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Abstract We consider a matrix polynomial equation (MPE) AnXn + An−1Xn−1 + · · · +
A0 = 0, where An, An−1, . . . , A0 ∈ R

m×m are the coefficient matrices, and X ∈ R
m×m

is the unknown matrix. A sufficient condition for the existence of the minimal nonnegative
solution is derived, where minimal means that any other solution is componentwise no less
than the minimal one. The explicit expressions of normwise, mixed and componentwise
condition numbers of the matrix polynomial equation are obtained. A backward error of
the approximated minimal nonnegative solution is defined and evaluated. Some numerical
examples are given to show the sharpness of the three kinds of condition numbers.

Keywords Matrix polynomial equation · Minimal nonnegative solution · Perturbation
analysis · Condition number · Mixed and componentwise · Backward error
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1 Introduction

We consider a matrix polynomial equation (MPE) of the following form

AnX
n + An−1X

n−1 + · · · + A0 = 0, (1.1)

where An, An−1, . . . , A0 ∈ R
m×m are the coefficient matrices, and X ∈ R

m×m is the
unknown matrix.

Matrix polynomial equations often arise in queueing problems, differential equations, sys-
tem theory, stochastic theory and many other areas [2,3,12,18,21,27]. Different techniques
have been studied for finding the minimal nonnegative solution. For the case n = 2, the MPE
(1.1) is the well-known quadratic matrix equation (QME). In [10,11,20,28], the structured
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QME, which is called the unilateral quadratic matrix equation (UQME), was studied. The
authors showed that an algebraic Riccati equation XCX − AX − XD + B = 0 can be
transformed into a UQME. Bini et al. [11] proposed an algorithm by complementing the
transformation with the shrink-and-shift technique of Ramaswami for finding the solution of
the UQME. Larin [29] generalized the Schur and doubling methods to the UQME. For the
unstructured QME, which has a wide application in the quasi-birth–death process [6,30], the
minimal nonnegative solution is of importance. Davis [14,15] considered Newton’s method
for solving the unstructured QME. Higham and Kim [23,24] studied the dominant and mini-
mal solvent of the unstructured QME and they improved the global convergence properties of
Newton’s method by incorporating an exact line searches. The logarithmic reduction method
with quadratic convergence is introduced in [31].

For the case n = +∞, the MPE (1.1) is called power series matrix equation and often
arises inMarkov chains. For a givenM/G/1-type matrix S, the computation of the probability
invariant vector associated with S is strongly related to the minimal nonnegative solution of
theMPE (1.1) with n = +∞. Latouche [6,30] proved that Newton’smethod could be applied
to solve the power series matrix equation, and the matrix sequence obtained by Newton’s
method converges to the minimal nonnegative solution. Bini et al. [5] solved the matrix
polynomial equations by devising some new iterative techniques with quadratic convergence.

For the general case (n ≥ 2), the cyclic reduction method [7–9], the invariant subspace
algorithm [1] and the doubling technique [33] have been proposed for finding the minimal
nonnegative solution of the MPE (1.1). Kratz and Stickel [26] proved that Newton’s method
could also be applied to solve this general case. Seo andKim [38] studied the relaxedNewton’s
method for finding the minimal nonnegative solution of the MPE (1.1) and they also proved
that the relaxed Newton’s method could work more efficiently than the general Newton’s
method.

Since the minimal nonnegative solution of the MPE (1.1) is of practical importance and
there is little work about the perturbation analysis for the MPE (1.1), this paper is devoted to
the condition numbers of theMPE (1.1),which play an important role in perturbation analysis.
We investigate three kinds of normwise condition numbers for Eq. (1.1). Note that the norm-
wise condition number ignores the structure of both input and output data, sowhen the data are
badly scaled or sparse, using norms tomeasure the relative size of the perturbation on its small
or zero entries does not suffice to determine howwell the problem is conditioned numerically.
In this case, componentwise analysis can be one alternative approach by which much tighter
and revealing bounds can be obtained. There are two kinds of alternative condition numbers
called mixed and componentwise condition numbers, respectively, which are developed by
Gohberg and Koltracht [17], and we refer to [16,22,34,35,39–43] for more details of these
two kinds of condition numbers.

We also apply the theory of mixed and componentwise condition numbers to the MPE
(1.1) and present local linear perturbation bounds for its minimal nonnegative solution by
using mixed and componentwise condition numbers.

This paper is organized as follows. In Sect. 2, we give a sufficient condition for the
existence of the minimal nonnegative solution. In Sect. 3, we investigate three kinds of
normwise condition numbers and derive explicit expressions for them. In Sect. 4, we obtain
explicit expressions and upper bounds for the mixed and componentwise condition numbers.
In Sect. 5, we define a backward error of the approximate minimal nonnegative solution and
derive an elegant upper and lower bound. In Sect. 6, we give some numerical examples to
show the sharpness of these three kinds of condition numbers.

We begin with the notation used throughout this paper. R
m×m stands for the set of

m × m matrices with elements in field R. ‖ · ‖2 and ‖ · ‖F are the spectral norm and the
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Frobenius norm, respectively. For X = (xi j ) ∈ R
m×m , ‖X‖max is the max norm given

by ‖X‖max = maxi, j {|xi j |} and |X | is the matrix whose elements are |xi j |. For a vector
v = (v1, v2, . . . , vm)T ∈ R

m , diag(v) is the diagonal matrix whose diagonal is given by
a vector v and |v| = (|v1|, |v2|, . . . , |vm |)T . For a matrix A = (ai j ) ∈ R

m×m and a matrix
B, vec(A) is a vector defined by vec(A) = (aT1 , . . . , aTm)T with ai as the i-th column of A,
A⊗B = (ai j B) is theKronecker product. Formatrices X andY , wewrite X ≥ 0 (X > 0) and
say that X is nonnegative (positive) if xi j ≥ 0 (xi j > 0) holds for all i, j , and X ≥ Y (X > Y )

is used as a different notation for X − Y ≥ 0 (X − Y > 0).

2 Existence of the Minimal Nonnegative Solution

In this section, we give a sufficient condition for the existence of the minimal nonnegative
solution of the MPE (1.1). Some basic definitions are stated as follows.

Definition 2.1 [25] Let F be a matrix function from R
m×n to R

m×n . Then a nonnegative
(positive) solution S1 of the matrix equation F(X) = 0 is a minimal nonnegative (positive)
solution if for any nonnegative (positive) solution S of F(X) = 0, it holds that S1 ≤ S.

Definition 2.2 [19] Amatrix A ∈ R
m×m is anM-matrix if A = s I−B for some nonnegative

matrix B and s with s ≥ ρ(B) where ρ is the spectral radius; it is a singular M-matrix if
s = ρ(B) and a nonsingular M-matrix if s > ρ(B).

Theorem 2.3 Assume that the coefficient matrices Ak’s of the MPE (1.1) are nonnegative
except A1 and −A1 is a nonsingular M-matrix. Then, there exists the unique minimal non-
negative solution to the MPE (1.1) if

B = −
n∑

k=0

Ak is a nonsingular, or a singular irreducible M-matrix. (2.1)

Proof We define a matrix function by

G(X) = −A−1
1

(
n∑

k=2

Ak X
k + A0

)
,

where the Ak’s are coefficients of the MPE (1.1) and X ∈ R
m×m .

Consider the sequence {Xk}∞k=0 defined by

Xi+1 = G(Xi ),

with X0 = 0.
By Theorems A.16 and A.19 in [4], there exists a vector v > 0 such that Bv > 0 if B is

a nonsingular M-matrix, or Bv = 0 if B is a singular irreducible M-matrix, i.e.,
(

−
n∑

k=0

Ak

)
v ≥ 0.

Since −A1 is a nonsingular M-matrix, it follows that

v ≥ −A−1
1

(
n∑

k=2

Ak + A0

)
v ≥ 0. (2.2)
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We show that
Xi ≤ Xi+1 and Xiv < v, (2.3)

hold for all i = 0, 1, . . ..
Clearly,

X1 = −A−1
1 A0 ≥ 0 = X0 and X0v = 0 < v.

Hence, (2.3) holds for i = 0.
Suppose that (2.3) holds for i = l. Then,

Xl+2 − Xl+1 = −A−1
1

n∑

k=2

Ak

(
Xk
l+1 − Xk

l

)
≥ 0.

On the other hand, it follows from (2.2) that

Xl+1v = −A−1
1

(
n∑

k=2

Ak X
k
l + A0

)
v < −A−1

1

(
n∑

k=2

Ak + A0

)
v ≤ v.

So, (2.3) holds for i = l + 1. By induction, (2.3) holds for all i = 0, 1, . . ., which implies
that {Xi } converges to a nonnegative matrix.

Let S be the nonnegative matrix to which {Xi } converges and let Y be a nonnegative
solution of the MPE (1.1). It is trivial that X0 ≤ Y . Suppose that Xl ≤ Y . Then,

Y − Xl+1 = −A−1
1

(
n∑

k=2

AkY
k + A0

)
+ A−1

1

(
n∑

k=2

Ak X
k
l + A0

)

= −A−1
1

n∑

k=2

Ak

(
Y k − Xk

l

)
≥ 0.

By induction, Xi ≤ Y for all i = 0, 1, . . .. Therefore, S ≤ Y for any nonnegative solution Y
of the MPE (1.1), i.e., S is the minimal nonnegative solution of the MPE (1.1). �	
Remark 2.4 From the proof of Theorem 2.3, we can see that the sequence {Xi } generated by
Xi+1 = G(Xi ) is monotonically increasing and convergent. So if Xi > 0 for some i ≥ 0,
then the matrix sequence {Xi } monotonically converges to the minimal positive solution of
the MPE (1.1).

Corollary 2.5 Under the assumption of Theorem 2.3, if

B = −
n∑

k=0

Ak is a nonsingular, or a singular irreducible M-matrix,

and one of the following conditions holds true:

(i) Both A0 and A1 are irreducible matrices;
(ii) A0 is a positive matrix.

Then, the MPE (1.1) has a minimal positive solution.

Proof Note that if A0 and A1 are irreducible matrices, or if A0 is a positive matrix, we get
X1 = −A−1

1 A0 > 0, where X1 is generated by iteration Xi+1 = G(Xi ) in the proof of
Theorem 2.3. According to Remark 2.4, the existence of minimal positive solution of the
MPE (1.1) can be proved by using the same technique listed in the proof of Theorem 2.3. �	
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3 Normwise Condition Number

In this section, we investigate three kinds of normwise condition numbers of the MPE (1.1).
The perturbed equation of the MPE (1.1) is

(An + �An)(X + �X)n + · · · + (A1 + �A1)(X + �X) + (A0 + �A0) = 0. (3.1)

For the notation simplification, we introduce the recursion function� : N×N×R
m×m ×

R
m×m → R

m×m as defined in [38]:
{

�(i, 0)(X, Y ) = Xi , �(0, j)(X, Y ) = Y j , i, j ∈ N,

�(i, j)(X, Y ) = (
X�(i − 1, j) + Y�(i, j − 1)

)
(X, Y ), i, j ∈ N

+,
(3.2)

where N is the set of natural numbers and N
+ = N − {0}. It can be easily shown that

�(0, 0)(X, Y ) = Im,

and

�(n, 1)(X, Y ) =
n∑

p=0

Xn−pY X p.

Using the function �, we can write the MPE (1.1) as

n∑

p=0

Ap�(p, 0)(X, Y ) = 0.

Lemma 3.1 (Theorem 2.1, [38]) If X and Y are m × m matrices and � is the recursion
function defined by (3.2), then we have

(X + Y )p =
p∑

i=0

�(p − i, i)(X, Y ), p ∈ N.

By Lemma 3.1, Eq. (3.1) can be rewritten as

0 =
n∑

p=0

(Ap + �Ap)

p∑

q=0

�(p − q, q)(X,�X)

=
n∑

q=0

n∑

p=q

(Ap + �Ap)�(p − q, q)(X,�X)

=
⎛

⎝
n∑

p=0

(Ap + �Ap)�(p, 0) +
n∑

p=1

(Ap + �Ap)�(p − 1, 1)

⎞

⎠ (X,�X)

+
n∑

q=2

n∑

p=q

(Ap + �Ap)�(p − q, q)(X,�X). (3.3)

Dropping the high order terms in (3.3) yields

n∑

p=1

Ap�(p − 1, 1)(X,�X) ≈ −
n∑

p=0

�Ap�(p, 0)(X,�X),
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that is,

n∑

p=1

p−1∑

q=0

ApX
p−1−q�XXq ≈ −

n∑

p=0

�ApX
p. (3.4)

Applying the vec expression to (3.4) gives

Pvec(�X) ≈ Lr, (3.5)

where

P =
n∑

p=1

⎡

⎣
p−1∑

q=0

(Xq)T ⊗ (ApX
p−1−q)

⎤

⎦ ,

L =
[
−(Xn)T ⊗ Im, −(Xn−1)T ⊗ Im, . . . ,−Im2

]
,

r =
[
vec(�An)

T , vec(�An−1)
T , . . . , vec(�A0)

T
]T

. (3.6)

Under certain conditions, usually satisfied in the applications, the matrix P is a nonsingular
matrix as showed in [38]. We suppose that P is nonsingular in the remainder of this paper.

We define the following mapping

ϕ : (An, An−1, . . . , A0) �→ vec(X), (3.7)

where X is the minimal nonnegative solution of the MPE (1.1).
Three kinds of normwise condition numbers are defined by

ki (ϕ) = lim
ε→0

sup
�i≤ε

‖�X‖F
ε‖X‖F , i = 1, 2, 3, (3.8)

where

�1 =
∥∥∥∥

[‖�An‖F
δn

,
‖�An−1‖F

δn−1
, . . . ,

‖�A0‖F
δ0

]∥∥∥∥
2
,

�2 = max

{‖�An‖F
δn

,
‖�An−1‖F

δn−1
, . . . ,

‖�A0‖F
δ0

}
,

�3 = ‖[‖�An‖F , ‖�An−1‖F , . . . , ‖�A0‖F ]‖2
‖[‖An‖F , ‖An−1‖F , . . . , ‖A0‖F ]‖2 . (3.9)

The nonzero parameters δk in �1 and �2 provide some freedom in how to measure the
perturbations. Generally, δk is chosen as the functions of ‖Ak‖F , and δk = ‖Ak‖F is most
often taken for k = 0, 1, . . . , n.

Theorem 3.2 Using the notations given above, the explicit expressions and upper bounds
for the three kinds of normwise condition numbers at X of the MPE (1.1), where X is a
solution to the MPE (1.1), are

k1(ϕ) ≈ ‖P−1L1‖2
‖X‖F , (3.10)

k2(ϕ) � min
{√

nk1(ϕ), μ/‖X‖F
}
, (3.11)

k3(ϕ) ≈
‖P−1L‖2

√∑n
i=0 ‖Ai‖2F

‖X‖F , (3.12)
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where

L1 = L diag
([

δn, δn−1, . . . , δ0
]T )

,

μ =
n∑

k=0

δk

∥∥∥P−1((Xk)T ⊗ Im
)∥∥∥

2
.

Proof It follows from (3.5) that

vec(�X) ≈ P−1L1r1, (3.13)

where

L1 =
[
−δn(X

n)T ⊗ Im, −δn−1(Xn−1)
T ⊗ Im, . . . ,−δ0 Im2

]
,

r1 =
(
vec(�An)

T

δn
,
vec(�An−1)

T

δn−1
, . . . ,

vec(�A0)
T

δ0

)T

.

It yields

‖�X‖F = ‖vec(�X)‖2 ≈ ‖P−1L1r1‖2 ≤ ‖P−1L1‖2‖r1‖2. (3.14)

Note that ‖r1‖2 = �1 ≤ ε, and it follows from (3.8) (when i = 1) and inequality (3.14) that
(3.10) holds.

According to (3.5), we get

‖�X‖F = ‖vec(�X)‖2 � ‖P−1L‖2‖r‖2. (3.15)

Since ‖r‖2 = �3 · ∥∥[‖An‖F , ‖An−1‖F , . . . , ‖A0‖F
]∥∥

2 ≤ ε

√∑n
k=0 ‖Ak‖2F , then by (3.8)

(when i = 3) and inequality (3.15) we arrive at (3.12).
Let ε = �2. It follows from (3.13) that

‖�X‖F � ‖P−1L1‖2
√
∑n

i=0

‖�Ai‖2F
δ2i

≤ ε
√
n‖P−1L1‖2

� ε
√
n‖X‖Fk1(ϕ). (3.16)

On the other hand, (3.13) can be rewritten as

vec(�X) ≈ −
n∑

k=0

δk P
−1((Xk)T ⊗ Im

)vec(�Ak)

δk
,

from which it is easy to get

‖�X‖F �
n∑

k=0

δk

∥∥∥P−1((Xk)T ⊗ Im)

∥∥∥
2

‖�Ak‖F
δk

≤ εμ, (3.17)

where μ = ∑n
k=0 δk‖P−1

(
(Xk)T ⊗ Im

)‖2.
Then, (3.11) is obtained according to inequalities (3.16) and (3.17). �	
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Now we study another sensitivity analysis for the MPE (1.1). Consider the parameter
perturbation of Ap : Ap(τ ) = Ap + τ Ep and the equation

n∑

p=0

Ap(τ )X p = 0, (3.18)

where Ep ∈ R
m×m and τ is a real parameter.

Let Q(X, τ ) = ∑n
p=0 Ap(τ )X p and let X+ be any solution of the MPE (1.1) such that

P is nonsingular. Then

(i) Q(X+, 0) = 0
(ii) Q(X, τ ) is differentiable arbitrarily many times in the neighborhood of (X+, 0), and

∂Q

∂X

∣∣∣
(X+,0)

=
n∑

p=1

(Im ⊗ Ap)

p−1∑

q=0

(
Xq

+
)T ⊗ X p−1−q

+

=
n∑

p=1

p−1∑

q=0

(
Xq

+
)T ⊗

(
ApX

p−1−q
+

)
.

Note that ∂Q
∂X |(X+,0) is exactly P in (3.6) and is nonsingular under our assumption. By

the implicit function theory [36], there exists δ > 0 for τ ∈ (−δ, δ), there is a unique X (τ )

satisfying:

(i) Q(X (τ ), τ ) = 0, X (0) = X+;
(ii) X (τ ) is differentiable arbitrarily many times with respect to τ .

For

n∑

p=0

Ap(τ )X p(τ ) = 0, (3.19)

taking derivative for both sides of (3.19) with respect to τ at τ = 0 gives

n∑

p=1

Ap

p−1∑

q=0

Xq
+ Ẋ(0)X p−1−q

+ +
n∑

p=0

EpX
p
+ = 0. (3.20)

Applying the vec operator to (3.20) yields

T vec(Ẋ(0)) = Mr,

where

T =
n∑

p=1

p−1∑

q=0

(
X p−1−q

+
)T ⊗ ApX

q
+,

M =
[
− (

Xn+
)T ⊗ Im, . . . ,−XT+ ⊗ Im,−Im2

]
,

r =
[
vec(En)

T , vec(En−1)
T , . . . , vec(E0)

T
]T

.
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According to [37], we can derive the Rice condition number of X+:

kX+ = lim
τ→0+ sup

Ep∈Rm×m

p=0,1,...,n

{‖X (τ ) − X+‖F
‖X+‖F

/(
τ‖[En, . . . , E0]‖F
‖[An, . . . , A0]‖F

)}

= sup
Ep∈Rm×m

p=0,1,...,n

{ ‖Ẋ(0)‖F
‖(En, . . . , E0)‖F · ‖[An, . . . , A0]‖F

‖X+‖F
}

= sup
Ep∈Rm×m

p=0,1,...,n

{‖T−1Mr‖2
‖r‖2 · ‖[An, . . . , A0]‖F

‖X+‖F
}

= ‖T−1M‖2 · ‖[An, . . . , A0]‖F
‖X+‖F

= ‖T−1M‖2
√∑n

p=0 ‖Ap‖2F
‖X+‖F .

4 Mixed and Componentwise Condition Number

In this section, we investigate the mixed and componentwise condition numbers of the MPE
(1.1). Explicit expressions to these two kinds of condition numbers are derived. We first
introduce some well-known results. To define mixed and componentwise condition numbers,
the following distance function is useful. For any a, b ∈ R

m , define a
b = [c1, c2, . . . , cm]T

as

ci =

⎧
⎪⎨

⎪⎩

ai/bi , if bi �= 0,

0, if ai = bi = 0,

∞, otherwise.

Then we define

d(a, b) =
∥∥∥∥
a − b

b

∥∥∥∥∞
= max

i=1,2,...,m

{∣∣∣∣
ai − bi

bi

∣∣∣∣

}
.

Consequently for matrices A, B ∈ R
m×m , we define

d(A, B) = d(vec(A), vec(B)).

Note that if d(a, b) < ∞, d(a, b) = min{ν ≥ 0 : |ai − bi | ≤ ν|bi | for i = 1, 2, . . . ,m}.
In the sequel, we assume d(a, b) < ∞ for any pair (a, b). For ε > 0, we set B0(a, ε) =

{x |d(x, a) ≤ ε}. For a vector-valued function F : R
p → R

q , Dom(F) denotes the domain
of F .

The mixed and componentwise condition numbers introduced by Gohberg and Koltra-
cht [17] are listed as follows:

Definition 4.1 [17] Let F : R
p → R

q be a continuous mapping defined on an open set
Dom(F) ⊂ R

p such that 0 /∈ Dom(F) and F(a) �= 0 for a given a ∈ R
p .
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(1) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x �=a

x∈B0(a,ε)

‖F(x) − F(a)‖∞
‖F(a)‖∞

1

d(x, a)
.

(2) Suppose F(a) = [
f1(a), f2(a), . . . , fq(a)

]T such that f j (a) �= 0 for j = 1, 2, . . . , q .
The componentwise condition number of F at a is defined by

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x �=a

d(F(x), F(a))

d(x, a)
.

The explicit expressions of the mixed and componentwise condition numbers of F at a
are given by the following lemma [13,17].

Lemma 4.2 Suppose F is Fréchet differentiable at a. We have

(1) if F(a) �= 0, then

m(F, a) = ‖F ′(a)diag(a)‖∞
‖F(a)‖∞

= ‖|F ′(a)||a|‖∞
‖F(a)‖∞

;

(2) if F(a) = [
f1(a), f2(a), . . . , fq(a)

]T
such that f j (a) �= 0 for j = 1, 2, . . . , q, then

c(F, a) = ‖diag−1(F(a))F ′(a)diag(a)‖∞ =
∥∥∥∥
|F ′(a)||a|

|F(a)|
∥∥∥∥∞

.

Theorem 4.3 Let m(ϕ) and c(ϕ) be the mixed and componentwise condition numbers of the
MPE (1.1), we have

m(ϕ) ≈ ‖T ‖∞
‖X‖max

and c(ϕ) ≈
∥∥∥∥

T

|vec(X)|
∥∥∥∥∞

,

where

T =
n∑

k=0

∣∣∣P−1((Xk)T ⊗ Im
)∣∣∣vec(|Ak |).

Furthermore, we have two simple upper bounds for m(ϕ) and c(ϕ) as follows:

mU (ϕ) := ‖P−1‖∞
∥∥∑n

k=0 |Ak ||Xk |∥∥max

‖X‖max
� m(ϕ),

and

cU (ϕ) := ∥∥diag−1(vec(X)
)
P−1

∥∥∞

∥∥∥∥∥

n∑

k=0

|Ak ||Xk |
∥∥∥∥∥
max

� c(ϕ).

Proof It follows from(3.5) that vec(�X) ≈ P−1Lr ,which implies that theFréchet derivative
of ϕ is

ϕ′(An, An−1, . . . , A0) ≈ P−1L ,
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where ϕ is defined by (3.7). Let v = [vec(An)
T , vec(An−1)

T , . . . , vec(A0)
T ]T . From (1) of

Lemma 4.2, we obtain

m(ϕ) ≈
∥∥|P−1L||v|∥∥∞
‖vec(X)‖∞

=
∥∥|P−1L||v|∥∥∞

‖X‖max
= ‖T ‖∞

‖X‖max
,

where

T = ∣∣P−1L
∣∣|v|

=
n∑

k=0

∣∣∣P−1
(
(Xk)T ⊗ Im

)∣∣∣vec(|Ak |).

It holds that

‖T ‖∞ ≤ ∥∥|P−1||L||v|∥∥∞
≤ ∥∥P−1

∥∥∞
∥∥|L||v|∥∥∞

≤ ∥∥P−1
∥∥∞

∥∥∥∥∥

n∑

k=0

|Ak ||Xk |
∥∥∥∥∥
max

.

Therefore,

m(ϕ) �

∥∥P−1
∥∥∞

∥∥∥
∑n

k=0 |Ak ||Xk |
∥∥∥
max

‖X‖max
.

From (2) of Lemma 4.2, we obtain

c(ϕ) ≈

∥∥∥∥
|P−1L||v|
|vec(X)|

∥∥∥∥∞
=
∥∥∥∥

T

|vec(X)|
∥∥∥∥∞

.

Similarly, it holds that

c(ϕ) �
∥∥∥∥
|P−1||L||v|
|vec(X)|

∥∥∥∥∞
≤
∥∥∥diag−1(vec(X)

)
P−1

∥∥∥∞
∥∥|L||v|∥∥∞

=
∥∥∥diag−1(vec(X)

)
P−1

∥∥∥∞

∥∥∥∥∥

n∑

k=0

|Ak ||Xk |
∥∥∥∥∥
max

.

�	

5 Backward Error

In this section, we investigate the backward error of an approximate solution Y to the MPE
(1.1). The backward error is defined by

θ(Y ) = min

⎧
⎨

⎩ε :
n∑

p=0

(Ap + �Ap)Y
p = 0,

∥∥∥
[
δ−1
n �An, . . . , δ

−1
0 �A0

]∥∥∥
F

≤ ε

⎫
⎬

⎭ . (5.1)
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Let

S =
n∑

p=0

ApY
p,

then we can write the equation in (5.1) as

−S =
n∑

p=0

�ApY
p

=
[
δ−1
n �An, δ

−1
n−1�An−1, . . . , δ

−1
0 �A0

]

⎛

⎜⎜⎜⎝

δnY n

δn−1Yn−1

...

δ0Y 0

⎞

⎟⎟⎟⎠ , (5.2)

from which we get

θ(Y ) ≥ ‖S‖F
(∑n

p=0 δ2p‖Y p‖2F
) 1

2

.

Applying the vec operator to (5.2) yields

−vec(S) =
[
δn(Y

n)T ⊗ Im, δn−1(Y
n−1)T ⊗ Im, . . . , δ0 Im2

]

⎛

⎜⎜⎜⎝

vec(�An)/δn
vec(�An−1)/δn−1

...

vec(�A0)/δ0

⎞

⎟⎟⎟⎠ .

(5.3)

For convenience, we write (5.3) as

Ha = s, H ∈ R
m2×(n+1)m2

, (5.4)

where

H =
[
δn(Y

n)T ⊗ Im, δn−1(Y
n−1)T ⊗ Im, . . . , δ0 Im2

]
,

a =
[
vec(�An)

T /δn, . . . , vec(�A0)
T /δ0

]T
,

s = −vec(S).

We assume that H is of full rank. This guarantees that (5.3) has a solution and the backward
error is finite.

From (5.4), an upper bound for θ(Y ) is obtained

θ(Y ) ≤ ‖H+‖2‖s‖2 = ‖s‖2
σmin(H)

,

where H+ is the pseudoinverse of H , and σmin(H) is the minimal singular value of H which
is nonzero under the assumption that H is of full rank.
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Note that

σ 2
min(H) = λmin(HH∗)

= λmin

⎛

⎝
n∑

p=0

δ2p(Y
p)T Ȳ p ⊗ Im

⎞

⎠

= λmin

⎛

⎝
n∑

p=0

δ2p(Y
p)∗Y p ⊗ Im

⎞

⎠

≥
n∑

p=0

δ2pλmin((Y
p)∗Y p)

=
n∑

p=0

δ2pσ
2
min(Y

p).

Thus

θ(Y ) ≤ ‖S‖F
(∑n

p=0 δ2pσ
2
min(Y

p)
) 1

2

.

6 Numerical Examples

In this section, we give three numerical examples to show the sharpness of the normwise,
mixed and componentwise condition numbers. All computations are made inMatlab 7.10.0
with the unit roundoff being u ≈ 2.2 × 10−16.

Example 6.1 We consider the matrix polynomial equation
∑9

k=0 Ak Xk = X with Ak =
D−1 Āk for k = 0, 1 . . . , 9, where Āk = rand(10) with rand as the random function in
Matlab. The matrix D is a diagonal matrix whose entries are the row sums of

∑9
i=0 Āk so

that (
∑9

k=0 Ak)1m = 1m . We rewrite the matrix polynomial as

A9X
9 + A8X

8 + · · · + (A1 − Im)X + A0 = 0. (6.1)

Note that Im − A1 is a nonsingular M-matrix and Im −∑9
k=0 Ak is a singular irreducible

M-matrix. From Theorem 2.3, we know the minimal nonnegative solution S of Eq. (6.1)
exists.

Suppose that the perturbations in the coefficient matrices are

Ãk = Ak − 10−s ∗ rand(10) ◦ Ak, k = 0, 1, . . . , 9,

where s is a positive integer and ◦ is the Hadamard product. Note that Im − Ã1 and Im −∑9
k=0 Ãk are also nonsingular M-matrices. Hence the corresponding perturbed equation has

a unique minimal nonnegative solution S̃.

We use the Newton’s method proposed in [38] to compute the minimal nonnegative solu-
tion S and S̃. Choose δk = ‖Ak‖F , from Theorem 3.2 we get three kinds of local normwise
perturbation bounds: ‖�S‖F/‖S‖F � ki (ϕ)�i for i = 1, 2, 3. Denote kU2 = √

nk1(ϕ) and
kM2 (ϕ) = μ/‖S‖F , we compare the above approximate perturbation bounds with the exact
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Table 1 Comparison of exact relative error with local normwise perturbation bounds

s ‖S̃−S‖F‖S‖F k1(φ)�1 kU2 (φ)�2 kM2 (ϕ)�2 k3(ϕ)�3

2 5.6691e−003 6.1051e−002 6.8600e−002 2.7279e−002 1.9290e−002

4 5.6153e−005 6.2693e−004 7.3782e−004 2.9340e−004 1.9556e−004

6 4.3596e−007 5.8501e−006 6.5001e−006 2.5848e−006 1.8432e−006

8 4.7863e−009 5.8329e−008 6.7070e−008 2.6671e−008 1.8298e−008

relative error ‖S̃ − S‖F/‖S‖F . Table 1 shows that our estimates of the three normwise per-
turbation bounds are close to the exact relative error ‖S̃ − S‖F/‖S‖F . It also shows that the
perturbation bound given by k3(ϕ)�3 is sharper than the other two bounds.

Example 6.2 This example is taken from [32]. Consider the matrix polynomial equation
A0 + A1X + A2X2 = 0. The coefficient matrices A0, A1, A2 ∈ R

m×m with m = 8 are
given by A0 = M−1

1 M0, A1 = I , A2 = M−1
1 M2, where M0 = diag(β1, . . . , βm), M2 =

ρ · diag(α1, . . . , αm) and

(M1)i, j =

⎧
⎪⎨

⎪⎩

1, if j = (i mod m) + 1,

−1 − ραi − βi , if i = j,

0, elsewhere,

where α = (0.2, 0.2, 0.2, 0.2, 13, 1, 1, 0.2), βi = 2 for i = 1, . . . ,m and ρ = 0.99.

This example represents a queueing system in a random environment, where periods of
severe overflows alternate with periods of low arrivals. Note that in this example, both A0

and A2 are nonpositive. A1 itself is a nonsingular M-matrix. Consider the following equation

− A0 − A1X − A2X
2 = 0. (6.2)

Then Eq. (6.2) has same solutions as equation A0 + A1X + A2X2 = 0, and the coefficients
matrices in (6.2) satisfy the conditions in Corollary 2.5, then Eq. (6.2) has a minimal positive
solution X . For k = 0, 1, 2, let �Ak = rand(m) ◦ Ak × 10−s , where s is a positive integer,
then Ãk = Ak + �Ak is the perturbed coefficient matrix of the corresponding perturbed
equation. Similarly, the minimal positive solution X̃ of the perturbed matrix polynomial
equation exists and can be obtained by using the Newton’s method in [38].

Let

γk = ‖�X‖F
‖X‖F , γm = ‖�X‖max

‖X‖max
, γc =

∥∥∥∥
�X

X

∥∥∥∥
max

,

and

ε0 = min{ε : |�Ak | ≤ ε|Ak |, k = 0, 1, . . . , n}.
Table 2 shows that the mixed and componentwise analysis give more tighter and revealing
bounds than the normwise perturbation bounds.

Example 6.3 We consider the matrix differential equation

y(3) + A2y
(2) + A1y

′ + A0y = 0.
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Table 2 Linear asymptotic
bounds

s 9 11 13

γk 5.4144e−008 3.2531e−010 2.4755e−012

k1(ϕ)�1 1.9035e−006 1.4150e−008 1.1672e−010

kU2 (ϕ)�2 2.0841e−006 1.5608e−008 1.3120e−010

kM2 (ϕ)�2 1.9122e−006 1.4320e−008 1.2038e−010

k3(ϕ)�3 1.9896e−006 1.5281e−008 1.0180e−010

γm 8.0699e−008 4.8234e−010 3.6687e−012

m(ϕ)ε0 9.3239e−007 9.3283e−009 9.3537e−011

γc 4.1963e−007 2.5081e−009 1.9077e−011

c(ϕ)ε0 4.8484e−006 4.8507e−008 4.8639e−010

Such equationsmay occur in connectionwith vibrating system. The characteristic polynomial
is

P3(X) = X3 + A2X
2 + A1X + A0 = 0.

Let

A0 =
⎛

⎝
1.600 1.280 2.890
1.280 0.840 0.413
2.890 0.413 0.725

⎞

⎠ , A1 =
⎛

⎝
−20 5
5 −20 5

5 −20

⎞

⎠

and

A2 =
⎛

⎝
2.660 2.450 2.100
0.230 1.040 0.223
0.600 0.756 0.658

⎞

⎠ .

The coefficient matrices of P3(X) = 0 satisfy the condition in Corollary 2.5, so there is
a minimal positive solution X∗ such that P3(X∗) = 0.

Let s be a positive integer and suppose the coefficient matrices are perturbed by�Ai (i =
0, 1, 2), where

�A0 =
⎛

⎝
0.7922 0.0357 0.6787
0.9595 0.8491 0.7577
0.6557 0.9340 0.7431

⎞

⎠× 10−s, �A1 =
⎛

⎝
−0.2 0.1
0.1 −0.2 0.1

0.1 −0.2

⎞

⎠× 10−s

and

�A2 =
⎛

⎝
0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

⎞

⎠× 10−s .

Using the notations listed in Examples 6.1 and 6.2, the perturbation bounds obtained by the
normwise, mixed and componentwise condition numbers are listed in Table 3. Table 3 shows
that our estimated perturbation bounds are sharp. Moreover, we observe that the simple upper
bounds mU (ϕ) and cU (ϕ) of the mixed and componentwise condition numbers m(ϕ) and
c(ϕ), which are obtained in Theorem 4.3, are also tight.
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Table 3 Comparison of the relative error with out estimates

s 4 6 8 10

γk 6.4743e−005 6.4741e−007 6.4741e−009 6.4741e−011

k1(ϕ)�1 4.8793e−004 4.8793e−006 4.8793e−008 4.8793e−010

kU2 (ϕ)�2 8.4512e−004 8.4512e−006 8.4512e−008 8.4512e−010

kM2 (ϕ)�2 5.6409e−004 5.6409e−006 5.6408e−008 5.6409e−010

k3(ϕ)�3 1.0562e−004 1.0562e−006 1.0562e−008 1.0562e−010

γm 5.4848e−005 5.4847e−007 5.4847e−009 5.4847e−011

m(ϕ)ε0 7.6634e−004 7.6633e−006 7.6634e−008 7.6634e−010

mU (ϕ)ε0 9.8003e−004 9.8003e−006 9.8003e−008 9.8003e−010

γc 1.7192e−004 1.7191e−006 1.7192e−008 1.7192e−010

c(ϕ)ε0 1.1041e−003 1.1041e−005 1.1041e−007 1.1041e−010

cU (ϕ)ε0 3.2018e−003 3.2018e−005 3.2018e−007 3.2018e−010

7 Conclusion

In this paper, one sufficient condition for the existence of the minimal nonnegative solution
of a matrix polynomial equation is given. Three kinds of normwise condition numbers of the
matrix polynomial equation are investigated. The explicit expressions and upper bounds for
the mixed and componentwise condition numbers are derived. A backward error is defined
and evaluated.
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