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Abstract We analyse two practical aspects that arise in the numerical solution of Hamilton–
Jacobi–Bellman equations by a particular class of monotone approximation schemes known
as semi-Lagrangian schemes. These schemes make use of a wide stencil to achieve con-
vergence and result in discretization matrices that are less sparse and less local than those
coming from standard finite difference schemes. This leads to computational difficulties not
encountered there. In particular, we consider the overstepping of the domain boundary and
analyse the accuracy and stability of stencil truncation. This truncation imposes a stricter
CFL condition for explicit schemes in the vicinity of boundaries than in the interior, such
that implicit schemes become attractive. We then study the use of geometric, algebraic and
aggregation-based multigrid preconditioners to solve the resulting discretised systems from
implicit time stepping schemes efficiently. Finally, we illustrate the performance of these
techniques numerically for benchmark test cases from the literature.

Keywords Fully non-linear PDEs · Monotone approximation schemes · Wide stencils ·
Semi-Lagrangian schemes · Multigrid
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1 Introduction

We consider semi-Lagrangian schemes, as described in [5,9], for the numerical approxima-
tion of solutions to the Hamilton–Jacobi–Bellman (HJB) equation
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ut − inf
α∈A

{
Lα[u](t, x) + cα(t, x)u(t, x) + f α(t, x)

} = 0, (t, x) ∈ (0, T ] × �, (1.1)

u(0, x) = g(x), x ∈ �̄, (1.2)

u(t, x) = ψ(x), (t, x) ∈ (0, T ] × ∂�, (1.3)

where � is a domain, QT := (0, T ] × �̄ with �̄ := � ∪ ∂� ⊆ R
d , A is a compact set,

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x) (1.4)

is a second order differential operator, and ψ and g are the Dirichlet and initial conditions.
The coefficients aα = 1

2σ
ασα,T , bα , cα , f α , the initial data g and the boundary conditions

ψ take their values, respectively, in S
d , the space of d × d symmetric matrices, Rd , R, R,

R, and R, and σα ∈ R
d×P such that aα is positive semi-definite. We also assume the usual

well-posedness conditions on the PDE coefficients, i.e. Lipschitz continuous in x uniformly
in α, Hölder continuous with exponent 1

2 in time and continuous in α for each (t, x) ∈ QT

[18]. The relevant notion of solution for this type of non-linear equations is that of viscosity
solutions [7] and the above conditions guarantee existence and uniqueness.

In general, the viscosity solution to (1.1)–(1.3) is unknown, thus it is necessary in practice
to compute approximations numerically. Sufficient conditions for a numerical scheme to
converge to the unique viscosity solution of (1.1)–(1.3)were proved byBarles and Souganidis
[2] in terms of consistency, L∞-stability and monotonicity. We restrict our attention to finite
difference discretizations of the differential operator (1.4).

The requirement of monotonicity drastically affects the properties and construction of
finite difference schemes. Theorem 4 in [27] proves that local monotone discretizations have
at most first order for first-order equations and second order for second-order equations.
What is more, standard fixed stencil methods are monotone only under restrictions on the
diffusion matrix, such as diagonal dominance [9,12]. Results from [6,21] further illustrate
the limitations of such methods for the monotone approximation of second order derivatives.

This implies that generally approximations have to be non-local on the discrete level, i.e.
the distance between mesh points involved in the scheme at a given point grows in relation
to the mesh width as the mesh is refined. Such schemes are referred to as wide stencils. For
general diffusion matrices, first order accurate wide stencils of the type considered here have
been proposed in [5,9], and a mixed fixed- and wide-stencil scheme in [19].

In this article, we analyse two issues arising in practice when numerically solving (1.1)–
(1.3) using the class of schemesdescribed in [5,9,20] to discretize the secondorder differential
operator (1.4). This approximation combines wide stencils in the directions determined by
the columns of the diffusion matrix σα and the drift bα , together with (linear) interpolation.
Following the notation in [9], we write the matrix σα ∈ R

d×P as (σα
1 , σ α

2 , . . . , σ α
P ), where

σα
p ∈ R

d for p ∈ {1, 2, . . . , P} denotes the p-th column of σα , and observe that for k > 0
and any smooth function φ,

1

2
tr
[
σασα T D2φ(x)

]
= 1

2

P∑

p=1

φ(x + kσα
p ) − 2φ(x) + φ(x − kσα

p )

k2
+ O(k2), (1.5)

bαDφ(x) = φ(x + k2bα) − φ(x)

k2
+ O(k2), (1.6)

where O(k2) is the local truncation error of the finite difference and for compactness we
write bα ≡ bα(t, x) and σα ≡ σα(t, x). As these approximations will be used for points
lying on a discrete spatial grid ��x with nodes {x j : 1 ≤ j ≤ N }, the displaced points
x + k2bα , x ± kσα

p do not generally coincide with nodes of ��x . Therefore, φ is replaced
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by an interpolant I�xφ on that grid. We restrict our attention to linear interpolants, defined
by the standard piecewise multilinear non-negative basis functions {w j (·) : 1 ≤ j ≤ N }
associated with the mesh nodes, such that for any function φ

(I�xφ)(x) =
∑

j∈N (x)

φ(x j )w j (x), (1.7)

for all x ∈ �, x j ∈ ��x , whereN (x) is the set of neighbours of x on the mesh ��x , i.e. the
mesh points with non-zero interpolation weight. The resulting scheme is referred to as the
Linear Interpolation Semi-Lagrangian (LISL) scheme.

It is shown in [9] that the leading order terms of the local truncation error are proportional

to k2 and �x2

k2
, where the last quantity corresponds to the linear interpolation error in the finite

difference formulae (1.5) and (1.6) by replacing φ by its interpolant. Therefore, by choosing
k = √

�x , the resulting scheme is locally of first order in �x .
Following the notation in [9], the LISL finite difference approximations for the differential

operator in (1.4) can be expressed as

Lα
�x [I�xφ](t, x)

:=
M∑

p=1

(I�xφ)(t, x + yα,+
p (t, x)) − 2(I�xφ)(t, x) + (I�xφ)(t, x + yα,−

p (t, x))

2�x
,

(1.8)

for x ∈ ��x , and some M ≥ 1.
Different schemes can be obtained depending on the values taken by M and yα,±

p (t, x).
In particular, [9] discusses the following three schemes:

Examples of LISL schemes.

1. Scheme 1: The approximation of Camilli and Falcone [5], corresponding to yα,±
p =

±√
�xσα

p + �x
P bα and M = P .

2. Scheme 2: The approximation in [9], corresponding to yα,±
p = ±√

�xσα
p for p ≤ P ,

yα,±
P+1 = �xbα , and M = P + 1.

3. Scheme 3:Amore efficient version of theCamilli–Falcone approximation, corresponding
to yα,±

p = ±√
�xσα

p for p < P , yα,±
P = ±√

�xσα
P + �xbα , and M = P .

The authors show that this family of discretizations of (1.4) is consistent and monotone.
Monotonicity of the scheme is fulfilled as the discrete approximation Lα

�x [I�xφ] is the
composition of monotone finite differences and a monotone interpolation operation. Once
discretized in space, the final scheme arises from discretising in time using the standard
θ -time stepping scheme for θ ∈ [0, 1], where θ = 0 corresponds to the explicit Euler time
stepping and θ = 1 to the implicit case, on a time grid represented by a strictly increasing
sequence of points {tn}Nt+1

n=0 with t0 = 0, tNt+1 = T , and �tn := tn − tn−1 ≤ �t for all
n. The scheme being monotone, it can be written as described in the following definition,
where for any grid function V : {tn}Nt+1

n=0 × ��x → R, V n
i ≡ V (tn, xi ).

Definition 1.1 (Equation (4.1) in [9]) A scheme is said to be of positive type, if it can be
written as

max
α∈A

⎧
⎨

⎩
Bα,n,n

j, j Un
j −

∑

i �= j

Bα,n,n
j,i Un

i −
N∑

i=1

Bα,n,n−1
j,i Un−1

i − Fα,n−1+θ
j

⎫
⎬

⎭
= 0, (1.9)
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for j = 1, . . . , N , on the discrete domain {tn}Nt+1
n=0 ×��x , whereUn

i is the numerical solution
at node (tn, xi ) and all the coefficients B are non-negative.

For the convenience of the reader, we reproduce the expressions for Bα,n,·
j,· of the LISL

schemes as in [9], for all 1 ≤ i �= j ≤ N , xi , x j /∈ ∂�,

Bα,n,n
j, j = 1 + θ�tn

(
M

2�x
− lα,n

j, j − cα,n−1+θ
j

)
, Bα,n,n

j,i = θ�tn l
α,n
j,i ,

Bα,n,n−1
j, j = 1 − (1 − θ)�tn

(
M

2�x
− lα,n−1

j, j − cα,n−1+θ
j

)
, Bα,n,n−1

j,i =(1 − θ)�tn l
α,n−1
j,i ,

where cα,n−1+θ
j = cα(tn−1 + θ�t, x j ) and

lα,n
j,i =

M∑

p=1

wi (x j + yα,+
p (tn, x j )) + wi (x j + yα,−

p (tn, x j ))

2�x
.

The schemes described above have a wide stencil as the length of the stencil, being
proportional to the ratio k/�x ∼ 1/

√
�x , tends to ∞ as �x → 0. Hence, when applied

on a bounded discrete grid, the stencil will generally exceed the domain for points close
to its boundary. As discussed in [9], the overstepping may pose a problem depending on
the equation and the type of boundary conditions imposed. We consider Dirichlet boundary
conditions here.

Our first goal is to present and analyse a modification of the LISL scheme to deal with
overstepping for problems on bounded domains with Dirichlet boundary conditions, and
general drift and diffusion coefficients. We describe how to truncate the LISL stencil so
that the truncation remains consistent and monotone. We prove that the resulting stencil for
Scheme 2 above is of positive type (as per Definition 1.1), and since the coefficients B in
(1.9) do not depend on U , it is also monotone. This is not the case for Schemes 1 and 3.
We also observe that the truncation has both local and global impacts on the properties of
the scheme. Locally, the modification of the scheme leads to a loss of accuracy of half an
order in the consistency error, i.e. O(

√
�x) instead of O(�x), due to the loss of symmetry.

We compare the accuracy of the truncation with extrapolations of the boundary conditions
by way of numerical tests for benchmark problems. As the mesh points requiring truncation
of the scheme are restricted to an O(

√
�x) layer at the boundary, convergence rates close

to O(�x) are observed empirically for the new scheme. The truncation has a global effect
in the sense that it modifies the CFL condition of explicit schemes by at least half an order,
from �t = O(�x) to �t = O(�x3/2). As the empirical error is O(�t) + O(�x) for fully
implicit schemes, the computationally most efficient choice is�t ∼ �x , outside the stability
region of explicit schemes.

The second goal is therefore the use of implicit schemes and the efficient solution of the
discrete system (1.9) using multigrid preconditioning. For θ �= 0, the coupling of the optimal
control and the coefficients makes (1.9) a non-linear system of algebraic equations,

max
α∈A

(
Aα
i X − Fα

i

) = 0, i = 1, . . . , N , (1.10)

where Aα
i is the i-th row of a matrix Aα with elements Aα

i, j , i, j = 1, . . . , N , and control

α ∈ A. Comparing with (1.9), Aα
i, j = Bα,n,n

i, j , Fα
i = Fα,n−1+θ

i , and X = (Xi ) = (Un
i ) is

the solution vector for the n-th time step. The maximisation over α in (1.10) is row-wise
and usually done by linear search. By construction of the LISL scheme, Aα is an M-matrix
with non-negative row sum. Therefore, following results in [4], we can use policy iteration to
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compute U . Then, within each policy iteration, a linear system Aαi
i X = Fαi

i , i = 1, . . . , N ,
with fixed control vector (αi )1≤i≤N has to be solved.We find (in contrast to [19]) that this last
step is the computationally most costly part of the overall algorithm if direct linear solvers
or standard iterative solvers are used.1 We therefore study multigrid preconditioners (see
Table 16.)

In the literature on multigrid for HJB equations, two main approaches are observed: on
the one hand, multigrid is applied directly to the non-linear problem, as in [3,13,14]; and on
the other hand, multigrid is applied to a linearised problem, as in [1]. In particular, [3,14]
provide the first multigrid algorithms for HJB equations and prove convergence, while [13]
presents a novel smoother for HJB equations based on damped value iteration [17]. These
articles have in common the use of standard fixed stencil finite difference approximations
and the use of a geometric structure when building the hierarchy of multigrid subspaces.

The novelty of this article is to study the application of multigrid preconditioning to a wide
stencil discretization. We will demonstrate, both by Fourier analysis of a model problem and
by numerical tests in a more complex application, that standard geometric multigrid does not
give mesh-size independent convergence.

We then investigate algebraic multigrid methods. The basis for the specific algorithm we
use was introduced in [24] for linear elliptic PDEs. It empirically showed that “aggregation
based methods could yield robust2 and convergent schemes if used as preconditioners of a
Krylov method, and were part of an enhanced multigrid cycle, not simple V- or W-cycles” as
considered in [31]. By enhanced multigrid cycles, the authors refer to recursive schemes in
which at each coarse level the solution to the residual equation is computed using a number
of Krylov subspace iterations as in [26] or with a semi-iterative method based on Chebyshev
polynomials called the AMLI cycle, see Section 5.6 of [34]. The aggregates were formed
using heuristic criteria following coupling in the strongest direction.

In [22] the authors introduced an aggregation-based multigrid method with guaranteed
convergence rate for symmetric M-matrices with non-negative row sum. A LISL discretiza-
tion matrix is only symmetric in very specific cases with limited practical interest. For
non-symmetric matrices, in [25] convergence of a simplified two-grid scheme using aggre-
gation is proved for non-singular M-matrices with non-negative row and column sums. This
requirement ensures that the symmetric part of the coefficient matrix A given by A + AT

meets the assumptions in [22] and allows the use of its theoretically justified algorithms. We
will derive conditions on the coefficients of the HJB equation such that this theory applies,
and show empirically that aggregation-based multigrid gives roughly mesh-size independent
convergence.

The rest of the article is organised as follows. Section 2 discusses the truncation of the
LISL scheme for points whose stencil exceeds the domain and compares its performance to
naïve extrapolations of the boundary conditions. Section 3 considers the application of three
different multigrid methods to linear systems where the coefficient matrix arises from LISL
discretizations. Section 4 contains the final remarks.

1 Which of the two steps is more costly depends crucially on the type of control problem. The optimisation
step is typically fast if the control is taken from a finite set, if the local control problem is analytically solvable
(e.g., quadratic or of ‘bang-bang’-type), or if the coefficients are a smooth convex function of the control,
such that standard Newton-type methods can be used. It will be more costly, if the optimal control has to be
approximated by exhaustive search over a discretised control set, especially if the dimension of the control
space is higher than the spatial dimension of the PDE. In the examples considered in this paper, the control is
scalar and we optimise by linear search over a one-dimensional control mesh.
2 In this context, a robust method is referred to as one showing good performance for a large range of problems
without changing the smoother.
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2 Boundary Treatment for the LISL Scheme

In this section, we analyse adaptations of Schemes 1–3 for initial-boundary value problems on
bounded domains. As described in the introduction, for points x close to the boundaries of the
domain, the stencil points x+ yα,±

p (t, x) in (1.8) generally do not lie in a mesh element. In the
following, we therefore discuss the truncation of (1.8) so that the resulting scheme remains
monotone, consistent, and L∞-stable. The proposed truncation samples the boundary points
on the straight lines defined by the point x and x + yα,±

p (t, x) and adjusts the corresponding
finite difference weights for consistency.

2.1 Definition of Truncated Stencils

We take � ⊂ R
d for d ≥ 2. We first outline how the method can be defined on a general

domainwith curved boundary, but later (especially in the numerical tests) focus for simplicity
on rectangular domains. We start with a Cartesian mesh on Rd with uniform mesh width �x
and then choose ��x as all the points which lie inside �. See Fig. 1.

We now fix a mesh node x ∈ ��x . There are two distinct situations where interpolation
at the point x + yα,±

p (t, x) as per (1.8) is not possible for given t, α and p:

A. x + yα,±
p (t, x) /∈ �̄ (bottom left in Fig. 1);

B. x + yα,±
p (t, x) ∈ �̄, but the element it is contained in has vertices outside �̄ (top right).

We say the stencil “oversteps”. In such cases, the objective is to find truncated or extended
stencil vectors ŷα,±

p (t, x) and corresponding finite difference weights Aα
p ≡ Aα

p(t, x) and

Bα
p ≡ Bα

p (t, x), such that x + ŷα,±
p (t, x) ∈ ∂� and the truncated scheme

L̂α
�x [I�xφ](t, x) :=
M∑

p=1

Aα
p(I�xφ)(t, x + ŷα,+

p (t, x)) − (Aα
p + Bα

p )φ(t, x) + Bα
p (I�xφ)(t, x + ŷα,−

p (t, x))

2�x

(2.1)

Fig. 1 Truncation and
extrapolation of the stencil for an
elliptical domain and a mesh
made of square cells. The
modified stencil samples the
domain boundary
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is a consistent approximation of (1.4) as �x → 0. If the stencil does not overstep, we have
that ŷα,±

p (t, x) = yα,±
p (t, x) and Aα

p = Bα
p = 1. If it does, for any t we define

ŷα,±
p (t, x) = μα,±

p (t, x)yα,±
p (t, x), where

μα,±
p (t, x) = min

{
μ ≥ 0 : x + μyα,±

p (t, x) ∈ ∂�
}

.

In case A, this means μ < 1, while in case B we have μ > 1.
In the remainder of this section we restrict our attention to the truncation of the scheme

on rectangular domains, in which case the elements of the Cartesian mesh cover exactly the
domain and case B does not occur. Moreover, this means that interior mesh points cannot be
arbitrarily close to the boundary, but are always at least�x away.3 This allows the derivation
of CFL conditions for the explicit schemes as given below in Sect. 2.3.

2.2 Consistency Conditions

In the truncated scheme (2.1) there are M pairs of weights, which can be chosen freely,
subject to positivity, in order to obtain a consistent scheme. As we will see below, this is only
possible for Scheme 2.

In the following, we denote [[1, j]] ≡ [1, j]∩Z and for a vector v ∈ R
d , (v)i denotes its i-

th element. As in the introduction, we have that bα ∈ R
d , and σα = (σα

1 , . . . , σ α
p , . . . , σ α

P ) ∈
R
d×P where σα

p ∈ R
d denotes the p-th column vector. For compactness, we omit the

dependence of the coefficients and the stencil related functions with respect to the position,
that is bα ≡ bα(t, x), σα

p ≡ σα
p (t, x), yα,±

p ≡ yα,±
p (t, x) and μ

α,±
p ≡ μ

α,±
p (t, x). We add

a second subscript taking values 1, 2 or 3 to Aα
p , B

α
p and yα,±

p to make the discretization
scheme explicit.

Proposition 2.1 The truncated version of Schemes 1 and 3 is generally not consistent.

Proof By Taylor expansion of a smooth test function we find that the consistency conditions
for Scheme 1 are

∑

p∈P

(
Aα
1,p(ŷ

α,+
1,p )i + Bα

1,p(ŷ
α,−
1,p )i

)
= 2�x

|P|
P

(bα)i + o(�x),

∑

p∈P

(
Aα
1,p(ŷ

α,+
1,p )i1(ŷ

α,+
1,p )i2 + Bα

1,p(ŷ
α,−
1,p )i1(ŷ

α,−
1,p )i2

)
= 2�x

∑

p∈P
(σα

p )i1(σ
α
p )i2 + o(�x),

whereP ⊆ [[1, P]] denotes the set of stencils overstepping the domain and i, i1, i2 ∈ [[1, d]].
In Scheme1, there are 2|P| ≤ 2d variables, but (d2+3d)/2 equations,d from the condition

on the Jacobian and (d2+d)/2 from the condition on theHessian. This overdetermined system
has a solution only if there is linear dependence between the equations. Except for special
cases, e.g. |P| = 0 or σα

p parallel to bα for some p, this is not the case. Hence, in general the
truncated Scheme 1 is not consistent.

We observe that the same principle applies to Scheme 3 for yα,±
3,P = ±√

�xσα
P + �xbα .

��
For example, consider x0 = (0, 0)T , �̄ = [−5, 1]2, √

�xσα
1 (x0) = (2, 0)T ,√

�xσα
2 (x0) = (0, 1)T , and �xbα(x0) = (0, 1)T , then the truncated version of Scheme

3 This can also be enforced in the general case by removing the outermost layer of cells, such that again a
distance of �x between non-boundary mesh points and the domain boundary is ensured.
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1 is not consistent, but the one for Scheme 3 is. However, if�xbα(x0) = (1, 1)T then neither
of them is consistent.

We conclude that for points whose stencil oversteps the boundary, the approximations of
the first and second derivative should be considered separately, as done in Scheme 2.

Proposition 2.2 For Scheme 2 and all p ∈ [[1, P + 1]], let μ
α,±
p ∈ (0, 1] be the largest

constant such that x + μ yα,±
2,p ∈ �̄ for all μ ∈ [0, μα,±

p ], and define

Aα
2,P+1 = Bα

2,P+1 = 1

μ
α,+
P+1

(

= 1

μ
α,−
P+1

)

, (2.2)

and, for p ∈ [[1, P]],

Aα
2,p = 2

(μ
α,+
p )2 + μ

α,+
p μ

α,−
p

, Bα
2,p = 2

(μ
α,−
p )2 + μ

α,−
p μ

α,+
p

. (2.3)

Then the scheme defined by (2.1) is consistent unless both μ
α,+
p , μ

α,−
p ∼ O(

√
�x).

Proof If the stencil oversteps, then the truncated stencil consists of the point at the intersection
between the boundary ∂� and one of the segments {x, x + √

�xσα
p }, {x, x − √

�xσα
p }, or

{x, x + �xbα}. For each point (t, x) Scheme 2 requires the calculation of at most 2P + 1
different weights, i.e. 2P for the second order term and one for the first order term. For the
latter we have that ŷα,+

2,P+1 = ŷα,−
2,P+1, therefore Aα

2,P+1 = Bα
2,P+1. Ignoring the interpolation

error for the time being, the coefficients are obtained from the consistency conditions (up to
a term o(�x)),

(Aα
2,P+1 + Bα

2,P+1)(ŷ
α,±
2,P+1)i = 2�x(bα)i , ∀i ∈ [[1, d]], (2.4)

for the first order term, and

Aα
2,p(ŷ

α,+
2,p )i + Bα

2,p(ŷ
α,−
2,p )i = 0, ∀i ∈ [[1, d]], (2.5)

Aα
2,p(ŷ

α,+
2,p )i1(ŷ

α,+
2,p )i2 + Bα

2,p(ŷ
α,−
2,p )i1(ŷ

α,−
2,p )i2 = 2�x(σα

p )i1(σ
α
p )i2 , ∀(i1, i2) ∈ [[1, d]]2,

(2.6)

for the second order term.
By construction of the truncated stencil (2.4) and (2.5) are linearly dependent across i ,

and (2.6) across i1 and i2, resulting in one (linearly independent) equation for the first order
term weights and two for Aα

2,p , B
α
2,p , with solutions given by

Aα
2,P+1 = Bα

2,P+1 = �x
(bα)i

(ŷα,±
2,P+1)i

, (2.7)

and

Aα
2,p = 2�x(σα

p )2i

(ŷα,+
2,p )i ((ŷ

α,+
2,p )i − (ŷα,−

2,p )i )
, Bα

2,p = 2�x(σα
p )2i

(ŷα,−
2,p )i ((ŷ

α,−
2,p )i − (ŷα,+

2,p )i )
, (2.8)

which are seen to be equivalent to Eqs. (2.2) and (2.3).
The contribution to the consistency error of (2.1) from the bilinear interpolation operator I

is bounded by (�x)−1∑
p(|Ap|+|Bp|)(�x)2,which is goes to 0 if |Ap|+|Bp| = o((�x)−1)

for all p, which is violated if and only if μ
α,+
p , μ

α,−
p ∼ O(

√
�x). ��

Corollary 2.3 For the truncated Scheme 2, (2.1), (2.2) and (2.3), the following holds:
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(a) The scheme is of positive type andmonotonewith Aα
2,p, B

α
2,p ≥ 1 for all p ∈ [[1, P+1]].

(b) For points x within a distance O(�x) of the boundary and p �= P + 1, as �x → 0,

if |ŷα,+
2,p | <

√
�x |σα

p | and |ŷα,−
2,p | = √

�x |σα
p | �⇒ Aα

2,p ∼ O(�x−1/2) and lim
�x→0

Bα
2,p = 2,

if |ŷα,−
2,p | <

√
�x |σα

p | and |ŷα,+
2,p | = √

�x |σα
p | �⇒ lim

�x→0
Aα
2,p = 2 and Bα

2,p ∼ O(�x−1/2),

if |ŷα,±
2,p | <

√
�x |σα

p | �⇒ Aα
2,p, B

α
2,p ∼ O(�x−1).

(c) The local consistency error for points with truncation and p �= P + 1 is O(
√

�x) if
only one side of the stencil oversteps, and O(1) if both sides overstep.

Proof The claim in (a) follows from (2.2), (2.3), and the fact that μ
α,±
p ∈ (0, 1] and the

coefficients Aα
2,p, B

α
2,p do not depend on the numerical solution U . The limits in (b) follow

from (2.3) and noting that if the stencil oversteps for a point x lying O(�x) away from the
boundary, but at least�x by the assumptionmade on themesh, thenμ

α,+
p ∼ O(

√
�x) and/or

μ
α,−
p ∼ O(

√
�x), but not o(

√
�x).

To prove (c) we use Taylor expansions for each p and conclude using the limits in b).
Let φ : �̄ → R be a smooth function and for any p ∈ (P ∩ [[1, P]]), where P denotes
the set of stencils overstepping the domain, then by Taylor expansion and the consistency
conditions (2.5)–(2.6) the local consistency error τ for the p-th addend of (2.1) using multi-
index notation is given by

τ := Aα
pφ(t, x + ŷα,+

p ) − (Aα
p + Bα

p )φ(t, x) + Bα
pφ(t, x + ŷα,−

p )

2�x
− 1

2
tr[σα

p σα,T
p D2φ]

= 1

2�x

∑

|β|≥3

1

|β|! (A
α
p(ŷ

α,+
p )β + Bα

p (ŷ
α,−
p )β)Dβφ,

where, due to the truncation of the stencil, the scheme is not central and therefore the terms
for odd |β| do not cancel out. If only one side of the stencil oversteps then for |β| = 3

Aα
p(ŷ

α,+
p )β + Bα

p (ŷ
α,−
p )β

�x
∼ O(

√
�x),

whereas if both sides overstep then the error from interpolation dominates and is O(1) for
points O(�x) from the boundary, as seen at the end of the proof of Proposition 2.2. ��

Remark 2.1 (Two-sided overstepping) We note that it is possible for both sides of the stencil
to overstep if the diffusion direction σα

p is (almost) parallel to the domain boundary, for points
close to a locally convex smooth boundary with high curvature in that direction, as well as
close to corners; see Remark 2.4 and Table 5 below.

The scheme is consistent at points with two-sided overstepping if the truncated scheme
is not interpolated at the boundary but uses the exact boundary values. In that case, the
consistency error for those points is O(�x).

2.3 Properties of the Truncated Stencil

The changes in the finite difference weights of scheme (2.1) introduced by the truncation,
modify the positivity conditions given in Lemma 4.1 in [9]. We will show that the scheme
remains conditionally L∞-stable and monotone, but the CFL conditions are more restrictive
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in the truncated case for time-stepping schemes with θ < 1. We start by writing the scheme
on a discrete time-space grid with mesh parameters �t and �x as

L̂α
�x [I�xφ(t, ·)](tn, x j )

=
M∑

p=1

1

2�x

[
Aα,n
p (I�xφ(tn, ·))(x j + ŷα,+

p ) − (Aα,n
p + Bα,n

p )φ(tn, x j )

+ Bα,n
p (I�xφ(tn, ·))(x j + ŷα,−

p )
]

=
M∑

p=1

{ ∑

i∈N (x j+ŷα,+
p )

1

2�x

[
Aα,n
p wi (x j + ŷα,+

p )
]
(φ(tn, xi ) − φ(tn, x j ))

+
∑

i∈N (x j+ŷα,−
p )

1

2�x

[
Bα,n
p wi (x j + ŷα,−

p )
]
(φ(tn, xi ) − φ(tn, x j ))

}

=
N∑

i=1

M∑

p=1

Aα,n
p wi (x j + ŷα,+

p ) + Bα,n
p wi (x j + ŷα,−

p )

2�x
(φ(tn, xi ) − φ(tn, x j ))

=
N∑

i=1

l̂α,n
j,i (φ(tn, xi ) − φ(tn, x j )), (2.9)

where N is the set of neighbours as in (1.7), and

l̂α,n
j,i =

M∑

p=1

Aα,n
p wi (x j + ŷα,+

p (tn, x j )) + Bα,n
p wi (x j + ŷα,−

p (tn, x j ))

2�x
.

The first equality follows from (2.1), the second from (1.7) and since for all 1 ≤ i, j ≤ N

w j (x) ≥ 0, wi (x j ) = δi j , and
∑

i∈N (x)

wi (x) ≡ 1, (2.10)

for multi-linear interpolation. Here,

N∑

i=1

l̂α,n
j,i =

M∑

p=1

Aα,n
p + Bα,n

p

2�x
≥ M

�x
,

with equality only in the absence of domain overstepping for all p ∈ [[1, M]] at (tn, x j , α).
Writing the overall scheme in the form (1.9) of Definition 1.1, we have that

sup
α

⎧
⎨

⎩

⎡

⎣1 + θ�tn

⎛

⎝
M∑

p=1

Aα,n
p + Bα,n

p

2�x
− l̂α,n

j, j − cα,n−1+θ
j

⎞

⎠

⎤

⎦Un
j − θ�tn

∑

i �= j

l̂α,n
j,i U

n
i +

−
⎡

⎣1 − (1 − θ)�tn

⎛

⎝
M∑

p=1

Aα,n−1
p + Bα,n−1

p

2�x
− l̂α,n−1

j, j − cα,n−1+θ
j

⎞

⎠

⎤

⎦Un−1
j +

− (1 − θ)�tn
∑

i �= j

l̂α,n−1
j,i Un−1

i − �tn f
α,n−1+θ
j

⎫
⎬

⎭
= 0. (2.11)
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It is straightforward to write down the expressions for the coefficients in (1.9):

Bα,n,n
j, j = 1 + θ�tn

⎛

⎝
M∑

p=1

Aα,n
p + Bα,n

p

2�x
− l̂α,n

j, j − cα,n−1+θ
j

⎞

⎠ ,

Bα,n,n−1
j, j = 1 − (1 − θ)�tn

⎛

⎝
M∑

p=1

Aα,n−1
p + Bα,n−1

p

2�x
− l̂α,n−1

j, j − cα,n−1+θ
j

⎞

⎠ ,

Bα,n,n
j,i = θ�tn l̂

α,n
j,i , Bα,n,n−1

j,i = (1 − θ)�tn l̂
α,n−1
j,i .

Remark 2.2 In writing down (2.9), we assumed that the value at the boundary is interpolated
from other mesh points, which is feasible on rectangular cuboids, but not for general domain
boundaries. In both cases, the Dirichlet boundary value at x j + ŷα,±

p can be used. This has
the advantage that interpolation error is avoided. Moreover, as this value then contributes to
the right-hand-side f of Eq. (2.11) instead of the off-diagonal matrix elements, the system
matrix becomes more diagonally dominant. This is advantageous for the iterative solution,
see Sect. 3.4.

The next proposition contains the positivity conditions for the coefficientsB defined above.

Proposition 2.4 The scheme (2.11) is of positive type if the following conditions hold,

(1 − θ)�tn

⎡

⎣
M∑

p=1

Aα,n−1
p + Bα,n−1

p

2�x
− cα,n−1+θ

i

⎤

⎦ ≤ 1, and θ�tnc
α,n−1+θ
i ≤ 1, (2.12)

for all α, n, i .

Corollary 2.5 In the case of overstepping and θ < 1, monotonicity requires that �t ∼
O(�x3/2) if only one side of the diffusion stencils oversteps, or �t ∼ O(�x2) if both sides
overstep. However, if the stencil is not truncated, the positivity condition remains as in [9],
that is �t ∼ O(�x).

Proof From Corollary 2.3, if the corresponding stencil is truncated on one side Aα,n−1· +
Bα,n−1· ∼ O(�x−1/2) for sufficiently small �x , Aα,n−1· + Bα,n−1· ∼ O(�x−1) if both sides
are truncated, whereas if there is no overstepping, Aα,n−1· + Bα,n−1· ∼ O(1). ��

The L∞-stability follows from the proof of Lemma 4.1 in [9] and the new CFL conditions
in Proposition 2.4.

2.4 Numerical Experiments

To test the truncation of the stencil, we consider Problems A and B in Section 9.3 from [9].
Both problems follow the formulation in (1.1)–(1.3) with homogeneous Dirichlet boundary
conditions and have smooth solutions.

Problem A (see Section 9.3 from [9]). It has exact solution u(t, x1, x2)=
( 3
2 −t

)
sin x1 sin x2,

and coefficients and control set are given by

f α =
(
1

2
− t

)
sin x1 sin x2 +

(
3

2
− t

)[√
cos2 x1 sin2 x2 + sin2 x1 cos2 x2+

− 2 sin(x1 + x2) cos(x1 + x2) cos x1 cos x2
]
,
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cα = 0, bα = α, σα = √
2

(
sin(x1 + x2)
cos(x1 + x2)

)
, A = {α ∈ R

2 : α2
1 + α2

2 = 1}.

Problem B (see Section 9.3 from [9]). It has exact solution u(t, x1, x2) = (2 − t) sin(x1)
sin(x2), and coefficients and control set

f α = (1 − t) sin x1 sin x2 − 2α1α2(2 − t) cos x1 cos x2,

cα = 0, bα = 0, σ α = √
2

(
α1

α2

)
, A = {α ∈ R

2 : α2
1 + α2

2 = 1}.

Both problems are solved on the domain (t, x1, x2) ∈ [0, T ]× [−π, π]2 with T = 1
2 . We

discretize the spatial domain usingCartesian gridswith Nx×Nx equispaced nodes and for the
control set A we take Nα equally spaced points. Here, I�x is the usual bilinear interpolator
on rectangles.

For illustration of the stencil and its non-locality, the top row of Fig. 2 represents the
stencil for Problems A and B on a Cartesian grid of 11 × 11 points and 10 points in the
control set A. Colour coded lines link the stencil points with the node where the numerical
solution is computed, the different colours correspond to the different ŷα,·· . On top of some of
the stencil points we print the value of the finite difference weights, for compactness we set
A ≡ Aα

2,1(x), B ≡ Bα
2,1(x) and C ≡ (μα

2,2(x))
−1, following the notation in (2.3) and (2.2).

The bottom row of Fig. 2 represents the non-locality of the diffusion stencil by counting the
number of stencil points at a given distance from the central node. The distance is measured

as multiples of�x and given by
⌊

(σα(x))i√
�x

⌋
, where the grid is of size 641×641 and 10 points

in the control set A.
Problems A and B were obviously chosen in [9] for their periodic solutions, to be able

to analyse the convergence of the scheme without the complication of boundary conditions.
Here, we do not make use of the periodicity but only use the values at the boundary and not
outside the domain.

We note that the problems being linear in t , a single time step with �t = T suffices to
obtain an exact solution in t . However, in order to check the effect of the truncation on the
stability, in addition to �t = T , we also investigate �t equal to �x

4 , �x3/2, and �x2. We
report the∞-norm of the errors over two regions: the first one comprising the whole domain,
and the second one comprising part of the interior of the domain.

We consider explicit and implicit time stepping schemes, corresponding to θ = 0 and
θ = 1 respectively. For the explicit scheme in the case of overstepping we test the following
modifications of the scheme:

1. truncation of the stencil as discussed in Sect. 2.2 (Table 1 for Problem A and Table 12
for Problem B);

2. constant extrapolation of the boundary value in the direction of the semi-Lagrangian step
(Table 2 for Problem A and Table 13 for Problem B);

3. linear extrapolation of the boundary value in the direction of the semi-Lagrangian step
(Table 3 for Problem A and Table 14 for Problem B).

For the implicit case we only consider the first modification, i.e. truncation of the stencil
(Table 4 for Problem A and Table 15 for Problem B).

The results confirm the impact of the truncation on the stability of the scheme, when
θ = 0. However, when θ = 1, we do not observe any instability regardless of the size of
the time step. When stable, the truncation of the stencil outperforms the two extrapolations
of the boundary conditions considered. Furthermore, as the mesh and time steps are refined,
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Fig. 2 Graphical representation of the stencil over a two-dimensional Cartesian grid of size 11 × 11 and 10
equally spaced points in the control set A. The finite difference weights corresponding to some of the points
are printed, where for simplicity the weights are labelled A ≡ Aα

2,1(x), B ≡ Bα
2,1(x) and C ≡ (μα

2,2(x))
−1,

following the notation in (2.3) and (2.2). To illustrate the non-locality of the scheme as the grid is refined,
the second row represents the histograms of the shortest displacement from the central node for a grid of size

641×641 for both problems. The radius of the stencil in σα is 14.27 for this grid, given by ‖σα‖2√
�x

= √
640/π .

a Stencil for Problem A in [9] on a Cartesian 11× 11 grid for 10 sample points in the control setA. b Stencil
for Problem B in [9] on a Cartesian 11 × 11 grid for 10 sample points in the control set A. c Histogram of⌊

(σα(x))i√
�x

⌋
in Problem A for all x ∈ ��x where ��x is a Cartesian grid with �x = 2π

640 , 10 points in the

control setA, and i ∈ {1, 2} is the dimension index. d Histogram of
⌊

(σα(x))i√
�x

⌋
in Problem B for all x ∈ ��x

where ��x is a Cartesian grid with �x = 2π
640 , 10 points in the control setA, and i ∈ {1, 2} is the dimension

index

only the truncated scheme, if stable, achieves convergence orders close to O(�x) when the
error at t = T is measured on the entire spatial grid. This can be explained without rigorous
proof by the observation that the truncation error of order

√
�x is restricted to a boundary

layer of width
√

�x . Therefore, as seen from the last two columns in Table 4, choosing�t of
order higher than 1 in �x does not improve the accuracy of the numerical results and leads
to computational inefficiency.

Remark 2.3 Regarding the discretization of the control set, we take Nα = 40 equally spaced
points. For this choice, the discretization error of the LISL scheme is found to dominate the
control discretization error for the problems and the space-time mesh sizes considered.
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Table 1 Results using the truncation of the stencil for explicit method with Nα = 40 for Problem A

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 1.42e−01 – 4.39e−02 – 4.39e−02 – 4.36e−02 –

81 1.04e−01 0.45 2.12e−02 1.05 2.11e−02 1.06 2.11e−02 1.05

161 7.36e−02 0.50 1.10e−02 0.94 1.10e−02 0.94 1.10e−02 0.94

321 5.28e−02 0.48 1.34e+23 −83.33 5.77e−03 0.93 5.76e−03 0.93

641 3.77e−02 0.48 5.07e+89 −221.17 3.10e−03 0.90 3.10e−03 0.89

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 8.61e−02 – 4.38e−02 – 4.42e−02 – 4.35e−02 –

81 4.22e−02 1.03 2.12e−02 1.05 2.11e−02 1.06 2.11e−02 1.05

161 2.14e−02 0.98 1.10e−02 0.94 1.10e−02 0.95 1.10e−02 0.94

321 1.10e−02 0.96 1.84e+13 −50.57 5.71e−03 0.95 5.70e−03 0.95

641 5.96e−03 0.88 1.06e+72 −195.20 3.08e−03 0.89 3.08e−03 0.89

Table 2 Results using constant extrapolation of the boundary condition for explicit method with Nα = 40
for Problem A

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 1.36e+00 – 3.68e−01 – 3.72e−01 – 3.65e−01 –

81 1.89e+00 -0.48 2.61e−01 0.49 2.62e−01 0.51 2.60e−01 0.49

161 2.67e+00 -0.49 1.80e−01 0.54 1.80e−01 0.54 1.80e−01 0.53

321 3.77e+00 -0.50 1.27e−01 0.51 1.27e−01 0.51 1.27e−01 0.51

641 5.34e+00 -0.50 9.18e−02 0.47 9.18e−02 0.47 9.18e−02 0.46

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 1.59e−01 – 1.04e−01 – 1.05e−01 – 1.03e−01 –

81 8.15e−02 0.96 5.25e−02 0.99 5.26e−02 1.00 5.22e−02 0.98

161 4.22e−02 0.95 2.67e−02 0.98 2.66e−02 0.98 2.66e−02 0.97

321 2.18e−02 0.95 1.36e−02 0.97 1.36e−02 0.97 1.36e−02 0.97

641 1.21e−02 0.85 8.21e−03 0.73 8.20e−03 0.73 8.19e−03 0.73

Remark 2.4 Corollary 2.5 shows two different CFL conditions for the truncated stencil, the
first one for diffusion stencils where only one side oversteps and a second one when both
sides overstep. The results in Table 1 for Problem A and Table 12 for Problem B correspond
to the former situation. To check the sharpness of the latter, we shift the spatial domain in
Problem A in both directions by 7π

8 . The new spatial domain is thus �̄ = [−π
8 , 15π

8 ]2. Note
that the solution itself is periodic with period 2π . This problem differs from the original
one in that both sides of the diffusion stencil overstep for mesh points within a distance of
O(

√
�x) to the bottom left corner, located at (−π

8 , −π
8 ), where σα = (−1, 1)T . In Table 5
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Table 3 Results using linear extrapolation for points out of the domain for explicit method with Nα = 40
for Problem A

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 1.59e−01 – 1.04e−01 – 1.05e−01 – 1.03e−01 −
81 8.15e−02 0.96 5.25e−02 0.99 5.26e−02 1.00 5.22e−02 0.98

161 4.28e−02 0.93 5.62e−01 −3.42 5.63e−01 −3.42 5.58e−01 −3.42

321 2.75e−02 0.64 4.41e+03 −12.94 6.00e+03 −13.38 8.00e+03 −13.81

641 1.85e−02 0.57 2.77e+20 −55.80 2.70e+20 −55.32 1.37e+21 −57.25

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 1.59e−01 – 1.04e−01 – 1.05e−01 – 1.03e−01 −
81 8.15e−02 0.96 5.25e−02 0.99 5.26e−02 1.00 5.22e−02 0.98

161 4.22e−02 0.95 2.67e−02 0.98 2.66e−02 0.98 2.66e−02 0.97

321 2.18e−02 0.95 1.96e+00 −6.20 2.07e+00 −6.28 2.23e+00 −6.39

641 1.21e−02 0.85 9.26e+14 −48.75 3.18e+15 −50.45 3.01e+15 −50.26

Table 4 Results using truncation for points out of the domain for implicit method with Nα = 40 for Problem
A

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 3.25e−02 – 4.21e−02 – 4.17e−02 – 4.24e−02 –

81 1.59e−02 1.03 2.08e−02 1.02 2.08e−02 1.01 2.09e−02 1.02

161 8.39e−03 0.92 1.09e−02 0.93 1.09e−02 0.93 1.10e−02 0.93

321 4.38e−03 0.94 5.75e−03 0.93 5.75e−03 0.93 5.76e−03 0.93

641 2.37e−03 0.89 3.09e−03 0.89 3.10e−03 0.89 3.10e−03 0.89

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 3.25e−02 – 4.21e−02 – 4.17e−02 – 4.24e−02 –

81 1.59e−02 1.03 2.08e−02 1.02 2.08e−02 1.01 2.09e−02 1.02

161 8.39e−03 0.92 1.09e−02 0.93 1.09e−02 0.93 1.10e−02 0.93

321 4.35e−03 0.95 5.68e−03 0.94 5.69e−03 0.94 5.70e−03 0.95

641 2.37e−03 0.88 3.07e−03 0.89 3.08e−03 0.89 3.08e−03 0.89

we report the results for the explicit method using the truncation of the stencil. As expected,
we find that we now need �t ∼ �x2 for stability.

Remark 2.5 For the explicit method using the truncation of the stencil, i.e. Tables 1, 12, and
5, focusing on the �t = T case, we notice that the convergence rate over the whole mesh
��x is approximately 0.5, whereas it is approximately 1.0 when the error is measured in
the interior of the mesh. We also notice that there is a significant difference between the
magnitude of the errors if measured over the whole grid or on a region in the interior. The
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Table 5 Results using the truncation of the stencil for explicit method with Nα = 40 for Problem A on a
shifted domain, as described in Remark 2.4

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 1.55e−01 – 4.71e−02 – 4.76e−02 – 4.67e−02 –

81 1.12e−01 0.47 1.57e+05 −21.67 7.90e+05 −23.98 2.11e−02 1.15

161 8.04e−02 0.47 1.02e+33 −92.39 1.30e+35 −97.06 1.10e−02 0.94

321 5.80e−02 0.47 6.73e+103 −235.26 5.96e+138 −344.35 5.76e−03 0.93

641 4.22e−02 0.46 8.17e+276 −574.97 NaN NaN 3.10e−03 0.89

(b) Error in L∞-norm over ��x ∩ [3π/8, 11π/8]2
41 8.65e−02 – 4.70e−02 – 4.74e−02 – 4.66e−02 –

81 4.22e−02 1.04 2.07e−02 1.18 2.07e−02 1.19 2.06e−02 1.18

161 2.14e−02 0.98 1.18e+06 −25.76 1.18e+09 −35.73 1.08e−02 0.93

321 1.10e−02 0.96 7.99e+47 −138.96 4.94e+84 −251.21 5.59e−03 0.95

641 5.96e−03 0.88 9.81e+165 −392.28 NaN NaN 3.02e−03 0.89

difference in the magnitude of the errors may be due to the fact that �t = T does not satisfy
the CFL condition and that the CFL condition is more restrictive for points where the stencil
is truncated. It is also at these points that the local consistency error is of order

√
�x as

shown in Corollary 2.3. The situation is different for �t = �x2 in the explicit case, or for
any �t in the implicit case. In these cases, the error convergence rates are approximately 1.0
when measured over the whole mesh and the errors over the whole grid and in the interior
are comparable in magnitude.

3 Multigrid Preconditioning

In this section, we study the application of multigrid preconditioners together with policy
iteration [4] to solve the non-linear system (1.10).

Geometric multigrid requires us to predefine a grid hierarchy based on the geometry of
the problem. The variability of the width of the LISL stencil within a given grid (variable
coefficients) and through the grid hierarchy makes it difficult, even for simple problems, to
design an appropriate grid hierarchy and a good smoother. Moreover, the varying stencil
requires us to build the coarse-grid version of the operator algebraically instead of using its
coarse grid version, which further limits our knowledge of the problem as we go deeper into
the grid hierarchy.

Another aspect to consider is related to the transfer operators. Standard grid interpo-
lations provide approximations using the grid neighbours of a given node, whereas for
the LISL stencil, being non-local, the solution at a given node may not be best approxi-
mated by its neighbours on the grid but by those on its stencil. These heuristics suggest that
the algebraic approach to multigrid, fixing the smoother and building operator dependent
intergrid transfer operators, may result in more efficient multigrid preconditioning for LISL
discretizations.
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Algebraic multigrid (AMG), introduced in [28], constructs “coarse grids” based on the
matrix coefficients. However, as pointed out in Section 6.2 of the recent review on precondi-
tioning [36], AMG coarsening may not reduce the number of variables fast enough from one
grid to the next. A slow reduction in the number of unknowns and the use of the Galerkin
principle to build the coarse system matrix with intergrid transfer operators using weighted
averages increase the complexity of the multigrid scheme. To measure the complexity the
following quantities are commonly used:

Definition 3.1 The grid complexity cG is the total number of variables N., on all multigrid
levels, divided by the number of variables on the finest level N1,

cG = 1

N1

nlevels∑

�=1

N�.

Definition 3.2 The algebraic complexity cA is the total number of non-zero entries, in all
matrices A�, divided by the number of non-zero entries of the finest level operator A1,

cA = 1

nnz(A1)

nlevels∑

�=1

nnz(A�).

We will find a benefit to the convergence of constructing the “coarse grids” algebraically
already for simple examples of LISL matrices (Sect. 3.3, in particular Table 6), and that
algebraic construction of the grid hierarchy deals well with the varying LISL stencils (Sect.
3.5). However, there is an increase in complexity of AMG (see Table 6) mainly due to the
use of interpolation in LISL discretizations.

Recent and on-going research on algebraic multigrid [24,25] shows how one can construct
good multigrid cycles using simplified “intergrid” transfer operators based on aggregation of
the unknown variables, thus avoiding the problem of increased complexity on coarser levels.
In particular, [25] proves convergence of a simplified two-grid scheme using aggregation for
non-singular M-matrices with non-negative row and column sums. We will show that these
results apply for LISL discretizationsmatrices and justify the use ofAGMGboth theoretically
and empirically.

3.1 On the Spectrum of LISL Matrices

To assess the suitability of preconditioning based on geometric multigrid, we start by consid-
ering the spectrum of LISLmatrices for a simplified model. For illustration, we first calculate
the eigenvalues and eigenvectors of the LISL discretization of the diffusion operator with
constant coefficients, for any function u : Rd → R

−1

2
∇T (σσ T )∇u = −1

2

d∑

i=1

σ 2
i

∂2u

∂x2i
, (3.1)

where σ ∈ R
d×d is a diagonal matrix with (σ )i i = σi .

We start by considering the one-dimensional case on an equispaced grid ��x , where
�x > 0 is the distance between two consecutive nodes. For σ > 0, we define

m :=
⌊

σ√
�x

⌋
, and γ := (m + 1) − σ√

�x
, (3.2)
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where m ∈ N denotes the stencil length and γ ∈ [0, 1] is the interpolation weight of the
one-dimensional linear interpolation operator, such that for any real function φ : R → R

the linear interpolation operator on ��x is I�x (φ)(xi + √
�xσ) = γφ(xi + m�x) + (1 −

γ )φ(xi +(m+1)�x).Without loss of generality and for simplicity of the notationwe assume
that �x = 1. Denote by LN the following N × N Laplacian matrix

LN :=

⎛

⎜⎜⎜⎜⎜
⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

⎞

⎟⎟⎟⎟⎟
⎠

.

Let now m = 2 and �x = 1, then the LISL discretization matrix is given by

LN ,m,γ

SL :=

⎛

⎜⎜⎜⎜⎜
⎝

2 0 −γ −1 + γ 0 · · · 0
0 2 0 −γ −1 + γ · · · 0

−γ 0 2 0 −γ · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 2

⎞

⎟⎟⎟⎟⎟
⎠

. (3.3)

Noticing the structure in the diagonals, we re-write LN ,m,γ

SL as

LN ,m,γ

SL = γ Lm
N + (1 − γ )Lm+1

N ,

where Lm
N = LN ,m,1

SL .
Using the properties of Kronecker products we can characterize the eigenvalues of the

matrices Lm
N in terms of the eigenvalues of the standard LN matrices. Denoting by λ(LN ) ∈

R
N and V (LN ) ∈ R

N×N the eigenvalues and eigenvectors of LN , respectively, we have that

λ(Lm
N ) =

[
λ

(
L⌈ N

m

⌉
)

⊗ e1

]

N
+
[

λ

(
L⌊ N

m

⌋
)

⊗
N∑

i=2

ei

]

N

,

V (Lm
N ) =

[
V

(
L⌈ N

m

⌉
)

⊗
(
1 0
0 0m−1

)]

N×N
+
[
V

(
L⌊ N

m

⌋
)

⊗
(
0 0
0 Im−1

)]

N×N
,

where ei is the i-th canonical basis vector of RN , IN is the N × N identity matrix and 0m
denotes the m × m zero matrix. By [A]N×N we mean that we select the first N rows and N
columns of A, and similar for [v]N for a vector N . This is required as N will in general not
be a multiple of both m and m + 1 so the resulting matrices from the Kronecker product will

be of size
⌈ N
m

⌉
m and

⌈
N

m+1

⌉
(m + 1) which are greater or equal to N .

In the presence of interpolation, that is, when γ ∈ (0, 1), we are unable to provide any
closed formula to the eigenvalues and eigenvectors of LN ,m,γ

SL = γ Lm
N + (1 − γ )Lm+1

N .

Figure 3 contains graphs with the eigenvalues and some eigenvectors of the matrices LN ,m,γ

SL ,
Lm
N , L

m+1
N and LN . The plots show that for LISL discretization matrices, in contrast to the

standard case, small eigenvalues are not necessarily associated with smooth modes. As a
result, these components cannot be represented accurately on the coarse mesh.

The spectrum of higher-dimensional constant coefficient Laplacians can be inferred from
the spectrum of the one-dimensional matrices by means of Kronecker products. Next, we
consider the properties of common smoothers when applied to LISL discretization matrices
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(a) (b)

(c) (d)

Fig. 3 Eigenvalues of LN ,m,γ
SL , LmN , L

m+1
N and LN with parameter values N = 31,m = 5 and γ = 0.346 and

the eigenvectors corresponding to three eigenvalues of the same matrices. a Comparison of the eigenvalues of

L31,5,0.346SL , L531, L
6
31 and L31 in increasing order. b Eigenvectors corresponding to the smallest eigenvalue

for L31,5,0.346SL , L531, L
6
31 and L31. c Eigenvectors corresponding to the 15-th eigenvalue for L31,5,0.346SL , L531,

L631 and L31. d Eigenvectors corresponding to the largest eigenvalue for L31,5,0.346SL , L531, L
6
31 and L31

of the two-dimensional Laplacian and conclude with an example illustrating the impact of
the diffusion coefficient on the convergence of geometric multigrid cycles.

3.2 Local Fourier Analysis of the Smoothers

We seek to analyse how a varying size stencil affects the properties of the standard Gauss-
Seidel smoother. We base the analysis on Local Fourier Analysis (LFA) as described in
Chapter 4 of [32] and state the smoothing factors μloc of Gauss-Seidel iterations when
applied to wide stencil finite difference discretizations. The key to the analysis is the use
of grid functions of the form ϕ(θ, x) = eiθ ·x , where i is the imaginary unit, x ∈ R

d ,
θ ∈ [−π, π)d and · is the inner product for vectors in R

d . For simplicity we consider
equispaced grids ��x with refinement parameter �x > 0. Therefore, any x ∈ ��x can be
written as x ≡ x0 + κ�x for some fixed x0 ∈ ��x and κ ∈ Z

d . It is thus convenient to
rescale the exponent of ϕ by �x−1.

The functions ϕ are important since, as shown in Lemma 4.2.1 of [32], “all grid functions
ϕ(θ , x) are (formal) eigenfunctions of any discrete operator which can be described by a
difference stencil”. This property allows us to associate to each discrete finite difference
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operator L�x a so-called symbol L̃�x (θ) defined by

L�xϕ(θ , x) =
∑

κ∈Zd

sκe
iθ ·κ = L̃�x (θ)eiθ ·κ , (3.4)

where sκ ∈ R is the finite difference coefficient at the location κ with respect to the node x0.
As in [32], we consider smoothers formed by a splitting L�x = L+

�x +L−
�x of the discrete

operator, i.e.

S�x = (
L+

�x

)−1
L−

�x .

Lemma 4.3.1 in [32] derives the expression for the symbol for the smoother as

S̃�x (θ) := L̃−
�x (θ)

L̃+
�x (θ)

,

where L̃+
�x and L̃−

�x are defined as for L�x in (3.4).
With multigrid, the objective of the smoother is to dampen error components not reduced

by the coarse grid correction. Therefore, assessing the properties of a given smoother requires
fixing the coarse grid correction. We limit the study to the simplest coarsening strategy, that
is if ��x is the fine grid then �2�x is the coarse grid. This leads to the definition of low and
high frequencies below.

Definition 3.3 (Definition 4.2.1 in [32]) For the coarsening considered, we define the high
and low frequencies as follows:

ϕ(θ, ·) low frequency component ⇐⇒ θ ∈ T low :=
[
−π

2
,
π

2

)d ;

ϕ(θ , ·) high frequency component ⇐⇒ θ ∈ T high := [−π, π)d
∖[

−π

2
,
π

2

)d
.

Definition 3.4 (Definition 4.3.1 in [32]) The smoothing factor for standard coarsening is

μloc = μloc(S�x ) := sup
{
|S̃�x (θ)| : θ ∈ T high

}
.

We employ these definitions to compare the smoothing factors for the standard two-
dimensional Laplacian, setting d = 2, discretised using standard local finite differences and
the LISL discretization.

Example 3.1 (Example 4.3.4 in [32]) The smoothing factor for the Gauss-Seidel smoother
for the standard Laplacian discretisation is given by

μloc = sup

{∣∣∣∣
eiθ1 + eiθ2

4 − e−iθ1 − e−iθ2

∣∣∣∣ : θ ∈ T high
}

.

Similarly, the smoothing factor for the LISL scheme can be derived. In the present case
of pure diffusion, Schemes 1–3 coincide.

Example 3.2 Proceeding as in [32] for Example 3.1, the symbols L+
�x and L−

�x for the LISL
discretizations are

L̃+
�x (θ) = 1

�x
(4 − γ1e

−im1θ1 − (1 − γ1)e
−i(m1+1)θ1 − γ2e

−im2θ2 − (1 − γ2)e
−i(m2+1)θ2),

L̃−
�x (θ) = − 1

�x
(γ1e

im1θ1 + (1 − γ1)e
i(m1+1)θ1 + γ2e

im2θ2 + (1 − γ2)e
i(m2+1)θ2),
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Fig. 4 Representation of the smoothing factor for high frequencies, i.e. θ ∈ [−π, π ]2 \ [−π/2, π/2]2, for
the Gauss-Seidel iteration for the classical fixed stencil Finite Difference (FD) and the LISL schemes of the
two-dimensional Laplacian operator. The maxima calculated numerically are 0.49 (theoretical value is 0.5)
for the fixed stencil FD and 0.95 for the LISL scheme (lower is better). a Smoothing factor Gauss-Seidel
applied to standard FD approximation of the Laplacian. b Smoothing factor Gauss-Seidel applied to LISL
approximation of the Laplacian with stencil parameters ((m1 = 9,m2 = 3), (γ1 = 0.5, γ2 = 1))

where mi and γi are given by (3.2) replacing σ by σi . For compactness of notation, define

g(θ, γ,m) := γ eimθ + (1 − γ )ei(m+1)θ ,

then the smoothing factor for a Gauss-Seidel smoother with standard coarsening and the
LISL scheme is given by

μloc(S
SL
�x ) = sup

{∣∣∣∣
g1 + g2

4 − ḡ1 − ḡ2

∣∣∣∣ : θ ∈ T high
}

, (3.5)

for θ ∈ T high, where g1 ≡ g(θ1, γ1,m1), g2 ≡ g(θ2, γ2,m2), and c̄ denotes the complex
conjugate of the complex number c.

From (3.5) we see that as the non-locality of the discretization grows, i.e. m. → ∞ then
the smoothing factor approaches 1 (no smoothing) and so highly oscillatory modes will be
transferred to the coarser subspace. Figure 4 compares the smoothing factor for the fixed
stencil 5 point discretization and a specific semi-Lagrangian stencil.

Example 3.3 We can generalise the results in the previous example to the case of diffusion
given by a vector (σ1, σ2)

T not necessarily parallel to any of the axes. If σ1 and σ2 have the
same sign, then

L̃+
�x (θ) = 1

�x
(2 − ḡ(θ1, γ1,m1)ḡ(θ2, γ2,m2)),

L̃−
�x (θ) = − 1

�x
(g(θ1, γ1,m1)g(θ2, γ2,m2)).

If, however, σ1 and σ2 have different signs, then

L̃+
�x (θ) = 1

�x
(2 − g(θ1, γ1,m1)ḡ(θ2, γ2,m2)),

L̃−
�x (θ) = − 1

�x
(ḡ(θ1, γ1,m1)g(θ2, γ2,m2)).
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(a) (b)

Fig. 5 Residual ‖b − Axk‖2 in the Eucledian norm at the end of the k-th iteration of different geometric
and algebraic multigrid cycles when solving (3.1) on equispaced Cartesian grid of [0, 1]2 with 257 nodes per
dimension and with homogeneous Dirichlet boundary conditions. Geometric V (ν1, ν2) andW (ν1, ν2) cycles
are considered, where ν1 and ν2 denote the number of pre- and post-smoothing steps. Their performance is
compared to the iterativemethodBICGSTABwith andwithout preconditioner, and to two algebraic algorithms,
AMG and AGMG from [28] and [25], respectively (see also Sects. 3.4, 3.5). Notice the almost overlapping of
lines for geometric V (ν1, ν2) andW (ν1, ν2) cycles for equal ν1 and ν2 (see also Table 6, which shows almost
identical rates for � = 8). a Residual after the k-th iteration for σ = 2I2. b Residual after the k-th iteration
for σ = √

5I2

To account for the fact that σ· can be negative, we re-define mi :=
⌊
|σi |/

√
�x
⌋
and γi :=

(mi + 1) − |σi |/
√

�x . The deterioration of the smoother for large mi is present here too.

3.3 Performance of Geometric Multigrid

We conclude the discussion of geometric multigrid by testing its performance against an
iterative solver used in [19], i.e. BICGSTAB [33] with and without ILU(0)4 as preconditioner
[29], and algebraic multigrid algorithms, namely, the classical Ruge-Stüben AMG [28] using
our own implementation, and AGMG from [25], using the implementation from [23].

As benchmark examples, we choose a linear system Ax = b whose coefficient matrix is
the LISL discretization of (3.1) in the two-dimensional square [0, 1]2 withDirichlet boundary
conditions, and σ = 2I2 and σ = √

5I2, respectively, where I2 is the 2 × 2 identity matrix.
These values are chosen to study the effect of interpolation (which is always required in
the second case and only for odd levels in the first) on the convergence and complexity of
the methods, in particular on the convergence rates of geometric multigrid and the operator
complexity of algebraic multigrid.

We use a Cartesian grid with equal number of equispaced nodes in both directions, the
smoother is Gauss-Seidel, the prolongation operator bilinear interpolation, the restriction the
transpose of the prolongation, and the coarse grid operator is constructed using the Galerkin
principle.

Figure 5 presents the reduction of the residual, rk ≡ ‖b−Axk‖2, against the number of iter-
ations k with x0 = 0, for a discrete mesh where the distance between two consecutive nodes
is �x = 2−8. The algorithm is stopped whenever the relative residual, ‖b − Axk‖2/‖b‖2,
measured in the Euclidean norm, is below the prescribed tolerance, in this case 10−6.

Next, we study the residual reduction factor ρ = (rk/r0)1/k , where k is the number of
iterations required for the prescribed tolerance. We solve the problems above for different

4 Incomplete LU factorization with the same sparsity pattern as the original system matrix.
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Table 6 The residual reduction factor ρ for different mesh sizes and different multigrid algorithms, for the
two-dimensional Laplace equation; the length of the stencil m as per (3.2)

� m GMG V(1,1) GMG W(1,1) AMG AGMG BICGSTAB BICGSTAB with ILU(0)

(a) ρ for σ = 2I2
6 16 0.4193 0.4204 0.0415 0.1015 0.2502 0.0151

7 22 0.2612 0.2666 0.0633 0.1502 0.5158 0.0767

8 32 0.7561 0.7564 0.0981 0.1551 0.5763 0.1234

9 45 0.5076 0.4905 0.1216 0.1858 0.7109 0.2392

10 64 0.8823 0.8841 0.1219 0.2001 0.7621 0.3382

(b) ρ for σ = √
5I2

6 17 0.2999 0.2857 0.0403 0.1162 0.3718 0.0262

7 25 0.2565 0.2568 0.0532 0.1367 0.4408 0.0302

8 35 0.4348 0.4300 0.0740 0.1656 0.5938 0.1302

9 50 0.4480 0.4314 0.1124 0.2030 0.6751 0.1746

10 71 0.5547 0.4799 0.1272 0.1992 0.7478 0.3374

Table 7 Comparison of the
residual reduction factor ρ for
different system sizes and
different solvers for the one
dimensional Laplace equation.
The system size is 2� + 1

� AGMG BICGSTAB BICGSTAB with ILU(0)

(a) ρ for σ = 2

10 0.2486 0.6445 0

15 0.4680 0.9479 0.7105

20 0.5291 0.9815 0

21 0.6524 0.9935 0.9735

(b) ρ for σ = √
5

10 0.3298 0.7515 0.3079

15 0.5640 0.9312 0.7703

20 0.6347 0.9890 0.9550

21 0.4780 0.9940 0.9617

refinement levels �, where the number of nodes per dimension is 2� +1. We observe in
Table 6 that for even � the convergence factor ρ corresponding to geometric multigrid cycles
for σ = 2I2 is significantly worse than that for σ = √

5I2. This is due to the lack of

interpolation when 2
�
2 ∈ N, as the step is a multiple of �x , so for any mesh node x�x ∈

��x x�x ± √
�xσi ∈ ��x . The lack of interpolation, and the equal stencil lengths in

both directions, gives μloc = 1 in (3.5). Moreover, as shown in Fig. 3, the eigenvectors
corresponding to small eigenvalues are highly oscillatory and hence not resolved sufficiently
on the coarse mesh.

Regarding the BICGSTAB iterative solver, we observe the benefit of using ILU(0) as pre-
conditioner, however, the significant increase in the convergence rate as the mesh is refined
(and hence the condition number of the matrix increases) suggests that convergence is not
asymptotically mesh size independent. To further illustrate this, Table 7 contains the residual
reduction factors for AGMG and BICGSTAB with and without preconditioner when solving
(3.1) in the one-dimensional domain [0, 1]with homogeneous Dirichlet boundary conditions
and discretized using the LISL scheme. We consider the cases σ = 2 and σ = √

5. As
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Table 8 Comparison of the grid
and algebraic complexities as per
Definitions 3.1 and 3.2 for
different mesh sizes and different
multigrid algorithms, for the
two-dimensional case

� GMG AMG AGMG

cG cA cG cA cG cA

(a) Complexities for σ = 2I2
6 1.31 3.66 1.75 1.74 1.24 1.18

7 1.32 2.69 1.76 6.92 1.26 1.26

8 1.33 3.90 1.72 2.05 1.33 1.28

9 1.33 2.75 1.71 11.79 1.25 1.31

10 1.33 3.97 1.70 2.16 1.25 1.23

(b) Complexities for σ = √
5I2

6 1.31 2.59 1.67 3.78 1.18 1.10

7 1.32 2.69 1.74 6.48 1.24 1.22

8 1.33 2.65 1.71 7.47 1.20 1.22

9 1.33 2.76 1.69 9.34 1.22 1.30

10 1.33 2.67 1.64 7.39 1.32 1.45

discussed previously, for σ = 2 and � even, no interpolation is required. In this case, ILU(0)
exactly factorises the system matrix A and hence ρ = 0. However, when interpolation is
needed, ρ approaches 1 for BICGSTAB as the mesh is refined but not for AGMG. Further-
more, for � = 21 BICGSTAB and BICGSTABwith ILU(0) require approximately 86 and 21
times the time required by AGMG for the relative residual to be below 10−6. Additionally,
let ttol be the time required for the relative residual to be below 10−6 and N the number
of unknowns, assuming that ttol ∼ O(Na), empirically we observe that a equals 1.11 for
AGMG, 1.50 for BICGSTAB and 1.36 for BICGSTAB with ILU(0) as preconditioner.

Returning to the two-dimensional case, the grid hierarchies in the geometric (GMG) and
algebraic (AMG) multigrid have 5 levels, including the finest one. In the geometric case, the
number of unknowns is 4 times smaller from one level to the next. In the AGMG case, the
hierarchy is at most 4 levels deep. Table 8 reports the complexities for the three categories
of algorithms considered. The results confirm the assertion in [36] that AMG coarsening,
generally, need not reduce the number of unknowns fast enough. In the present setting,
contrasting the case σ = √

5I2 with σ = 2I2 shows that the growth in complexity is due to
the interpolation, which creates a denser connectivity graph on the coarser levels.

3.4 Properties of the LISL Matrix

In this section, we discuss the theoretical foundation of Aggregation-based Multigrid
(AGMG) for our specific application of wide stencil discretisations.

The key result is Lemma 3.1 in [25]. The non-negativity of the row sums of a LISL
discretization matrix is obtained almost by construction. To see this, let A ∈ R

N×N be the
discretization matrix, where N := |��x | is the number of mesh points, then the sum for the
i-th row is

N∑

j=1

(A)i j = 1 + �t

(
M

�x
− cα,n

i

)
− �t

�x
M ≥ 0,

where we have used the fact that for any z ∈ �̄,
∑N

j=1 w j (z) = 1 and the CFL-type condition
1 − �tcα,n

i ≥ 0, which is satisfied for sufficiently small �t independent of �x .
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The following analysis of the non-negativity of the column summakes use of the regularity
of the coefficients b and σ . In particular, we assume that the coefficients are such that for
all p ∈ [[1, P]], and for any mesh points xi , xl and corresponding controls αi , αl ∈ A and
s ∈ [0, T ] we have that

‖σαi
p (s, xi ) − σαl

p (s, xl)‖∞ ≤ Lσ ‖xi − xl‖η∞,

‖bαi (s, xi ) − bαl (s, xl)‖∞ ≤ Lb‖xi − xl‖β∞, (3.6)

where β ∈ (0, 1], η ∈ ( 12 , 1
]
.

Remark 3.1 As stated in the introduction, we are working under the standard assumption of
Lipschitz continuity of the coefficients in x and continuity in α. However, what we require in
(3.6) is stronger, namely, if the control is inserted in the coefficients as a function of the state
x , the resulting functions are Hölder continuous in x . This situation arises in every step of the
policy iteration algorithm: a control vector (αi ) is determined by the optimisation step, and
then a linear system with this control vector is solved for (x)i . Generally, the optimal control
is not a (Hölder) continuous function of the space variables, but there are many important
examples where it is at least piecewise Hölder. It can be seen from the proof below that
Proposition 3.1 still holds in this situation.

Remark 3.2 Lemma 3.1 in [25] also assumes that the system matrix is irreducible. LISL
discretization matrices need not be irreducible, e.g. L2K ,2,1

SL for any K ∈ N as in (3.3),
however, this technical requirement could be overcome by adding an irreducible M-matrix,
multiplied by a sufficiently small factor, to the LISL discretization matrix.

We also assume the use of multi-linear interpolation requiring 2d points to approximate
function values in R

d and the use of Cartesian grids.

Proposition 3.1 Let A be the LISL discretization matrix of (1.1) for a given time step, on
an equispaced Cartesian grid ��x of � ⊂ R

d with �x > 0, and a given vector of control
values (αi )i=1,...,N , αi ∈ A, associated with the mesh points xi , 1 ≤ i ≤ N := |��x |.
Assume that (3.6) holds.

Then the column sum of the matrix is non-negative provided

�t ≤ �x

supα∈A |cα,+| + (M − 1)(P + 1)
, (3.7)

whereM depends on the dimension of the domain d and the Lipschitz constants Lσ and Lb,
but not on the mesh parameter �x. Indeed, M = 3d for sufficiently small �x.

Proof We carry out the proof for Scheme 2, but an analogous analysis holds for Schemes
1 and 3 in the introduction. We also note that we can restrict the analysis to steps where no
truncation is required, as in the case of truncation the weights only contribute (positively) to
the diagonal of the matrix and the right-hand side of the equation (see Remark 2.2).

For simplicity of notation, we omit the dependence of the coefficient functions b and σp

on the time variable t and the control. For any i �= j the matrix entry (A)i j �= 0 if and only if
for any 1 ≤ m ≤ P + 1 we require φ(x j ) to approximate – by means of linear interpolation
– φ(xi + y±

m (xi )), where y±
m (xi ) is either y±

p (xi ) = ±√
�xσp(xi ) for 1 ≤ p ≤ P or

y±
P+1(xi ) = �xb(xi ). For any two nodes i and l to contribute to the sum of column j , it is

necessary that
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‖xl + y±
m (xl) − (xi + y±

m (xi ))‖∞ < 2�x .

As xl and xi lie on the grid, there exists a positive constant M such that ‖xl − xi‖∞ = M�x .
Then (M +1)d constitutes an upper bound on the number of terms the step y±

m (·) contributes
to the sum of column j .

We consider the different possible values for y±
m (xl) separately. First, assume y±

m (xl) =
�xb(xl) and let �x ≤ 1/(Lb

√
d), then

2�x > ‖xl + �xb(xl) − (xi + �xb(xi ))‖∞ ≥ M�x − �x1+βLbM
β, (3.8)

where we have used the triangle inequality and the Hölder regularity of b. Re-arranging,

M <
2

1 − LbMβ−1�xβ
,

such that M ≤ 2 for sufficiently small �x . Proceeding similarly for y±
m (x) = ±√

�xσm(x),
we obtain again M ≤ 2 as �x → 0.

DenoteM to be the maximum of all of the (M+1)ds above, i.e. for different mesh points,
then the column sum gives

N∑

i=1

(A)i j = 1 + �t

(
P + 1

�x
− cα,n

j

)
− �t

2�x

N∑

i=1

P+1∑

p=1

w j (xi + yp(xi ))

≥ 1 − �t

�x

(
cα,n
j + (M − 1)(P + 1)

)
. (3.9)

Therefore, non-negativity of the sum is guaranteed by condition (3.7). ��
Remark 3.3 For the LISL scheme to be first order accurate, it is required that �t ∼ O(�x).
Therefore, the bound (3.7) does not impose problematic restrictions on the size of the time
steps. We recall that�t = O(�x) and�t = O(�x3/2) (or even�t = O(�x2)) are the CFL
conditions for the explicit schemes without and with truncation, respectively, see Corollary
2.5. Therefore, on bounded domains, fully implicit time stepping with policy iteration and
AGMG preconditioning is the computationally most efficient overall algorithm among the
ones considered.

3.5 Performance of the Algebraic Approaches

We compare the performance of the classical AMG implementation in the HSL library [15],
and AGMG from [23] for the benchmark optimal control problems in Sect. 2.4. Both of
these methods are used as preconditioners for a Krylov subspace method that is assumed to
have converged when the relative residual is below 10−6. In particular, we use MATLAB’s
implementation of GMRES [30] for AMG and GCR [10] for AGMG. The AMG precon-
ditioner consists of one iteration of the standard V-cycle with two Gauss-Seidel pre- and
post-smoothing steps, whereas AGMG uses one Gauss-Seidel pre- and post-smoothing step
and the enhanced multigrid cycles mentioned in the introduction, see [24,25]. For complete-
ness, we also include as benchmark MATLAB’s sparse direct solver using UMFPACK [8].
The problems considered have smooth closed form solutions linear in t . As mentioned in
the previous section, we employ policy iteration to solve the resulting non-linear discrete
problem. The tests were run on a Linux machine under MATLAB 2015a, on a quad-core
AMD 4.2GHz with 7.5GB of RAM and 15GB of swap.

In Fig. 6we present the elapsed time solving linear systems for a single time step (�t = T ).
Both MG methods provide a solution with the same accuracy as the sparse direct solver
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(a) (b)

Fig. 6 Total number of seconds for solving the linear systems versus the size of the systems for each of the
linear system solvers considered. We use equispaced Cartesian grids in space with 81, 161, 321 and 641 nodes
per dimension and one time step. a Total time on solver for Problem A. b Total time on solver for Problem B

(a) (b)

Fig. 7 Average number of seconds per time step for solving the linear systems versus the size of the systems.
We use equispaced Cartesian grids in space with 81, 161, 321 and 641 nodes per dimension and �t = �x . a
Average time on solver for Problem A. b Average time on solver for Problem B

but with improved scalability. AGMG outperforms AMG and the sparse direct solver in
both problems. Figure 7 shows the average time spent solving linear systems per time step
when �t = �x . Reducing �t makes the system matrix more diagonally dominant and as a
consequence easier to precondition. This effect is noticeable for Problem B using AMG as
preconditioner, see Table 9.

Table 10 and Table 11 report memory consumption and quantities related to the Krylov
subspace method and to the coarsening. As commented in the previous sections, AMG
results in grid and algebraic complexities higher than AGMG’s. The coarsening for both
of the methods is stopped when the coarse level system is cheap to solve exactly com-
pared to the starting system, specifically, we stop whenever the number of unknowns at
the coarse level is comparable to the cubic root of the initial number of unknowns. The
effect of simplifying the intergrid transfer operators can be observed on the coarse to
fine stencil ratio (C/F stencil). For AGMG, the stencil on the coarsest level is similar
to the initial one, whereas for AMG it is significantly denser. The fact that aggregation-
based coarsening strategies yield coarse matrices with similar sparsity as the original one
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Table 9 Average seconds per time step solving linear systems

Nx Direct AMG AGMG

�t = T �t = �x �t = T �t = �x �t = T �t = �x

Problem A

321 49.60 17.93 43.62 10.07 3.31 0.41

641 9.50e+03 4.33e+03 373.77 48.82 21.22 1.84

Problem B

321 14.35 68.70 18.59 16.19 0.77 0.40

641 950.62 2.09e+04 5.64e+03 102.57 7.82 1.85

Table 10 Peak memory consumption statistics in gigabytes (GB) of the MATLAB process sampled using
the shell command top

Nx Direct AMG AGMG

VIRT RES VIRT RES VIRT RES

(a) Peak memory consumption measured in GB for �t = T

Problem A

321 11.40 5.29 10.63 5.10 9.83 4.14

641 25.99 7.13 14.40 7.05 12.66 6.76

Problem B

321 11.71 6.50 9.84 5.14 9.84 5.15

641 23.83 7.10 18.51 7.13 9.90 5.12

(b) Peak memory consumption measured in GB for �t = �x

Problem A

321 8.39 3.20 6.41 2.38 6.48 2.39

641 21.80 7.22 10.61 6.68 10.52 6.64

Problem B

321 13.76 7.09 9.83 3.67 9.83 3.71

641 26.11 7.26 12.72 7.23 9.90 5.17

VIRT is the total amount of virtual memory used by MATLAB, whereas RES is the non-swapped physical
memory (limited to 7.5)

was noted in [16]. Moreover, AGMG yields shallower hierarchies due to higher coarsen-
ing factors. The effect of reducing �t is also appreciated in this ratio. We observe that
the direct method’s consumption increases dramatically while for the MG methods, we
note the relation between the memory requirement and the algebraic complexity of the
method.

The number ofKrylov iterations highlight previous comments on the fact that aggregation-
based multigrid methods are not efficient if used as stand-alone solvers: in all test cases,
AGMG used more iterations than AMG per policy iteration. However, AGMG used as a
preconditioner to a Krylov subspace method provides accurate solutions faster and cheaper
than the other two solvers considered.
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Table 11 Quantities related to the Krylov subspace iteration and multigrid coarsening

Solver Nx Avg Krylov It # levels C/F stencil cG cA

(a) Krylov iterations and coarsening related quantities for �t = T

Problem A

AMG 321 4.00 9.0 26.25 2.61 7.06∗
641 4.29 11.0 22.33 2.42 4.63∗

AGMG 321 12.67 5.83 1.30 1.81 1.97

641 17.14 6.14 1.36 1.61 1.77

Problem B

AMG 321 5.00 7.0 86.26 2.08 9.60∗
641 6.67 9.5 221.43 2.23 11.61∗

AGMG 321 12.00 5.00 0.50 1.60 1.92

641 15.00 5.50 0.39 1.53 1.57

(b) Krylov iterations and coarsening related quantities for �t = �x

Problem A

AMG 321 3.00 9.98 16.30 2.76 5.90∗
641 3.00 12.0 16.60 2.75 5.12∗

AGMG 321 6.00 2.00 0.23 1.00 1.00

641 6.00 2.00 0.26 1.00 1.00

Problem B

AMG 321 2.98 8.61 48.65 2.47 8.61∗
641 2.99 11.27 107.77 2.70 11.12∗

AGMG 321 4.99 2.96 0.31 1.07 1.02

641 5.01 2.97 0.33 1.15 1.10

Avg Krylov It contains the average number of Krylov iterations over all time steps and all policy iterations;
# levels contains the average depth in the grid hierarchy; C/F stencil contains the ratio between the stencil at
the coarsest level and that on the finest level (lower is better). On the finest level, the stencil is close to 11
for Problem A and close to 8 for Problem B. The last two columns report the grid and algebraic complexity
as per Definitions 3.1 and 3.2. As the full matrix hierarchy was not available from [15] for AMG, but only
the coarsest and finest matrices, the starred algebraic complexities are estimates based on the assumption of a
geometrically decreasing complexity between the coarsest and finest level, which is likely to be a significant
underestimate

4 Conclusions

This article discusses two aspects of practical importance associated with wide stencil dis-
cretizations of second order non-linear parabolic differential operators. First, we study the
truncation of the stencil for problems on bounded domains, as a result of themethod overstep-
ping the boundaries for nodes in a surrounding layer. Our main result details the construction
of such truncation and proves that the resulting scheme remains consistent, monotone and
conditionally stable. Numerical examples confirm that the truncation improves the accuracy
of the approach compared to constant and linear extrapolation of the boundary conditions,
and the modification of the CFL condition of the scheme.

Second, motivated by the stringent CFL condition of explicit time stepping schemes,
we consider implicit schemes and the application of multigrid methods to solve the resulting
discrete non-linear systemof equations efficiently.Using theoretical and empirical arguments,
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we show the need to employ multigrid methods based on algebraic ideas. We show that
aggregation-based methods are well suited for the discretization schemes considered and
justify their use by proving that under mild conditions on the mesh refinement parameters
the LISL discretization matrices are M-matrices with non-negative row and column sums.
The algorithms are shown to compare favourably against AMG and sparse direct solvers.

Although we only considered linear interpolation, much of the analysis, including in
particular the matrix properties in Sect. 3.4, will also hold if other limited interpolations (see,
e.g., [9,35]), are used, as only the properties in (2.10) are critical.

To conclude, we emphasise that monotone schemes for general diffusions in two and
more dimensions are necessarily non-local, so that the question of boundary truncation is not
restricted to the class of schemes studied in this paper.

Acknowledgements Julen Rotaetxe Arto was partially supported by the Programa de Formaci?n de Inves-
tigadores del DEUI del Gobierno Vasco.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

5 Appendix

See Tables 12, 13, 14, 15, and 16.

Table 12 Results using stencil truncation for explicit method with Nα = 40 for Problem B

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 1.73e−01 – 3.91e−02 – 3.95e−02 – 3.88e−02 –

81 1.39e−01 0.32 1.84e−02 1.09 1.84e−02 1.10 1.83e−02 1.09

161 1.07e−01 0.38 8.71e−03 1.08 8.70e-03 1.08 8.68e−03 1.07

321 8.05e−02 0.41 1.39e+43 −150.16 4.12e−03 1.08 4.11e−03 1.08

641 5.95e−02 0.44 1.77e+153 −365.76 2.17e−03 0.92 2.17e−03 0.92

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 5.71e−02 – 3.91e−02 – 3.95e−02 – 3.88e−02 –

81 2.74e−02 1.06 1.84e−02 1.09 1.84e−02 1.10 1.83e−02 1.09

161 1.31e−02 1.06 8.71e−03 1.08 8.70e−03 1.08 8.68e−03 1.07

321 6.57e−03 0.99 8.34e+28 −102.92 4.12e−03 1.08 4.11e−03 1.08

641 3.28e−03 1.00 1.09e+127 −325.93 2.17e−03 0.92 2.17e−03 0.92
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Table 13 Results using constant extrapolation of the boundary condition for explicit method with Nα = 40
for Problem B

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error rate

(a) Error in L∞-norm over ��x

41 1.25e+00 – 3.79e−01 – 3.82e−01 – 3.75e−01 –

81 1.99e+00 -0.67 3.55e−01 0.09 3.55e−01 0.11 3.53e−01 0.09

161 3.04e+00 -0.61 2.92e−01 0.28 2.92e−01 0.28 2.92e−01 0.27

321 4.52e+00 -0.57 2.35e−01 0.32 2.35e−01 0.32 2.35e−01 0.31

641 6.62e+00 -0.55 1.77e−01 0.41 1.77e−01 0.41 1.77e−01 0.41

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 5.71e−02 – 6.38e−02 – 6.34e−02 – 6.40e−02 –

81 2.74e−02 1.06 5.72e−02 0.16 5.72e−02 0.15 5.68e−02 0.17

161 1.31e−02 1.06 4.51e−02 0.34 4.51e−02 0.34 4.49e−02 0.34

321 6.57e−03 0.99 3.71e−02 0.28 3.71e−02 0.28 3.70e−02 0.28

641 3.28e−03 1.00 2.89e−02 0.36 2.89e−02 0.36 2.88e−02 0.36

Table 14 Results using linear extrapolation for points out of the domain for explicit method with Nα = 40
for Problem B

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 5.71e−02 – 8.46e−02 – 8.29e−02 – 8.60e−02 –

81 3.12e−02 0.87 2.43e+02 −11.49 1.82e+02 −11.10 1.67e+03 −14.25

161 2.89e−02 0.11 7.90e+18 −54.85 8.95e+20 −62.10 1.64e+31 −92.99

321 2.38e−02 0.28 1.51e+70 −170.36 9.26e+93 −242.55 1.51e+164 −441.69

641 1.87e−02 0.35 1.14e+207 −454.70 NaN NaN NaN NaN

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 5.71e−02 – 3.91e−02 – 3.95e−02 – 3.88e−02 –

81 2.74e−02 1.06 1.84e−02 1.09 1.84e−02 1.10 5.19e−02 −0.42

161 1.31e−02 1.06 1.36e+09 −36.10 1.54e+11 −42.92 2.82e+21 −75.52

321 6.57e−03 0.99 5.30e+52 −144.81 3.24e+76 −217.00 5.27e+146 −416.15

641 3.28e−03 1.00 6.39e+176 −412.19 NaN NaN NaN NaN
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Table 15 Results using truncation for points out of the domain for implicit method with Nα = 40 for Problem
B

Nx �t = T �t = �x
4 �t = �x

3
2 �t = �x2

Error Rate Error Rate Error Rate Error Rate

(a) Error in L∞-norm over ��x

41 3.00e−02 – 3.76e−02 – 3.72e−02 – 3.79e−02 –

81 1.40e−02 1.10 1.80e−02 1.06 1.80e−02 1.05 1.45e−02 1.38

161 6.34e−03 1.15 6.36e−03 1.50 6.37e−03 1.50 7.72e−03 0.91

321 3.04e−03 1.06 3.38e−03 0.91 3.50e−03 0.86 3.01e−03 1.36

641 1.53e−03 0.99 1.77e−03 0.93 1.76e−03 1.00 1.66e−03 0.85

(b) Error in L∞-norm over ��x ∩ [−π/2, π/2]2
41 3.00e−02 – 3.76e−02 – 3.72e−02 – 3.79e−02 –

81 1.40e−02 1.10 1.80e−02 1.06 1.80e−02 1.05 1.45e−02 1.38

161 6.34e−03 1.15 6.31e−03 1.51 6.37e−03 1.50 7.72e−03 0.91

321 3.04e−03 1.06 3.38e−03 0.90 3.50e−03 0.86 3.01e−03 1.36

641 1.53e−03 0.99 1.77e−03 0.93 1.76e−03 1.00 1.66e−03 0.85

Table 16 Percentage of computational time spent in linear solvers for the Examples in Sect. 3.5

Nx Direct AMG AGMG

�t = T (%) �t = �x(%) �t = T (%) �t = �x(%) �t = T (%) �t = �x(%)

Problem A

161 44.17 69.93 64.21 75.42 12.40 7.63

321 53.34 82.36 69.24 77.24 15.09 10.82

641 78.01 85.91 34.20 67.47 5.53 10.37

Problem B

161 8.46 80.71 49.16 79.35 7.27 8.92

321 26.09 94.36 77.48 76.28 12.88 8.83

641 95.25 97.65 98.64 87.68 2.48 17.06
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