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Abstract The hybrid spectral difference methods (HSD) for the Laplace and Helmholtz
equations in exterior domains are proposed.Weconsider thefictitious domainmethodwith the
absorbing boundary conditions (ABCs). The HSDmethod is a finite difference version of the
hybridized Galerkin method, and it consists of two types of finite difference approximations;
the cell finite difference and the interface finite difference. The fictitious domain is composed
of two subregions; the Cartesian grid region and the boundary layer region in which the radial
grid is imposed. The boundary layer regionwith the radial gridmakes it easy to implement the
discrete radialABC.The discrete radialABC is a discrete version of theBayliss–Gunzburger–
Turkel ABC without pertaining any radial derivatives. Numerical experiments confirming
efficiency of our numerical scheme are provided.

Keywords Absorbing boundary condition · Cell finite difference · Helmholtz equation ·
Hybrid difference · Interface finite difference
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1 Introduction

We consider the Laplace equation

�u = 0 in �,

and the Helmholtz equation

�u + ω2u = 0 in � (1.1)
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Fig. 1 A fictitious domain and the Q∗
3-grid with the Cartesian grid in �1 and the radial grid in �2. In this

example the boundary layer region contains a single radial layer

on an exterior domain � with a Dirichlet boundary condition u = g on ∂�. For unique
solvability of the above problems the decay conditions at infinity are required as follows:{

u = O
( 1
r

)
, r → ∞, (Laplace)

∂u
∂r − iωu = o

( 1
r

)
, r → ∞. (Helmholtz)

For the rest of the paper we regard the Laplace equation as a special case of the Helmholtz
equation with ω = 0 for simplicity of notations.

As shown in Fig. 1 we consider a fictitious domain �1 ∪ �2 with the inner boundary �1

and outer boundary �2 for the exterior domain problem. The outer boundary �2 is a circle
with radius r0 > 1, and an absorbing boundary condition (ABC) is imposed on it, which
replaces the decay condition at infinity. In �1 the Cartesian coordinate system is used, and
the rectangular or trapezoidal partition is used for implementation of the hybrid difference
method (see Fig. 3). The subdomain �2 is a thin layer boundary region with single or double
layers, on which the polar coordinate system is used. The width of the boundary layer region
is of size h, the maximum diameter of a partition of �1. Since our ABC is constructed based
on the multipole expansion of a solution the layer boundary region with the polar coordinate
and radial grid can be more efficient for implementing high order ABCs.

In �1 ∪ �2 the equation (1.1) can be reformulated as follows with a proper ABC:

�u1 + ω2u1 = 0 in �1, (1.2a)

�u2 + ω2u2 = 0 in �2, (1.2b)

u = g on �1, (1.2c)

∂u1

∂ν1
+ ∂u2

∂ν2
= 0 on �12, (1.2d)

B(u) = 0 on �2. (1.2e)

Here,

�u1 = u1xx + u1yy, �u2 = u2rr + 1

r
u2r + 1

r2
u2t t ,

the unit outward normal vector νi on �12 is emanating from �i , and (r, t) is the polar
coordinate for �2. The interface �12 is a polygon, and it is designed to change according
to the mesh refinement in �1. As a mesh becomes finer �12 converges to a circle. Figure 1
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represents a simple grid generation of�1 and�2. For�1 the mesh is composed of rectangles
(in the interior of �1) and trapezoids (adjacent to �12). The radial mesh for �2 should be
constructed subordinately to the mesh in �1. The advantage of considering two separate
subdomains is that the inner boundary of a general shape can be treated somehow well with
the Cartesian grid and the high order ABC can be more easily applied on a radial grid.

In this paper a new absorbing boundary condition (that is named the discrete radial ABC)
is introduced for the Laplace and Helmholtz equations. To derive the discrete ABCwe follow
the idea of the Bayliss–Gunzburger–Turkel (BGT) [3] absorbing boundary condition. To the
author’s knowledge there has not been much attention to the ABCs for frequency domain
problems. However, the frequency domain approach on a parallel computing environment
can provide very efficient numerical solvers. On the other hand there have been many efforts
for construction of the ABCs for the time dependent wave equations. Engquist and Majda
[5] made a pioneering work, in which the ABC is obtained by considering waves that enter
or leave the domain and annihilating those scattered waves entering the domain from the
outside. Bayliss and Turkel [2] constructed a sequence of absorbing boundary conditions
for the wave equation, based on annihilation of first several negative radial power terms
in the multipole expansion of a solution, and those idea were exploited later to derive the
BGT condition with Gunzburger for the static elliptic and wave equations. The high order
derivative term of the ABC in [2] can be impractical for implementation, and Hagstrom
and Hariharan [7] developed the ABCs that contain only first order derivatives at a cost of
auxiliary functions. Huan andThompson [9] developed these ideas further to obtain theABCs
applicable in the finite element method in a symmetric way. Higdon [8] obtained absorbing
boundary conditions by invoking to the finite time difference rather than the differential
equation, which improved convergence quality of numerical solutions. Our discrete radial
ABC is also obtained by treating the annihilation condition of the BGT condition directly
in the radial finite difference equation. For absorbing boundary conditions with elliptic or
general shaped obstacles we refer to [1,13,14]. For a brief review on the various ABCs we
refer to [6] and references therein.

For a numerical method of partial differential equations we consider the hybrid spectral
difference method (HSD). The HSD can be understood as the finite difference version of the
hybridized Galerkin method. The HSD is simple to implement and it has several advantages
over the conventional finite difference methods. The method can be applied to nonuniform
grids, retaining the optimal order of convergence, and numerical methods with an arbitrarily
high-order convergence can be obtained easily. Problems on a complicated geometry can be
treated reasonably well, and the boundary condition can be imposed exactly on the exact
boundary. The mass conservation property holds in each cell and flux continuity holds across
inter-cell boundaries. Embedded static condensation property considerably reduces global
degrees of freedom [10–12].

The aim of this paper is to introduce the discrete radial ABC and the hybrid spectral
difference method for elliptic equations. The hybrid spectral difference method can manage
reasonably well obstacles of a general shape in scattering problems. The fictitious boundary
can be taken as a circle, independently of the shape of obstacles, which makes easy the
implementation of the discrete radial ABC of a high order.

The paper is organized as follows. In Sect. 2 we review the Bayliss–Gunzburger–Turkel
absorbing condition, and the discrete radial ABC is introduced by following the annihilation
idea of them. The high order radial derivatives in the BGT condition may not be approx-
imated efficiently in the finite difference setting when the wave number is large. With the
discrete radial ABC an exact annihilation is accomplished. In Sect. 3 unique solvability and
convergence analysis on an annulus region are presented, and the proofs follow closely the
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ideas in [3]. In Sect. 4 the HSD on the rectangular grid with the Cartesian coordinate is intro-
duced. The HSD in the polar grid can be derived in a similar manner and we delete details.
Section 5 is devoted to numerical experiments for the exterior harmonic and Helmholtz equa-
tions. Some comparisons between the BGT condition and discrete radial ABC are made. It
is shown that the discrete radial ABC produces quite accurate numerical solutions even for
the wave equation of a large wave number. A scattering problem with a scatterer of a general
shape is tested, which justify that our new method can be an effective numerical solver for a
class of scattering problems.

2 Absorbing Boundary Conditions on the Boundary Layer

In this section we review the Bayliss–Gunzbuger–Turkel (BGT) absorbing boundary condi-
tion, and a new absorbing boundary condition (the discrete radial ABC) is proposed. The
discrete radial ABC bears the same idea of the BGT condition, and it can be more easily
implemented for a high order method. Moreover, convergence looks better than that of the
BGT condition in finite difference settings.

2.1 The BGT Absorbing Boundary Condition for the Laplace Equation

For the Laplace equation on an exterior domain, it has the multipole expansion,

u(r, t) =
∞∑
k=1

φk(t)r
−k,

where φk(t) ∈ span{cos kt, sin kt}. Simple calculation yields that(
r

∂

∂r
+ j

)
rk = (k + j)rk, −∞ < k < ∞.

Let us define Bm := 	m−1
j=1

(
r ∂

∂r + j
)
. Then, it is easy to see that

Bm

(
rk

)
= pkr

k, pk := 	m−1
j=1 (k + j), −∞ < k < ∞.

Therefore,

Bm(u) =
∞∑

k=m

p−kφk(t)r
−k

since p−k = 0 for 1 ≤ k ≤ m − 1. The boundary condition on �2 in (1.2) is imposed as
Bm(u) = 0. Hence, we have the error estimate;

|Bmu(r0, t)| ≤ O
(
r−m
0

)
on �2,

where r0 is the radius of �2.

2.2 The BGT Absorbing Boundary Condition for the Helmholtz Eqution

For the Helmholtz equation on an exterior domain the solution has the multipole expansion
such that
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u(r, t) = H0(ωr)
∞∑
k=0

ψ0,k(t)

rk
+ H1(ωr)

∞∑
k=0

ψ1,k(t)

rk

∼
√

2

πω
ei(ωr−π/4)

∞∑
k=0

φk(t)r
−k−1/2.

Here, H0 and H1 are the Hankel functions of the first kind of orders 0 and 1, respectively.
The asymptotic expansion is due to [4]. Let us introduce the operator,

Bmu = 	m−2
j=0

(
r

(
∂

∂r
− iω

)
+ j + 1

2

)
u. (2.1)

By the same way as the above, it can be shown that(
r

(
∂

∂r
− iω

)
+ j + 1

2

) (
eiωr rk−1/2

)
= (k + j)eiωr rk−1/2, −∞ < k < ∞.

Therefore,

Bm

(
eiωr rk−1/2

)
= qke

iωr rk−1/2, qk = 	m−2
j=0 (k + j), −∞ < k < ∞.

Trivially, we have

Bmu ∼
√

2

πω
ei(ωr−π/4)

∞∑
k=m−1

q−kφk(t)r
−k−1/2

since q−k = 0 for 0 ≤ k ≤ m − 2. The error estimate holds;

|Bmu(r0, t)| ≤ O
(
r−m+1/2
0

)
on �2.

2.3 The Discrete Radial Absorbing Boundary Condition

We consider a multipole expansion of a solution in the form:

u(r, t) = g(r)
∞∑
k=0

fk(t)r
−αk , 0 < α1 < α2 < · · · < αk < · · ·

where ‖g‖∞ < ∞ and ‖ fk‖∞ < ∞.
Suppose {(τ1, t), (τ2, t), . . . , (τm, t)} ⊂ �2 are the grid points on the ray with an angle

t emanating from the origin with (τm, t) ∈ �2. Note that r0 = τm is the radius of the circle
�2. We consider the discrete radial ABC operator as follows:

Rh
mu(r0, t) =

m∑
j=1

c j u(τ j , t) (2.2)

such that the coefficients, {c j }mj=1 satisfy

c1g(τ1)τ
−α1
1 + c2g(τ2)τ

−α1
2 + · · · + cmg(τm)τ−α1

m = 0

c1g(τ1)τ
−α2
1 + c2g(τ2)τ

−α2
2 + · · · + cmg(τm)τ−α2

m = 0

· · ·
c1g(τ1)τ

−αm−1
1 + c2g(τ2)τ

−αm−1
2 + · · · + cmg(τm)τ

−αm−1
m = 0

c1g(τ1)τ
−αm
1 + c2g(τ2)τ

−αm
2 + · · · + cmg(τm)τ−αm

m = g(r0)r
−αm
0 . (2.3)
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Table 1 FD approximation of the BGT ABC: ω = 1

N 4 8 16 32

|Bh
2 (eiωr r−1/2)| 2.8616e−05 1.7746e−06 1.1075e−07 6.9197e−09

|Bh
2 (eiωr r−3/2)| 1.9248e−01 1.9245e−01 1.9245e−01 1.9245e−01

|Bh
3 (eiωr r−1/2)| 4.5465e−03 5.5894e−04 6.9440e−05 8.6565e−06

|Bh
3 (eiωr r−3/2)| 4.7575e−03 4.4202e−04 4.7811e−05 5.5631e−06

Table 2 FD approximation of the BGT ABC: ω = 10

N 4 8 16 32

|Bh
2 (eiωr r−1/2)| 3.4244e−00 2.6480e−01 1.7358e−02 1.0954e−03

|Bh
2 (eiωr r−3/2)| 1.4095e−00 2.6483e−01 1.9408e−01 1.9245e−01

|Bh
3 (eiωr r−1/2)| 5.6022e−02 8.4025e−01 1.0902e−01 1.3709e−00

|Bh
3 (eiωr r−3/2)| 1.9977e−02 2.8842e−01 3.6758e−00 4.5824e−01

Table 3 FD approximation of the discrete radial ABC: ω = 10

N 4 8 16 32

|Rh
2(eiωr r−1/2)| 5.1238e−14 1.4211e−13 1.2711e−13 2.5421e−13

|Rh
2(eiωr r−3/2)| 1.0000 1.0000 1.0000 1.0000

|Rh
3(eiωr r−1/2)| 1.8190e−12 8.1348e−12 2.1828e−11 6.5078e−11

|Rh
3(eiωr r−3/2)| 2.5421e−13 2.0337e−12 7.2760e−12 2.0580e−11

Suppose |r0 − τ1| � 1, then Rh
mu satisfy the following estimate:

Rh
mu(r0, t) = fm(t)g(r0)r

−αm
0 +

∞∑
k=m+1

zk fk(t)τ
−αk
1 = O

(
r−αm
0

)

with

zk =
m∑
j=1

c j g(τ j )

(
τ1

τ j

)αk

.

It is worth to note that |zk | ≤ ‖g‖∞
∑m

j=1 |c j | because | τ1
τ j

| ≤ 1. The boundary condition in

(1.2) on �2 will be replaced by Rh
mu = 0.

Tables 1, 2, 3 show numerical approximation properties of the BGT and discrete radial
ABCs. We consider the radial grid on annulus 1 < r < r0(= 3). The finite difference
approximation Bh

mu(m = 2, 3) of Bmu in (2.1) and the Rh
mu(m = 2, 3) are evaluated with

the function values at the Gauss–Legendre points and end points of an interval [r0 − h, r0];

{τ1, τ2, . . . , τ5} =
{
r0 − h, r0 − h

(
1

2
+

√
3/5

2

)
, r0 − h

2
, r0 − h

(
1

2
−

√
3/5

2

)
, r0

}
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with h = (r0 − 1)/N . For Bh
m and Rh

m to be good approximations they must satisfy

Bh
m

(
eiwr r−k−1/2

)
≈ 0,

Rh
m

(
eiwr r−k−1/2

)
≈ 0

for 0 ≤ k ≤ m − 2. As shown in Tables 1, 2 the finite difference (FD) approximation of the
BGT condition induces a lot of error for a high wave number ω since the FD approximation
of high order derivatives in the BGT condition is not accurate enough. For this reason it is
recommended in [3] to use the ABC condition

B2u = k1
∂u

∂r
+ k2

sin t

∂

∂t

(
sin t

∂u

∂t

)
+ k3u = 0,

where the constants k1, k2, k3 depend only on ω and r0 when u satisfies the Helmholtz
equation. It is obtained by substituting urr in B2(u) [Eq. (2.1) ] with urr = − 1

r ur − 1
r2
utt −

ω2u.
On the other hand the discrete ABC (2.2) approximate the absorbing boundary condition

exactly as shown in Table 3.

Remark 2.1 For the Laplace equation we have g = 1 and αk = k in (2.3). Let ξ j = τ j
r0
.

Then, (2.3) becomes

c1ξ
−1
1 + c2ξ

−1
2 + · · · + cmξ−1

m = 0

c1ξ
−2
1 + c2ξ

−2
2 + · · · + cmξ−2

m = 0

· · ·
c1ξ

−m+1
1 + c2ξ

−m+1
2 + · · · + cmξ−m+1

m = 0

c1ξ
−m
1 + c2ξ

−m
2 + · · · + cmξ−m

m = 1. (2.4)

Let h = r0−τ1
r0

. Since the abscissas {ξ j }mj=1 on [1− h, 1] is dependent only on m and h( note

that {ξ j }m−1
j=1 are fixed as the Gauss–Legendre points on the interval [1−h, 1]) the coefficients

{c j }mj=1 are functions of (m, h).

3 Solvability and Convergence Analysis

In this section we provide the unique solvability and convergence analysis for the discrete
radialABCof the exteriorLaplace equation on an annulus region.The analysis closely follows
those ideas in [3]. It must be possible to extend those analysis to the case of the Helmholtz
equation. For simplicity of analysis we consider the fictitious domain as an annulus, 1 < r <

r0.

Theorem 3.1 Suppose 0 < r0−τ1 � 1, where {τ j }mj=1 with τm = r0 are abscissas to define
the discrete radial ABC. Assume

μk ≡
∑m

j=1 c j
(

τ j
τ1

)−k

∑m
j=1 c j

(
τ j
r0

)k (τ1r0)
−k �= 1

for k ≥ m. Then, the Laplace equation on an annulus 1 < r < r0 with the Dirichlet data on
the inner boundary and the discrete radial ABC on the outer boundary is uniquely solvable.
Here the coefficients, {c j }mj=1 are those in Eq. (2.4).
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Proof The solution of the Laplace equation on the annulus region has the representation in
the polar coordinate system as follows:

u(r, t) =
∞∑

k=−∞
φk(t)r

k,

where (r, t) is the polar coordinate and φk(t) = ck cos kt + dk sin kt . We will show that the
trivial boundary condition induces the trivial solution. On the boundary we have that

u(1, t) =
∞∑
k=1

φ−k(t) +
∞∑
k=0

φk(t) = 0, on �1,

Rh
mu(r0, t) =

∞∑
k=m

d−kφ−k(t)r
−k
0 +

∞∑
k=0

dkφk(t)r
k
0 = 0, on �2,

where dk = ∑m
j=1 c j (

τ j
r0

)k . Solving the above equation, we obtain that

φ0 = 0, φk = −φ−k, 1 ≤ k ≤ ∞
φk = 0, k = 1, . . . ,m − 1

φk + d−k

dk
r−2k
0 φ−k = 0,m ≤ k ≤ ∞.

It is trivial that φk = 0 for −m + 1 ≤ k ≤ m − 1. Let

μk = d−k

dk
r−2k
0 =

∑m
j=1 c j

(
τ j
τ1

)−k

∑m
j=1 c j

(
τ j
r0

)k (τ1r0)
−k .

Then, we have φk = μkφk , which implies that φk = 0 for m ≤ k < ∞ if μk �= 1. It follows
immediately that φ−k = 0 for m ≤ k < ∞. As a conclusion φk = 0, −∞ < k < ∞. ��

Remark 3.2 In the proof of the above theorem we have

m∑
j=1

c j

(
τ j

τ1

)−k

→ c1,
m∑
j=1

c j

(
τ j

r0

)k

→ cm

as k → ∞. Hence,

μk → 0, k → ∞.

Then, there exists k0 > 0 such that |μk | < 1 for all k ≥ k0. Therefore, the assumption in
Theorem 3.1 is reasonable.

Theorem 3.3 Suppose u be the solution of the Laplace equation on an exterior domain
1 < r < ∞ and w be the solution of the Laplace equation on an annulus 1 < r < r0 with
the Dirichlet data w = u on the inner boundary �1 and the discrete radial ABC on the outer
boundary �2. Under the same assumption as in Theorem 3.1 we have the error estimate(∫

�2

|u − w|2ds
)1/2

≤ Cr−m
0

(∫
�1

|u|2ds
)1/2

.
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Proof The exact solution u and its approximation w by the discrete radial ABC have the
multipole expansions,

u(r, t) =
∞∑
k=1

φ−k(t)r
−k, w(r, t) =

∞∑
k=−∞

ψk(t)r
k .

Remember that

Rh
mu(r0, t) =

∞∑
k=m

d−kφ−k(t)r
−k
0 ,

where dk = ∑m
j=1 c j (

τ j
r0

)k . Define the error,

e(r, t) = w(r, t) − u(r, t) =
∞∑
k=1

γ−k(t)r
−k +

∞∑
k=0

ψk(t)r
k

with γ−k = ψ−k − φ−k . The boundary conditions, Rh
mw(r0, t) = 0 and e(1, t) = 0, yield

that
∞∑
k=1

γ−k(t) +
∞∑
k=0

ψk(t) = 0 on �1, (3.1a)

∞∑
k=m

d−kγ−k(t)r
−k
0 +

∞∑
k=0

dkψk(t)r
k
0 = −

∞∑
k=m

d−kφ−k(t)r
−k
0 on �2. (3.1b)

From the Eqs. (3.1) and (3.1b) we have

ψ0 = 0,

ψk = −γ−k, 1 ≤ k ≤ ∞,

ψk = 0, 0 ≤ k ≤ m − 1,

d−kγ−kr
−k
0 + dkψkr

k
0 = −d−kφ−kr

−k
0 , m ≤ k < ∞.

The above can be summarized as follows:

ψ0 = 0, ψk = γ−k = 0, 1 ≤ k ≤ m − 1, ψk = −γ−k, m ≤ k < ∞
and

γ−k

(
d−kr

−k
0 − dkr

k
0

)
= −d−kφ−kr

−k
0 , m ≤ k < ∞.

Therefore,

e(r, t) =
∞∑

k=m

γ−k(t)r
−k −

∞∑
k=m

γ−k(t)r
k .

Simple calculation yields that

|d−k | ≤ C1τ
−k
1 rk0 , |dk | ≤ C2, k ≥ 0.

Then, we have

|γ−k | = |d−k |
|d−kr

−2k
0 − dk |

r−2k
0 |φ−k |, m ≤ k < ∞
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Fig. 2 The Q∗
2 grid:

|R1| = h1 × k1, |R2| = h2 × k1,
|R3| = h1 × k2

η1 η2

η3 η4 η5 η6 η7

η8 η9

η10 η11 η12

η13

R1 R2

R3

≤ C(τ1r0)
−k |φ−k |.

Hence,

|e(r0, ·)| ≤ C

{ ∞∑
k=m

rk0 (τ1r0)
−k |φ−k | +

∞∑
k=m

(τ1r0)
−kr−k

0 |φ−k |
}

.

We arrive at the conclusion that(∫
�2

|e|2ds
)1/2

≤ Cr−m
0

(∫
�1

|u|2ds
)1/2

if 0 < r0 − τ1 � 1 and r > 1. ��

4 Hybrid Finite Difference Methods

As mentioned in Sect. 1 the domain � = �1 ∪ �2 is a multiply connected domain with
the inner boundary �1, the outer boundary �2 and the interface �12. To define the hybrid
difference method (HDM) we need a quasi-rectangular partition of the subdomain �1. Here,
the quasi-rectangle includes a rectangle, a trapezoid (Fig. 3) or a trapezoid-like mesh with
one rounded side (Fig. 4). For the subdomain �2 we consider a radial subdivision by polar
rectangles. In this section we describe the HDM in the Cartesian coordinate system because
the hybrid difference in the polar coordinate can be obtained analogously. The hybrid spectral
difference method (HSD) is a high order version of the hybrid difference method.

Let Kh denote the skeleton of a mesh generation Th of�, and letN (�) andN (Kh) denote
the set of grid points in the closure of a domain and that on its skeleton, respectively. It is
worth to note that the mesh is composed mostly of rectangles. However, we need trapezoidal
meshes to match the interface �12 and we may need rounded trapezoidal meshes to match
�1 if �1 is curved.

We call the grid configuration in Fig. 2 as the Q∗
2 grid and the grid configuration in Fig. 3

as the Q∗
4 grid. The Q∗

m grid denotes the grid configuration obtained from the Qm grid by
deleting four vertices, where the Qm grid represents the grid onwhich the binomials of degree
up tom (Qm ) can be uniquely defined. In the HDM the nodes are the Gauss–Legendre points
in a cell and its edges.

Let us beginwith the simplest hybrid differencemethod (HDM) in theCartesian coordinate
system. The derivation is based on the grid configuration in Fig. 2. The hybrid difference
method for the Eq. (1.1) is composed of two kind of finite differences, the cell finite difference
and the interface finite difference as follows. The cell finite difference approximates the PDE
at the interior cell point so that
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Fig. 3 A Q∗
4-rectangular and trapezoidal grids: The four vertices {η jk : i, j = 0, 4} are not used in compu-

tation. The interior grids are the Gauss–Legendre points of a rectangle
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Fig. 4 The Q∗
3 grid generation around the obstacle with a curved boundary; the dotted is the line of integration

�hu(η4)+ω2u(η4) = u(η3) − 2u(η4) + u(η5)

(h1/2)2
+ u(η8) − 2u(η4) + u(η1)

(k1/2)2
+ω2u(η4) = 0

(4.1)
on the cell R1, and the interface finite difference approximates the flux continuity at the
intercell point so that

[[∂hν u]]η =
{ 3u(η5)−4u(η4)+u(η3)

h1
+ 3u(η5)−4u(η6)+u(η7)

h2
= 0, η = η5

3u(η8)−4u(η4)+u(η1)
k1

+ 3u(η8)−4u(η11)+u(p13)
k2

= 0, η = η8
. (4.2)

Here, ∂hν u = ∇hu · ν, and ν is the outward unit normal vector from each cell. The cell finite
difference (4.1) can be solved for u(η4) in terms of the cell boundary values,

{u(η1), u(η3), u(η5), u(η8)} for each cell. Then, the interface difference (4.2) yields the
global stiffness system with unknowns {u(η) : η ∈ N (Kh)}. Therefore, the static condensa-
tion property is naturally embedded in the HDM.

To derive a higher order method we consider a more complicated cell configuration as in
Fig. 3. Then, the cell finite difference solves the cell problem:

�huh(η) + ω2uh(η) = 0, η ∈ N (�)\N (Kh), (4.3)

and the interface finite difference solves the interface condition

[[∂hν uh]]η = 0, η ∈ N (Kh)\�. (4.4)

For a detailed derivation of the high order finite difference formulas for �h and ∂hν we refer
to [11,12]. Let us define the Gaussian quadratures on a reference cell R (with |R| = h × k)
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Table 4 Reduction in degrees of freedom by static condensation

Q∗
2-grid Q∗

4-grid Q∗
k -grid

HDM N2 + 2N (N + 1) 9N2 + 6N (N + 1) (k − 1)2N2 + 2(k − 1)N (N + 1)

Condensed 2N (N + 1) 6N (N + 1) 2(k − 1)N (N + 1)

Reduction rate 2
3

2
5

2
k+1

and its boundary ∂R on the Q∗
m grid as follows:

( f, g)R,h = hk

4

m−1∑
i=1

m−1∑
j=1

σiσ j f (ηi j )g(ηi j ),

〈 f, g〉∂R,h = k

2

m−1∑
j=1

σ j
(
f (η0 j )g(η0 j ) + f (ηmj )g(ηmj )

)

+ h

2

m−1∑
j=1

σ j
(
f (η j0)g(η j0) + f (η jm)g(η jm j )

)
.

Here, {σ j }m−1
j=1 is theGaussianweights on the reference interval [−1, 1]. There exists a natural

composite quadrature defined on the whole domain � as follows.

( f, g)h =
∑
R∈Th

( f, g)R,h .

Then, the Eqs. (4.3) and (4.4) can be unified in a variational form:

− (�huh + ω2uh, v)h +
∑
R∈Th

〈∂hν uh, v〉∂R,h = 0, v ∈ C0(�). (4.5)

Some numerical analysis of (4.5) can be found in [11], where analysis is performed for
the Poisson equation. The hybrid difference method is understood as the finite difference
version of the hybridized finite element method. The main advantage of the HDM is that the
finite differences are of one dimensional nature (it is not related to two or three dimensional
polynomial interpolation). Therefore, we can handle the boundary data exactly even on a
domain with a curved boundary by extending the line of derivative evaluation up to the given
curved boundary and taking the intersection as a nodal point (see Fig. 4). Secondly, the
method possesses the embedded static condensation property, which considerably reduces
global degrees of freedom in the global stiffness system.

Remark 4.1 The subdomain �2 can contain one or two layers of polar (quasi) rectangles. To
combine a low order HDM and a high order ABC we need two layers, and just one layer is
enough for combination of the Q∗

m grid HDM and the Rh
n- ABC if n ≤ m + 1.

Remark 4.2 Suppose a domain is the unit square with a N ×N -rectangular partition. Table 4
highlights reduction in degrees of freedom by the static condensation. The reduction rate is
computed asymptotically under the assumption that N is a big number.
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Fig. 5 Comparison of convergence properties of the discrete radial ABC (left) and BGT ABC (right): the
Laplace equation on the Q∗

2 grid (above) and Q∗
4 grid (below) (Example 1)

5 Numerical Experiments

In this section we provide numerical experiments on three regions:

• An annulus with 1 < r < 3
2 ,• A Chinese coin (see Fig. 1) bounded by �1 = {max{|x |, |y|} = 1} and �2 = {|r | = 3},

• The domain “D” bounded by�1 = {x = −1, |y| = 1, x2+ y2 = 1} and�2 = {|r | = 3}.
Here, Rh

mu = 0 and Bh
mu = 0 are called the m-th order ABC. The first observation

was comparison of condition numbers for the discrete and BGT ABCs. Both methods yield
similar condition numbers and we omit details.

Example 1 We consider the Laplace equation with the exact solution:

u(x, y) = 1

2

(
log |

(
x − 1

2

)2

+ y2| − log |x2 + y2|
)

on the annulus. The convergence properties are compared for Rh
m(u) = 0 and Bh

m(u) = 0
with m = 2 ∼ 4 on the radial Q∗

2 and Q∗
4 grids.

Example 2 We consider the Helmholtz equation with the exact solution:

u(r, t)) = H1(ωr) cos(t)
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Fig. 6 Convergence history by varying ω for the Helmholtz equation: the discrete radial ABC on the Q∗
2 grid

(Example 2)

on the annulus. Here, H1 is the Hankel function of the first kind with order one. Only the
results for the discrete radial ABC (Rh

m(u) = 0) are presented. This example is to illuminate
the sensitivity of the discrete radial ABC depending on change of the wave number ω.

Example 3 The scattering problem with the sound soft boundary condition is solved on
the Chinese coin domain. Here, the grids are give as in Fig. 1. The incident wave uin =
e−iω(x cosα+y sin α) with the incident angle α = 0 and ω = 5 is tested, and the scattered wave
is plotted by increasing the degrees of freedom. The 4th order discrete radial ABC (Rh

4u = 0)
on the Q∗

4 grid is used for numerical computation.

Example 4 The scatterer of the shape “D” is tested with the incident wave uin =
e−iω(x cosα+y sin α) and the incident angles α = 0, π

4 , π
2 , π . The same computational param-

eters are chosen as in Example 3.

As shown in Fig. 5 the discrete radial and BGTABCs perform evenly well for the Laplace
equation. The higher order ABC shows better convergence than the lower order ABC. As the
mesh becomes finer the error seems to be dominated by the truncation error in the absorbing
boundary condition. For the Helmholtz equation numerical examples only with the discrete
radial ABC are presented. We observe that the BGT absorbing boundary condition produces
spurious numerical solutions because of the poor finite difference approximation property as
mentioned in Sect. 2, and we omit it here. As shown in Figs. 6 and 7 the discrete radial ABC
performs quite robust even for a larger wave number (in view of the level of discretization).
Here, the computation is performed on a N × 2N mesh by doubling N up to N = 64 for
the radial Q∗

2 grid and up to N = 32 for the radial Q∗
4 grid. When the wave number is
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Fig. 7 Convergence history by varying ω for the Helmholtz equation: the discrete radial ABC on the Q∗
4 grid

(Example 2)

Fig. 8 Convergence plot of the real part of the scattered wave with the incident angle, α = 0. The meshes
correspond to the 16, 32, 64 and 128 subdivision of the exterior boundary �2, respectively (Example 3)
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Fig. 9 The real part of the scattered waves with the various incident angles, α = 0, π
4 , π

2 , π . The mesh
corresponds to the 128 subdivision of the exterior boundary �2 (Example 4)

small the higher order ABC performs clearly better than the lower order ABC. However,
convergence property becomes similar regardless of orders of the discrete radial ABC when
the wave number increases. Even the 2nd order method Rh

2u = 0 performs the best for the
cases, ω = 50, 100. Nonetheless, the high order hybrid difference combined with the high
order discrete radial ABC (for example, the Q∗

4 grid method and Rh
4 = 0) produces more

reliable solutions for a wide range of wave numbers. From those observation the scattering
problems in Examples 3 and 4 are solved by using the ABC, Rh

4(u) = 0 on the Q∗
4 grid.

Figure 8 clearly shows how the scattered wave converges as the degrees of freedom (dof)
increase. Figure 9 represents the real part of the scattered wave with various incident angles,
and this example shows that our method can manage a complicated geometry-problem quite
well. The numerical results accord well with those existing numerical results.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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