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Abstract We consider the approximation of the phase-space flow of a dynamical system on
a triangulated surface using an approach known asDiscrete FlowMapping. Such flows are of
interest throughout statisticalmechanics, but the focus here is onflows arising from ray tracing
approximations of linear wave equations. An orthogonal polynomial basis approximation of
the phase-space density is applied in both the position and direction coordinates, in contrast
with previous studies where piecewise constant functions have typically been applied for
the spatial approximation. In order to improve the tractability of an orthogonal polynomial
approximation in both phase-space coordinates, we propose a careful strategy for computing
the propagation operator. For the favourable case of a Legendre polynomial basis we show
that the integrals in the definition of the propagation operator may be evaluated analytically
with respect to position and via a spectrally convergent quadrature rule for the direction
coordinate. A generally applicable spectral quadrature scheme for integration with respect
to both coordinates is also detailed for completeness. Finally, we provide numerical results
that motivate the use of p-refinement in the orthogonal polynomial basis.
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1 Introduction

The long-time evolution of dynamical systems is often studied by modelling the propagation
of a density distribution ρ in phase-space [16], in particular when the dynamics are ergodic.
Conservation of energy (or probability) leads to a phase-space continuity equation known as
the generalized Liouville equation

∂ρ

∂t
+ ∇ · (Vρ) = 0, (1)

where V is the vector field defining the underlying dynamical system thus

Ẋ = V(X). (2)

The solutions of this dynamical system X (τ ) = φτ (X (0)) are trajectories in phase-space,
where φτ is the associated flow map. Such models lie at the heart of statistical mechanics
and have a wide range of applications including particle tracking in fluids [5,36], interface
tracking in atmospheric sciences [35], the simulation of molecular dynamics [31] as well
as illumination or rendering problems in computer graphics [21] or, more generally, the
geometrical optics/geometrical acoustics limit of linear wave equations [37].

The method of characteristics leads to an expression for the solution of the generalised
Liouville equation in terms of the flow map φτ . A density ρ is transported along trajectories
given by φτ under the action of a linear transfer operatorL τ known as the Frobenius–Perron
operator [12]

ρ(X, τ ) = L τ [ρ](X) =
∫

δ(X − φτ (Y ))ρ(Y, 0) dY. (3)

A number of transfer operator based methods have been developed for computing phase-
space densities in practical applications. Domain based transfer operator approaches, for
example, start by subdividing the phase-space into distinct cells and considering transition
rates between these phase-space regions. One of the most common approaches of this type is
Ulam’smethod [26,41].Othermethods includewavelet and spectralmethods for the infinites-
imal Frobenius–Perron operator [15,20], eigenfunction expansion methods [4] and periodic
orbit techniques [12,27]. For a discussion of convergence properties of the Ulam method see
[1,2]. However, such methods have only found a fairly limited range of applicability, with
difficulties arising due to the high-dimensionality of the phase-space.

In this work we consider the case whereV describes a Hamiltonian system, and hence the
divergence operator in the generalised Liouville equation (1) reduces to the Poisson bracket
as ∇ · (Vρ) = {ρ, H}, where H is the associated Hamiltonian. This class of problems is
particularly interesting since it includes, as an important case, short wavelength asymptotic
approximations for solving linear wave equations in terms of their underlying ray dynamics.
Note that for homogeneous domains with a constant wave speed, and thus a constant and
conserved phase-space volume, then the right side of Eq. (3) evaluates to ρ(φ−τ (X), 0). In
this context, direct “deterministic” methods based on directly tracking swarms of trajectories
in phase-space have proved very popular. Such methods are often collectively referred to
as ray tracing, see for example [6]. Methods related to ray tracing but tracking the time-
dynamics of interfaces in phase-space, such as moment methods and level set methods,
have been developed in [14,28,32,43,44] amongst others. Direct physics-preserving finite
difference discretisations of the Liouville equation have also been proposed in Refs. [19,42].
These methods are best suited to problems with relatively low reflection orders (or problems
in one space dimension) and have found applications in acoustics, seismology and optical
illumination problems.
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Direct ray and interface tracking methods are, however, unsuitable for the modelling of
long time dynamics in bounded domains Ω ⊂ R

2. Here, the dynamics (regular or chaotic)
depend heavily on the geometry of the boundary of Ω; multiple reflections of the rays often
lead to complicated folding patterns of the associated level-surfaces and an exponential
increase in the number of branches that need to be considered. In this regime, the modelling
becomes more tractable if one considers the long time stationary solutions to the Liouville
equation given by

{ρ, H} = 0. (4)

In particular, simplified statistical models emerge under additional ergodicity and mixing
assumptions on the ray dynamics. A popular tool in the context of vibro-acoustic modelling
is Statistical Energy Analysis (SEA) (see for example [29,30]). A related method for elec-
tromagnetic waves is the random coupling model (see [17] and references therein). In SEA,
a built-up structure is divided into a set of subsystems and ergodicity of the underlying
ray dynamics as well as quasi-equilibrium conditions are imposed. The result is a model
where the density in each subsystem is a single degree of freedom, leading to greatly sim-
plified equations based only on flow rates (or coupling loss factors) between subsystems.
The assumptions necessary for an SEA treatment are often hard to verify a priori, or are
only justified when averaging over an ensemble of similar structures; for example, structures
originating from the same production line that are “identical” up tomanufacturing tolerances.
The limits of SEA have been discussed by Langley and Le Bot amongst others [3,23–25,38].

In order to extend the statistical approaches described above, we consider numerical
schemes for solving the stationary Liouville equation (4) without further assumptions on
the nature of the trajectory dynamics. The so-called Dynamical Energy Analysis (DEA)
introduced in [37] is based on numerically solving a reformulation of the integral equation
(3). In this reformulation, the time-dependent flow map φτ is replaced with a boundary map
φ that transports trajectories between intersections with the boundary of a finite sub-structure
Ω j ⊂ Ω , j = 1, . . . , N . Here N can be considered as the number of sub-systems so that

Ω = ∪N
j=1Ω j ,

which mirrors an SEA treatment of the problem. Replacing φτ with φ simplifies the Frobe-
nius Perron operator (3) to a boundary integral operator, with the resulting advantage of a
reduction in the dimensionality. The explicit time-dependence of the density is lost, but the
long time stationary behaviour can be recovered by summing over infinitely many iterates of
the boundary operator. A trigonometric polynomial basis approximation of the density ρ on
the boundary phase-space of each Ω j projects ρ onto finite dimensional space, which corre-
sponds to an SEA model at zeroth order. At higher order the approximation incorporates the
geometry dependent ray dynamics, relaxing the underlying ergodicity and quasi-equilibrium
assumptions of SEA.

A number of approaches have been suggested in order to obtain efficient discretizations
of the boundary operator in DEA. A boundary element method for the stationary Liouville
equation (4) was proposed in [9,10], which extended the DEA approach to larger multi-
component structures and three-dimensional applications. It is worth emphasizing here that
since the density ρ lives in phase-space, it also needs to be discretized in the direction (or
momentum) coordinate. A global orthogonal polynomial basis approximation has typically
been used for this purpose. One advantage of a full phase-space formulation such as DEA is
that problems due to caustics where ray trajectories focus on a single point in position space
are avoided. In phase-space the rays do not intersect since their momentum coordinates are
distinct, and it is only after projecting down onto position space that the caustics become
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apparent; for an example of a DEA simulation including caustics see [11]. Hence caustics
do not affect the convergence of the boundary integral model itself, only the post-processing
step to compute the density distribution within the solution domain.

A major advantage of DEA is that the choice of subsystem division is no longer critical,
since the SEA assumptions related to this criticality have been removed. In fact, one can use
the elements of a mesh as substructures in DEA providing huge flexibility and a wealth of
potential applications. Applying DEA on the same meshes used for finite element models in
industrial applicationsmeans that the end-user can accessmid-to-high frequencieswithout the
need for extensive remodelling, as would be required for SEA. In Ref. [11] it was shown that
local, piecewise constant spatial approximations of the density on the edges of a triangulated
surface could be efficiently computed using semi-analytic techniques, which exploit the
local geometric simplicity. In this so-called Discrete Flow Mapping (DFM) approach, the
trajectory flow is approximated by a discretized flow across a mesh. The technique has since
been extended to general convex polygonalmesh elements and to industrial scale applications
[8].

Whilst DFM employs orthogonal polynomial approximations of the density in the direc-
tion coordinate, the spatial approximation has thus far been limited to piecewise-constant
local approximations on the edges of the mesh elements, or subdivisions of those edges,
in order to compute the boundary operator using fast semi-analytic methods. This can lead
to poor accuracy, particularly in problems with high dissipation where the solutions are
dominated by the initial density. In this work, we discuss a p-refinement strategy in both
position and direction to gain an improved approximation of the phase-space density on a
prescribed mesh. To facilitate the efficient implementation of such a strategy we have derived
semi-analytic integration formulae for the projection of the boundary integral operator onto
a higher order orthogonal polynomial basis. Here, the integration with respect to the spatial
coordinate is performed analytically and the integration with respect to the direction coor-
dinate is done numerically. In fact, a carefully designed strategy for computing the arising
multi-dimensional integrals is crucial for the efficient implementation of the method on large
meshes. We show in this paper that a direct approach to the analytic spatial integration using
the repeated application of the integration by parts rule leads to highly unstable results. How-
ever, an indirect approach using the recurrence relations of the Legendre polynomials can
be shown to give a stable representation for the integral in terms of modified Bessel func-
tions. Furthermore, an efficient computation of the integrals, independently of the choice of
orthogonal polynomial basis functions, is possible using a 2D adaptive and spectrally con-
vergent quadrature method. In this case one can exploit the smoothness of the integrands in
the boundary operator over appropriately defined subsets.

The remainder of the paper is structured as follows: in Sect. 2 we detail the boundary
version of the Frobenius–Perron operator (3) as a model for propagating an initial phase-
space density to give a solution to the stationary Liouville equation (4). In Sect. 3 we describe
the finite dimensional approximation of the phase-space density in both the position and
direction coordinates. The computational procedure for obtaining the discretized boundary
integral operator is described, including three approaches for computing the spatial integrals:
an unstable direct formula, a stable recursion formula and a spectral quadrature method.
Finally, in Sect. 4 we give a selection of numerical results; we reproduce the well-known
decay rate for propagation into free space and perform computations on several bounded
domain configurations with varying degrees of symmetry and complexity.
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Fig. 1 Left the boundary map φ(s, ps ) and the phase-space coordinates (s, ps ) on the boundary Γ . Right the
multi-domain boundary map φi, j (s j , p j ) taking the phase-space coordinates (s j , p j ) on the boundary ∂Ω j
to the phase-space coordinates (si , pi ) on ∂Ωi

2 Propagating Phase-Space Densities via Integral Operators

In this section we describe the propagation of a phase-space density via integral operators in
polygonal multi-domain problems, for example, triangle meshes. We begin by introducing
a boundary map φ and a boundary integral operator B. We then discuss how an initial
boundary density can be obtained from a point source and how the final stationary density
can be computed from the Neumann series for the operator B.

2.1 Boundary Integral Operators

Consider a polygonal domain Ω ⊂ R
2 with boundary Γ and the phase-space coordinates

Ys = (s, ps) on Γ as illustrated in the left plot of Fig. 1. Here s parametrizes Γ and ps
denotes the direction component tangential to Γ at s. Figure 1 also depicts the boundary
map φ(s, ps) = (s′, p′

s), which takes (s, ps) to a point s′ ∈ Γ with direction p′
s . We may

write this simply as Xs = φ(Ys). In general, the form of the boundary map φ depends on the
specific problem. In our considerations, φ obeys the law of (specular) reflection.

A phase-space density ρ is transported from the phase-space on the boundary to the next
boundary intersection via the boundary integral operator [11]

B[ρ](Xs) :=
∫

w(Ys)δ(Xs − φ(Ys))ρ(Ys) dYs . (5)

Note that for w ≡ 1, this operator corresponds to the Perron-Frobenius operator (3) for the
boundary map φ. The weighting term w is introduced to incorporate absorption factors as
well as reflection/transmission coefficients.

In this paper we are concerned with modelling the Hamiltonian ray dynamics of position
r and momentum (slowness vector) p. The Hamiltonian of the trajectory equations is H =
c|p| = 1, where c is the phase velocity. Conservation of energy defines the integration
limits for ps ∈ (−c−1, c−1), since ps is the tangential component of the direction p. Thus
the (double) integral in (5) is over Γ × (−c−1, c−1). We note that this corresponds to the
Hamiltonian for the ray trajectories obtained in the geometrical optics limit for the reduced
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wave (or Helmholtz) Eq. [14]
�u + k2u = 0, (6)

with k = ω/c the acoustic wavenumber at angular frequency ω.
The stationary density on the boundary Γ induced by a given initial boundary density ρΓ

0
can be obtained from a Neumann series via

ρΓ (s, ps) =
∞∑
n=0

Bn [
ρΓ
0

]
(s, ps) = (I − B)−1 [

ρΓ
0

]
(s, ps), (7)

where Bn models trajectories undergoing n reflections at the boundary and I is the identity
operator. Once the stationary density ρΓ is found, the interior density ρΩ can then be obtained
by projecting down onto position space in Ω using [9]

ρΩ(r) = 1

c2

∫
Γ

ρΓ (s, ps)
cos(ϑ(s, r))

|r − rs | ds. (8)

Here r ∈ Ω is a prescribed solution point and rs denotes the Cartesian coordinates of the
point s ∈ Γ . The angleϑ(s, r) is formed between the normal vector toΓ at s and the direction
vector pointing towards the point r from the point s ∈ Γ .

2.2 Source Terms

In this section we describe how to obtain an initial density ρΓ
0 from a point source at r0 ∈

Ω emanating trajectories continuously in all directions. Starting from the high frequency
asymptotics for the fundamental solution of the reduced wave Eq. (6) in R

2, ρΓ
0 is derived

from the acoustic energy density
ε = ρ f k2|u|2, (9)

where u is interpreted as the velocity potential in a fluid medium of density ρ f . We then
obtain a phase-space source density ρ0 by lifting ε to phase-space with a direction vector p0,
corresponding to the direction coming from r0. Applying this and replacing u in (9) with the
high frequency fundamental solution of (6) yields [9]

ρ0(r,p; r0) = ρ f k2
∣∣∣∣ i4H

1
0

(
ω|r − r0|

c

)∣∣∣∣
2

δ(p − p0) ≈
ω�1

ρ f k
δ(p − p0)
8π |r − r0| , (10)

where H1
0 is the zeroth order Hankel function of the first kind. In the high frequency limit,

the energy density (10) decays in all directions according to |r − r0|−1. Considering (10) in
the high frequency limit, it can be shown [9] that the initial boundary density distribution
from the source point r0 is

ρΓ
0 (s, ps; r0) = ωρ f cos(ϑ(s, r0))δ(ps − ps0)

8π |rs − r0| , (11)

where ps0 denotes the component of p0 tangential to Γ . The resulting boundary density (11)
is equivalent to the source density on the boundary producing the same interior density as
the original source distribution (10).

2.3 Multi-domain Problems

A generalization to multi-domain problems such as triangle meshes with sub-domains Ω j ,
j = 1, . . . , N , is straightforward by introducing a multi-domain boundary map φi, j and a
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weight functionwi, j describing the flow from the boundary of the domainΩ j to the boundary
of the domain Ωi , see the right plot of Fig. 1. Note that Ω = ∪N

j=1Ω j becomes the union of

all sub-domains andΓ becomes the union of all sub-domain boundaries thusΓ = ∪N
j=1∂Ω j .

Each sub-domainΩ j has its own phase-space boundary coordinates (s j , p j ). We then define
the boundary integral operator Bi, j , which transports the phase-space density ρΓ from the
boundary phase-space ofΩ j to the boundary phase-space ofΩi as illustrated in the right plot
of Fig. 1. If the properties of two neighboring domains Ω j and Ωi are different, for example
if ci �= c j , where ci is the propagation speed in Ωi (likewise for c j in Ω j ), then the weight
function wi, j will account for the probability of transmission or reflection at the common
edge. Note that the case of transporting the density within a sub-domain is included in this
formulation when i = j . The operator B is then constructed from the set of inter-domain
operatorsBi, j . In order to obtain a discrete representation of the phase-space density ρΓ and
the operator Bi, j , we consider a finite basis approximation as described in the next section.

3 Discretization

In this section we discuss the discretization of the boundary operator as well as computational
issues associated with the efficient and fast implementation of DFM on triangle meshes. We
detail how the two-dimensional integral in space and direction can be separated and provide
analytical formulae for the spatial integral. We note that a direct approach to evaluating the
spatial integral analytically is unstable in general for non-constant spatial basis functions.
An alternative stable iterative approach is presented instead and compared with an efficient,
and widely applicable, spectrally convergent quadrature strategy. We conclude this section
by outlining a computational algorithm for DFM with p-refinement on triangle meshes.

The finite dimensional representation of ρΓ is given by a basis approximation of the form

ρΓ (s j , p j ) ≈
N j∑
l=1

Ns∑
m=0

Np∑
n=0

ρ( j,l,m,n) P̂
l
m(s j )P̃n(p j ), j = 1, . . . , N , (12)

where N j is the number of the boundary elements for Ω j , Ns is the order of the basis
expansion in space and Np is the order of the basis expansion in direction. Note that the
values of Ns and Np may vary depending on the sub-domain Ω j . However, for simplicity in
the sequel we only consider triangle meshes with one boundary element per edge (N j ≡ 3 for
all j) andwe take constant values for Ns and Np . Refinement of the spatial approximation can
therefore take place via both increasing Ns and refining the triangle mesh. The summand in
(12) comprises a product of the unknown expansion coefficients ρ( j,l,m,n), the basis functions
P̂l
m in the spatial coordinate and the basis functions P̃n in the direction coordinate.We assume

that both sets of basis functions (space and direction) are orthonormal, and that P̂l
m is smooth

within the lth boundary element and P̃n is smooth on (−c−1, c−1).
In this workwe concentrate on the casewhen P̂l

m is given by a scaled Legendre polynomial
of the form

P̂l
m(s j ) =

√
2

Al, j
Pm(t)χl(s j ), t = 2s j − Al, j − 2

∑
κ<l Aκ, j

Al, j
∈ [−1, 1),

where t ∈ [−1, 1) is a parametrization of the lth boundary element of Ω j , with length Al, j ,
defined here as a function of s j ∈ [∑κ<l Aκ, j , Al, j + ∑

κ<l Aκ, j ). Also, Pm denotes the
Legendre polynomial of degreem and χl(s j ) is an indicator function taking the value 1 when
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s j is in the lth element of Ω j , and zero otherwise. We likewise focus on the case when P̃n is
given by the scaled Legendre polynomial:

P̃n(p j ) = √
c j Pn(c j p j ). (13)

Note that the Legendre polynomials represent a particularly convenient choice due to their
simple orthogonality relation, their spectral convergence for sufficiently smooth approxi-
mants and their ease of calculation using a recurrence relation. Later we shall see that this
choice also permits highly efficient semi-analytic integration routine. However, we will also
describe a fully numerical and spectrally convergent quadrature algorithm for any smooth
orthonormal basis choice in order to demonstrate the broader scope and applicability of the
proposed methodology.

A Galerkin projection of the operator Bi, j on to the orthonormal basis in the expansion
(12) leads to a matrix representation B with entries given by

BI,J = αm′,n′
∫
Q j

wi, j (Y j )P̃n′(φp(Y j ))P̂
l ′
m′(φs(Y j ))P̃n(p j )P̂

l
m(s j ) dY j , (14)

where I and J denote the multi-indices I = (i, l ′,m′, n′) and J = ( j, l,m, n), respectively.
The factor αm′,n′ is a scaling required for orthonormality; for a Legendre polynomial basis
then αm′,n′ = (2m′ + 1)(2n′ + 1)/4. We have introduced the notation Y j = (s j , p j ) ∈
Q j , where Q j = ∂Ω j × (−c−1

j , c−1
j ), and φ = (φs, φp) has been used to separate the

boundary map into spatial and directional components. Since the expansion (12) represents
a local density approximation and the transfer of energy is only between connected sub-
domains, B is a block-sparse matrix for large N . The coefficients of the expansion (12) can
be found by solving the linear system ρ = (I−B)−1ρ0, which corresponds to the discretized
form of Eq. (7). Here ρ0 and ρ represent the coefficients of the expansions of ρΓ

0 and ρΓ ,
respectively, when projected onto the finite dimensional basis. Note that for I − B to be
invertible, absorption/dissipation must be included in the weights wi, j . Once ρ has been
computed and substituted into (12), then the interior density ρΩ can be computed using (8).

3.1 DFM with p-Refinement on Triangle Meshes

We now describe a strategy for computing the entries of the transfer matrix B, given in (14),
on the elements of a triangle mesh. Note that the integration over the direction coordinate
p j can instead be performed with respect to the angle θ j between the normal vector to Γ at
s j and the outgoing trajectory direction using the relation p j = c−1

j sin(θ j ). We will assume
that the weight function wi, j can be written in the form

wi, j (Y j ) = e−μd(s′i ,s j )λi, j (θ j ),

where the factor μ describes the rate of dissipation along the direction of propagation. Here
we write φs(Y j ) = s′

i for brevity and d(s′
i , s j ) is the Euclidean distance between the points

represented by s′
i and s j . The functionλi, j gives the reflection/transmission probability,which

may be derived from the underlying wave equation by assuming continuity of the pressure
and velocity for an incident plane wave [13]. Writing the specific acoustic impedance in Ωi

as zi = ρ
f
i ci , the product of the fluid density and the propagation speed inside Ωi , then one

obtains the transmission probability

λt (θ j ) = 4zi z j cos(θr ) cos(θt )

(zi cos(θr ) + z j cos(θt ))2
. (15)
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Fig. 2 Left the evolution of trajectories through a triangulated mesh, including reflection and transmission
angles θr and θt , respectively. Right admissible ranges for the spatial integration defined using s∗j

The reflection/transmission probability function is then defined as λi, j (θ j ) = λt (θ j ) for
i �= j , and λ j, j (θ j ) = 1 − λt (θ j ). Note that in (15) above, θr and θt are the θ j–dependent
reflection and transmission angles, respectively; see the left plot of Fig. 2.

In what follows we denote s j as the coordinate on the initial edge, we label quantities
associated with the edge connected to the initial edge in the counter-clockwise direction by
‘+’ and we label quantities associated to the third edge by ‘−’. We find

θ±
r (θ j ) = ±ϕ± − θ j ,

where ϕ± are the interior angles of Ω j between the edge containing s j and the two possible
destination edges, as shown in the left plot of Fig. 2. The transmission angles θ±

t are obtained
from the reflection angles θ±

r using Snell’s law

sin(θ±
t ) = − ci

c j
sin(θ±

r ), (16)

where the minus sign comes from the fact that θ±
t ∈ (−π/2, π/2) is defined in the local

coordinates of the neighboring triangle Ωi .
For ci > c j , the transmission angle θ±

t in Snell’s law (16) is only defined for θ j in the
interior of the set Θ where

Θ := [−π/2, π/2] ∩ (±ϕ± − arcsin(c j/ci ),±ϕ± + arcsin(c j/ci )).

Total internal reflection (λt = 0) takes place for θ j /∈ Θ , and this should be taken into account
when integrating λt over θ j . The convergence of numerical quadrature rules can be adversely
affected by the branch points of arcsin at ±1 in the Snell’s law expression for θt (16) when
Θc := [−π/2, π/2] \ Θ is non-empty. Furthermore, separating the integral with respect to
θ j into a sum of integrals over Θ and Θc is necessary, but not sufficient to address this issue.
For integration over Θc we may simply set λt = 0, but since the branch points are located at
the boundary between Θ and Θc, problems still arise for the integration over Θ . Note that
from (16) we obtain

cos(θ±
t ) =

√
1 − (ci/c j )2 sin2(θ

±
r ) (17)

and hence the branch points in formula (15) are located at zeros of the square root in (17).
A change of variables from θ j to the transmission angle θ±

t can be employed to avoid these
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branch points. Explicitly, we use that

θ j = ±ϕ± − θ±
r

= ±ϕ± + arcsin((c j/ci ) sin(θ
±
t )),

and cos2(θ±
r ) = 1 − (c j/ci )2 sin2(θ

±
t ) to derive

dθ j = c j cos(θ
±
t )

ci cos(θ
±
r )

dθ±
t .

Thus

λt (θ j )dθ j = 4zi z j (c j/ci ) cos2(θ
±
t )(

zi
√
1 − (c j/ci )2 sin2(θ

±
t ) + z j cos(θ

±
t )

)2 dθ
±
t =: λ(θ±

t )dθ±
t ,

where the term under the square root in the denominator of λ(θ±
t ) is strictly positive for any

value of θ±
t since ci > c j . The integration limits for the new integration variable θ±

t can then
be found by considering the minimal and maximal θ j ∈ Θ .

We now consider the integration with respect to position s j , which will be performed
before integrating over θ j and hence we integrate over a direction dependent domain of the
form (smin(θ j ), smax (θ j )). Consider edge number l ∈ {1, 2, 3} of the triangleΩ j with length
Al, j , represented by the edge AB in the right plot of Fig. 2. Then s j ∈ [∑κ<l Aκ, j , Al, j +∑

κ<l Aκ, j ) := [sA, sB) on that edge and the admissible ranges for the spatial integration are
given by

s−
min(θ j ) = sA, s−

max (θ j ) = s∗
j (θ j ) (18)

for trajectories transported to the − edge, and

s+
min(θ j ) = s∗

j (θ j ), s+
max (θ j ) = sB , (19)

for trajectories transported to the + edge. We define the position s∗
j (θ j ) to be the starting

point of the trajectory on the lth edge, which is mapped to the vertex of Ω j opposite to the
edge l (shown as vertex C in Fig. 2). We also enforce that

min
θ j

(s∗
j ) = sA and max

θ j
(s∗

j ) = sB .

The behaviour of s∗
j as a function of θ j will be important when considering the integral

over θ j . In particular, note that for θ j � −(π/2) + ϕ+ then s∗
j = sB and trajectories only

map to the− edge. Likewise, for θ j � (π/2)−ϕ−, then s∗
j = sA and trajectories only map to

the + edge. For the intermediate case, −(π/2) + ϕ+ < θ j < (π/2) − ϕ−, then s∗
j is a linear

function of θ j and takes values along the interior of the edge l. Owing to these abrupt changes
from constant to linear behavior, s∗

j (θ j ) is not smooth at the points θ j = −(π/2) + ϕ+ and
θ j = (π/2) − ϕ−. This leads to a natural subdivision of the range of integration for θ j given
by

(
−π

2
,
π

2

)
=

(
−π

2
,−π

2
+ ϕ+

]
∪

(
−π

2
+ ϕ+,

π

2
− ϕ−

)
∪

[π

2
− ϕ−,

π

2

)
(20)

and a corresponding splitting for the numerical integration over θ j . Note that the integral over
either the first or last of these sub-intervals (20) will always be equal to zero, depending on
whether the propagation is to the + or − edge, respectively, since the corresponding spatial
integration will have equal lower and upper limits. Note that these subdivisions are always
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applied, in contrast with the subdivisions at points of total internal reflection discussed before,
which are only applied when ci > c j .

In summary, the entries of the matrix B (14) can be rewritten in the form:

BI,J =αm′,n′

c j

∫ π/2

−π/2
λi, j (θ j )P̃n′(p′

i )P̃n(p j ) cos(θ j )

×
[∫ smax (θ j )

smin(θ j )

P̂l ′
m′(s′

i )P̂
l
m(s j )e

−μd(s′i ,s j ) ds j

]
dθ j ,

(21)

where p′
i = c−1

i sin(θ ′
i ) and θ ′

i = θr if i = j , or θ ′
i = θt otherwise. The distance d(s′

i , s j )
and the value of s′

i both depend on whether the ray hits the previous or the next neighboring
edge (oriented counter-clockwise) independently whether i = j or not. In fact, in any convex
polygonal sub-domain Ω j , one can show via geometrical arguments that both d(s′

i , s j ) and
s′
i are linear functions of s j . After all subdivisions we re-scale each of the sub-integrals over

θ j and s j , required for computing (21), and write them in the following general form

I ∝
∫ 1

−1
f (θ)

[∫ 1

−1
gm,m′(s, θ)ea(θ)s+b(θ) ds

]
dθ =

∫ 1

−1
f (θ)Im,m′(θ) dθ. (22)

In principle, we could now compute I using any quadrature method, and since care has been
taken to preserve smoothness of the integrand, then a spectrally convergent method would be
preferable. The efficiency of computing I in (22) can be further increased if Im,m′(θ) can be
evaluated analytically as suggested for the case of piecewise constant spatial basis functions
in [11]. We discuss this in the following section for the case when the spatial basis functions
are chosen as scaled Legendre polynomials.

3.2 Exact Spatial Integration

In this section we present two formulae that can be used to evaluate the spatial integral
Im,m′(θ) in (22) exactly when P̂l

m(s j ) are given by scaled Legendre polynomials and
we have prescribed a fixed value of θ . Hence a(θ) and b(θ) may be considered as con-
stants and gm,m′(s, θ) is a product of Legendre polynomials of the form gm,m′(s, θ) =
Pm(a1s+b1)Pm′(a2s+b2). Henceforth, we omit θ from the notation when referring to these
quantities, writing them as a, b and g(s). The integral Im,m′(θ) may be computed directly
using integration by parts as

Im,m′(θ) =
∫ 1

−1
g(s)eas+b ds =

[
m+l∑
i=0

(−1)i

ai+1 g(i)(s)

]
eas+b

∣∣∣∣∣
1

−1

=
⎡
⎣m+l∑

i=0

(−1)i

ai+1

i∑
j=0

(
i
j

)
ai− j
1 a j

2 P
(i− j)
m (a1s + b1)P

( j)
m′ (a2s + b2)

⎤
⎦ eas+b

∣∣∣∣∣∣
1

−1

,

(23)

where the superscript (i) denotes the i th derivative. Note that the spatial derivatives of the
Legendre polynomials can be evaluated via a recursive relationship, and that form = m′ = 0,
the integral has the relatively simple form I0,0(θ) = (eas+b/a)|1−1 as used in [11]. Unfor-
tunately, the formula (23) is numerically unstable for general m and m′ (see Fig. 3), since
the coefficients in the expansion grow with each derivative. Thus the total sum is highly
sensitive to round-off errors. In addition, the coefficients a, b, a1, b1, a2 and b2 are geometry
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Fig. 3 Comparison between direct, recursive and numerical methods for evaluating Im,m′ (θ) with θ ∈
(−1, 1). Left integral values for polynomial degrees m = 2 and m′ = 0. Right integral values for polynomial
degrees m = m′ = 2. Parameter values: c = 1 and μ = 0.005

and dissipation rate dependent meaning that (23) may be stable in some mesh elements, but
unstable in others.

An alternative approach is to derive a recursive formula using the properties of g(s) =
Pm(a1s + b1)Pm′(a2s + b2). In particular, one can show for each fixed value of θ that either
|a1| = 1 and b1 = 0, or |a2| = 1 and b2 = 0. Assuming without loss of generality that
b1 = 0 and re-scaling via s̄ = a1s we find

Im,m′(θ) =
∫ 1

−1
eas+b Pm(a1s)Pm′(a2s + b2) ds = 1

a1

∫ 1

−1
es̃ Pm(s̄)Pm′(ŝ) ds̄,

where s̃ = (a/a1)s̄ + b and ŝ = (a2/a1)s̄ + b2. The well-known Legendre polynomial
recurrence relationship for Pm′(ŝ) is given by

(m′ + 1)Pm′+1(ŝ) = (2m′ + 1)ŝ Pm′(ŝ) − m′Pm′−1(ŝ). (24)

Applying this relation together with the definition of ŝ in the right-hand expression for Im,m′
above yields

Im,m′ = a2(2m′ − 1)

a21m
′

∫ 1

−1
es̃ s̄ Pm(s̄)Pm′−1(ŝ) ds̄ + b2(2m′ − 1)

m′ Im,m′−1 − m′ − 1

m′ Im,m′−2.

Applying the Legendre polynomial recurrence relationship once more to s̄ Pm(s̄), we obtain
a recurrence relationship for Im,m′(θ) with m,m′ = 0, 1, 2, . . . as

Im,m′ = a2(m + 1)(2m′ − 1)

a1(2m + 1)m′ Im+1,m′−1 + a2m(2m′ − 1)

a1(2m + 1)m′ Im−1,m′−1

+ b2(2m′ − 1)

m′ Im,m′−1 − m′ − 1

m′ Im,m′−2.

(25)

The above recurrence formula may be initiated using the following integral relation:

Im,0 = eb

a1

∫ 1

−1
e(a/a1)s̄ Pm(s̄) ds̄ = eb

a1

√
2πa1
a

Im+1/2

(
a

a1

)
,

which can be derived from ([18], Eq. 7.243–5) and where Im+1/2 is the modified Bessel
function of the first kind. The computational implementation in the present work has been

123



1302 J Sci Comput (2017) 72:1290–1312

performed inMATLAB,where wemake use of the existing functions for computing themod-
ified Bessel functions. Alternatively, the values of Im,0 can be computed using the recursion
relation for the Legendre polynomial derivatives. Unfortunately, the resulting recursion rela-
tion for Im,0 is unstable in the forward direction. However, it may be performed in the
backward direction using continued fractions as detailed in Sect. 6.6.2 of Ref. [34].

We illustrate the numerical instability of the direct formula (23) by computing Im,m′(θ)

for θ ∈ (−1, 1) on a unit sided equilateral triangle with a specified initial edge (due to
symmetry the result will be independent of this choice). In Fig. 3, the direct formula (23)
is compared against the recursive solution (25) and a numerical solution using Clenshaw–
Curtis quadrature [39] for different combinations of the polynomial degrees m and m′. In
both examples we set the dissipation rate to be μ = 0.005 and the propagation speed as
c = 1.

The left plot of Fig. 3 shows the case m = 2 and m′ = 0, where all three approaches
compute the same values for the integral to double precision. The numerical integration
was performed using three integration subregions θ j ∈ (−π/2,−π/6] ∪ (−π/6, π/6) ∪
[π/6, π/2) as described in (20) since ϕ± = π/3. The lack of smoothness of the integral
Im,m′(θ) at the numerical integration subdivision points θ = 2θ j/π = ±1/3 is also clear
in Fig. 3, emphasizing the motivation for performing this subdivision. The right plot of
Fig. 3 shows the case when m = m′ = 2, which gives rise to large deviations between the
direct formula and other two methods. Note that, in general, the discrepancy increases when
the degree of the basis functions is increased and/or the dissipation factor μ is decreased.
The right plot of Fig. 3 shows that the direct formula (23) is already numerically unstable
for relatively low degree basis functions. For the MATLAB implementation here, we find
that using the recursive formula (25) is typically between two and three times faster than
applying the spectral quadrature method. In order to demonstrate the flexibility of the method
in accommodating general smooth orthonormal basis approximations in (12), we propose an
efficient adaptive quadrature strategy in the following section.

3.3 Efficient Adaptive Quadrature Rule

In this section we describe the spectrally converging adaptive quadrature strategy that we use
to compute the integral entries of the matrix B (21) for general smooth orthonormal basis
functions P̂l

m(s j ) and P̃n(p j ). Note that whenever possible, it is preferable to adopt analytic
spatial integration strategies for reasons of computational efficiency. However, in order to
demonstrate the wider applicability of the proposed methodology, and for completeness,
we detail a rapidly converging fully numerical strategy. We propose an adaptive Clenshaw–
Curtis method [39,40] and note that spectral convergence property depends crucially on
the regularity of the integrand. Preservation of the rapid convergence property is the main
motivation for the integral subdivision strategy discussed in Sect. 3.1.

The subdivision of the integral with respect to θ j ensures that integrands are smooth, or
even analytic, in a large region of the complex plane. This leads to spectral convergence with
a low number of quadrature points in both dimensions, which means that pre-computing and
storing theClenshaw–Curtis quadrature nodes andweights is feasible. In addition, Clenshaw–
Curtis quadrature is progressive since the set of nodes for a (2M + 1)-point quadrature rule
includes all the nodes of an (M + 1)-point rule allowing the repeated use of previously
computed data. The result from a (2M + 1)-point rule is compared with the result from an
(M + 1)-point rule and the code terminates when a desirable tolerance level is achieved.
The complete algorithm for the computation of a single entry of the matrix B (21) with fixed
I = (i, l ′,m′, n′) and J = ( j, l,m, n) is as follows.
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1. Let α = 0 and fix M0 + 1 as an initial number of scaled Clenshaw–Curtis quadrature
nodes. Define a prescribed tolerance level tol for the accuracy of any quadrature rules.

2. Calculate the Mα + 1 values of θ j prescribed by the Clenshaw–Curtis quadrature nodes,
then perform the following operations for each value of θ j :

– compute the reflection/transmission angle θ ′
i as described in the text immediately

after Eq. (21);
– compute the basis functions P̃n(p j ) and P̃n′(p′

i ). For a Legendre polynomial basis
this can be done using Eq. (13) and the recurrence (24);

– compute the probability function λi, j (θ j ) as described in the text immediately after
Eq. (15);

– find the admissible ranges (smin(θ j ), smax (θ j )) for the integration with respect to s j
using Eqs. (18) and (19).

3. If P̂l
m(s j ) are scaled Legendre polynomials, then compute the spatial integral analytically

as described in Sect. 3.2. Otherwise:

(a) Let β = 0 and fix m0 + 1 as an initial number of scaled Clenshaw–Curtis quadrature
nodes.

(b) Calculate the mβ + 1 values of s j prescribed by the Clenshaw–Curtis quadrature
nodes, then perform the following operations for each value of s j :
– compute the point s′

i and the distance d(s′
i , s j ) using the geometry of the mesh

and the vector prescribed by (s j , p j ). On a triangle mesh one can directly com-
pute d as a linear function of s j using the sine rule;

– compute the orthogonal polynomial basis functions P̂l
m(s j ) and P̂l ′

m′(s′
i ). The

computation will depend on the chosen basis.
(c) Compute the integral over s j appearing in Eq. (21) usingmβ quadrature nodes. If the

tolerance tol has not been reached, then add one to β, let mβ = 2βm0 and return
to step (b). If tol has been reached then proceed to step 4.

4. Compute the integral over θ j appearing in Eq. (21) using Mα quadrature nodes. If the
tolerance tol has not been reached, then add one to α, let Mα = 2αM0 and return to
step 2. If tol has been reached then use the computed value as an entry of the matrix B.

Note that for a Legendre polynomial basis, the best strategy is to pre-compute the basis
functions up to the maximum order considered whenever possible due to the use of a recur-
rence formula. The relevant steps in the algorithm above would then be replaced by a call
to the pre-computed values whenever these are available. The spectral convergence of the
proposed quadrature scheme is demonstrated in “Appendix”. We apply the above steps with
tol= 10−12 to obtain the numerical results in the next section.

4 Numerical Results

In this section we primarily study numerical examples which demonstrate the improvement
in the phase-space density approximation due to p-refinement in space, since this is the new
contribution of this work. We have studied the effects of mesh refinement and higher order
approximations in the direction basis in our initial work on DFM [11]. We first study the
convergence of DFM for a free space propagation problem, whichmotivates the use of higher
order basis approximations in space. We then consider the problem of computing the energy
density in the vicinity of a point source for a dissipative system, including the effect of higher
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order spatial approximations and local mesh refinement. A closed cavity with a point source
at different locations is then considered, and as a final example we model a coupled two-
cavity system with piecewise constant propagation speeds. All meshes shown in the results
that follow were generated using the DistMesh mesh generator for MATLAB [33].

4.1 Free Space Propagation

The ray tracing approximation of the energy density ρ emanating from a point source at
r = r0 in two-dimensional free-space may be obtained from (10) as

ρ(R) = ρ f k

8πR
, (26)

where R = |r − r0|. Discrete flow mapping is a smoothed ray tracing algorithm in the same
way as DEA and, in general, only retrieves the full ray-tracing solution in the limit where Ns

and Np tend to infinity [37]. Figure 4 indicates the convergence of DFM to the ray tracing
solution (26), where the triangle mesh has complete transmission (λt = 1) across all edges in
order to replicate free-space. In these computations we have chosen parameters ω = 100π ,
c = 1, ρ f = 1 and μ = 0. The plotted values are computed at the centroid of each triangle
and are presented on a logarithmic scale.

In the right plot of Fig. 4 we show the averaged relative error for the energy density
computed by DFM with different orders of approximation in space, and a fixed order in
direction. The relative error values are averaged over annular segments with radial width
ΔR = 1, as indicated by the white dashed lines in the left plot of Fig. 4. Note that we have
excluded the average error in the circular segment containing the source point since the DFM
result here is just the direct (and exact) source contribution. Clearly, as the order of the spatial
approximation Ns increases, the error is correspondingly decreasing. The approximation in
direction is fixed with a relatively large choice of Np = 300, since the free-space problem
only gives propagation in a single direction, radially outward from the source. As such, the
analytic solution in phase-spacewill behave as a delta-distribution in the direction coordinate,
making it challenging to model using a polynomial basis. An identical value for the direction
basis order was used in all cases for consistency, and to clearly show the convergence related
to increasing the spatial approximation order only.

Fig. 4 Left energy propagation from the point source at the origin with Ns = 3 and Np = 300. Right the
absolute error of the energy density averaged over annular segments of width ΔR = 1 (indicated by the white
dashed lines in the left plot). Parameter values for both sub-plots: ω = 100π , c = 1, ρ f = 1 and μ = 0
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The estimated order of convergence (EOC) when the number of degrees of freedom is
doubled by changing from Ns = 0 to Ns = 1 ranges between 1.8 in the closest annular
segment to the source point and around 3.5 in the furthest away two segments. Here the EOC
is computed via

EOC(Ns) = log(Ns+2)/(Ns+1)

(
Error(Ns + 1)

Error(Ns)

)

for Ns = 0. For the increase from 2 to 3 degrees of freedom per element edge (Ns = 1 to
Ns = 2), we compute EOC(1), which increases compared with EOC(0) to around 3.5 close
to the source and to 5 in the most far field sector. Finally, for the increase from Ns = 2 to
Ns = 3, EOC(2) does not simply increase further from the source as before. In the closest
sector to the source the EOC has reduced to 1.5 and likewise, in the two furthest away sectors
we see a similar reduction in the EOC to around 3. However, in the intermediate sectors
between R = 2 and R = 4 we see an increase in the EOC to as high as 8.4 for the segment
from R = 2 to R = 3. The saturation of the error at around 3e−4when Ns = 3 suggests that
here we are close to the maximum accuracy possible on this triangulation with Np = 300.

The example shown in Fig. 4 has a relatively small and simplemesh. A basis order of Np =
300 would be computationally infeasible for complex built-up engineering applications.
However, the directional dependence of the energy density in complex structures is often
relatively smooth due to multiple reflections and irregular geometry, which makes such a
large choice of Np unnecessary. In general, engineering applications will also require the
study of dissipative problems and hence we now change the dissipation factor to be μ = 1
in the free-space radiation problem considered above. Figure 5 shows the numerical solution
for this problem with Np = 12 and with either a constant or a quadratic spatial basis.

The lower right plot of Fig. 5 shows the ray tracing solution (26) with an additional
dissipation factor for consistency with the DFM calculation. The energy density predicted
by a DFM simulation with Ns = 0 and Np = 12 is shown in the upper left plot. Spurious
localization and shadowing effects arise due to the piecewise constant approximation in space
introducing discontinuities at the vertices of the mesh. The upper right plot of Fig. 5 shows
another DFM simulation on the same mesh, but here with Ns = 2 and Np = 12. The circular
symmetry of the energy density shown in the exact solution has been preserved showing
a distinct qualitative improvement from the piecewise constant approximation. The higher
order simulation leads to an approximate doubling of the computation time, but even so, the
simulations presented here took less than 30s.

The shadowing effects produced in the upper left plot of Fig. 5 can also be reduced by
applying local mesh refinement near the source point. The lower left plot of Fig. 5 shows that
the local mesh refinement strategy, which was implemented using a mesh density function
h(R) = 0.01 exp(0.5

√
R) in DistMesh [33], does indeed improve the approximation of the

energy density. However, this improvement comes at the cost of a significant increase in
computational time from under 30s for each of the simulations on the coarse mesh with 283
elements to around 5min for the simulation on the locally refined mesh with 5859 elements.
Hence, in order to obtain qualitatively similar results and to preserve the circular symmetry
inherent in the problem, applying local mesh refinement leads to a more substantial increase
in computational time than instead using a quadratic spatial basis approximation.

4.2 Closed Cavity Simulation

We perform numerical simulations on a closed polygonal cavity taken from Ref. [22]. In
Fig. 6, we have placed a source point inside the cavity at (10, 5); whereas in Fig. 7, the
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Fig. 5 Energy density (on a logarithmic scale) in a circular region of dissipative free-space with a point source
at the origin (marked with a black star). Upper left simulation results with Ns = 0 and Np = 12. Upper right
simulation results with Ns = 2 and Np = 12. Lower left simulation result with a locally refined mesh near
the source point with Ns = 0 and Np = 12. Lower right exact energy density plotted on the original (coarse)
mesh. Parameter values: ω = 100π , c = 1, ρ f = 1 and μ = 1

Fig. 6 Energy density (on a logarithmic scale) inside a dissipative closed cavity for various orders of basis
approximation. Parameter values: ω = 100π , c = 1, ρ f = 1, μ = 0.5 and source point (10, 5) (marked with
a black star)

123



J Sci Comput (2017) 72:1290–1312 1307

Fig. 7 Energy density (on a logarithmic scale) inside a dissipative closed cavity for two different order basis
approximations. Parameter values: ω = 100π , c = 1, ρ f = 1, μ = 1 and source point (2.5, 7) (marked with
a black star)

source point is located on the boundary at (2.5, 7). The total number of mesh elements is 538
and we take ω = 100π , c = 1 and ρ f = 1 for all computations.

Figure 6 shows the predicted energy density for different approximation orders Ns and
Np , and with dissipation rate μ = 0.5. The upper left plot of Fig. 6 shows the result with
a piecewise constant approximation in space and Np = 12 in direction. Localized energy
stripes near the source point are again evident, as they were in the free space propagation
problem. The upper right plot of Fig. 6 shows the same calculation, but now with Ns = 2.
We notice that the circular symmetry around the source has been restored for only a modest
increase in the computational time from around 30–45s. The lower plots of Fig. 6 show the
results of higher order simulations in both the space and the direction basis approximations
with a maximum computational time of 6min. The results are visually similar to those with
Ns = 2 and Np = 12. The sequence of plots in Fig. 6 demonstrate the convergence of
DFM for increasing Ns and the gain in accuracy that can be achieved by applying spatial
approximations with Ns � 2 close to a source point.

The density distribution inside a cavity will depend on a number of factors including the
geometry, the source point location and the damping. Figure 7 shows the result of moving
the source point to the boundary and increasing the damping to μ = 1. Notice the clear
difference between the energy density in the upper and lower parts of the cavity. The result
in the left plot was computed using a piecewise constant approximation in space, and shows
a sudden jump between the energy densities in the upper and lower regions. In the right
plot we observe a smoother decay from the lower region to the upper region as a result of
increasing the spatial approximation order. Therefore the right plot better captures the wave
energy transmitted indirectly from the source to the upper part of the cavity due to reflections
at the lower boundary. Hence, a higher order spatial approximation can restore symmetry and
reduce spurious shadowing effects in both the near- and far-field of a point source excitation.

In all the numerical examples considered so far, the propagation has been through a
homogeneous medium. We conclude this section by considering the case of a coupled two-
cavity system with differing propagation speeds in each cavity.

4.3 Coupled Two-Cavity System

Consider the two-cavity system shown in the left plot of Fig. 8 as considered in Ref. [7]. The
source point is located at (−0.4, 0.5) and the energy density is computed for Ns = 2 and
Np = 24, with hysteretic damping applied via μ j = ωη/(2c j ), η = 0.01, ω = 100π and

ρ
f
j = k−2

j for j = 1, 2, . . . , N . We have taken N = 1184 and set the propagation speeds
to be c j = 0.5 when Ω j is within the left cavity (x < 0) and c j = 1 otherwise. The total
energy in each cavity is given by
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Fig. 8 Simulations in a two-cavity system with propagation speeds c j = 0.5 if x < 0 and c j = 1 otherwise,

fluid densities ρ
f
j = k−2

j , and with hysteretic damping μ j = ωη/(2c j ), η = 0.01 and j = 1, 2, . . . , N . Left
energy density (on a logarithmic scale) in a coupled cavity system with source point (−0.4, 0.5) (marked with
a black star), ω = 100π and with Ns = 2 and Np = 24. Right comparison of the energy ratio Pleft/Pright
for different values of Ns and Np in DFM compared with both DEA, and with 21 FEM simulations for the
related wave problem at an equi-spaced range of frequencies within ±5Hz of the ‘center’ frequencies used
for the DEA and DFM computations

Pleft =
∫

Ω|{x<0}
ρΩ(r) dr and Pright =

∫
Ω|{x>0}

ρΩ(r) dr,

where ρΩ is the interior density (8) and the subscripts of P specify the cavity.
The right plot of Fig. 8 shows the ratio Pleft/Pright for five different frequency values. We

compare the results of the DFM algorithm presented here for various orders of approximation
with the DEA results given in [7]. The spectral convergence of the integrals arising in the
DFM computation for this example is demonstrated in “Appendix”. The DEA results use
a 6th order Chebyshev basis approximation along each edge of the polygonal cavity, and
the same order of approximation globally in direction. The right plot of Fig. 8 also shows
the results of 21 finite element method (FEM) simulations for the associated Helmholtz
equation wave problem at an equi-spaced range of frequencies within ±5Hz of the center
frequencies used in the DEA and DFM computations. The FEM computations are performed
using discontinuous Galerkin methods as reported in [7].

The results shown in the right plot of Fig. 8 demonstrate a good agreement between the
DFM and the DEA results, particularly for lower damping (i.e. lower frequencies). We note
that for finer triangle meshes than the one employed here (larger N ), the results of the three
DFM simulations become indistinguishable. For themesh in the computations here, however,
there is a considerable improvement when Ns is increased from 0 to 2. The DFM results with
Ns = 2 and Np = 12 or Np = 24 agree well with the DEA result and lie towards the center
of the range of FEM wave problem results. The computational times for these results were
approximately 95s per frequency when Ns = 0, 150 s per frequency when Ns = 2, Np = 12
and 550 s per frequency when Ns = 2, Np = 24. Note that this compares favourably with
the computational times for the DEAmethod reported in [7]; the 6th order DEA result shown
in Fig. 8 took around 3000 s per frequency to compute.

4.4 Discussion: Computational Costs and Scaling

The computational costs of running a MATLAB based DFM code for the numerical experi-
ments in this paper have been reported in the previous subsections. The times quoted are for
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non-optimised code running on a 3.4GHz processor and without taking advantage of the fact
that DFM is embarrassingly parallel with respect to the number of mesh elements. The cost
of the algorithm as a whole is dominated by the cost of computing the entries of the matrix B
and so scales with the number of non-zero entries of this matrix. As the problem size grows,
the costs associated with solving the linear system become more significant, particularly
in the case of low dissipation, but this still plays a relatively minor role for the examples
presented here. An important advantage of the method over conventional numerical solvers
for the Helmholtz equation when the wavenumber k becomes large is that the computational
costs scale independently of k.

The approximate scaling of the algorithm as the number of degrees of freedom is increased
is linear with respect to the number of mesh cells, since each triangular mesh element only
transmits rays to amaximumof three other cells withwhich it shares a direct physical connec-
tion (as well as possible reflections into the same element). The scaling is less favourable with
respect to the basis approximation order, and approximately scales as O(N 2

s N
2
p). However,

we note that our results demonstrate a significant increase in accuracy for a moderate increase
in the order of the spatial basis approximation from Ns = 0 to Ns = 2. In order to achieve the
quadratic scaling of the algorithm with respect to the basis order in practice, then optimised
integration routines such as the semi-analytic spectral methods described in Sect. 3.3 are
crucial. Otherwise, the computational costs associated with the quadrature would also grow
with the basis order in a sub-optimal manner. The results shown in Sect. 4 therefore demon-
strate that DFMwith p-refinement using semi-analytic integration and spectrally convergent
quadrature is an efficient method for predicting energy distributions in complex structures.

5 Conclusions

A Discrete Flow Mapping algorithm with p-refinement in phase-space has been presented
for approximating phase-space densities on triangulated domains. In particular, this is the
first study incorporating orthogonal polynomial basis approximations of any specified order
Ns ≥ 0 in position space. The additional computational cost resulting from the higher order
spatial approximations has beenminimised by a careful evaluation of the propagation operator
using semi-analytic integration methods for a Legendre polynomial basis, or full spectral
quadrature in general. The numerical results presented verify the approach and demonstrate
that for practical applications, a moderate increase in the order of the spatial approximation
from Ns = 0 to Ns = 2 can be sufficient to improve the qualitative nature of the numerical
solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Spectrally Convergent Quadrature in Phase-Space

In this appendix we demonstrate the spectral convergence of the adaptive quadrature algo-
rithm outlined in Sect. 3.3 using quadrature for both integrals. Consider two triangles
connected along the line x = 0 as shown in Fig. 9. These triangles are taken from the
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Fig. 9 Quadrature convergence
study for mesh elements with
different propagation speeds:
c1 = 0.5 and c2 = 1. Vertex
coordinates:
A = (−0.0456, 0.4946),
B = (0, 0.4622),
C = (0, 0.5366) and
D = (0.0452, 0.4988)
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Fig. 10 Spectral convergence of the quadrature rules in space and direction. Left integration over direction
using four sub-divisions I(κ), κ = 1, 2, 3, 4. Only the segment I(3) includes non-trivial reflection/ transmission
behaviour and a plot for each of the reflected and transmitted terms is given. Right integration over space at

four fixed direction values. Parameter values: m = m′ = 2, n, n′ = 12, c1 = 0.5, c2 = 1, ρ f
1 = ρ

f
2 = 1 and

μ j = ωη/(2c j ) with η = 0.01 and j = 1, 2

mesh of the coupled two-cavity system shown in Fig. 8. We give sample calculations for rays
originating on the edge marked AB in Fig. 9, and hitting the edge BC . We fix the polynomial
degrees in (21) to bem = m′ = 2 and n = n′ = 12. Then subdividing the integration domain
for the direction integral as outlined in Sect. 3.1, we obtain the following four sub-intervals:

I(1) = (−0.6172, 0.2095], I(2) = (0.2095, 0.43], I(3) = (0.43, 1.4772), I(4) = [1.4772, π/2).

The first subdivision comes from the splitting (20), and the other subdivisions are necessary
since the extremal values of the interval I(3) correspond to branch points of the formula for
θt obtained from Snell’s law (16). The integrals over I(1), I(2) and I(4) are restricted to values
of θ j for which total internal reflection takes place (λt = 0). For the integration over I(3) we
have both reflection and transmission, and the integration is performed with respect to θ+

t as
described in Sect. 3.1.

The spectral convergence of the quadrature for the direction integration is shown in the left
plot of Fig. 10. The plot shows the relative errors, where a numerical solution with 212 + 1
quadrature nodes is used in the place of an exact solution. Notice that the integrals with
total internal reflection (over I(1), I(2), and I(4)) converge faster than the integrals with a non-
constant transmission probability function λt . In the right plot of Fig. 10, we also demonstrate
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the spectral convergence of the spatial quadrature. We consider the spatial integrals with four
fixed θ j values. The choices of θ j shown in the plot correspond to the central value for
each sub-interval. Note that the relative error for these integrals has already reached single
precision with just 8 quadrature nodes, and double precision with 16 quadrature nodes. This
rapid convergencemeans that the computational cost dependsmost crucially on the efficiency
of the direction coordinate integration, since this specifies how many spatial integrals must
be evaluated. The spatial integration efficiency could only practically be improved by the use
of exact spatial integration formulae, such as (23), or (25) for Ns > 0.
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