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Abstract The local epidemic spread in physical space is modeled using the kinetic equa-
tion. In particular, the infection occurs via the binary interaction between the uninfected
and infected individuals. Then, the local epidemic spread can be modeled on the basis of
the stochastic Boltzmann type equation. In this paper, the normalized virus titer inside the
infected human body is defined as the function of the elapsed time, which is measured from
the infection time. Consequently, the probability of the infection at the binary human inter-
action increases, as the normalized virus titer inside the human body increases, whereas
the normalized virus titer inside the infected human body decreases, after the normalized
virus titer reaches to its maximum value, namely, unity, in the characteristic time. Numerical
results indicate that the propagation speed of the boundary between the infected and unin-
fected domains depends on such a characteristic time, strongly, when the Knudsen number
and temperature are fixed. Such a dependency of the propagation speed of the boundary
between the infected and uninfected domains on the characteristic time can be described
by the Fisher–Kolmogorov–Petrovsky–Piscounov equation which is introduced from the
stochastic Boltzmann type equation. Finally, we consider three types of the human behavior
as plausible actions to the local epidemic spread.

Keywords Local epidemic spread · Kinetic modeling · DSMC simulation

1 Introduction

The epidemic spread sometimes does serious harms to humankind on the earth. In particular,
the ebola virus [1], Zika virus [2], Severe Acute Respiratory Syndrome (SARS) corona-virus
[3] and Middle East respiratory syndrome (MERS) corona-virus [4] caused serious harms
to so many people. Regrettably, we cannot predict when and where new virus is generated
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Fig. 1 Fraction of infected individuals at 69 nodes (major cities) in Japan at t = 0, 10 and 20. which are
calculated by SIR model. Each nodes are connected when the distance between two nodes are less than the
critical value

and do harms to people, previously. Thus, the quantitative prediction of the epidemic spread
is markedly significant to suppress harms by the virus at minimum. The most classical
mathematical-model to demonstrate the epidemic spread was proposed by Kermack and
McKendrick [5] as SIR model (S: susceptible, I: infected, R: removed/recovered). In SIR
model, numbers of individuals in statuses S, I, and R are temporally evolved. Similarly,
the extended model of SIR model, such as SIRS with the birth and death [6], SIRS model
[7] and SIR model with other counterparts [8], were proposed. These SIR type models
are simultaneous ordinary derivative equations in terms of the time (t ∈ R+). Thus, the
epidemic spread in the physical space is not considered in SIR type models. To demonstrate
the epidemic spread in physical space, the epidemic dynamics in the phase space (t, x) (in
R+ ×X

3,X3 ⊆ R
3) must be considered. Cardy and Grassberger [9] considered the epidemic

spread on network in the physical space using SIR model and found the similarity between
the epidemic spread and percolation on the network. In recent studies by Barrat and his
coworkers [10–13], the epidemic spread on the basis of the complex network theory has been
investigated. Additionally, the lattice gas cellular automaton analysis of the epidemic spread
was proposed by Fuks and Lawniczak [14]. For example, the epidemic spread in Japan is
calculated using 69 nodes (major cities), where the number of inhabitants is large, adequately.
Two nodes are connected, when the distance between two cities is shorter than the critical
value. The individuals move from one node to other nodes, when they are connected each
other. Figure 1 shows the fraction of the infected individuals (number of infected individuals
at a node/total number of individuals at a node) at t = 0 and 10, in which t is the normalized
time. At t = 0, the infected individuals exist in Okayama city. Readers can easily understand
that the number of nodes with high fraction of infected individuals increases, as the time
passes from the frame at t = 10. Theses studies of the epidemic spread in framework of the
network theory or lattice gas cellar automaton are useful for understanding of the epidemic
spread from a point (cell) to a point (cell) without tracing motions of infected individuals.
Generally, the congested areas and depopulated areas sparsely exist in the country. Then, the
epidemic spread from one node to the other node is reasonable approach. Meanwhile, we
cannot explain the “local” epidemic spread inside a node using SIR model. Therefore, we
must consider the local epidemic spread among individuals in the multi-agents system by
tracing motions of individuals in order to investigate the local epidemic spread inside a node
(city, village, county etc.).
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Remembering that the harmful virus is transferred from one individual to other individ-
uals, the simulation of the local epidemic spread can be performed by tracing motion of
individuals, who are infected or uninfected. Provided that infections from infected individ-
uals to uninfected individuals occur via binary interactions, exclusively, binary interactions
occur, when the distance between two individuals is less than the two times of the effective
diameter of an individuals, in which the effective domain of an individual is expressed with
the volume of a sphere with an effective diameter (d). Then, d must be determined to reflect
a droplet infection together with the contact infection. Such a long range interaction can be
expressed with an intermolecular potential [15]. After all, the local epidemic spread on the
basis of such motions of individuals can be formulated by the “stochastic” Boltzmann type
equation. The kinetic equation such as the stochastic Boltzmann type equation is certainly
useful for a calculation of a large number of individuals, which is hard to trace of motion of
each of individuals [16]. Here, readers remind that the phrase “stochastic” means that a small
number of individuals also can be discussed in the framework of the kinetic theory [17].

A serious problem involved with SIR model is that transition rates such as S → I and
I → R cannot be determined in the framework of the macroscopic scale. Provided that
the infection status is expressed with the virus titer, we expect that a series of the infection
process (uninfected → infected → recovery) can be understood with only one parameter,
namely, the virus titer. A novelty of this paper is a kinetic modeling and computation of
the epidemic spread using one parameter, namely, virus titer, whereas SIR type models
distinguish individuals using three parameters (S, I and R). Readers readily understand SIR
model allows the recovery of individuals, whose infection-interval is markedly shorter than
the usual infection-term, because the transition of I→R can occur when a chosen random
number (∈ [0, 1]) is smaller than the transition probability. Of course, an immunity is also
another significant parameter to express the susceptibility of an individual toward the virus,
which characterizes the probability of the infection of an individual. We, however, assume
that the immunity is uniform for all the individuals to simplify our discussion. The virus tier,
which is excited from zero by the binary interaction with the infected individual with some
probability, is the state variable, which depends on the elapsed time after the infection. Then,
the probability of the infection at the binary interaction is determined using the virus titer
inside the infected individual. In particular, the normalized virus titer (p ∈ [0, 1]) is defined
as a function of the elapsed time (τ ), which is measured from the start time of the infection.
Such a function must be determined to fit to real datum of the virus titer versus the elapsed
time, as discussed by Beccam et al. [18], whereas the normalized virus titer is defined as
a Gaussian function of the elapsed time to simplify our discussion. Therefore, the realistic
function of the normalized virus titer is set as our future study.

Finally, the distribution function in the stochastic Boltzmann type equation is defined
using variables such as t , x, v (v ∈ V

3: V3 ⊆ R
3: velocity space) and p (τ ). The primary

aim of this paper is the comprehension of the characteristics of the local epidemic spread at
the initial stage, which changes in accordance with variations of parameters in the stochastic
Boltzmann type equation. In particular, we consider the local epidemic spread at the initial
stage in the framework of the kinetic theory. Therefore, we never postulate the epidemic
spread via vehicles such as cars, trains or airplanes, which were discussed by Colizza et al.
[12]. Hence, the time scale of the evolution of the virus titer and time scale of motion of
individuals are set unspecified parameters, because we never specify the species of the virus.
Additionally, we never mention to multi-epidemic-sources and restrict ourselves to single
epidemic-source (domain) to simplify our discussion. In numerical analyses of the stochastic
Boltzmann type equation, the direct simulation Monte Carlo (DSMC) method [19] on the
basis of the null time counter (NTC) method by Bird [19] is applied. The DSMC method
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to solve the stochastic Boltzmann equation, which demonstrates the epidemic spread on the
basis of the virus titer, is surely new approach to analyses of the epidemic spread, whereas the
numerical algorithm in the DSMC is similar to conventional one [19] which has been used to
solve the Boltzmann equation for reactive gases, because the Monte Carlo judgment of the
transition of the uninfected individual to the infected individual is similar to the Monte Carlo
judgment of the chemical reaction via a binary collision in reactive gases [19]. Here, readers
must remind that we solve the “stochastic” Boltzmann type equation, in which the phrase
“stochastic” means that Klimontovich’s distribution function [20] is considered in order to
investigate effects of thermal fluctuations on the local epidemic spread. We introduce the
Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equation [21] from the stochastic Boltz-
mann type equation in order to calculate the propagation speed of the boundary between
the infected and uninfected domains. Finally, the local epidemic spread via three types of
extended human behaviors (stochastic lethal/quarantine without interactions, hypokinetia,
and refugee-quarantine with interactions) in accordance with the local epidemic spread is
investigated. One advantage of the kinetic model based on the virus titer over SIR model is
that we can construct a flexible mathematical-model to reflect scenarios of actions of indi-
viduals in accordance with the virus titer of the infected individual (i.e, quarantine, refugee,
hypokinesia etc.). In this paper, we primarily focus on the local epidemic spread owing to
the thermal motion of individuals which does not postulate the intended velocity of pedes-
trians, because our aim of the study is an investigation of the local epidemic spread on the
basis of the virus titer coupled with thermal motions of individuals in the framework of the
kinetic theory. Thus, further advanced interaction models beyond the isotropic scattering in
the binary collision between two pedestrians, which were proposed by Helbing [15] or Gipps
andMarksjö [22], are not discussed in this paper, because the author considers that the inves-
tigation of the local epidemic spread, which includes the detailed dynamics of pedestrians,
seems to be out of scope of this study. We, however, mention to the local epidemic spread, in
which intended velocities of pedestrians are fixed to their constant values in “Appendix” in
order to prove that the proposed kinetic model can be extended to more realistic model of the
local epidemic spread in our future study. Finally, the Bhatnagar-Gross-Krook (BGK) like
term is added to the stochastic Boltzmann equation to describe the relaxation of velocities of
pedestrians toward their intended velocities.

This paper is organized as follows. In Sect. 2.1, the stochastic Boltzmann type equation
for the local epidemic spread via the binary collision between the infected and uninfected
individuals is formulated. In Sect. 2.2, the propagation speed of the boundary between the
infected and uninfected domains is calculated from the FKPP equation, which is introduced
from the stochastic Boltzmann type equation. In Sect. 2.3, DSMC analyses of the local
epidemic spread are performed to investigate effects of parameters, which are used in the
stochastic Boltzmann type equation, on the local epidemic spread. In Sect. 3, three types of the
human behavior in accordancewith the local epidemic spread aremodeled and characteristics
of three types of the human behavior in accordance with the local epidemic spread are
investigated, numerically. Finally, we make concluding remarks in Sect. 4.

2 Stochastic Boltzmann Type Equation for Local Epidemic Spread and Its
Numerical Analysis

The stochastic Boltzmann type equation for the local epidemic spread is formulated in
Sect. 2.1. Afterwards, the FKPP equation is introduced from the stochastic Boltzmann type
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equation which is formulated in Sects. 2.1 and 2.2. Finally, numerical analyses of the stochas-
tic Boltzmann type equation for the local epidemic spread are performed using the DSMC
method in Sect. 2.3.

2.1 Formulation of Stochastic Boltzmann Type Equation for Local Epidemic
Spread

The normalized virus titer inside the human body is expressed with p, in which p = 0
corresponds to the uninfected state and 0 < p corresponds to the infected state. Here, we
remind that p := p (τ ) ∈ R+ is a function of the elapsed time (τ ), once an individual is
infected by the interaction with the infected individual at t = tp (t, tp ∈ R+) such as

p (τ ) := exp

[
− (τ − τm)2

2Tc

]
, (1)

where τ := t − tp ∈ R+ is the elapsed time, after the virus intrudes into the human body.
From Eq. (1), p(0) > 0 and p (τ ) ∈ (0, 1] is obtained. τm corresponds to the characteristic
time, when the normalized virus titer reaches to the maximum value and Tc is the variance
of p (τ ).

The time derivative of p (τ ) is obtained as

dp (τ )

dt
= ψ (τ) = − τ − τm

Tc︸ ︷︷ ︸
cp

p (τ ) , (2)

The motion of the individual is characterized by the translation in physical space X3 ⊆ R
3

and binary elastic collision (interaction) with another individual, which yields the change of
the direction of his or her motion. Therefore, such a random change of the direction of motion
via the binary elastic collision between two individuals seems to be implausible in our real
society, because each of individuals tends tomove toward his or her destination in accordance
with his/her intended velocity. Meanwhile, we consider that such a random change of the
direction of motion seems to be plausible, when children move in the classroom or campus
of the school, as they like.

The virus inside the body of the infected individual intrudes into the body of the colliding
partner in accordance with the following probability:

W ≤ p (τ ) , p (τ ) ∈ P, {x ∈ P|x ∈ (0, 1] ∩ x ∈ R} , (3)

where W ∈ [0, 1] is the white noise.
Equation (3) indicates that the probability of the virus-infection increases, as p (τ )

increases. Thus, the probability of the virus-infection is low at the incubation period (τ � τm)
or complete recovery period (τm � τ ).

The Klimontovich’s distribution function [20] is defined by

f (t, v, x, p (τ )) := 1

Vc

Nc∑
i=1

δ3 (x − xi (t)) δ3 (v − vi (t)) δ (p − pi (τ )) ,

in R+ × V
3 × X

3
v × P

′,
{
x ∈ P

′|x ∈ [0, 1] ∩ x ∈ R
}
, (4)

where the subscript “i” is an index of the i-th individual, Nc is the total number of individuals
in X

3, Vc := ∣∣X3
v

∣∣ is the infinitesimal volume in x ∈ X
3
v (X3

v ⊆ X
3) and V

3 ⊆ R
3: velocity

space.
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From above discussion, the stochastic Boltzmann type equation, which demonstrates the
infection of the virus owing to the binary elastic collision between the infected and uninfected
individuals, is formulated as:

∂t f (t, v, x, p, s) + v · ∇x f (t, v, x, p, s) + ∇pψ (τ) f (t, v, x, p, s = 1)

= Q ( f, f1)=A

∫
p1∈P′

1

∫
v1∈V3

1

∫
ε∈[0,2π ]

∫
χ∈[0,π ]

(
I 1110 + I 1010 + I 1101 + I 0101 + I 0000 + I 1111

)
Ẽξ σ sin χdχdεd3v1dp1,

I 1110 = [
f
(
v′, p > 0, s = 1

)
f1
(
v′
1, p1|τ=0 > 0, s1 = 1

)
− f (v, p > 0, s = 1) f1 (v1, p1 = 0, s1 = 0)] p (τ ) δs,1δs1,0

I 1010 = [
f
(
v′, p > 0, s = 1

)
f1
(
v′
1, p1 = 0, s1 = 0

)
− f (v, p > 0, s = 1) f1 (v1, p1 = 0, s1 = 0)] (1 − p (τ )) δs,1δs1,0

I 1101 = [
f
(
v′, p|τ=0 > 0, s = 1

)
f1
(
v′
1, p1 > 0, s1 = 1

)
− f (v, p = 0, s = 0) f1 (v1, p1 > 0, s1 = 1)] p1 (τ1) δs,0δs1,1

I 0101 = [
f
(
v′, p = 0, s = 0

)
f1
(
v′
1, p1 > 0, s1 = 1

)
− f (v, p = 0, s = 0) f1 (v1, p1 > 0, s1 = 1)] (1 − p1 (τ1)) δs,0δs1,1

I 0000 = [
f
(
v′, p = 0, s = 0

)
f1
(
v′
1, p1 = 0, s1 = 0

)
− f (v, p = 0, s = 0) f1 (v1, p1 = 0, s1 = 0)] δs,0δs1,0

I 1111 = [
f
(
v′, p > 0, s = 1

)
f1
(
v′
1, p1 > 0, s1 = 1

)
− f (v, p1 > 0, s1 = 1) f1 (v1, p1 ≥ 0, s1 = 1)] δs,1δs1,1 (5)

where A ∈ R+ has the unit [m/s] and fixed to 1 [m/s] in this paper, δi j is Kronecker’s
delta function, and an index “s” in f (s) indicates the status of the infection, namely, s = 0
(non-infection) and s = 1 (infection). In Eq. (5), we assume that all the individuals have
same mass (m) in order to simplify our discussion. An index “s” is, however, not a dependent
parameter, because the status of the infection can be judged by the normalized virus titer,
namely, p(τ ) = 0 (non-infection) and p(τ ) > 0 (infection) from Eq. (1). The subscription
“1” indicates the collisional partner.

In the right hand side of Eq. (5), Ẽ is defined as

Ẽ =
√

|ṽ|2 + |ṽ1|2, (6)

where ṽ and ṽ1 are normalized velocities by C∞ := √
2Rθ∞ such as ṽ := v/C∞ and

ṽ := v1/C∞ (R: gas constant, θ∞: temperature).
From Eq. (5), the collision frequency depends on the total collisional energy, because

an individual with the higher kinetic energy tends to access to another individual the more
frequently, whereas the collision frequency in the Boltzmann equation depends on the relative
velocity (|v − v1|). Here, we are free from the geometric collisional mechanics, which is
postulated in theBoltzmann equation.Additionally, ξ ∈ [0, 1] is a parameter,which expresses
the dependency of the collision frequency on the total collisional energy. σ , χ ∈ [0, π] and
ε ∈ [0, 2π] in the right hand side of Eq. (5) are the differential cross section (σ = d2/4),
deflection angle and scattering angle, respectively. Indeed, above isotropic scattering in the
binary collision must be modified in order to demonstrate the characteristics of pedestrians,
as discussed by Helbing [15].

From the left hand side of Eq. (5), f ∈ C1
(
X
3
) ∧ f ∈ C1

(
V
3
)
is postulated, although

Klimontovich’s distribution function does not always satisfy the smoothness and continuity
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of f in both X
3 and V

3, whereas ψ ∈ C1
(
V
3
)
is always satisfied by dpψ(p) = −cp

(∵
∣∣cp∣∣ < +∞) from Eq. (2).
Multiplying 1, p,...,pn (n ∈ N) by both sides of Eq. (5) and integrating over V3 × P, we

obtain

∂ρp p̄0
∂t

+ ∇x · (ρp p̄0δup0

) = Gp0 ,

∂ρp p̄1
∂t

+ ∇x · (ρp p̄1δup1

)+ cpρp p̄1 = Gp1 ,

. . . ,

∂ρp p̄n
∂t

+ ∇x · (ρp p̄nδupn

)+ cpρp p̄n = Gpn , (7)

where Gpn := ∫
V3×P

pnQ ( f, f1) d3vdp is obtained as

Gpn : =
∫
V3×P

pnQ ( f, f1) d
3vdp

=
∫
p∈P

∫
v∈V3

∫
p1∈P1

∫
v1∈V3

1

∫
ε∈[0,2π ]

∫
χ∈[0,π ]

pn f
(
v′, p|τ=0 > 0, s = 1

)
f1
(
v′
1, p1 > 0, s1 = 1

)
δs,0δs1,1 p1 (τ1) Ẽ

ξ σ sin χdχdεd3v1dp1d
3vdp, (8)

and ρp , p̄n , δupn are defined as

ρp : =
∫
V3×P

f d3vdp = p̄0,

p̄n : = 1

ρp

∫
V3×P

pn f d3vdp,

δupn : = 1

ρp p̄n

∫
V3×P

pnv f d3vdp, (9)

From Eqs. (7) and (8), the propagation velocity of the virus titer moment (ρp p̄n) is δupn .
The number density of the infected individual ρp increases via the collisional term Gp0 .
Therefore, the propagation of the infected domain depends on Gp0 together with the term
∇x · (ρp p̄0δup0

)
.

In the left hand side of Eq. (7), terms cpρp p̄n (1 ≤ n) satisfy

cpρp p̄n < 0 ∵ cp < 0 (0 ≤ τ < τm) ∧ 0 < ρp ∧ 0 < p̄n,

cpρp p̄n ≥ 0 ∵ cp ≥ 0 (τm ≤ τ) ∧ 0 < ρp ∧ 0 < p̄n (10)

Equation (10) indicates that the virus titer moment increases at 0 ≤ τ < τm and deceases at
τm ≤ τ owing to the time evolution of the virus in Eq. (1).

Provided that f (v, p) can bewritten as f (v, p) = φv (v) φp (p), the propagation velocity
of the virus titer moment never depends on the distribution of p. We, however, conjecture that
an individual with the larger kinetic energy can be a seed of the infection at the uninfected
domain the more frequently. In later discussion on numerical results in Sect. 2.3, we confirm

that
〈∣∣δup0

∣∣2〉 is surely larger than
〈|δu|2〉 at the boundary between the infected and the

uninfected domains.
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Besides with virus titer moments in Eq. (9), we define some moments such as

ρ : =
∫
V3×P′

f d3vdp, (density of individuals)

δu := 1

ρ

∫
V3×P′

v f d3vdp, (thermally fluctuating flow velocity)

θ : = 1

3ρ

∫
V3×P′

v2 f d3vdp, (temperature)

p̄ : = 1

ρ

∫
V3×P′

p f d3vdp (averaged normalized-virus titer), (11)

2.2 Analogy to FKPP Equation

In Sect. 2.1, we formulated general form of moment equations for the infected individu-
als from Eq. (5). On the other hand, moment equations for the uninfected individuals are
formulated for individuals with p = 0, namely, p ∈ P

′ − P.
Multiplying 1 by both sides of Eq. (1) and integrating over

(
P

′ − P
)× V

3, we obtain

∂ρun

∂t
+ ∇x · (ρunδuun) = Gun = −Gp0 , (12)

where Gun := ∫
(P′−P)×V3

(
I 1101 + I 0101 + I 0000

)
dvd p = −Gp0 is used. From Eqs. (7) and (12),

we readily confirm themass conservation, namely, ∂tρ+∇x ·(ρp p̄0δup0 + ρunδuun

) = 0. The
essence of the diffusion flux (J) is an expression of the separated velocity between p̄0δup0
and δupun with δu.

Using J, Eqs. (7) and (12) can be rewritten as

∂ρp0

∂t
+ ∇x · (ρp0δu + J

) = Gp0 ,

∂ρun

∂t
+ ∇x · (ρunδu − J) = −Gp0 , (13)

where J is defined using δu := ρ−1
(
ρp0δup0 + ρunδuun

)
in Eq. (11) as

J = ρp0ρun

ρ

(
δup0 − δuun

)
. (14)

In the framework of the Navier–Stokes–Fourier approximation, the diffusion flux is approx-
imated as [23]

J[1] = −mD∇xηp0 − ρ

p
Dp∇xp, (15)

where ηp0 := ρp0ρ
−1 is the mass fraction of the number of infected individuals to the total

number of individuals at x, D is the diffusion coefficient and Dp is the pressure diffusion
coefficient, m is a mass of the individual and p := ρRθ is the static pressure.
Gp0 can be written as

Gp0 = kρp0ρun = K01ρ
2 (1 − ηp0

)
ηp0 , (16)

where K01 is the transition rate by which the uninfected individuals change to infected
individuals.
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Setting δu = 0, m = 1, Dp = 0 and D =const. in X
3, we obtain the following mass

transport equation from Eqs. (13), (15) and (16):

∂ρp0

∂t
− D�

ρp0

ρ
= K01ρ

2 (1 − ηp0

)
ηp0 . (17)

Equation (17) coincides with the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation
[24], when ρ = 1, as follows

∂ηp0

∂t
− D�ηp0 = K01

(
1 − ηp0

)
ηp0 . (18)

Consequently, the epidemic spread has an analogy to the dynamics described by the FKPP
equation, when forgoing assumptions used to obtain Eq. (18) from Eq. (5) is validated. On
the other hand, Succi and his coworkers analyzed the FKPP equation with nonzero flow-flux,
namely, δu �= 0 using the lattice Boltzmann method (LBM) [25,26]. The application of the
LBM to the FKPP equation, which demonstrates the epidemic spread, is interesting issue in
our future study, definitely.

The reaction–diffusion equation can be surely applied to the conventional SIRmodel using
similar procedures mentioned above such as

∂ηS

∂t
− D�ηS = −KS→IηIηS,

∂ηI

∂t
− D�ηI = KS→IηIηS − K I→RηI,

∂ηR

∂t
− D�ηR = K I→RηI, (19)

where ηS ∈ R+ (fraction of susceptible individuals), ηI ∈ R+ (fraction of infected individu-
als), ηR ∈ R+ (fraction of recovered individuals), and Ki→ j ∈ R+ is the transition rate from
status “i” to “ j”.

Figure 2 shows the time evolution of ηI, which is obtained by solving Eq. (19) using
D̃ = 1, K̃S→I = 0.25 and K̃ I→R = 0.1, where all the physical quantities are normalized.
Thus, the normalized quantities are denoted by .̃ x ∈ X ⊆ X

2 (x ∈ X||x̃ | ≤ 100∧|ỹ| ≤ 100)
is considered as the numerical domain with the periodic boundary. The finite differential
scheme is used to solve Eq. (19), whereas Succi [26] indicated that FKPP equation with the
advection can be solved with better accuracy using the LBM rather than the finite differential
scheme. Actually, we consider the directed flow of individuals in the process of the epidemic
spread, as discussed in Sect. 3 and appendix. As an initial condition, ηS = 0.9, ηI = 0.1
and ηR = 0 in the domain XI (x ∈ XI |

√
x̃2 + ỹ2 ≤ 50), whereas ηS = 1 and ηI = ηR = 0

in the domain X − XI . The infected domain expands, concentrically, as t̃ increases. Most
of infected individuals at XI and t̃ = 0 change to recovered individuals at XI and t̃ = 30.
Finally, most of infected individuals change to recovered individuals at t̃ = 200.

The propagation speed of a traveling wave [24] which is obtained by Eq. (18) can be
calculated by following procedures, when f in X

3 is spherically symmetric, [27]

1. We set φ̆ := ηp0 and ψ̆ := dηp0/dz using the definition z := r − ct (r := ||x||L2 ).
2. Equation (18) can be rewritten using φ̆ and ψ̆ as

d

dz

(
φ̆

ψ̆

)
=
[

ψ̆

− (c/D) ψ̆ − (K01/D)
(
1 − φ̆

)
φ̆

]
(20)
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Fig. 2 Time evolution of ηI obtained using Eq. (19)

3. Above system equation has two fixed points at
(
φ̆, ψ̆

)
= (0, 0) and (1, 0). Jacobian

matrix is obtained at
(
φ̆, ψ̆

)
= (0, 0) and (1, 0) from Eq. (20), respectively, as

J
(
φ̆, ψ̆

)
=
⎛
⎝ ∂φ̆′

∂φ̆

∂φ̆′
∂ψ̆

∂ψ̆ ′
∂φ̆

∂ψ̆ ′
∂ψ̆

⎞
⎠ =

(
0 1

K01
D

(
2φ̆ − 1

)
− c

D

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0 1

− K01
D − c

D

) (
φ̆, ψ̆

)
= (0, 0),(

0 1
K01
D − c

D

) (
φ̆, ψ̆

)
= (1, 0),

(21)

where φ̆′ := dφ̆/dz and ψ̆ ′ := dψ̆/dz.
4. Two eigenvalues in Eq. (21) are obtained as

λ± :=

⎧⎪⎨
⎪⎩

−c±
√

c2−4DK01
2D

(
φ̆, ψ̆

)
= (0, 0)

−c±
√

c2+4DK01
2D

(
φ̆, ψ̆

)
= (1, 0)

(22)

5. We assume that the boundary between two domainsX3
p (
{
x ∈ X

3
p|ηp0 (x) ∈ (0, 1]

}
) and

X
3 − X

3
p , namely, infected and uninfected domains, is expressed with

(
φ̆, ψ̆

)
= (0, 0).
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Fig. 3 Time evolution of ηI obtained using Eq. (19)

The propagation speed of the boundary between such two domains must satisfy the

following relation to yield the real value of λ± at
(
φ̆, ψ̆

)
= (0, 0):

2
√
DK01 ≤ c. (23)

From item 5, the minimum value of the propagation speed of the boundary
(
φ̆, ψ̆

)
= (0, 0)

is equal to 2
√
DK01. In above numerical result of the reaction–diffusion equation of SIR

model in Eq. (19), the propagation speed of the boundary between the infected and unin-

fected domains is defined by 2
√
D̃K̃S→I = 1. Figure 3 shows the time evolution of ηI. The

propagation speed of the boundary certainly coincides with unity, as shown in Fig. 3. Pro-
vided that D is independent of τm and Tc in Eq. (1), the minimum propagation speed of
the boundary between the infected and uninfected domains, namely, 2

√
DK01 depends on

τm and Tc via K01 owing to Eq. (8). In this paper, we never refer to concrete form of K01

owing to mathematical complexities, whereas later numerical results show that the prop-
agation speed of the boundary domain strongly depends on τm , when Tc is fixed. From
Eq. (8), we make a rough estimation of K01 as K01 ∼ Kp (τ ) (K ∈ R+). Figure 4 shows√
K01|τ̃m=1/2/K01|τ̃m=1 = √

p|τ̃m=1/2 or 3/4/p|τ̃m=1 using T̃c = 0.05.
√
p|τ̃m=1/2/p|τ̃m=1

decreases from 42.5 at τ̃ = 0 in the case of τ̃m = 1/2, as τ̃ increases. Similarly,√
p|τ̃m=3/4/p|τ̃m=1 decreases from 8.91 at τ̃ = 0 in the case of τ̃m = 3/4, as τ̃ increases.

Then, we can understand that the propagation speed of the boundary domain between the
infected and uninfected domains is markedly sensitive to τ̃m .

2.3 Numerical Analysis of Stochastic Boltzmann Type Equation for Local
Epidemic Spread

All the physical quantities are normalized as

t̃ := t/t∞, x̃ := x/L∞, t∞ := L∞/C∞, τ̃ := τ/t∞
ρ̃ := ρ/ρ∞, ũ := u/C∞, θ̃ := θ/θ∞,

ṽ := v/C∞, f̃ := f/
(
ρ∞C3∞

)
, C∞ := √

2Rθ∞,
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Fig. 4
√
p|τ̃m=1/2/p|τ̃m=1 versus τ̃ . Numerical results of ṽ∗|τ̃m=1/2/ṽ∗|τ̃m=1 [ṽ∗: normalized propagation

speed of traveling wave front (t.w.f.)] and ṽ∗|τ̃m=3/4/ṽ∗|τ̃m=1

The initial velocity distribution function f (t = 0, v, x, p (τ )) inR+ ×V
3×P

′ is assumed to
follow the Maxwell–Boltzmann distribution in V3. Here, the distribution function in x3-axis
is assumed to be uniform. Of course, (v, x) ∈ V

2×X
2 might bemore realistic to demonstrate

local epidemic spread between the infected and uninfected individuals than (v, x) ∈ V
3×X

3,
when we exclude the interaction between two individuals inside three dimensional facilities
(i.e., binary collision at the staircase.), whereas we consider (v, x) ∈ V

3 × X
3, because

the assumption of the uniformity along x3-axis does not change the qualitative tendency
of the local epidemic spread in (x1, x2) space, markedly, as the two dimensional flow has
been considered using not two dimensional collision between two discs but three dimen-
sional collision between two spheres [28]. The reduction of the dimension will be easily

done in accordance with the situation to be considered. Here, we set x̃ :=
(
X̃ , Ỹ , Z̃

)
and

calculation domain as
(
X̃ , Ỹ , Z̃

)
∈ X ⊆ X

3, whereas we set δũ := (δũ, δṽ, δw̃) and

δũpn := (
δũ pn , δṽpn , δw̃pn

)
. As an initial condition, we set Tc/t∞ = 0.05, ρ̃ = 1, ũ∞ = 0,

andKn = (
√
2πd2ρ∞/mL∞)−1 = 1.0 (m: commonmass of individuals). Nc = 100 sample

particles per a lattice are set, in which 61 × 61 lattices equally spaced inside the calculation
domain, X, {x̃, ỹ ∈ X|x̃ ∈ [0, 1] , ỹ ∈ [0, 1]}. As the boundary condition on X̃ = 0, 1 and
Ỹ = 0, 1, the periodic boundary condition is used in Tests A-1, 2, 3, 4, 5, B and C, whereas
the specular boundary condition is used in Test A-6. At t̃ = 0, all the individuals inside the

domain U,

{
x̃, ỹ ∈ U ⊆ X|

√
(x̃ − 0.5)2 + (ỹ − 0.5)2 < 0.1

}
are infected, simultaneously.

In other words, all the individuals have p (τ̃ = 0) > 0 owing to Eq. (1) inside the domain
U at t̃ = 0, whereas individuals inside the domain X − U, who have p = 0 at t̃ = 0, are
uninfected. The schematic of the calculation domain (X) is shown in Fig. 5 (Table 1).

Figure 6 shows the time evolution of p̄ in Test A-1. The infected domain spreads at

0 ≤ t̃ ≤ 1.0, concentrically, where the center of the concentric spread is, certainly,
(
X̃ , Ỹ

)
=

(0.5, 0.5). At τ̃m = 1.0 in Eq. (1), p of the individual, who is infected at t̃ = 0, reaches

to unity at τ̃ = 1. Consequently, p̄ increases toward
(
X̃ , Ỹ

)
= (0.5, 0.5) and reaches to

0.895 at
(
X̃ , Ỹ

)
= (0.5, 0.5) at t̃ = 1, where we remind that p̄ is not equal to unity at

t̃ = 1, because individuals, who are infected at t̃ > 0 and have p (τ̃ ) < 1 owing to τ̃ < 1,
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Fig. 5 Schematic of calculation
domain

Table 1 Numerical tests
τ̃m T̃ |t=0 ξ Nc B.C.

Test A-1 1 5 0.6 100 P

Test A-2 1 5 0.6 50 P

Test A-3 1 5 0.6 10 P

Test A-4 1 5 0 100 P

Test A-5 1 10 0.6 100 P

Test A-6 1 5 0.6 50 S

Test B 0.5 5 0.6 100 P

Test C 0.75 5 0.6 100 P

B.C. boundary condition, P
periodic boundary, S specular
boundary

exist at
(
X̃ , Ỹ

)
= (0.5, 0.5). p̄

(
X̃ , Ỹ

)
increases, as the distance from

(
X̃ , Ỹ

)
= (0.5, 0.5)

decreases at 0 ≤ t̃ ≤ 1, because the ratio of the number of individuals at
(
X̃ , Ỹ

)
, who are

infected at 0 < t̃ and uninfected, to the total number of individuals at (X̃ , Ỹ ) increases, as the

distance from
(
X̃ , Ỹ

)
= (0.5, 0.5) decreases at 0 ≤ t̃ ≤ 1. The uninfected domain, in which

all the individuals are uninfected, corresponds to four corners of X at t̃ = 1.536, whereas all
the individuals in X are infected at t̃ = 1.842. p of individuals, who are infected at t̃ = 0,

decreases at τ̃m = 1 < t̃ from Eq. (1). Thus, p̄ decreases toward
(
X̃ , Ỹ

)
= (0.5, 0.5),

concentrically, as shown in frames at t̃ = 1.842, 2.16 and 3.072. Such a tendency of p̄
certainly holds true for frames at t̃ = 1.536 and t = 3.792, whereas such a tendency is
indistinguishable, because we used common color contours in all the frames. Finally, all the
individuals are infected in Test A-1. To avoid infections of all the individuals inX, p (τ̃ ) in Eq.
(1) must be damped to zero, rapidly, before the interaction with the uninfected individuals.
Such a situation can be obtained by using p (τ̃c) � 1 (τ̃c: inverse of the averaged collision
frequency), when τ̃m < τ̃c. Next, we investigate the effect of τ̃m on the local epidemic spread
by considering Test B.

Figure 7 shows the time evolution of p̄ in Test B. The infected domain spreads, concen-
trically in a similar way to Test A. The propagation speed of p̄ in Test B is higher than that
in Test A-1. From Eq. (7), the propagation of the infected domain depends on the spatial
propagation via ∇xρ0 p̄0δup0 and generation of ρ0 p̄0 via Gp0 . We remind that p̄ is related
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Fig. 6 Time evolutions of p̄ in Test A-1

to p̄0, and Gp0 increases, as p f (p, s = 1) increases, as shown by I 1101 in the right hand side
of Eq. (5). The increase in the propagation speed due to the decrease in τ̃m is caused by the
increase in Gp0 due to the rapid increase in p (τ̃ ) as a result of the decrease of τ̃m in Eq.
(1) rather than the increase in δup0 , because our numerical results indicate that

〈∣∣δũp0

(
t̃
)∣∣〉

at the boundary between the infected and uninfected domains in Test A-1 is similar to that
in Test B. Such a similarity between

〈∣∣δũp0

(
t̃
)∣∣〉 at the boundary between the infected and

uninfected domains in Test A-1 and that in Test B indicates that D in Test A-1 is similar to
that in Test B. In short, the difference between the propagation speed of the boundary domain
between the infected and uninfected domains in Test A-1 and that in Test B is caused by the
relation K01|Test A-1 � K01|Test B as a result of Eq. (23).

Next, we consider on effects of velocity fluctuations via thermal fluctuations by comparing
of p̄, which are obtained in Tests A-1, 2 and 3. In the DSMC method to solve the stochastic
Boltzmann type equation, the velocity fluctuations (δu) depend on the number of sample
particles in a lattice (N̄c), which is averaged during some time interval, such that [29]

〈
δũ2

〉 = Rθ̄

N̄c
, (24)

where θ̄ is the temperature, which is averaged during some time interval.
Figure 8 shows snapshots of p̄ in Tests A-1, A-2 and A-3 at t̃ = 1.0 (upper frames) and

t̃ = 1.536 (lower frames). Figure 8 shows that there are not marked differences between
contours of p̄ in Test A-1 and those in Test A-2 at t̃ = 1.0 and 1.536, whereas there are
marked differences between contours of p̄ in Test A-1 and those in Test A-3 at t̃ = 1.0 and
1.536, because the infected domain never spreads concentrically in Test A-3. From Eq. (24),
we can conjecture that

〈
δũ2

〉
in Test A-1 is a half of that in Test A-2 and 1/10 times of that in
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Fig. 7 Time evolutions of p̄ in Test B

Fig. 8 Snapshots of p̄ in Tests A-1, A-2 and A-3 at t̃ = 1.0 (upper frames) and t̃ = 1.536 (lower frames)

Test A-3, because θ̄ is fluctuating around 5 at 0 ≤ t̃ in Tests A-1, 2 and 3. The dependency of
the propagation speed of the boundary between the infected and uninfected domains on δũ is
ignorable, because there are no marked differences among the area of the infected domain in
Test A-1 and those in Tests A-2 and A-3 at t̃ = 1 and 1.536, as shown in Fig. 8. Consequently,
the propagation speed of the boundary between the infected and uninfected domains strongly
depends on the collisional term Gp0 in Eq. (7), in other words, K01 in Eq. (23).
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Test A-1

Fig. 9 f̃ (p) versus p at
(
X̃ , Ỹ

)
= (0.5, 0.5), when t̃ = 1.0 (upper-left frame),

(
X̃ , Ỹ

)
= (0.5, 0.25), when

t̃ = 1.0 (upper-middle frame),
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.0 (upper-right frame),

(
X̃ , Ỹ

)
= (0.5, 0.5),

when t̃ = 1.92 (lower-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when t̃ = 1.92 (lower-middle frame), and

(
X̃ , Ỹ

)
=

(0.5, 0), when t̃ = 1.92 (lower-right frame), in Test A-1

Next, we investigate f̃ (p) := ∫
V3 f̃

(
t̃, x̃, p (τ̃ ) , ṽ

)
dv3, when t̃ and x̃ are fixed. We set

�p = 0.0167 in the range of 0 < p ≤ 1. f̃ (τ̃ ) is the set of simple functions f̃ (�p × i)
(i ∈ Z+) on Lebesgue measure p ∈ (i × �p, (i + 1) × �p]. Especially, f̃ (p = 0), which
corresponds to the ratio of the number of uninfected individuals to the total number of

individuals at
(
X̃ , Ỹ

)
, is Diracmeasure at p = 0. Figure 9 shows f̃ (p) versus p at

(
X̃ , Ỹ

)
=

(0.5, 0.5), when t̃ = 1.0 (upper-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when t̃ = 1.0 (upper-

middle frame),
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.0 (upper-right frame),

(
X̃ , Ỹ

)
= (0.5, 0.5),

when t̃ = 1.92 (lower-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when t̃ = 1.92 (lower-middle

frame), and
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.92 (lower-right frame), in Test A-1. f̃ (p) at(

X̃ , Ỹ
)

= (0.5, 0.5), which corresponds to a center of the concentric epidemic-domain, has

a peak at p = 1 and almost plateau discrete-distribution on Lebesgue measure in the range of
0.125 ≤ p < 1 at t̃ = 1. Here, f̃ (p = 1) corresponds to the number of individuals, who are
infected at t̃ = 0, and f (p < 1) corresponds to the number of individuals, who are infected

at 0 < t̃ ≤ 1 in X − U. From f̃ (p) at t̃ = 1 and
(
X̃ , Ỹ

)
= (0.5, 0.5), we can confirm that

there exist a few individuals, who are infected at 0 < t ≤ 1 in X − U. f̃ (p) at t̃ = 1 and(
X̃ , Ỹ

)
= (0.5, 0.25) indicates that the bulk tendency dp f (p) < 0 is obtained in the range

of 0 ≤ p ≤ 0.25. Consequently, there is no one, who is infected at t̃ = 0 in U, at t̃ = 1 and(
X̃ , Ỹ

)
= (0.5, 0.5). f̃ (p = 0) = 1 is obtained at t̃ = 1 and

(
X̃ , Ỹ

)
= (0.5, 0). In short,

no one is infected at t̃ = 1 and
(
X̃ , Ỹ

)
= (0.5, 0).
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Fig. 10 f̃ (τ̃ ) versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5), when t̃ = 1.0 (top-left frame),

(
X̃ , Ỹ

)
= (0.5, 0.25), when

t̃ = 1.0 (top-middle frame),
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.0 (top-right frame),

(
X̃ , Ỹ

)
= (0.5, 0.5),

when t̃ = 1.23 (middle-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when t̃ = 1.23 (middle-middle frame),

(
X̃ , Ỹ

)
=

(0.5, 0), when t̃ = 1.23 (middle-right frame),
(
X̃ , Ỹ

)
= (0.5, 0.5), when t̃ = 1.47 (bottom-left frame),(

X̃ , Ỹ
)

= (0.5, 0.25), when t̃ = 1.47 (bottom-middle frame), and
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.47

(bottom-right frame), in the case of Test A-1

f̃ (p) at t̃ = 1.92 and
(
X̃ , Ỹ

)
= (0.5, 0.5) indicates that the bulk tendency dp f (p) < 0

is obtained at 0 ≤ p ≤ 0.125 and f̃ (p) = 0 at 0.125 < p. As a result, most of individuals

recovers at t̃ = 1.92 and
(
X̃ , Ỹ

)
= (0.5, 0.5). f̃ (p) at t̃ = 1.92 and

(
X̃ , Ỹ

)
= (0.5, 0.25)

indicates a concave form with one peak at p = 0 and the other at p = 0.98. Finally, f̃ (p)

at t̃ = 1.92 and
(
X̃ , Ỹ

)
= (0.5, 0) indicates the bulk tendency dp f̃ (p) > 0 in the range

of 0.256 ≤ p ≤ 1. As a result, f̃ (p) at t̃ = 1.92 and
(
X̃ , Ỹ

)
= (0.5, 0.25) is similar

to the mixture of f̃ (p) at t̃ = 1.92 and
(
X̃ , Ỹ

)
= (0.5, 0.5) and f̃ (p) at t̃ = 1.92 and(

X̃ , Ỹ
)

= (0.5, 0).

Next, we investigate f̃ (τ̃ ) := ∫
V3 f̃

(
t̃, x̃, p (τ̃ ) , ṽ

)
dv3. We set �τ̃ = 0.02 in the range

of 0 ≤ τ̃ ≤ 2. f̃ (τ̃ ) is the set of simple functions f̃ (�τ̃ × i) (i ∈ Z+) on Lebesgue measure
τ̃ ∈ [

i × �τ̃, (i + 1) × �τ̃). Then, 0 ≤ τ̃ ≤ �τ̃ includes both uninfected individuals and
infected individuals, whose elapsed time is in the range of 0 ≤ τ̃ ≤ �τ̃ . Figure 10 shows
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f̃ (τ̃ ) versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5), when t̃ = 1.0 (top-left frame),

(
X̃ , Ỹ

)
= (0.5, 0.25),

when t̃ = 1.0 (top-middle frame),
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.0 (top-right frame),(

X̃ , Ỹ
)

= (0.5, 0.5), when t̃ = 1.23 (middle-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when

t̃ = 1.23 (middle-middle frame),
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.23 (middle-right frame),(

X̃ , Ỹ
)

= (0.5, 0.5), when t̃ = 1.47 (bottom-left frame),
(
X̃ , Ỹ

)
= (0.5, 0.25), when

t̃ = 1.47 (bottom-middle frame), and
(
X̃ , Ỹ

)
= (0.5, 0), when t̃ = 1.47 (bottom-right

frame), in Test A-1. f̃ (τ̃ ) at t̃ = 1.0 and
(
X̃ , Ỹ

)
= (0.5, 0.5) indicates that sixty percent of

the total number of individuals, who are in
(
X̃ , Ỹ

)
= (0.5, 0.5) at t̃ = 1.0, are infected at

t̃ = 0 and there is no one, who is infected at t̃ > 0.44, because of f (τ̃ ≤ 0.56) = 0 at t̃ = 1.0

and
(
X̃ , Ỹ

)
= (0.5, 0.5). f̃ (τ̃ ) at t̃ = 1.0 and

(
X̃ , Ỹ

)
= (0.5, 0.25) indicates that there exist

individuals, who are infected at 0.225 ≤ t̃ ≤ 0.775, at t̃ = 1.0 and
(
X̃ , Ỹ

)
= (0.5, 0.25).

Additionally, f̃ (τ̃ ) at t̃ = 1.0 and
(
X̃ , Ỹ

)
= (0.5, 0.25) has a maximum peak at τ̃ = 0.3.

f̃ (τ̃ ) at t̃ = 1.0 and
(
X̃ , Ỹ

)
= (0.5, 0) indicates that nobody is infected at t̃ = 1.0 and(

X̃ , Ỹ
)

= (0.5, 0). f̃ (τ̃ ) at t̃ = 1.23 and
(
X̃ , Ỹ

)
= (0.5, 0.5) has a maximum peak at τ̃ =

1.23, whichmeans that most of individuals are infected at t̃ = 0, and finite values in the range

of 0.725 ≤ τ̃ ≤ 1.23. Thus, individuals at t̃ = 1.23 and
(
X̃ , Ỹ

)
= (0.5, 0.5) are infected at

0 ≤ t̃ ≤ 0.505. f̃ (τ̃ ) at t̃ = 1.23 and
(
X̃ , Ỹ

)
= (0.5, 0.25) has finite values in the range of

0.265 ≤ τ̃ ≤ 1.23 and a maximum peak at τ̃ = 0.63. We confirm that there exist individuals,

who are infected at t̃ = 0, at t̃ = 1.23 and
(
X̃ , Ỹ

)
= (0.5, 0.25), whereas there is no one,

who is infected at t̃ = 0, at t̃ = 1 and
(
X̃ , Ỹ

)
= (0.5, 0.25). Thus, individuals at t̃ = 1.23

and
(
X̃ , Ỹ

)
= (0.5, 0.25) are infected at 0 ≤ t̃ ≤ 0.965. Additionally, we conjecture that

f̃ (τ̃ = 1) at t̃ = 1.23 and
(
X̃ , Ỹ

)
= (0.5, 0.25) corresponds to f̃ (τ̃ = 0.775) at t̃ = 1.0

and
(
X̃ , Ỹ

)
= (0.5, 0.25). f̃ (τ̃ ) at t̃ = 1.23 and

(
X̃ , Ỹ

)
= (0.5, 0) has finite values in the

range of 0 ≤ τ̃ ≤ 0.39. Therefore, ninety percent of the total number of individuals, who

are in
(
X̃ , Ỹ

)
= (0.5, 0) at t̃ = 1.23, are infected in the range of 0.89 ≤ t̃ ≤ 1.23. f̃ (τ̃ )

at t̃ = 1.0 and
(
X̃ , Ỹ

)
= (0.5, 0) has a maximum value at τ̃ = 0.09. f̃ (τ̃ ) at t̃ = 1.47 and(

X̃ , Ỹ
)

= (0.5, 0.5) has finite values in the range of 0.97 ≤ τ̃ ≤ 1.47. Then, individuals at

t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0.5) are infected in the range of 0 ≤ t̃ < 0.5. Forty six percent

of individuals at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0.5) are infected at t̃ = 0. f̃ (τ̃ ) at t̃ = 1.47 and(

X̃ , Ỹ
)

= (0.5, 0.25) has finite values in the range of 0.5 ≤ τ̃ ≤ 1.47. Therefore, individuals

at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0.25) are infected in the range of 0 ≤ t̃ < 0.97. f̃ (τ̃ ) at

t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0.25) has amaximumpeak at τ̃ = 0.86, whichmeans that eight

percent of individuals at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0.25) are infected at t̃ = 0.61. f̃ (τ̃ )
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Fig. 11 f̃ (τ̃ ) versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5) (point A),

(
X̃ , Ỹ

)
= (0.5, 0.25) (point B) and

(
X̃ , Ỹ

)
=

(0.5, 0) (point C) (upper-left frame) and contour of p̄ (upper-right frame) at t̃ = 0.09 in Test B, and f̃ (τ̃ )

versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5) (point A),

(
X̃ , Ỹ

)
= (0.5, 0.25) (point B) and

(
X̃ , Ỹ

)
= (0.5, 0) (point C)

(lower-left frame) and contour of p̄ (lower-right frame) at t̃ = 0.33 in Test C

at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0) has finite values in the range of 0.2 ≤ τ̃ ≤ 0.74. Thus,

individuals at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0) are infected in the range of 0.73 ≤ t̃ < 1.27.

f̃ (τ̃ ) at t̃ = 1.47 and
(
X̃ , Ỹ

)
= (0.5, 0) has a maximum peak at τ̃ = 0.37. Thus, eleven

percent of the total number of individuals, who are in
(
X̃ , Ỹ

)
= (0.5, 0) at t̃ = 1.47, are

infected at t̃ = 1.1.
Next, we investigate effects of τm by considering f̃ (τ̃ ) versus τ̃ in Tests B andC. Figure 11

shows f̃ (τ̃ ) versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5) (point A),

(
X̃ , Ỹ

)
= (0.5, 0.25) (point B) and(

X̃ , Ỹ
)

= (0.5, 0) (point C) (upper-left frame) and contour of p̄ (upper-right frame) at

t̃ = 0.09 in Test B. f̃ (τ̃ ) versus τ̃ at
(
X̃ , Ỹ

)
= (0.5, 0.5) (point A),

(
X̃ , Ỹ

)
= (0.5, 0.25)

(point B) and
(
X̃ , Ỹ

)
= (0.5, 0) (point C) (lower-left frame) and contour of p̄ (lower-right

frame) at t̃ = 0.33 in Test C. f̃ (τ̃ ) at point (A) in Test B indicates that all the individuals
at point (A) are infected at t̃ = 0. f̃ (τ̃ ) at point (B) are finite at τ̃ = 0.05 and 0.07. Then,
most of individuals at point (B) are infected at t̃ = 0.04 and a few of individuals at point
(B) are infected at t̃ = 0.02. Consequently, invasions of individuals from the domain X − U

to point (A) never occurs, whereas invasions of individuals from other points to point (B)
seldom occur, because most of individuals are infected at t̃ = 0.04 at point (B). Such a
tendency of the local epidemic spread in Test B is markedly different from that in Test A-
1. The propagation speed of the boundary between the infected and uninfected domains in
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Fig. 12 Snapshots of sample particles in Tests C (upper-left and right frames) at t̃ = 0.6 and in Test A-1
(lower-left and right frames) at t̃ = 0.88, where the color of a sphere corresponds to p

Test B is markedly higher than that in Test A. Then, the characteristic time of invasions of
individuals from other points to point (B) is presumably longer than the characteristic time
of the local epidemic spread in Test B. Consequently, invasions of individuals from other
points to point (B) is suppressed in Test B. Similarly, invasions of individuals from X − U

to point (A) never occur at t̃ = 0.09. f̃ (τ̃ ) at point (A) in Test C also indicates that all the
individuals at point (A) are infected at t̃ = 0, whereas f̃ (τ̃ ) at point (B) are finite in the range
of 0.08 ≤ τ̃ ≤ 0.22. Consequently, invasions of individuals from other points to point (B) in
Test C occur more frequently than that does in Test B, because the propagation speed of the
boundary between the infected and uninfected domains in Test C is lower than that in Test B.
Consequently, the range of τ̃ , which yields f̃ (τ̃ ) �= 0, namely, sum of Lebesgue measure,
which yields f̃ (τ̃ ) �= 0, becomes the longer, as τ̃m becomes the longer. In summary, the ratio
of the number of individuals, who are infected at other lattices (domains), to the total number
of infected individuals at the specific lattice (domain) decreases, as τm decreases, because
the local epidemic spread occurs inside the lattice rapidly via one or a few of invasions of
the infected individuals from neighboring lattices, before some infected individuals reach to
neighboring lattice, because the virus titer increases rapidly inside the lattice owing to small
τm from Eq. (2). Figure 12 shows the sample particles (individuals), which are calculated
using the DSMC method, in Test C (at t̃ = 0.6) and Test A-1 (at t̃ = 0.88). A sphere
corresponds to one individual, where the diameter of a sphere is expressed with enlarged
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Fig. 13 Snapshots of vector field (ũ p0 , ṽp0 ) in Tests A-1 (left frame) and A-4 (middle frame) at t̃ = 1.0 and
A-5 (right frame) at t̃ = 0.72

scale to help easy views of readers, and colors of spheres correspond to each values of p. The
distribution of p in the neighborhood of the boundary between the infected and uninfected
domains is almost uniform in Test C, as shown in the enlarged view in the upper-right frame,
whereas individuals with different values of p coexist in the neighborhood of the boundary
between the infected and uninfected domains in Test A-1, as shown in the enlarged view in the
lower-right frame of Fig. 12. Consequently, we confirm that a small τ̃m yields the rapid local
epidemic spread via the binary collision between the infected and uninfected individuals,
once a infected individual invades to the outside of the boundary between the infected and
uninfected domains. Thus, the infected individual with the large velocity becomes a seed of
the local epidemic spread, which will be confirmed in the discussion of δup0 at the boundary
between the infected and uninfected domains in Fig. 13. Consequently, such a higher velocity
of the infected individuals at the boundary between the infected and uninfected domains
attributes to the finite diffusion flux from Eq. (14) at the boundary between the infected and
uninfected domains.

Toward further investigation of the propagation speed of the boundary between the infected
and uninfected domains, we calculate the propagation speed of the traveling wave front in
Tests A-1, B and C. The rough estimation of the propagation speed of the traveling wave front
can be performed fromFigs. 10 and 11 by calculating the arrival time of thewave front at point

(B)
(
X̃ , Ỹ

)
= (0.5, 0.25) such as ṽ∗|τ̃m=1 = 1.25, ṽ∗|τ̃m=0.75 = 2.5 and ṽ∗|τ̃m=0.5 = 12.5.

As a result, we obtain ṽ∗|τ̃m=0.75/ṽ∗|τ̃m=1 = 2 and ṽ∗|τ̃m=0.5/ṽ∗|τ̃m=1 = 20. Orders of such
two ratios of the traveling wave front are similar to those calculated using Eq. (23), as shown
in Fig. 4. Finally, the propagation speed of the traveling wave front depends on τ̃m strongly,
as predicted by discussions in Sect. 2.2.

Next, we investigate effects of the dependency of the local epidemic spread on ξ in the
collision term in Eq. (5) and θ̃ , respectively. Figure 13 shows snapshots of the vector field
(ũ p0 , ṽp0) in Tests A-1 (left frame) and A-4 (middle frame) at t̃ = 1.0 and A-5 (right
frame) at t̃ = 0.72, where ũp0 := (ũ p0 , ṽp0 , w̃p0). The propagation speed of the boundary
between the infected and uninfected domains in Test A-4 is slightly lower than that in Test
A-1, whereas the propagation speed of the boundary between the infected and uninfected
domains in Test A-5 is markedly higher than that in Test A-1. As a result, the increase in ξ

yields the slight increase in the propagation speed of the boundary between the infected and
uninfected domains owing to the increase in the collision frequency, because the majorant
collision frequency [30] is determined using 1 < Ẽmax in the DSMC calculation. Addition-
ally, the increase in θ̃ yields the increase in

〈∣∣δup0

∣∣〉 at the boundary between the infected
and uninfected domains, which leads to more rapid propagation of the boundary between the
infected and uninfected domains in Test A-5 than that in Test A-1. The number of individ-
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t=1.0 (Test A-6) t=1.0 (Test A-1)
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Fig. 14 Snapshots of p̄ at t̃ = 1.0 in Tests A-6 (upper-left frame) and A-1 (upper-right frame), and at
t̃ = 1.536 in Tests A-6 (lower-left frame) and A-1 (lower-right frame)

uals with the large velocity, who determine the propagation speed of the boundary between
the infected and uninfected domains, increases, as θ̃ increases. Actually, we can confirm
that the propagation speed of the boundary between the infected and uninfected domains
depends on not δũ but δũp0 at the boundary between the infected and uninfected domains
from Figs. 7 and 13. The increase in

〈∣∣δup0

∣∣〉 at the boundary between the infected and unin-
fected domains owing to the increase in θ̃ can be explained by the fact that D increases in
accordance with the increase in θ̃ due to D̃ ∝ θ̃ ξ/2 in Eq. (14).Meanwhile, K01 also increases
in accordance with the increase in θ̃ , when ξ > 0. Thus, it is still open problem whether
the increase in the propagation speed of the boundary between the infected and uninfected
domains via the increase in θ̃ is caused by the increase in D or K01 in Eq. (23). Meanwhile,
the description of the relation between δũ and δũp0 at the boundary between the infected
and uninfected domains is set as our future study. In Fig. 13, we find that

∣∣δup0

∣∣ at the
boundary between the infected and uninfected domains tend to be lager than

∣∣δup0

∣∣ inside
the infected domain. Such a tendency indicates that the virus tier is correlated to the veloc-
ity of the individual such as f (p, v) = C (p, v) φv (v) φp(p) (C (p, v)) is the correlation
function).

Finally, we investigate effects of the boundary condition on the local epidemic spread.
Figure 14 shows snapshots of p̄ at t̃ = 1.0 in Tests A-6 (upper-left frame) and A-1 (upper-
right frame), and at t̃ = 1.536 in Tests A-6 (lower-left frame) and A-1 (lower-right frame).
There are no marked differences between p̄ in Test A-6 and p̄ in Test A-1 at t̃ = 1.0 and
1.536. Consequently, effects of the boundary condition on the local epidemic spread are
ignorable.

From forgoing discussions on numerical results, we obtain some significant conclusions
on the local epidemic spread as follows:
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(i) The propagation speed of the boundary between the infected and uninfected domains
is dominated by both τ̃m and θ̃ , exclusively.

(ii) The boundary between the infected and uninfected domains spreads rapidly, when τ̃m
is small. Then, the infection with small τ̃m can spread by a few invasions of infected
individuals to the uninfected domain, when the interaction between the infected and
uninfected individuals is allowable. Consequently, we must pay attention to the local
epidemic spread with the small τ̃m by suppressing movements of infected individuals
not to invade to the uninfected domain. Of course, the local epidemic spread can be
accelerated by the transport of the infected individuals to the uninfected domain using
the vehicle, when τ̃m is small.1

(iii) The infected individual with the large velocity can invade to the uninfected domain,
more frequently than those with the small velocity. The higher velocity of the infected
individuals than that of the uninfected individuals at the boundary between the infected
and uninfected domains yields the finite diffusion flux, which is expressed by Eq. (14).
Then, the infected individual with the large velocity can be a seed of the infection in the
uninfected domain, more frequently than those with the small velocity. Consequently,
the virus titer p is correlated to |v| in f (t, p, v, x). The diffusion flux resulted from
the difference between such two velocities at the boundary between the infected and
uninfected domains enables us to demonstrate the dynamics of the epidemic spread
using the FKPP equation in Eq. (18). Actually, the dependency of the propagation
speed of the traveling wave front (i.e., boundary between the infected and uninfected
domains) on τ̃m is described by Eq. (23) with some good accuracies.

3 Extension of Infection Process

In above discussion, the probability of the infection depends on p > 0 (or p1 > 0) and Ẽ ,
as shown in Eq. (5). Here, we consider the extension of the infection process of the virus by
proposing three models. The first model (model A) is that the infected individuals with the
normalized virus titer p are excluded from the calculation domain with the rate μp. In other
words, infected individuals pass away or quarantined with the rate μp.

In the model A, the infected individuals with p = 1 lead to death or being quarantined
with the maximum probability.

Consequently, Eq. (5) is modified as

Model A (stochastic lethal/quarantine (without interactions) model)

∂t f (t, v, x, p, s) + v · ∇x f (t, v, x, p, s) + ∇pψ (τ) f (t, v, x, p, s = 1)

+μp f (t, v, x, p, s = 1) = Q ( f, f1) , (25)

where μ ∈ R+ corresponds to the force of mortality or quarantine. Provided that μ is equal
to the inverse of the time interval 1/�t , the infected individuals with p = 1 always lead to
death or being quarantined. In this paper, we restrict ourselves to the case of μ = 1/�t to
investigate effects of μ on the local epidemic spread.

As the time interval, four types of the time interval are considered such as �t̃ = 2×10−3

(Test D-1), 4× 10−3 (Test D-2), 5× 10−4 (Test D-3) and 1× 10−4 (Test D-4). Other initial

1 In item (ii), the epidemic spread is decelerated by the decrease in τ̃m , when the shortest collisional time
between the infected and uninfected individuals is longer than τ̃m , adequately, whereas such a situation is not
postulated in this paper
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conditions in Tests D-1, 2, 3 and 4 are quite sames as those in Test A-1. Figure 15 shows
time evolutions of ρ̃ (top six frames), θ̃ (middle six frames) and p̄ (bottom six frames) in
Test D-1. The infected individuals in U pass away (or are quarantined), as shown in contours
of ρ̃ at t̃ = 0.0002, 0.8 and 1.6. Meanwhile, the number of individuals, who pass away or
are quarantined, is large along X̃ = 0 and Ỹ = 0, as shown in contours of ρ̃ at t̃ = 2.4
and 3.2. Finally, the infected individuals have disappeared at t̃ = 8.8. Therefore, Model A
allows the survival of individuals, who are not infected, by arranging the force of mortality
or quarantine, namely, μ, as discussed later. θ̃ fluctuates around 5 at t̃ = 0.002, whereas

there emerges hot spots around
(
X̃ , Ỹ

)
= (0.5, 0.5) at t̃ = 0.8, 1.6 and 2.4. From contours

of ρ̃ and θ̃ , we can confirm that θ̃ is high in the domain, where ρ̃ is small, at t̃ = 0.8, 1.6,
2.4 and 3.2. The averaged temperature in the calculation domain, namely, (1/V )

∫
X θ̃d3x

(V : volume of the calculation domain), temporally decreases from t̃ = 2.4 to 3.2. Such a
decrease in θ̃ indicates that individuals with the higher kinetic energy tend to pass away or
being quarantined the more frequently, because the infection rate via the binary collision
increases in accordance with Ẽξ , as shown in Eq. (5). Figure 15 shows that infected domain
spreads concentrically at t̃ = 0.8, as shown in the contour of p̄, whereas p̄ is large locally
at t̃ = 1.6, 2.4 and 3.2. We confirm that p̄ is large in the domain, where ρ̃ is small, owing
to the higher probability of the death or quarantine in accordance with the larger p in Model
A. The infected individuals have disappeared at t̃ = 8.8, as shown by p̄ = 0 in X at
t̃ = 8.8.

Finally, we investigate effects of μ on the total number of uninfected individuals, namely,
ρ̃t (t̃) := ρ̃t (0)−1

∫
(P′−P)×V3×X f̃ (t, p, v, x) dpd3vd3x. Figure 16 shows ρ̃t versus t̃ in Tests

D-1, 2, 3 and 4, which are obtained using Model A.
Figure 16 shows the result:

lim
t̃→+∞

ρ̃t
(
t̃
) = 5.7 × 10−2 (Test D-1).

lim
t̃→+∞

ρ̃t
(
t̃
) = 2.6 × 10−2 (Test D-2).

lim
t̃→+∞

ρ̃t
(
t̃
) = 1.0 × 10−1 (Test D-3).

lim
t̃→+∞

ρ̃t
(
t̃
) = 4.5 × 10−1 (Test D-4).

These results indicate that limt̃→+∞ ρ̃t
(
t̃
)
increases, as μ increases. Thus, the more rapid

death or quarantine, which exhibits infected individuals to interact with others, yields the
more uninfected individuals at t̃ → +∞. Meanwhile, such a rapid death or quarantine via
the increase in μ shows the rapid decrease of ρ̃t in the early term (0 ≤ t̃ < 0.6), as shown
in the enlarged view in Fig. 16. Indeed, we can understand that the rapid quarantine of
the infected individuals via the early detection of the virus is significant to avoid the local
epidemic spread.

In the second model (model B), the velocity of the infected individuals decreases in
accordance with p such as

dvi
dt

= −ζp pi (τ ) vi , i ∈ J {x ∈ J |px ∈ P ∩ x ∈ N} , (p (τ ) > 0, ζ, ζp ∈ R+),

(26)

where ζp is the damping rate.
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Fig. 15 Time evolutions of ρ̃ (top six frames), θ̃ (middle six frames) and p̄ (bottom six frames) in Test D-1
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Fig. 16 ρ̃t versus t̃ in Tests D-1,
2, 3 and 4, which are obtained
using Model A

As a result of Eq. (26), Eq. (5) is modified as

Model B (hypokinesia model)

∂t f (t, v, x, p, s) + v · ∇x f (t, v, x, p, s) + ∇pψ (τ) f (t, v, x, p, s)

−pζp∇v · v f (t, v, x, p, s = 1) = Q ( f, f1) . (27)

The total collisional energy (Ẽ) decreases owing to the decrease in the velocity of the infected
individual in model B. Consequently, the infection rate via the binary collision decreases, as
the damping rate of v, namely, pζp , increases in accordance with the increase in p (τ ).

To investigate the characteristics ofModel B, the local epidemic spread is calculated using
ζp = 10, whereas initial conditions are quite same as those in Test A-1. Figure 17 shows time
evolutions of ρ̃ (top six frames), θ̃ (middle six frames) and p̄ (bottom six frames), which are
obtained using Model B. The infected domain spreads concentrically and the propagation
speed of the boundary between the infected and uninfected domains at 0 ≤ t̃ ≤ 1, which
is obtained using Model B, is similar to that in Test A-1, as shown in contours of p̄ in
Figs. 5 and 17. The decrease in the kinetic energy of the infected individual yields the low

temperature domain around
(
X̃ , Ỹ

)
= (0.5, 0.5) at t̃ = 0.768. Such a decrease in θ̃ yields

the decrease in the pressure, which attributes to the inflow of individuals, who exist in the high
pressure domain, to the low pressure domain. Consequently, ρ̃ temporally increases around(
X̃ , Ỹ

)
= (0.5, 0.5) at 0.768 ≤ t̃ . Finally, the concentric contour of p̄ at t̃ = 1 changes

to the rhombus contour of p̄ at t̃ = 1.92 owing to the periodic boundary condition. Indeed,
Model B fails to delay the propagation of the boundary between the infected and uninfected
domains, because the decrease in the kinetic energy of the infected individual yields the low
pressure regime, which attracts uninfected individuals from the high pressure regime.

Finally, in the third model, uninfected individuals try to go away from the gravitational
center (xG ) of infected individuals in accordance with the repulsive force (Fr ) and infected
individuals are gathered to their gravitational center in accordance with the attractive force
(Fa). Such a situation still allows an interaction between infected and uninfected individuals.
Therefore, gathering of the infected individuals is not complete quarantine, which removes
existences of infected individuals with some probability from X like Model A.
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Fig. 17 Time evolutions of ρ̃ (top six frames), θ̃ (middle six frames) and p̄ (bottom six frames), which are
obtained using Model B with ζp = 10
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The repulsive and attractive forces are defined as

Fr : = κr
xi − xG
|xi − xG | , in X

3, κr ∈ R+

Fa : = −κa
xi − xG
|xi − xG | , in X

3, κa ∈ R+

xG : =
∑

i∈J {x∈J |px∈P∩x∈N}
xi

/∣∣∣∣∣∣
⋃

i∈J {x∈J |px∈P∩x∈N}
i

∣∣∣∣∣∣ , (28)

From Eq. (28), we obtain

dvi
dt

= Fr , i ∈ K
{
x ∈ K |px ∈ (P ∩ P

′) ∩ x ∈ N
}

dvi
dt

= Fa, i ∈ J {x ∈ J |px ∈ P ∩ x ∈ N} (29)

As a result of Eq. (29), Eq. (5) is modified as

Model C (quarantine with interactions and refugee model)

∂t f (t, v, x, p, s) + v · ∇x f (t, v, x, p, s) + ∇pψ (τ) f (t, v, x, p, s)

+∇v · Fr f (t, v, x, p, s = 0) + ∇v · Fa f (t, v, x, p, s = 1)

= Q ( f, f1) . (30)

To investigate the characteristics of Model C, numerically, κr = 10 and κa = 100 are set.
Other initial conditions are same as those in Test A-1. Figure 18 shows time evolutions of ρ̃

(top six frames), θ̃ (middle six frames) and p̄ (bottom six frames), which are obtained using
Model C with κr = 10 and κa = 100. Contours of p̄ in Fig. 18 indicates that the propagation
speed of the boundary between the infected and uninfected domains, which is obtained using
the Model C with κr = 10 and κr = 100, is lower than that in Test A-1 owing to refugees

of uninfected individuals and swarming of infected individuals around
(
X̃ , Ỹ

)
= (0.5, 0.5).

The infected individuals try to go away from infected individuals at t̃ = 1.0, as confirmed
by the vector fields of (ũ, ṽ) in Fig. 19. Additionally, velocities of individuals around the
boundary between the infected and uninfected domains is large at t̃ = 2.16 and 3.98, whereas

individuals cluster toward
(
X̃ , Ỹ

)
= (0.5, 0.5) inside the boundary between the infected

and uninfected domains. As a result, ρ̃ around
(
X̃ , Ỹ

)
= (0.5, 0.5) temporally increases,

whereas θ̃ inside such a clustering domain temporally increases at 0.24 ≤ t̃ , as shown in
Fig. 18. Finally, all the individuals in X are infected in Model C, although the propagation
speed of the boundary between the infected and uninfected domains inModel C is lower than
that in Test A-1.

4 Concluding Remarks

The stochastic Boltzmann type equation was formulated to demonstrate the local epidemic
spread in the local domain at the initial stage by focusing on the time evolution of the virus titer
inside the infected individual. The propagation speed of the boundary between the infected
and uninfected domains strongly depends on the characteristic time of the virus titer, namely,
τm , whereas the individual with the higher velocity becomes a seed of the local epidemic
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Fig. 18 Time evolutions of ρ̃ (top six frames), θ̃ (middle six frames) and p̄ (bottom six frames), which are
obtained using Model C with κr = 10 and κa = 100

123



J Sci Comput (2017) 73:122–156 151

Fig. 19 Vector fields (ũ, ṽ) at t̃ = 1.0, 2.16 and 3.98, which are obtained using Model C with κr = 10 and
κa = 100

spread at the boundary between the infected and uninfected domains, the more frequently,
as τm decreases. The analytical result of the propagation speed of the boundary between the
infected and uninfected domains is obtained using the FKPP equation. The dependency of
the propagation speed on τm , which is analytically estimated using the FKPP equation, is
numerically confirmed with some good accuracies. Additionally, the absolute value of the
fluctuating flow velocity of infected individuals, namely,

〈
δ|up0 |

〉
, at the boundary between

the infected and uninfected domains increase in accordance with the increase in the initial
temperature. The increase in

〈
δ|up0 |

〉
yields the increase in the propagation speed of the

boundary between the infected and uninfected domains. Such an increase in the propagation
speed of the boundary between the infected and uninfected domains owing to the increase in
the initial temperature can be explained by increases in D and K01 (0 < ξ ) in the framework
of the FKPP equation, as shown in Eq. (23). The ratio of the number of individuals, who are
infected at other lattices (domains), to the total number of infected individuals at the specific
lattice (domain) decreases, as τm decreases, because the local epidemic spread occurs inside
the lattice rapidly via one or a few of invasions of the infected individuals from neighboring
lattices, before some infected individuals reach to neighboring lattice, because the virus titer
increases rapidly inside the cell owing to small τm . Meanwhile, the change of the velocity
fluctuations via the change of the number of sample particles does not affect the propagation
speed of the boundary between the infected and uninfected domains. The dependency of
the collision frequency on the total kinetic energy of two interacting individuals indicates
that the stronger dependency of the collision frequency on the total kinetic energy yields the
faster propagation of the boundary between the infected and uninfected domains owing to
the increase in K01 (ξ > 0). Finally, three types of the human behavior in accordance with
the local epidemic spread was considered. In Model A, the more rapid death or quarantine of
infected individuals, which is done not to interact with other uninfected individuals, yields
the more uninfected individuals under t → +∞. In model B, the hypokinesia of infected
individuals yields the concentration of individuals around the center of the infected domain.
Consequently, Model B fails to delay the local epidemic spread owing to the increase in the
collision frequency between the infected and uninfected individuals around the center of the
infected domain. InModel C, the quarantine of the infected individuals inside the specific area
was expressedwith the attractive force,whereas the refugee of the uninfected individuals from
the infected individuals was expressed with the repulsive force. Indeed, Model C succeeded
the delay of the local epidemic spread, whereas the allowance of interactions between the
infected and uninfected individuals leads to the result that all the individuals in the calculation
domain are infected. Various types of the combination ofModels A, B andC together with the
realistic dynamics of pedestrians in “Appendix” are interesting in our future study together
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with the comparison of numerical results, which are obtained using our kinetic model, with
real datum of the local epidemic spread.

Appendix: Local Epidemic Spread with Intended Velocities of Pedestrians

In this paper, we have considered the dynamics of pedestrians (individuals), who never have
their intended velocities [15]. Additionally, we have assumed the isotropic scattering after the
binary collision, which might be rough model to describe the characteristics of the dynamics
of the pedestrians [15]. For example, the number of pedestrian, who go back to the direction,
which has been walked, after the binary collision is presumably less than that of pedestrian,
who go straight toward the intended direction after the binary collision. Therefore, we must
set the weight on the small deflection angle in order to emphasize the grazing collision,
which does not change intended velocities of colliding two pedestrian. Such stress on the
small deflection angle is attained by changing a weighting parameter in the deflection angle
in the Variable Soft Sphere (VSS) model [31]. Additionally, the kinetic equation beyond the
stochastic Boltzmann equation (i.e., Enskog equation) must be considered to demonstrate
packing effects via the high volume fraction in X

3 occupied by pedestrian [32]. Finally, the
sophistication of the collisional process in the local epidemic spread, which considers the
characteristics of pedestrian, will be set as our future study.

Here, we mention to the effect of the intended velocities, briefly. The velocity of the
individual with the index-i relaxes to intended velocities such as

dvi (t)

dt
= ν

(
v0i − vi (t)

)
, (31)

where v0i is the intended velocities and ν is the relaxation rate.
From Eq. (31), we can formulate the stochastic Boltzmann equation with the relaxation

to intended velocities such as

∂t f (t, v, x, p, s) + v · ∇x f (t, v, x, p, s) + ∇pψ (τ) f (t, v, x, p, s = 1)

= Q ( f, f1) + ν [ψ0 (t, v, x, p, s) − f (t, v, x, p, s)] , (32)

where ψ0 (t, v, x, p, s) is defined as

ψ0 (t, v, x, p, s) := 1

Vc

Nc∑
i=1

δ3 (x − xi (t)) δ3
(
v − v0i

)
δ (p − pi (τ )) . (33)

The relaxation term in Eq. (32) is a form of the BGK model, whereas Eq. (32) indicates
that the energy-momentum conservation violates. The author recommends readers to access
to another type of the Boltzmann type equation proposed by Helbing [33], which demon-
strates the collisional dynamics between two pedestrians by setting the intended velocity as
a dependent variable in the distribution function.

In our numerical tests in Sects. 2.2 and 3, the initial distribution function is obtained
using the Maxwell-Boltzmann distribution. Similarly, we consider the numerical condition
at t̃ = 0, which is quite same as that in Test A-1. Additionally, we assume that the intended
velocities of pedestrian are equal to those at t̃ = 0. Figure 20 shows p̄ at t̃ = 1.34, which are
obtained using Eq. (32), when ν̃ = 0.25 (left frame), 0.5 (middle frame) and 1 (right frame),
in which ν̃ := ν t̃∞. Figure 20 shows that the propagation speed of the boundary between
the infected and uninfected domains decreases, as ν̃ increases. As a result, we find that the
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Fig. 20 p̄ at t̃ = 1.34, which are obtained using Eq. (32), when ν = 0.25 (left frame), 0.5 (middle frame)
and ν = 1 (right frame)

intended velocity is a key parameter to determine the propagation of the boundary between
the infected and uninfected domains.

Next, we refer to the limiting case, in which ν̃ is markedly large and the intended velocities
of pedestrian are limited to two values, namely,

(±ṽ0� , 0, 0
)
. The number of pedestrians with

the intended velocity
(
ṽ0� , 0, 0

)
is same as that of pedestrians with

(−ṽ0� , 0, 0
)
. Of course, the

intended velocity of each of pedestrians is fixed to its constant value, namely, ±ṽ0� , during
the calculation.

Figure 21 shows time evolutions of p̄, when ṽ0� = 1 and ν̃ = 100 in Eq. (32), and initial
numerical condition is quite same as that in Test A-1.

Three characteristics domains, S1, S2 and S3, which are defined as{
(x̃, ỹ) ∈ S1| (x̃ − 0.3)2 + (ỹ − 0.5)2 < (0.1)2

}
,{

(x̃, ỹ) ∈ S2| (x̃ − 0.7)2 + (ỹ − 0.5)2 < (0.1)2
}

,

{(x̃, ỹ) ∈ S3| (x̃, ỹ) ∈ T1 − (T1 ∩ S1) − (T1 ∩ S2)} ,

where {(x̃, ỹ) ∈ T1|x̃ ∈ [0.3, 0.7] , ỹ ∈ [0.4, 0.6]} ,

are obtained at t̃ = 1. p̄ in S1 and S2 is larger than that in S3,whereas p̄ = 0 inX−S1−S2−S3.
Consequently, the propagation of the boundary between the infected and uninfected domains
in the Ỹ -direction is suppressed owing to the intended velocities of pedestrians, namely,
(±1, 0), as confirmed by comparing of the contour of p̄ at t̃ = 1 in Fig. 5 with that in Fig. 21.

Subsequently, four characteristic infected domains, S′
1, S

′
2, S4 and S5, which are defined

as {
(x̃, ỹ) ∈ S′

1| (x̃ − 0.2)2 + (ỹ − 0.5)2 < (0.1)2
}

,{
(x̃, ỹ) ∈ S′

2| (x̃ − 0.8)2 + (ỹ − 0.5)2 < (0.1)2
}

,

{(x̃, ỹ) ∈ S4|x̃ ∈ [0.4, 0.6] , ỹ ∈ [0.4, 0.6]} ,{
(x, y) ∈ S5| (x̃, ỹ) ∈ T2 − (

T2 ∩ S′
1

)− (
T2 ∩ S′

2

)− S4
}
,

where {(x̃, ỹ) ∈ T2|x̃ ∈ [0.2, 0.8] , ỹ ∈ [0.4, 0.6]} ,

are obtained at t̃ = 1.44.
S′
1 and S′

2 are obtained as a result of time evolutions of S1 and S2 at t̃ = 1, respectively.
Consequently, most of pedestrians in S′

1 and S′
2 recover from the infection, as confirmed by

p̄ � 1 in S′
1 and S′

2. Meanwhile, p̄ in S4 approximates to its maximum value, namely, unity,
at t̃ = 1.44.
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Fig. 21 Time evolutions of p̄, when ṽ0
�

= 1 and ν̃ = 100 in Eq. (32), and initial condition is quite same as
that in Test A-1

Subsequently, two characteristic infected domains, S′
4 and S′′

4 , which are defined as{
(x̃, ỹ) ∈ S′

4|x̃ ∈ [0.4, 0.6] , ỹ ∈ [0.6, 0.65]
}
,{

(x̃, ỹ) ∈ S′′
4 |x̃ ∈ [0.4, 0.6], ỹ ∈ [0.35, 0.4]} ,

are obtained at t̃ = 1.92.
S′
4 and S′′

4 are obtained as a result of time evolutions of S4 at t̃ = 1.44, respectively. In
short, infected pedestrians (with p > 0) in S4 at t̃ = 1.44 induce infected pedestrians, who
walk in S′

4 or S
′′
4 at t̃ = 1.92.

Subsequently, two characteristic infected domains, S′′′
4 and S′′′′

4 , which are defined as{
(x̃, ỹ) ∈ S′′′

4 |x̃ ∈ [0.3, 0.7] , ỹ ∈ [0.66, 0.67]
}
,{

(x̃, ỹ) ∈ S′′′′
4 |x̃ ∈ [0.3, 0.7] , ỹ ∈ [0.33, 0.34]

}
,

are obtained at t̃ = 2.4.
S′′′
4 and S′′′′

4 are obtained as a result of time evolutions of S′
4 and S

′′
4 at t̃ = 1.92, respectively.

In short, infected pedestrians (with p > 0) in S′
4 (S

′′
4 ) at t̃ = 1.92 induce infected pedestrians,

who walk in S′′′
4 (S′′′′

4 ) at t̃ = 2.4. Of course, the propagation velocity of the infected domain
in X̃ -direction is overwhelming over that in Ỹ -direction owing to the intended velocities of
pedestrians, namely, (±1, 0, 0) and large ν.

Finally, two characteristic infected domains, S′′′′′
4 and S′′′′′′

4 , which are defined as{
(x̃, ỹ) ∈ S′′′′′

4 |x̃ ∈ [0, 1] , ỹ ∈ [0.73, 0.78]
}
,{

(x̃, ỹ) ∈ S′′′′′′
4 |x̃ ∈ [0, 1] , ỹ ∈ [0.22, 0.27]

}
,

are obtained at t̃ = 4.0.
S′′′′′
4 and S′′′′′′

4 are obtained as a result of time evolutions of S′′′
4 and S′′′′

4 at t̃ = 2.4,
respectively. In short, infected pedestrians (with p > 0) in S′′′

4 (S′′′′
4 ) at t̃ = 2.4 induce

infected pedestrians, who walk in S′′′′′
4 (S′′′′′′

4 ) at t̃ = 4.0. two characteristic infected domains
S′′′′′
4 and S′′′′′′

4 propagate to the positive and negative Ỹ -directions, respectively, in accordance
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Fig. 22 Contours of p̄ (upper-left frame), ρ̃ (upper-middle frame) and θ̃ (upper-right frame), when t̃ = 0.168,
and contours of p̄ (lower-left frame), ρ̃ (lower-middle frame) and θ̃ (lower-right frame), when t̃ = 0.96

with the velocity fluctuations (δup0 ) in Ỹ -direction owing to the isotropic scatterings in binary
collisions.

At last, we refer to the local epidemic spread, when intended velocities are ṽ0i =(±ṽ0� = ±5, 0, 0
)
. The number of pedestrians with the intended velocity

(
v0� , 0, 0

)
is same

as that of pedestrians with
(−v0� , 0, 0

)
. The initial condition is quite same as that in Test A-1.

Figure 22 shows contours of p̄ (upper-left frame), ρ̃ (upper-middle frame) and θ̃ (upper-right
frame), when t̃ = 0.168, and contours of p̄ (lower-left frame), ρ̃ (lower-middle frame) and
θ̃ (lower-right frame), when t̃ = 0.96. Certainly, the propagation speed of two character-
istic infected domains, which correspond to S1 and S2 in the case of ṽ0� = 1, increases in
accordance with the increase in ṽ0� , as shown in upper-left frame of Fig. 22. Surely, two
characteristic infected domains, which correspond to S′′′′′

4 and S′′′′′′
4 in the case of ṽ0� = 1, are

obtained at t̃ = 0.96. Such an increase in the propagation speed in Ỹ -direction in accordance
with the increase in ṽ0� is explained by the fact that the increase in ṽ0� yields the increase
in the local temperature. For example, θ̃ ∈ [0.055, 0.095] is obtained, when ṽ0� = 1 and
t̃ = 4.0, whereas θ̃ ∈ [0.83, 3.43] is obtained, when ṽ0� = 5 and t̃ = 0.96. The increase
in the propagation speed of the boundary between the infected and uninfected domains in
accordance with the increase in θ̃ is surely confirmed in Fig. 13. Finally, we confirm that
small patterns in contours of ρ̃ and θ̃ appear at t̃ = 0.168, whereas such small patterns in
contours of ρ̃ and θ̃ change to large patterns at t̃ = 0.96. The large patterns in contours of
ρ̃ at t̃ = 0.96 are self-organized in accordance with the local dense and sparse populations
of pedestrians. The large spatial-patterns of ρ̃ and θ̃ at t̃ = 0.96 change, temporally, as t̃
increases from t̃ = 0.96, whereas scales of the large patterns at t̃ = 0.96 are not enlarged,
as t̃ increases from t̃ = 0.96. We, however, find that pattern formations in contours of ρ̃ and
θ̃ never yield patterns in contours of p̄ at t̃ = 0.96.
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