=4 fixed) and p (for h = 2−3 fixed), the error ||uref − uX ||B stagnates.
The estimated errors behave the same way, but θ̂eff is not close to one. There is little benefit
in computing a new Galerkin solution by augmenting either H1 with H2 (for any of the
choices of H2) or P with Q. The saturation constant is close to one in all cases. However,
if introducing more parameters into the approximation space leads to a smaller saturation
constant, a better estimate of the error should be obtained by modifying Q to include more
parameters.

Wefix P as beforewithM = 5 but nowchoose Q to be the space of polynomials associated
with JQ := ĴQ\JP where ĴQ is the set of multi-indices associated with polynomials with
total degree less than or equal to p + 1 in the first M + 3 parameters. Results are presented
in Table 6. The effectivity indices are much improved. It is well known that the eigenvalues
λm associated with (78) decay very slowly (

√
λm = O(m−1), see [24]). To achieve a small

saturation constant, and hence an accurate error estimator, a large number of parameters need
to be incorporated into Q. We now study a problem with faster decaying coefficients.

6.2 Test Problem 2

We consider a problem as in [10], first introduced in [16]. We choose f (x) = 1 for x =
(x1, x2)T ∈ D := [0, 1]2 and

a(x, y) = 1 +
∞∑

m=1

αm cos(2πβ1
mx1) cos(2πβ2

mx2)ym, ym ∈ Γm, (80)

where β1
m = m − km(km + 1)/2 and β2

m = km − β1
m for m ∈ N with km =⌊−1/2 + (1/4 + 2m)1/2

⌋
. As in [16] we select αm = 0.547m−2. We conduct the same

experiments as in Sect. 6.1 using the original definition of ĴQ (with M + 1 parameters).
Effectivity indices are shown in Tables 7 and 8. When H1 = Q1(h), H2 = Q2(h) yields the
best estimator, very closely followed by Q2(h/2). When H1 = Q2(h), H2 = Q4(h) yields
the best error estimator, closely followed byQr

2(h/2) (recall thatQr
4(h) has the smallest CBS

constant).

7 Summary and Conclusions

Using classical theory from [1,6] for Galerkin approximation, we provided an alternative
derivation of an error estimator from [10] and the associated bound. Our approach highlights
the straightforward extension of an error estimation strategy for standard Galerkin FEMs for
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Table 7 Effectivity indices θ̂eff for Test Problem 2 with H1 = Q1(h) and four choices of H2, for varying h
(with p fixed) and varying p (with h fixed)

h ||uref − uX ||B Q2(h) Q4(h) Q1(h/2) Q2(h/2)

2−3 3.0684 × 10−2 0.95 0.13 1.31 0.93

2−4 1.5396 × 10−2 0.95 0.14 1.32 0.94

2−5 7.7745 × 10−3 0.95 0.18 1.32 0.93

p ||uref − uX ||B Q2(h) Q4(h) Q1(h/2) Q2(h/2)

2 3.0723 × 10−2 0.95 0.13 1.31 0.93

3, . . . , 6 ≈ 3.09 × 10−2 0.95 0.12 1.31 0.93

Table 8 Effectivity indices θ̂eff for Test Problem 2 with H1 = Q2(h) and four choices of H2, for varying h
(with p fixed) and varying p (with h fixed). M = 5 in the definition of P

h ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2−3 2.4871 × 10−3 1.10 1.17 0.82 0.95

2−4 1.4017 × 10−3 0.82 0.85 0.73 0.77

2−5 1.2813 × 10−3 0.71 0.71 0.70 0.70

p ||uref − uX ||B Q4(h) Q2(h/2) Q
r
4(h) Q

r
2(h/2)

2 3.1896 × 10−3 1.03 1.08 0.86 0.93

3 2.5511 × 10−3 1.10 1.16 0.83 0.95

4, 5, 6 ≈ 2.49 × 10−3 1.10 1.18 0.82 0.95

deterministic PDEs to SGFEMs for parameter-dependent PDEs. The quality of the estimator
depends on a CBS constant associated with two finite element spaces H1 and H2. For H1 =
Q1(h) and H1 = Q2(h) we investigated non-standard choices of H2 which lead to small
CBS constants. When H1 = Q1(h) and H2 satisfies certain conditions, we derived new
theoretical estimates for the CBS constant. In Sect. 6 we demonstrated that the best choice
of H2 for constructing an effective error estimator is not necessarily the space that leads to
the smallest CBS constant. Through numerical experiments, we demonstrated that Q must
also be carefully selected and tailored to properties of the diffusion coefficient. When both
H2 and Q are chosen appropriately, the estimator exhibits effectivity indices close to one.

Choosing H2 and Q so that the effectivity index is close to one is not the end of the story.
If the estimated error associated with uX ∈ X = H1 ⊗ P is too high, we need to decide how
to enrich X and compute a new approximation. The error estimate needs to be accurate, but to
derive adaptive algorithms using (44)–(45), we should only work with spaces H2 and Q such
that it is straight-forward to compute new SGFEM approximations in (H1 ⊕ H2)⊗ P and/or
H1 ⊗ (P ⊕ Q). For example, when H1 = Q1(h), choosing H2 = Q2(h) yields an accurate
error estimate for the current approximation, but does not give a feasible spatial adaptive
enrichment strategy. Choosing H2 = Q1(h/2) is more natural. Fortunately, this space also
yields a good error estimator. When H1 = Q2(h), H2 = Q

r
2(h/2) yields an excellent

estimator. Although using H2 = Q2(h/2) is more natural for adaptivity, we recommend
using H2 = Q

r
2(h/2) to estimate the error. Not only is this cheapest option of all those
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considered, since Q2(h/2) is richer, the estimated spatial error reduction ||eY1 ||B0 obtained
using H2 = Q

r
2(h/2) is still informative, if we wish to assess the benefit of computing a new

approximation in (Q2(h) ⊕ Q2(h/2)) ⊗ P .
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