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Abstract The use of implicitmethods for numerical time integration typically generates very
large systems of equations, often too large to fit in memory. To address this it is necessary
to investigate ways to reduce the sizes of the involved linear systems. We describe a domain
decomposition approach for the advection–diffusion equation, based on the Summation-
by-Parts technique in both time and space. The domain is partitioned into non-overlapping
subdomains. A linear system consisting only of interface components is isolated by solv-
ing independent subdomain-sized problems. The full solution is then computed in terms of
the interface components. The Summation-by-Parts technique provides a solid theoretical
framework in which we can mimic the continuous energy method, allowing us to prove both
stability and invertibility of the scheme. In a numerical study we show that single-domain
implementations of Summation-by-Parts based time integration can be improved upon sig-
nificantly. Using our proposed method we are able to compute solutions for grid resolutions
that cannot be handled efficiently using a single-domain formulation. An order of magni-
tude speed-up is observed, both compared to a single-domain formulation and to explicit
Runge–Kutta time integration.

Keywords Domain decomposition · Partial differential equations · Summation-by-Parts ·
Finite difference methods · Stability

1 Introduction

The most common domain decomposition procedures involve formulating a general class
of partial differential equations on a single domain, followed by an equivalent multidomain
formulation. Themultidomain formulation is used to construct an iterative schemewhich can
be employed using different discretizationmethods.Notable contributors using this technique
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include [14] and [11]. Various approaches exist depending on if the subdomains overlap [3]
or not [6], but as a rule, the methods are iterative. There are exceptions, such as the finite
difference based domain decomposition algorithm in [2], and the explicit-implicit domain
decomposition methods in [15].

Our approach is similar to the one used in [2] in the following ways: It is non-iterative
and uses non-overlapping subdomains. Subdomain intercommunication is limited to the
problem of computing interface components, whence interior and boundary points may
be computed in parallel. Key differences arise in the treatment of boundary and initial
conditions, which in our schemes is done weakly through penalty terms. Also, our time
integration is fully implicit, whereas [2] uses explicit time-stepping for the interface compo-
nents.

Since our schemes are formulated in terms of general discrete differential operators known
as Summation-by-Parts (SBP) operators, we gain most of the convenience commonly associ-
ated with them. For example, it is trivial to adjust the order of the derivative approximations
in our schemes by simply switching the operators. Furthermore, the theoretical properties
of SBP operators—augmented with Simultaneous Approximation Terms (SATs) for weakly
enforcing boundary conditions—provide a general and straightforward way to prove sta-
bility for a multitude of discretized problems by mimicking continuous energy estimates
[1,9].

Traditionally, the SBP-SAT technique has been used in space to formulate high-order semi-
discrete schemes. Such schemes typically generate a linear system of ordinary differential
equations, which is integrated in time using explicit methods. The groundwork for employing
SBP-SAT also as a method of time integration was laid in [10]. However, naive usage of SBP
in time produces schemes that, while provably stable and high order accurate, lead to large
systems which are difficult to solve efficiently in multiple dimensions. For a comprehensive
review of the SBP-SAT technique, see [13].

This article is an initial attempt at combining SBP in time and domain decomposition
in order to address this efficiency problem. We consider provably stable SBP based domain
decomposition methods for a two-dimensional advection–diffusion problem, where local
solutions are coupled at the subdomain interfaces using SATs. The coupling procedure fol-
lows the ideas in [1], with adjustments to account for the use of SBP in time [7,10]. Our
scheme involves isolating a linear system consisting only of interface components by solving
independent, subdomain sized systems. This allows us to solve for the interface components
separately, which are used to build the full solution.

The scheme is proved stable using established SBP-SAT procedures. By using the spectral
properties of the temporal and spatial operators we are also able prove that our scheme is
invertible, ensuring unique and convergent solutions.

In Sect. 2 we outline the continuous problem to be solved. Section 3 introduces SBP opera-
tors inmultiple dimensions. These are used in Sects. 4 and 5 to formulate stable discretizations
of the continuous problem. A system reduction algorithm based on the construction of an
interface system is described in Sect. 6. The procedure is further justified by proofs of invert-
ibility in Sect. 7. Section 8 contains an outline of the method for an arbitrary number of
subdomains, together with an example illustrating how the system sizes shrink compared to
a single domain scheme. A convergence and efficiency study based on a Matlab implemen-
tation of the scheme is presented in Sect. 9. Section 10 contains a brief summary of our work
and future research directions.
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Fig. 1 The domain Ω with
highlighted inflow and outflow
boundaries
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2 The Advection–Diffusion Problem

Let a = (a1, a2) ∈ R
2, ε > 0, T > 0 and consider the following advection–diffusion

problem on a rectangular domain Ω:

ut + a · ∇u = εΔu, for (x, y) ∈ Ω, 0 < t < T

u
∣
∣
t=0 = f, on Ω

− a · nu + ε∇u · n = g, on Γin

ε∇u · n = h, on Γout .

(1)

Here n is the outward pointing unit normal of ∂Ω; Γin = ∂Ω ∩ {n · a < 0} is the inflow part
of the boundary, and Γout = ∂Ω ∩{n ·a ≥ 0} is the outflow part of the boundary (see Fig. 1).

It can be shown that this problem is well-posed. Furthermore, the single domain prob-
lem (1) is equivalent to the following multidomain (see Fig. 2) formulation

ut + a · ∇u = εΔu, for (x, y) ∈ ΩL , 0 < t < T ,

u
∣
∣
t=0 = f, on ΩL ,

− a · nu + ε∇u · n = g, on Γin ∩ ∂ΩL ,

ε∇u · n = h, on Γout ∩ ∂ΩL ,

vt + a · ∇v = εΔv, for (x, y) ∈ ΩR, 0 < t < T ,

v
∣
∣
t=0 = f, on ΩR ,

− a · nv + ε∇v · n = g, on Γin ∩ ∂ΩR ,

ε∇v · n = h, on Γout ∩ ∂ΩR ,

u = v, on Γ I ,

ux = vx , on Γ I .

(2)

In the coming sections we will propose a stable and parallelizable discretization of prob-
lem (2) based on the SBP-SAT technique.

3 Summation-by-Parts Operators

We begin with a brief introduction to multidimensional Summation-by-Parts (SBP) operators
on rectangular grids. Consider first a smooth, real-valued function u on the unit interval. Given
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Fig. 2 The decomposed domain
Ω = ΩL ∪ ΩR with highlighted
inflow and outflow boundaries
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an equidistant discretization xk = k
Nx

of the unit interval, an SBP operator is a matrix Dx

such that if we form the vectors u and ux by evaluating u and ux at the grid points, then
Dxu ≈ ux . Furthermore, there is a diagonal, positive definite matrix Px such that if u, v are
smooth functions, then

〈u, v〉Px := u
Pxv ≈
∫ 1

0
uvdx

and
〈u, Dxv〉Px = uNx vNx − u0v0 − 〈Dxu, v〉Px . (3)

Equation (3) is a discrete analogue of the integration by parts formula
∫ 1

0
uvxdx = u(1)v(1) − u(0)v(0) −

∫ 1

0
uxvdx .

SBP operators are classified by their order of accuracy. An SBP operator Dx is called an
SBP(p, r) operator if its order of accuracy is p in the interior and r at the boundary. For
details, see [13].

Next we consider smooth, time-dependent functions of two spatial variables. Let Ω =
[0, 1]×[0, 1] and u : [0, T ]×Ω → R be such a function. The temporal and spatial intervals
are discretized using equidistant grids ti = iT/Nt , x j = j/Nx , yk = k/Ny , and we define
the three-dimensional field U = (ui jk), where ui jk = u(ti , x j , yk). Furthermore, let Dt , Dx

and Dy be SBP operators in each dimension. To be able to operate on dimensions separately
using matrix-vector multiplications, we form the vector

u = (u0, u1, . . . , uNt )



where
ui = (ui0, ui1, . . . , uiNx ), ui j = (ui j0, ui j1, . . . , ui j Ny ) .

Furthermore we define the discrete partial differential operators

Dt = Dt ⊗ Ix ⊗ Iy, Dx = It ⊗ Dx ⊗ Iy, Dy = It ⊗ Ix ⊗ Dy .

Here It , Ix , and Iy are identity matrices of sizes corresponding to the discretization. With
this structure it follows that

Dtu ≈ ut , Dxu ≈ ux , Dyu ≈ uy .

The quadrature matrices Pt , Px , and Py can be combined to form various integral approxi-
mations. Three types of integration are of particular importance: Integration over the entire
domain [0, T ] × Ω; integration over the spatial domain at particular times; and integration
at the spatial boundaries during all times.
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Fig. 3 Left: An equidistant discretization of the unit square with labelled boundaries. Right: An example grid
function u. The time integral of the red area is approximated by the numerical boundary integral 1
Pwu

The quadraturematrix for integration over the entire domain is defined asP = Pt⊗Px⊗Py
and

〈u, v〉P := u
Pv ≈
∫∫∫

[0,T ]×Ω

uvdxdydt .

To integrate over the spatial domain at a particular time ti we let Ei
t = ei e


i , where ei is the
standard basis vector in R

Nt+1 (this matrix has a 1 at position (i, i) and zeros everywhere
else). The quadrature matrix for integration over the spatial domain at time ti is defined as
Pi

Ω = Ei
t ⊗ Px ⊗ Py , and we have

〈u, v〉Pi
Ω

:= u
Pi
Ωv ≈

∫∫

Ω

uv
∣
∣
t=ti

dxdy .

We define quadrature matrices for the spatial boundaries in a similar manner. Let E j
x = e j e


j ,

Ek
y = eke


k , and

Pw = Pt ⊗ E0
x ⊗ Py, Pe = Pt ⊗ ENx

x ⊗ Py

Ps = Pt ⊗ Px ⊗ E0
y , Pn = Pt ⊗ Px ⊗ E

Ny
y .

Then

〈u, v〉Pw := u
Pwv ≈
∫ T

0

∫ 1

0
uv

∣
∣
x=0dxdt .

The remaining boundary quadratures are defined analogously, with the subscripts w, e, s, n
denoting the west, east, south and north boundary respectively (see Fig. 3).

The SBP property is inherited from the one-dimensional operators in the sense that

〈u,Dtv〉P = 〈u, v〉PNt
Ω

− 〈u, v〉P0
Ω

− 〈Dtu, v〉P
〈u,Dxv〉P = 〈u, v〉Pe − 〈u, v〉Pw − 〈Dxu, v〉P
〈u,Dyv〉P = 〈u, v〉Pn − 〈u, v〉Ps − 〈Dyu, v〉P ,

(4)
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where the corresponding identities in the continuous setting are
∫∫∫

[0,T ]×Ω

uvt dxdydt =
∫∫

Ω

uv
∣
∣
t=T dxdy −

∫∫

Ω

uv
∣
∣
t=0dxdy −

∫∫∫

[0,T ]×Ω

utvdxdydt

∫∫∫

[0,T ]×Ω

uvxdxdydt =
T∫

0

1∫

0

uv
∣
∣
x=1dydt −

T∫

0

1∫

0

uv
∣
∣
x=0dydt −

∫∫∫

[0,T ]×Ω

uxvdxdydt

∫∫∫

[0,T ]×Ω

uvydxdydt =
T∫

0

1∫

0

uv
∣
∣
y=1dxdt −

T∫

0

1∫

0

uv
∣
∣
y=0dxdt −

∫∫∫

[0,T ]×Ω

uyvdxdydt ,

respectively.

4 Single Domain Discretization

It is natural to first discuss a single domain scheme, since the handling of the boundary and
initial conditions will carry over to the two-domain case. We restrict problem (1) to the unit
square Ω = [0, 1]2 and discretize it. A bound on the energy of the solution to problem (1)
with homogenous boundary data can be found by using the energy method: We multiply the
differential equation by 2u and integrate over the spatial domain. Integration by parts then
yields

∂

∂t
‖u‖2L2(Ω)

= −
∮

∂Ω

(u2a − 2εu∇u) · nds − 2ε
∫∫

Ω

|∇u|2dxdy .

The energy rate above is controlled by the boundary conditions. Indeed, by inserting the
homogeneous boundary conditions we get

∂

∂t
‖u‖2L2(Ω)

=
∮

{a·n<0}
a · nu2ds −

∮

{a·n≥0}
a · nu2ds − 2ε

∫∫

Ω

|∇u|2dxdy ≤ 0 .

Integrating in time results in a bound in terms of initial data,

‖u∣
∣
t=T ‖2L2(Ω)

+ 2ε
∫ T

0
‖∇u‖2dxdy ≤ ‖ f ‖2L2(Ω)

. (5)

The bound (5) implies that

Proposition 1 Problem (1) is well-posed.

Our goal is now to construct a discrete scheme which controls indefinite terms in a similar
manner. Consider first the linear system

Dtu + a1Dxu + a2Dyu − ε(D2
xu + D2

yu) = 0 . (6)

If u solves problem (1), then (6) holds approximately. What we want, however, is the
converse—a system with a unique solution u which approximates the solution to (1). In
order to achieve this we introduce penalty terms to the right-hand side which impose the
boundary and initial conditions weakly. The necessary form of these penalty terms can be
derived by studying the terms that arise from applying the discrete energy method to the
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left-hand side in (6). That is, we perform the discrete analogue of multiplying the differential
equation by 2u and integrating in space and time—we multiply (6) by 2u
P:

2〈u,Dtu〉P + 2a1〈u,Dxu〉P + 2a2〈u,Dyu〉P − 2ε(〈u,D2
xu〉P + 〈u,D2

yu〉P) = 0 .

Each term can be rewritten using the summation by parts properties (4):

2〈u,Dtu〉P = ‖u‖2
PNt

Ω

− ‖u‖2
P0

Ω

(7)

2a1〈u,Dxu〉P = a1‖u‖2Pe − a1‖u‖2Pw
(8)

2a2〈u,Dyu〉P = a2‖u‖2Pn − a2‖u‖2Ps (9)

2ε〈u,D2
xu〉P = 2ε〈u,Dxu〉Pe − 2ε〈u,Dxu〉Pw − 2ε‖Dxu‖2P (10)

2ε〈u,D2
yu〉P = 2ε〈u,Dyu〉Pn − 2ε〈u,Dyu〉Ps − 2ε‖Dyu‖2P . (11)

The terms in the equations above end up being dissipative depending on the signs of a1 and
a2. Assume for simplicity that a1, a2 > 0. By combining (8)–(11), each of the four boundaries
will have an associated indefinite boundary term that we must control with corresponding
penalty terms. The indefinite terms are

– West: a1‖u‖2Pw
− 2ε〈u,Dxu〉Pw .

– East: 2ε〈u,Dxu〉Pe .
– South: a2‖u‖2Ps − 2ε〈u,Dyu〉Ps .
– North: 2ε〈u,Dyu〉Pn .

The corresponding penalty terms are constructed such that they approximate the boundary
conditions (and hence are sufficiently small), and when multiplied by 2u
P, they eliminate
the indefinite terms above. We choose

– West: −P−1Pw(a1u − εDxu − gw) .
– East: −P−1Pe(εDxu − he) .
– South: −P−1Ps(a2u − εDyu − gs) .
– North: −P−1Pn(εDyu − hn) .

Here gw , he, gs and hn is the data injected into the boundary grid points. Note that when
multiplied by 2u
P, the penalty terms turn into boundary integrals.

For example, with homogeneous boundary data, the east penalty becomes

−2εu
PeDxu = −2ε〈u,Dxu〉Pe ,

and eliminate the east indefinite term.
Finally we must enforce the initial condition u

∣
∣
t=0 = f . This is done with the penalty

term
− P−1P0

Ω(u − f) , (12)

which will control the term ‖u‖2
P0

Ω

from Eq. (7). Multiplying (12) by 2u
P, adding ‖u‖2
P0

Ω

and completing the square yields

−‖u‖2
P0

Ω

+ 2〈u, f〉P0
Ω

= −‖u − f‖2
P0

Ω

+ ‖f‖2
P0

Ω

.

By defining a discrete gradient and Laplacian we can write the full scheme in a complete,
but compact form. Let

∇u = (Dxu,Dyu)

Δu = D2
xu + D2

yu .
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With this notation, the scheme can be written as

Dtu + a · ∇u − εΔu = − P−1P0
Ω(u − f)

− P−1Pw(a1u − εDxu − gw)

− P−1Pe(Dxu − he)

− P−1Ps(a2u − εDyu − gs)

− P−1Pn(Dyu − hn).

(13)

It can be shown that the scheme above yields the following bound when using homogeneous
boundary data

‖u‖PNt
Ω

+ 2ε‖∇u‖2P ≤ ‖f‖P0
Ω

. (14)

That is, the energy of the numerical solution at the final time and the integral of the gradients is
bounded by the energy of the initial data.We have therefore proved the following proposition.

Proposition 2 The scheme (13) is stable.

Remark 1 The bound (14) is a discrete analogue of the continuous bound (5).

Remark 2 The scheme (13) is implicit in time. It is generally not prudent to solve up to time
T using a single system (it will be too large)—instead we solve for a small number of time
points successively, until we reach T . The initial data for each time-slab is given by the last
solution from the previous time-slab. The procedure (multi-block in time) is explained in
detail in [7].

5 Two-Domain Discretization

We partition the domain Ω = [0, 2] × [0, 1] into a left subdomain ΩL and a right subdo-
main ΩR , each discretized by a uniform grid (see Fig. 4). We associate to ΩL a numerical
solution u and to ΩR a numerical solution v. The problem (2) is for the most part discretized
as in the previous section. The imposition of the boundary and initial conditions is handled
as in (13), and the conditions u = v and ∂u/∂n = ∂v/∂n at the interface are imposed in a
similar weak manner. The combined scheme can be written

Fig. 4 A two-block grid of the
partitioned domain
Ω = ΩL ∪ ΩR
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Dtu + a · ∇u − εΔu = σ I
LP

−1Pe(u − Ewev)

+ σ V
L εP−1Pe(Dxu − EweDxv)

+ External Penalties

Dtv + a · ∇v − εΔv = σ I
RP

−1Pw(v − Eewu)

+ σ V
R εP−1Pw(Dxv − EewDxu)

+ External Penalties .

(15)

Here the “External Penalties” terms contain the penalty termsdescribed in the previous section
to enforce the boundary and initial conditions. The matrices Ewe and Eew are reordering
operators,moving components between thewest and east boundary. This is necessary because
the interface components of u (i.e. the east boundary of ΩL ) do not appear in the same
positions as the interface components of v (i.e. the west boundary of ΩR). More precisely:
Let e j be the standard basis in RNx+1 and ENx0

x = eNx e


0 . Then Ewe = It ⊗ ENx0

x ⊗ Iy and
Eew = E


we.
Note that because the subdomains ΩL and ΩR are discretized with uniform grids and the

same number of grid points, we can use the same SBP operators and quadratures on both
subdomains. This is done only for simplicity, and is not necessary. To simplify the stability
proof of Proposition 3 the quadratures used for integration at the interface should match.

Remark 3 The simplifying requirement that the grid points must match at the interface can
be relaxed by using so called SBP preserving interpolation operators, see [8].

The right-hand side in (15) is a stable coupling for appropriate choices of σ I
L , σ V

L , σ I
R, σ V

R .
Indeed, by arguments similar to those in [1], the following proposition can be proved.

Proposition 3 A positive number ξ exists such that if

σ I
R = σ I

L − a1, σ V
R = σ V

L + 1, σ I
L ≤ a1

2
− ε

(

σ V
L

)2 + (

σ V
R

)2

4ξ
, (16)

then the scheme (15) is stable.

This is proved in [1] for the semi-discrete case, and is here extended to the fully discrete case.
The proof is given in “Appendix A”.

6 System Reduction

Our goal is now to split the problem (15) into two smaller, independent subproblems. To this
end we rewrite (15) as

[

AL �L

�R AR

] [

u
v

]

=
[

bL
bR

]

. (17)

Here�L = σ I
LP

−1PeEwe+σ V
L P−1PeEweDx and�R = σ I

RP
−1PwEew +σ V

R P−1PwEewDx .
The matrixAL is the sum of all the factors in front of u (including the external penalty terms)
in the top equation of (15), and the matrix AR is the sum of all the factors in front of v in the
bottom equation of (15). The right-hand side bL and bR contains data from the initial and
boundary conditions.
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Parallelization opportunities can now be illuminated by a few key observations. First, the
full system (15) is equivalent to

[

I A−1
L �L

A−1
R �R I

] [

u
v

]

=
[

A−1
L bL

A−1
R bR

]

. (18)

This formulation has the desirable property of being easily reduced to involve only interface
components, as we shall soon demonstrate. Three major questions must be answered. Is it
possible to construct (18), i.e. are the involved matrices invertible? How do we solve for the
interface components? And how do we build the full solution once the interface components
are known?

Let us discuss these questions in order. To build the system (18) we must compute the
products A−1

L �L and A−1
R �R (the invertibility of AL and AR is shown in Sect. 7). Due to

the sparse structure of �L and �R this is equivalent to solving 2kNt Ny independent linear
systems of subdomain size. The parameter k depends on the size of the boundary stencil of
the SBP operator (using a standard second order operator implies k = 2, fourth order implies
k = 4 etc.). The right-hand side in (18) is in general time dependent and must be computed
for each implicit time-integration step.

Once thematrix on the left-hand side of (18) and the vector on the right-hand side is known
we can reduce the system to involve only interface components. Let us study a small example
to illustrate the procedure. The left-hand side matrix in (18) is a block matrix with identities
on the diagonal. The off-diagonal blocks have nonzero columns in positions corresponding to
the interface components. This will allow us to eliminate rows and columns corresponding to
non-interface components. In the example below we can think of u0 and v2 as non-interface
components, and u1, u2, v0, v1 as interface components to be isolated from the full system.
The reduction is schematically depicted below.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ∗ ∗ 0
0 1 0 ∗ ∗ 0
0 0 1 ∗ ∗ 0
0 ∗ ∗ 1 0 0
0 ∗ ∗ 0 1 0
0 ∗ ∗ 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0
u1
u2
v0
v1
v2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0
b1
b2
b3
b4
b5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ∗ ∗ 0
0 1 0 ∗ ∗ 0
0 0 1 ∗ ∗ 0
0 ∗ ∗ 1 0 0
0 ∗ ∗ 0 1 0
0 ∗ ∗ 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0
u1
u2
v0
v1
v2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0
b1
b2
b3
b4
b5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

⎡

⎢
⎢
⎣

1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ 1 0
∗ ∗ 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

u1
u2
v0
v1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

b1
b2
b3
b4

⎤

⎥
⎥
⎦

(21)

Finally, once (21) has been solved for the interface components, the remaining unknowns
u0 and v2 can be computed by using the top and bottom rows in (19). While the system above
is too small to be the result of a real discretization, both its structure and the elimination
procedure is analogous in realistic cases.
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In conclusion, the following solution algorithm for (15) can be set up by precomputing
the products A−1

L �L and A−1
R �R :

1. Compute A−1
L bL and A−1

R bR .
2. Build and solve the interface system.
3. Build the full solution from the interface components.
4. Repeat using previous solution as initial data until time T is reached.

Remark 4 This type of algorithm is beneficial also for a sequential code because of the non-
linear growth of the memory cost for solving linear systems. That is, solving a single-domain
discretization with a given grid size may be impossible due to memory constraints, while the
multidomain scheme is solvable due to the reduced system sizes.

Remark 5 For linear problems with time-independent coefficients, the matrices AL and AR

can be LU-decomposed ahead of simulation to increase efficiency. For non-linear problems,
or problems with time dependent coefficients, the matricesAL andAR will change with time,
and must be LU-decomposed in each time slab.

7 Invertibility

The procedure described in the previous section requires that the subsystems are invertible,
and that the full system (17) has a unique solution. To prove that this is the case we study
the spectral properties of the spatial discretization and the temporal discretization separately.
The overarching idea is to

1. Establish that the discrete temporal and spatial differential operators commute.
2. Show that the eigenvalues of the temporal operator have strictly positive real parts.
3. Show that the eigenvalues of the spatial operator have non-negative real parts.
4. Note that the eigenvalues of the sum of commuting operators are the sums of their

respective eigenvalues and conclude therefore that zero is not an eigenvalue of the full
operator, implying that it is invertible.

Point 2 is proven for the second order case, but remains an open question for high order
operators. However, extensive numerical studies corroborate this hypothesis (see [7]). We
consider Point 2 in the form of a conjecture.

Conjecture 1 The eigenvalues of the matrix D̃t = Dt + P−1
t E0

t = P−1
t (Qt + E0

t ) have
strictly positive real parts.

Point 1 is a simple consequence of properties of the Kronecker product. The discrete
differential operator AL in (17) is the sum of a temporal part D̃t ⊗ Ix ⊗ Iy and a spatial part
It ⊗ D̃x ⊗ Iy + It ⊗ Ix ⊗ D̃y (here the tilde symbols indicate the sum of an SBP operator
and penalty terms). Clearly the temporal part commutes with the spatial part. The same is
true for AR .

Next we study the spectrum of AL and AR by considering the semi-discrete version
[

u
v

]

t
+

[

AL ΣL

ΣR AR

] [

u
v

]

=
[

bL
bR

]

(22)

of (17). Here AL and AR are the same as AL and AR , sans the temporal discretization—i.e.
AL = D̃x ⊗ Iy + Ix ⊗ D̃y and AR = D̂x ⊗ Iy + Ix ⊗ D̂y (here again the tilde and hat symbols
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indicate that penalty terms have been added to the SBP operators). Similarly ΣL and ΣR are
as in Sect. 6, sans the temporal discretization. The semi-discrete system (22) is stable under
the conditions of Proposition 3 (the proof is essentially the same). This allows us to prove
the following lemma.

Lemma 1 Under the stability conditions of Proposition 3, the eigenvalues of the matrices
AL and AR have non-negative real parts.

Proof We have established that the semidiscrete system (22) is stable, or, equivalently, with
P = Px ⊗ Py ,

[

u
v

]
 ⎡

⎣

[

PAL PΣL

PΣR P AR

]

+
[

A

L P Σ


R P
Σ


L P A

R P

]⎤

⎦

[

u
v

]

≥ 0 (23)

for all u, v. It follows that PAL + A

L P and PAR + A


R P are positive semi-definite. To see
this, assume that PAL + A


L P is not positive semi-definite. Then there is a vector ũ such
that ũ
(PAL + A


L P)ũ < 0. But this contradicts (23) if we set u = ũ and v = 0. Hence
PAL + A


L P is positive semi-definite, and by a similar argument, so is PAR + A

R P .

Furthermore, if (λ, z) is an eigenpair of AL , then

ALz = λz �⇒ PALz = λPz �⇒ z∗PALz = λz∗Pz .

By adding the conjugate transpose of the rightmost equation above it follows that

z∗[PAL + (PAL)
]z = 2Re(λ)z∗Pz .

Hence the eigenvalues of AL (and AR) have non-negative real parts. ��
Using Lemma 1 it is straightforward to prove invertibility of AL and AR .

Proposition 4 The stability conditions of Proposition 3 imply that the matrices AL and AR

are invertible.

Proof We prove invertibility of AL only—the proof for AR is the same.
From the discussion above we know that the temporal term D̃t ⊗ Ix ⊗ Iy and the spatial

term It ⊗ D̃x ⊗ Iy + It ⊗ Ix ⊗ D̃y of AL commute, and that the eigenvalues of the temporal
term have strictly positive real parts. Furthermore, from Lemma 1, the eigenvalues of the
spatial part has non-negative real parts. It follows that the eigenvalues of AL—being sums
of the eigenvalues of the temporal and spatial parts—have strictly positive real parts (see [4,
p. 117]). Then, since all its eigenvalues are nonzero, AL is invertible. ��

It follows in a similar manner that the full system (17) has a unique solution.

Proposition 5 The stability conditions of Proposition 3 imply that the system (17) has a
unique solution.

Proof Again we split the matrix into a temporal and a spatial part:
[

AL �L

�R AR

]

=
[

D̃t

D̃t

]

︸ ︷︷ ︸

T

+
[

It ⊗ AL It ⊗ ΣL

It ⊗ ΣR It ⊗ AR

]

︸ ︷︷ ︸

S

where D̃t = D̃t ⊗ Ix ⊗ Iy . The matrix S is the blockwise Kronecker product of It and the
matrix in (22). Since (22) is stable, it follows that the eigenvalues of S have non-negative real
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parts [5, p. 178]. Furthermore, by Conjecture 1, the eigenvalues ofT have strictly positive real
parts. But then, since T and S commute (this follows from the Kronecker product structure),
the eigenvalues of the sum T + S have strictly positive real parts. It follows that the system
(17) has a unique solution. ��

Finally, the invertibility of the interface system is an immediate consequence of Proposi-
tions 4 and 5.

Proposition 6 The stability conditions of Proposition 3 imply that the interface system
described in Sect. 6 has a unique solution.

Proof The equations of the interface system is a subset of the equations of the full system
(18). By Propositions 4 and 5, the system (18) has a unique solution. Hence, the interface
system has a unique solution. ��

8 N-Domain Discretization

The procedure for two domains discussed above can be straightforwardly extended to an
arbitrary number of subdomains, leading to systems defined by matrices of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 �12 · · · �1N

�21 A2 · · · �2N

�31 �32 · · · �3N
...

... · · · ...

�N1 �N2 · · · AN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where �i j is nonzero if and only if the subdomains i and j share an interface. An interface
system is then constructed as in the two-domain case by solving linear systems of subdomain
size.

9 Numerical Experiments

Our domain decomposition scheme is readily extended to curvilinear blocks. To verify that
our code produces solutions that converge with design order of accuracy we consider (1)
with a = (1, 1) and ε = 0.01, posed on the domain Ω shown in Fig. 5. Data is given by the
manufactured solution

u = cos(− 2.5πx + 2.1πy + t) . (24)

We compute approximate solutions at time T = 1 for increasingly fine grids and for different
order SBP operators in space. The equation is integrated in time using an SBP(2, 1) operator
with 3 points per temporal block and Δt small enough to not influence the spatial error.
Convergence rates and L2 errors in space are shown in Table 1, verifying that the schemes
converge with the correct order.

We investigate the efficiency of our method by comparing against both explicit Runge–
Kutta time integration and the single-domain (SD) formulation described in Sect. 4. The
square domain Ω = (0, 1)2 is partitioned into 9 blocks as in Fig. 6, and we again set
a = (1, 1), ε = 0.01, and use data from (24). The multidomain formulation described in
Sect. 5 is easily made semi-discrete by only discretizing in space, leaving the time dimension
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Fig. 5 An irregular domain
decomposed into three
subdomains
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Table 1 L2 errors at time T = 1
and convergence rates for
different spatial SBP operators

N Error Rate N Error Rate

SBP(2, 1) SBP(4, 2)

15 4.25e−01 15 1.70e−01

25 1.35e−01 2.13 25 3.09e−02 3.16

35 6.57e−02 2.06 35 1.06e−02 3.09

45 3.89e−02 2.03 45 4.81e−03 3.05

55 2.57e−02 2.02 55 2.59e−03 3.02

SBP(6, 3) SBP(8, 4)

15 3.13e−01 15 5.85e−01

25 4.70e−02 3.52 25 2.94e−02 5.55

35 1.36e−02 3.55 35 5.23e−03 4.95

45 5.22e−03 3.72 45 1.44e−03 5.01

55 2.39e−03 3.82 55 5.25e−04 4.92

The format SBP(2p, p) means
that the operator is of order 2p
for interior nodes and p for
boundary nodes, which yields a
global order of p + 1 [12]. The
N -column shows the resolution
(N × N ) of the subdomain grids

Fig. 6 The domain Ω = (0, 1)2

divided into 9 subdomains, each
discretized by a 10 × 10 grid
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continuous. This yields a system of ODEswhichwe solve using theMatlab routine ode45—
a Runge–Kutta based explicit integrator with adaptive step size. Both our implicit methods
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Fig. 7 Execution times for solving (1) on the unit square using our proposed scheme (Implicit MD), the
single-domain scheme from Sect. 4 (Implicit SD), and explicit Runge–Kutta (Explicit RK)

use an SBP(2, 1) operator in time with Δt = 0.005 and 3 points per temporal block. All
methods use SBP(4, 2) operators in space. The test is performed as follows.

For N = 10, 11, . . . , 30:

– Partition the domain Ω = (0, 1)2 into 9 uniform subdomains.
– Discretize each subdomain by an N × N grid.
– Compute the solution using explicit time integration. Record the execution time and

spatial error at the final time.
– Compute the solution using our proposed implicit multi-domain algorithm. Record the

execution time and spatial error at the final time.

Using the 9 subdomain grid structure in Fig. 6 gives a total spatial resolution of (3N−2)×
(3N − 2) (because the interface nodes are shared). Hence, for the single-domain algorithm:

– Discretize the domain Ω = (0, 1)2 by a (3N − 2) × (3N − 2) grid.
– Compute the solution using implicit integration as described in Sect. 4.

Record the execution time and spatial error at the final time.

The execution times are plotted against the spatial errors at time T = 1 in Fig. 7. Our implicit
domain decomposition based integrator is an order of magnitude faster than both the explicit
integrator and the single-domain implicit integrator (and several orders ofmagnitude faster for
finer grids). As the grid resolution increases, the implicit single-domain algorithm becomes
inefficient due to the size of the system that must be solved in each time step. This makes the
single-domain algorithmmemory intensive, and for fine grids the method breaks down due to
memory limitations (this is why the single-domain algorithm has fewer measurement points
in Fig. 7; for high resolutions we simply run out of memory). The explicit solver, while not
verymemory intensive, requires very small time steps for stability, making it computationally
expensive.

Remark 6 The above comparison is between Matlab implementations running on a single
desktop machine. The bulk of the computations consist of matrix–vector addition and multi-
plication, and solving linear systems. These are all operations which are heavily parallelized
in Matlab. Large scale parallelization using computer clusters will be done in a future paper.

Remark 7 In our domain decomposition implementation, both the interface system and the
subdomain systems are solved by direct methods. This is particularly suitable for linear
problems with time independent coefficients, because it allows us to LU-decompose the
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Fig. 8 The execution time needed to achieve a given accuracy depends on the number of subdomains. This
plot shows execution times for different partitions of the unit square. In this case, optimal execution time is
achieved at 9 subdomains

systems ahead of simulation. At higher resolutions this becomes infeasible and one should
instead use iterative solvers, like for example GMRES.

Execution times for the domain decomposition scheme can be optimized by appropri-
ately choosing the number of subdomains. The size of the subproblems increase with grid
refinement, ultimately resulting in systems that cannot be solved efficiently. By increasing
the number of subdomains, we reduce the sizes of the subsystems, but increase the size of the
interface system. Hence there is an optimal number of subdomains for producing solutions
at a given accuracy in the least amount of time. To illustrate this effect we compute solu-
tions on the unit square, with increasing number of subdomains. More precisely, a reference
accuracy is set by computing a solution at time T = 1 using the single-domain algorithm
[with Δt = 0.05 and data from (24)] on a 48 × 48 grid. Next, solutions are computed using
M2 subdomains, where M = 1, 2, 3, 4, 5. The execution time needed to achieve equal or
higher accuracy than the reference accuracy is recorded. This is typically achieved by using
grid size ≈ (48/M) × (48/M) for each subdomain. In this case the optimal execution time
is reached at 32 blocks. The results are shown in Fig. 8.

A basic heuristic for determining the optimal number of subdomains can be constructed
by balancing the sizes of the interface and subdomain problems. This is done by deriving
expressions for the number of interface and subdomain nodes in terms of the total resolution
and the number of subdomains. In our unit square example, if the total resolution is N×N and
we use M2 subdomains, then each subdomain comprises (N/M)2 nodes, while the interfaces
comprise 2(M −1)N nodes in total. By letting these quantities be equal we can solve for M :

(N/M)2 = 2(M − 1)N ⇔ M3 − M2 − N/2 = 0 . (25)

In general, the solution will not be an integer, so the best we can do is to round off to
the nearest integer. For N = 48, the solution to Eq. (25) is M ≈ 3.26, which indicates
that 32 = 9 subdomains should be optimal, which is what we find in our computations as
well.
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Fig. 9 Temporal resolution and execution times needed to achieve optimal spatial accuracy at time T = 1,
using the grid shown in Fig. 6 and data from (26)

Fig. 10 A multiblock grid

For problems with high temporal variation and low spatial variation we can benefit from
raising the order of accuracy in time. We will illustrate this with data from the manufactured
solution

u = cos(− 0.5πx + 0.1πy + 2π t) . (26)

The domain Ω = (0, 1)2 is discretized as in Fig. 6 (i.e. the spatial resolution is fixed).
We compute solutions at time T = 1 for increasingly fine temporal resolutions using both
SBP(2, 1) and SBP(4, 2) operators in time (and SBP(4, 2) in space). Naturally the SBP(2, 1)
operator requires smaller time steps than the SBP(4, 2) operator in order to reach the optimal
spatial error for the chosen grid. The downside of raising the order of accuracy in time is that
it increases the system size (since the stencil is larger we need more time points per implicit
time step). However in this case the harsher time step requirements of the SBP(2, 1) operator
incurs higher computational cost than the increased system size of the SBP(4, 2) operator,
resulting in slower execution times. The results can be seen in Fig. 9.

Finally we illustrate our procedure by an example.We compute the solution with homoge-
neous boundary and forcing data, Gaussian initial data, ε = 0.01, a = (0, 0.3), Δx = 1/24,
Δt = 1/20, T = 10. The simulation uses the grid shown in Fig. 10 with 4th order oper-
ators in space and a 2nd order operator in time. Color plots of the solution at different
times are shown in Fig. 11. The solution slowly advects to the right and diffuses, without
oscillations.
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Fig. 11 A solution with homogeneous boundary and forcing data, and Gaussian initial data

10 Conclusions

We have formulated an efficient, fully discrete and provably stable domain decomposition
scheme for the advection–diffusion equation using SBP-SAT in space and time. The single-
domain problem is reduced to a set of subdomain-sized problems along with a linear system
comprising the interface components. Using the stability of the scheme together with the
spectral properties of the SBP operators we proved that the scheme is invertible, i.e. for any
given set of data, the scheme will produce a unique convergent solution.

By numerical experimentswe showed significant efficiency gain compared to both implicit
single-domain and explicit multi-block solvers. Due to the stiffness of the equation, explicit
time integration is crippled by the small time steps required for stability. The implicit single-
domain solver does not require small time steps, but becomes inefficient with grid refinement
as the size of the linear system grows.

The ideas presented here provide both theoretical and practical paths for further research
into the connection between SBP-SAT based discretizations and domain decomposition. In
future papers we intend to elaborate on the method used on non-trivial domains using curvi-
linear grids. The viability of the method should also be further explored through parallelized
implementations and research related to applications using variable coefficient as well as
non-linear problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix A

The proof of Proposition 3 is similar to the proof of Theorem 3.1 in [1]. The idea is to apply
the energy method to (15)—i.e., multiply the top equation by 2u
P, and the bottom equation
by 2v
P—and choose σ I

L , σ V
L , σ I

R, σ V
R such that the interface contribution to the energy of

the solution becomes non-positive. Recall from Sect. 4 the terms (8)–(11). All of these terms
will appear for both u and v, but in this section we are concerned only with the interface
terms (and the dissipative terms 2ε‖Dxu‖2P and 2ε‖Dxv‖2P as we will see shortly).

Omitting the non-interface terms, we get

‖u‖2
PNt

Ω

+ ‖v‖2
PNt

Ω

= 2σ I
L 〈u,u − Ewev〉Pe + 2σ V

L ε〈u,Dxu − EweDxv〉Pe
+ 2σ I

R〈v, v − Eewu〉Pw + 2σ V
R ε〈v,Dxv − EewDxu〉Pw

− a1‖u‖2Pe + 2ε〈u,Dxu〉Pe − 2ε‖Dxu‖2P
+ a1‖v‖2Pw

− 2ε〈v,Dxv〉Pw − 2ε‖Dxv‖2P

(27)

We would like to rewrite the above expression as a quadratic form in u, v, Dxu and Dxv. In
order to do this we will assume that Pe = EwePwEew (i.e. the interface quadrature in the left
domain is the same as the interface quadrature in the right domain) so that the inner products
above can be replaced by a common inner product on the interface 〈·, ·〉PI . Note also that we
have the following inequalities for the dissipative terms 2ε‖Dxu‖2P and 2ε‖Dxv‖2P:

2ε‖Dxu‖2P ≥ 2εξ‖Dxu‖2PI

2ε‖Dxv‖2P ≥ 2εξ‖Dxv‖2PI
.

(28)

This is best understood by rewriting the numerical integral ‖ · ‖2P using triple indices. For
example, if w = Dxu, then 2ε‖w‖2P = 2ε

∑

i jk αiβ jγkw
2
i jk , where wi jk ≈ w(ti , x j , yk) and

αi = (Pt )i i , β j = (Px ) j j , γk = (Py)kk . The right-hand side above is then simply the sum
we get when we fix j = Nx .

With this in mind we can prove Proposition 3.

Proof Using (28) and (27) we get

‖u‖2
PNt

Ω

+ ‖v‖2
PNt

Ω

≤ (2σ I
L − a1)‖u‖2PI

+ (2σ I
R + a1)‖v‖2PI

− 2(σ I
L + σ I

R)〈u, v〉PI

+ 2ε(σ V
L + 1)〈u,Dxu〉PI + 2ε(σ V

R − 1)〈v,Dxv〉PI

− 2σ V
L ε〈u,Dxv〉PI − 2σ V

R ε〈v,Dxu〉PI

− 2εξ‖Dxu‖2PI
− 2εξ‖Dxv‖2PI

= w
B ⊗ PIw ,

(29)

where w = (u
 v
 (Dxu)
 (Dxv)
)
 and

B =

⎡

⎢
⎢
⎣

(−a1 + 2σ I
L ) −(σ I

L + σ I
R) ε(σ V

L + 1) −σ V
L ε

−(σ I
L + σ I

R) 2σ I
R + a1 −σ V

R ε ε(σ V
R − 1)

ε(σ V
L + 1) −σ V

R ε −2εξ 0
−σ V

L ε ε(σ V
R − 1) 0 −2εξ

⎤

⎥
⎥
⎦

.

The matrix B is the same as in the proof of Theorem 3.1 in [1], where it is shown to be
negative semi-definite. ��
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