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Abstract Temporal error bounds for the wave equation expressed on second order form are
investigated. We show that, with appropriate choices of boundary conditions, the time and
space derivatives of the error are bounded even for long times. No long time bound on the
error itself is obtained, although numerical experiments indicate that a bound exists.

Keywords Wave equation · Error bounds · Second order form · Long times · Summation-
by-parts · Finite differences · Simultaneous approximation terms

1 Introduction

For a stable and consistent numerical scheme, the solution converges for a fixed time as the
grid spacing h approaches zero. However, convergence does not necessarily mean that the
error is bounded as the time t → ∞. Consequently, the classical definition of stability is not
sufficient for an accurate solution after long time integration.

Long time error bounds have previously been studied for hyperbolic problems on first
order form [1–3]. However, rewriting a problem on first order form makes the problem more
computationally demanding [4]. In this note, we consider the long time behavior of the error
for the wave equation on second order form.

We discretize using Summation-By-Parts (SBP) operators, and implement the boundary
conditions using Simultaneous Approximation Terms (SAT’s) [5]. To minimize reflections,
appropriate non-reflecting dissipative boundary conditions are used. We proceed to inves-
tigate the scheme and the corresponding error equation, and focus our investigation on the
errors after long times.

B Jan Nordström
jan.nordstrom@liu.se

Hannes Frenander
hannes.frenander@liu.se

1 Division of Computational Mathematics, Department of Mathematics, Linköping University,
58183 Linköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0667-0&domain=pdf
http://orcid.org/0000-0002-7972-6183


1328 J Sci Comput (2018) 76:1327–1336

The paper will proceed as follows. In Sects. 2 and 3, we derive error bounds for the
continuous wave equation on second order form. The equation is discretized using the SBP-
SAT technique, and it is shown that the continuous analysis carries over to the discrete
problem. The theoretical findings are verified by numerical experiments in Sect. 4. Finally,
we summarize and draw conclusions in Sect. 5.

2 The Wave Equation on Second Order Form

The wave equation on second order form with non-reflecting boundary conditions is

utt − c2uxx = F(x, t), x ∈ [0, 1], t ≥ 0

ut (0, t) − cux (0, t) = g0(t)

ut (1, t) + cux (1, t) = g1(t)

(1)

augmented with the initial conditions u(x, 0) = f (x) and ut (x, 0) = h(x). In (1), c > 0 is a
real constant and g0, g1, f, h, F are given functions. The problem (1) is well-posed, see [6].

2.1 An Error Bound for the Continuous Problem

Let û be a solution to (1) with a perturbed forcing function F + δF . Subtracting (1) from the
problem for û leads to the error equation,

ett − c2exx = δF, x ∈ [0, 1], t ≥ 0

et (0, t) − cex (0, t) = 0

et (1, t) + cex (1, t) = 0

(2)

for e = û − u augmented with homogeneous initial conditions.
Multiplying (2) by et and integrating over the spatial domain yields,

∫ 1

0
et ett dx = c2

∫ 1

0
et exxdx +

∫ 1

0
etδFdx . (3)

Using the fact that 2et ett = ∂
∂t (e

2
t ), et exx = (et ex )x − (e2x )t/2 and imposing the boundary

conditions, we obtain

d

dt
(|||ē|||2) = −2c(e2t (1, t) + e2t (0, t)) + 2

∫ 1

0
etδFdx . (4)

In (4), we have defined |||ē|||2 = ∫ 1
0 (e2t + c2e2x )dx . Noting that

d
dt (|||ē|||2) = 2|||ē||| · |||ē|||t

and dividing (4) by 2|||ē||| results in
d

dt
(|||ē|||) ≤ −c

e2t (1, t) + e2t (0, t)

|||ē|||2 |||ē||| + ||δF || = −η(t)|||ē||| + ||δF ||. (5)

In (5), we have used that 2
∫ 1
0 etδFdx ≤ 2||et ||||δF || ≤ 2|||ē||| · ||δF || and introduced

η(t) = c(e2t (1, t) + e2t (0, t))/(|||ē|||2). (6)

Solving (5) for |||ē||| and assuming that there are constants η0 and ||δF ||max such that
η(t) ≥ η0 > 0 and ||δF || ≤ ||δF ||max results in

|||ē||| ≤ 1 − exp (−η0t)

η0
||δF ||max , (7)
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after using the homogeneous initial conditions. With η0 > 0, |||ē||| is bounded, i.e. it
approaches a finite value as t → ∞. Since |||ē|||2 = ∫ 1

0 (e2t + c2e2x )dx , (7) implies that
both et and ex are bounded.

Remark 1 The assumption η(t) ≥ η0 > 0 is crucial for the result in (7). This is in fact a
simplification of a more general condition. It is shown in [2] that the precise requirement is
that

∫ t
0 η(τ)dτ is monotonically increasing. The situation is the same here and we clarify this

in Appendix B.

The previous analysis does not imply that the error itself is bounded, but rather that its
growth is limited. To clarify, we follow [7], and observe that d

dt (||e||2) = 2
∫ 1
0 eetdx ≤

2||e||||et ||. Using this fact, we get,

||e||t ≤ ||et || ≤ |||ē||| ≤ 1 − exp (−η0t)

η0
||δF ||max . (8)

Integrating (8) in time and using the initial conditions yields,

||e|| ≤ η0t − 1 + exp(−η0t)

η20
||δF ||max (9)

For large t , the term t/η0 in (9) will dominate, and the error grows linearly in time.
We summarize the results so far in the following proposition.

Proposition 1 In problem (2), both et and ex are bounded for long times, and the error e
grows at most linearly in time.

Remark 2 The estimate (9) is an upper estimate of ||e||. Consequently, (9) does not neces-
sarily mean that the error is unbounded for long times.

Remark 3 Without the damping term from the boundary conditions, the estimate (5) becomes

d

dt
(|||ē|||) ≤ ||δF ||. (10)

Hence, a linear growth of |||ē||| and a quadratic growth of ||e|| will be expected.

3 The Semi-discrete Wave Equation on Second Order Form

Next, we discretize (1) using the SBP-SAT technique,

v̄t t = c2Dv̄x − cP−1E0(v̄t − cv̄x − ḡ0) − cP−1EN (v̄t + cv̄x − ḡ1) + F̄ (11)

augmented with the initial conditions v̄(0) = f̄ and v̄t (0) = h̄. In (11), D = P−1Q is
the SBP finite difference operator that approximates the spatial derivative and v̄x = Dv̄.
The matrix P = PT > 0, Q satisfies the SBP property Q + QT =diag(−1, 0, ..., 0, 1),
E0 =diag(1, 0, ..., 0) and EN =diag(0, ..., 0, 1). The data related to (11), f̄ , ḡ0, ḡ1, h̄, F̄ are
grid functions of f, g0, g1, h, F , i.e. the function values are injected at the appropriate grid
points. The second and third terms on the right-hand side of (11) are SAT’s that implements
the boundary conditions. It can be shown that (11) is a stable scheme and that the solution
converges for a fixed time [6].
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3.1 An Error Bound for the Semi-discrete Problem

Let ū be the solution to (1) injected at the grid. Inserting ū into (11) and subtracting (11) with
the numerical solution v̄ results in the discrete error equation,

ēt t = c2Dēx − cP−1E0(ēt − cēx ) − cP−1EN (ēt + cēx ) + Te (12)

augmented with homogeneous conditions ē(0) = 0 and ēt (0) = 0. In (12), ē = ū − v̄,
ēx = Dē and Te is the truncation error.

Multiplying (12) by ēTt P from the left, adding the transpose of the outcome and using the
SBP property of Q results in,

d

dt
(|||ẽ|||2P ) = −2c(e2Nt + e20t ) + 2ēT PTe, (13)

where |||ẽ|||2P = ēTt Pēt +c2ēTx Pēx and e0,N denote the errors at the first and last grid points,
respectively.

Remark 4 When applying the energy method to (12) and using the first derivative twice,
one arrives directly at (13), with a well-defined first derivative in space. This makes the
estimate (13) strikingly similar to (4). With a compact operator in space (which is generally
the preferred choice), this would not be the case [8].

Following the path of the continous analysis above, defining

η̄(t) = c(e2Nt + e20t )/(|||ẽ|||2), (14)

and assuming that there is an η̄0 such that η̄ ≥ η̄0 > 0, we arrive at the estimate

|||ẽ|||P ≤ 1 − exp (−η̄0t)

η̄0
||Te||max , (15)

where ||Te||max is an upper estimate of ||Te||P .
Using the fact that (||ē||P )t ≤ ||ēt ||P ≤ |||ẽ|||P , (15) leads to,

(||ē||P )t ≤ 1 − exp (−η̄0t)

η̄0
||Te||max . (16)

Integrating (16) in time and using the homogeneous initial conditions yields

||ē||P ≤ η̄0t − 1 + exp (−η̄0t)

η̄20
||Te||max , (17)

which is analogous to the continous estimate (9).

Remark 5 The assumption η̄(t) ≥ η̄0 > 0 is crucial for obtaining an error bound. This is in
fact a simplification of a more general condition. The precise requirement is that

∫ t
0 η̄(τ )dτ

is monotonically increasing. This situation is exactly the same as in the continous case, see
Appendix B for details.

Equation (15) states that ēt and ēx remain bounded as t → ∞. As in the continous
problem, no bound for the actual error ē is obtained. On the contrary, (17) indicates that the
error grows linearly in time. We summarize the results so far in the following proposition.

Proposition 2 In problem (12), both ēt and ēx are bounded for long times, and the error ē
grows at most linearly in time.
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Remark 6 Similar to the continuous case discussed above, ||ẽ|| is predicted to grow at a
linear rate and ||ē|| at a quadratic rate without the damping from the boundary conditions.

Remark 7 The results obtained for the second order form hold also for the wave equation
rewritten on first order form. See Appendix A for details.

Remark 8 The error bounds obtained in this paper all rely on the terms η(t) in (6) and η̄(t) in
(14). All boundary conditions that produce similar dissipative terms will lead to error bounds.

3.2 The Fully Discrete Numerical Scheme

The numerical scheme used to approximate (1) is,

Dt D̃t v̄ = c2D2
x v̄ − (P−1

t E0t ⊗ Ix )D̃t (v̄ − h̄)

− (It ⊗ P−1
x E0x )(D̃t v̄ − Dx v̄ − ḡ0) − (It ⊗ P−1

x ENx )(D̃t v̄ + Dx v̄ − ḡ1),
(18)

where D̃t v̄ = Dt v̄ + (P−1
t E0t ⊗ Ix )(v̄ − f̄ ), Dt = P−1

t Qt ⊗ Ix and Dx = It ⊗ P−1
x Qx .

The subscripts on D, P and Q indicate which derivative that is approximated. The entries
of E0x , E0t are zero except entry (1, 1) which is equal to one, and the entries of ENx are all
zero except entry (N , N ) which is equal to one. The vectors ḡ0,1, h̄ and f̄ are grid functions
where the continuous boundary and initial data are injected at appropriate positions. In (18),
the symbol ⊗ denotes the Kronecker product, which is defined as

A ⊗ B =
⎡
⎢⎣
a11B . . . . . . a1N B

...
. . . . . .

...

aN1B . . . . . . aNN B,

⎤
⎥⎦

for two arbitrary matrices A and B. For further details on the discretization of the wave
equation on second order form, the reader is referred to [6].

4 Numerical Results

Consider problem (1) with c = 1. The problem is discretized in both time and space using
the SBP-SAT technique [6], since the SBP-SAT technique can be applied directly to the
second time derivative. In all the calculations below we use the manufactured solution u =
sin(2π(x − t)) and choose the boundary and initial data accordingly. We also use N =
20, 40, 80 grid points in space and Nt = 5000N grid points in time for all calculations.

As a quality control, we confirm that the solution converges with the correct rate during
mesh refinement for a fixed time. The problem is integrated up to T = 1 and the norm of the
error at the final time step is given by ||e||2P = eT Pe. The results are shown in Table 1, and
the rate of convergence is as expected.

Next, the long time performance of the problem for different types of boundary conditions
is studied. We integrate up to T = 500 and use an SBP scheme with third order overall
accuracy (a fourth order accurate inner stencil and second order boundary closures) in both
space and time.

First, we apply periodic boundary conditions (implemented using periodic finite difference
operators), which lead to η = 0 in (5) and a linear growth of |||ē|||. See Appendix C for
more details. Hence, both ||et ||P and ||ex ||P are expected to grow linearly in time, since the
damping effect becomes zero, see Remark 3 and 6. The results are shown in Fig. 1 where
||et ||P and ||ex ||P as well as the error ||e||P grows at an approximately linear rate.
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Table 1 The error for different mesh-sizes when using a second (SBP(2,1)), third (SBP(4,2)) and fourth
(SBP(6,3)) order SBP scheme when solving (1)

N SBP(2,1) Rate SBP(4,2) Rate SBP(6,3) Rate

10 4.1 × 10−2 − 8.6 × 10−2 − 7.2 × 10−2 −
20 1.1 × 10−2 1.9 1.1 × 10−2 3.0 2.2 × 10−3 5.0

40 2.9 × 10−3 1.9 1.2 × 10−3 3.2 1.6 × 10−4 3.8

80 7.3 × 10−4 1.9 1.4 × 10−4 3.1 9.8 × 10−6 4.0

160 2.9 × 10−4 2.0 1.6 × 10−5 3.1 5.4 × 10−7 4.2
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Fig. 1 The P-norm of e (upper figure), ex (middle figure) and et (lower figure) for different mesh sizes. Blue
line: N = 20, red line: N = 40 and green line: N = 80. The dashed line indicate a linear growth, and periodic
boundary conditions are used (Color figure online)

Secondly, we apply Neumann boundary conditions ux (0, t) = g0(t) and ux (1, t) =
g1(t), which also should result in a linear growth of ||et ||P or ||ex ||P (or both). As in the
periodic case, η(t) becomes zero by inserting the Neumann boundary conditions, yielding a
linear growth of |||ē|||. More details on the energy estimates when using Neumann boundary
conditions can be found in [9]. Figure 2 shows that ||ex ||P grows at a linear rate, which is
expected from (10). The actual error, ||e||P , also grows at a linear rate which indicates that
the estimates (7) and (17) may be too pessimistic.

Finally, we use the non-reflecting dissipative type of boundary conditions that lead to a
non-zero η0 > 0. Figure 3 shows the new theoretical result that ||et ||P and ||ex ||P do not
grow but rather stay constant in time. Also ||e||P is bounded, which is a better result than
predicted by the non-sharp estimates.

123



J Sci Comput (2018) 76:1327–1336 1333

0 50 100 150 200 250 300 350 400 450 500
10-4

10-2

100

||e
|| P

0 50 100 150 200 250 300 350 400 450 500
10-4

10-2

100

||e
x|
| P

0 50 100 150 200 250 300 350 400 450 500
Time

10-4

10-2

100

||e
t||

P

Fig. 2 The P-norm of e (upper figure), ex (middle figure) and et (lower figure) for different mesh sizes. Blue
line: N = 20, red line: N = 40 and green line: N = 80. The dashed line indicate a linear growth, and the
Neumann boundary conditions are used (Color figure online)
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Fig. 3 The P-norm of e (upper figure), ex (middle figure) and et (lower figure) for different mesh sizes. Blue
line: N = 20, red line: N = 40 and green line: N = 80. Non-reflecting boundary conditions are used (Color
figure online)

123



1334 J Sci Comput (2018) 76:1327–1336

0 50 100 150 200 250 300 350 400 450 500
10-5

10-3

10-1

||e
|| P

0 50 100 150 200 250 300 350 400 450 500
10-2

10-1

100

||e
x|
| P

0 50 100 150 200 250 300 350 400 450 500
10-4

10-2

100

||e
t||

P

Fig. 4 The P-norm of e (upper figure), ex (middle figure) and et (lower figure) for the wave equation in two
space dimensions and different mesh sizes. Blue line: N = 20, red line: N = 40 and green line: N = 80. First
order non-reflecting boundary conditions are used (Color figure online)

For brevity, we have restricted the numerical experiments to the cases discussed above.
However, error boundedness for dissipative boundary conditions and linear growth otherwise
is valid in general.

4.1 The Wave Equation in Two Space Dimensions

In this section, we consider the wave equation in two space dimensions with first order
absorbing boundary conditions,

utt − c2(uxx + uyy) = F(x, y, t)

ut (0, y, t) − cux (0, y, t) = gx0(y, t)

ut (1, y, t) − cux (1, y, t) = gx1(y, t)

ut (x, 0, t) − cuy(x, 0, t) = gy0(x, t)

ut (x, 1, t) − cuy(x, 1, t) = gy1(x, t).

(19)

Equations (19) is discretized in space and timeusing anSBP schemeof third order accuracy
and with boundary and initial conditions enforced using SAT’s. We use N = 20, 40, 80 grid
points in either space direction and Nt = 500N grid points in time. Furthermore, we choose
c = 1, let the exact solution be u = sin(2π(x + y − 2t)) and choose the data accordingly.
As shown in Figure 4, the results observed in the one-dimensional cases are also observed in
the two-dimensional setting.

5 Summary and Conclusions

Long time error development for the wave equation on second order form has been investi-
gated.We have theoretically shown that both the spatial and temporal derivatives of the errors
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are bounded if dissipative boundary conditions are given. It is also shown that the actual error
grows at most linearly in time.

For non-dissipative boundary conditions, a linear growth for the spatial and temporal
derivatives of the error is predicted and at most a quadratic one for the actual error.

Numerical experiments confirm that both the time and space derivatives of the error are
bounded for dissipative boundary conditions. It is found that the actual error is also bounded.
For non-dissipative boundary conditions, the time and space derivatives of the error grow
linearly as well as the actual error.

The theoretical predictions of the growth for the time and space derivatives are validated
by the numerical experiments, while the (non-sharp) theoretical estimate for the error seems
a bit too pessimistic.

The results of this paper can be generalized to any scheme that leads to an energy estimate
that mimics the continuous one in (7).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

A The wave equation on first order form

For comparison, we also consider the wave equation on first order form. By introducing the
variables v1 = ut and v2 = cux , the problem (1) can be rewritten as,

v̄t − C v̄x = F̃(x, t), x ∈ [0, 1], t ≥ 0

v1(0, t) − cv2(0, t) = g0(t)

v1(1, t) + cv2(1, t) = g1(t)

(20)

with initial conditions v2(x, 0) = c fx (x) and v1(x, 0) = h(x). In (20), v̄ = [v1, v2], F̃ =
[F, 0]T , c11 = c22 = 0 and c12 = c21 = c. In [2], it was shown that the error in (20) is
bounded in time as

||ê|| ≤ 1 − exp(−η0t)

η0
||δ F̃ ||max , (21)

where ||δ F̃ ||max is anupper estimate of the disturbance in F̃ and (cê21(0, t)+ê21(1, t))/2||ê||2 =
η(t) ≥ η0 > 0. The error in the components v1 and v2 are ê1, ê2 respectively, and
ê = [ê1, ê2]T . The estimate (21) leads to the same conclusions as in the second order case.

B Error growth for exact η

Consider the estimate (5),

d

dt
(|||ē|||) ≤ −η(t)|||ē||| + ||δF ||. (22)

According toRemark 1, the error is bounded if θ(t) = ∫ t
0 η(τ)dτ ismonotonically increasing,

i.e. there is a δ0 > 0 such that,
θ(t) > δ0t. (23)
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By solving (22), using the integrating factor eθ(t) and the estimate (23), one obtains

‖||ē||| ≤ e−δ0t |||ē(0)||| + 1 − eδ0t

δ0
||δF ||max , (24)

where ||δF ||max is an upper estimate of ||δF || and ē(0) is equal to ē at t = 0. From (24), we
can conclude that ||ē|| is bounded.

C The wave equation with periodic boundary conditions

Consider the continous energy estimate (3),

d

dt
(|||ē|||2) ≤ 2c2(ex (1)et (1) − ex (0)et (0)) + 2

∫ 1

0
etδFdx . (25)

By imposing periodic boundary conditions, the estimate (25) becomes,

d

dt
(|||ē|||2) ≤ 2

∫ 1

0
etδFdx,

which corresponds to (5) with η = 0. Consequently, a linear growth of the error is expected.
The periodic boundary conditions are implemented using a periodic finite difference oper-

ator, Dp = −DT
p for the spatial derivative. A stable semi-discrete scheme corresponding to

(11) is then,

v̄t t = c2Dp v̄x + F̄ .
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