Skip to main content
Log in

A Positivity-Preserving Well-Balanced Central Discontinuous Galerkin Method for the Nonlinear Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the development of central discontinuous Galerkin methods for solving the nonlinear shallow water equations over variable bottom topography in one and two dimensions. A reliable numerical scheme for these equations should preserve still-water stationary solutions and maintain the non-negativity of the water depth. We propose a high-order technique which exactly balances the flux gradients and source terms in the still-water stationary case by adding correction terms to the base scheme, meanwhile ensures the non-negativity of the water depth by using special approximations to the bottom together with a positivity-preserving limiter. Numerical tests are presented to illustrate the accuracy and validity of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30, 2587–2612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bokhove, O.: Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension. J. Sci. Comput. 22, 47–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1548–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brufau, P., Vazquez-Cendon, M.E., Garcia-Navarro, P.: A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 39, 247–275 (2002)

    Article  MATH  Google Scholar 

  6. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-venant system. Math. Model. Numer. Anal. 45, 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M.J., Gonzalez-Vida, J.M., Pares, C.: Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci. 16, 897–931 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, H., Li, M.: A reconstructed central discontinuous Galerkin-finite element method for the fully nonlinear weakly dispersive Green-Naghdi model. Appl. Numer. Math. 110, 110–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallardo, J.M., Pares, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. George, D.L.: Augmented Riemann solvers for the shallow water equations over variable topography with steady states inundation. J. Comput. Phys. 227, 3089–3113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenberg, J.M., LeRoux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  16. Guyenne, P., Nicholls, D.P.: A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM J. Sci. Comput. 30, 81–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubbard, M.E., Garcia-Navarro, P.: Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys. 165, 89–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. ESAIM Math. Mod. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving scheme for the Saint-Venant system. Commun. Math. Sci. 5, 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton–Jacobi equations. J. Sci. Comput. 45, 404–428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, M., Guyenne, P., Li, F., Xu, L.: High order well-balanced CDG-FE methods for shallow water waves by a Green–Naghdi model. J. Comput. Phys. 257, 169–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, Q., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32, 873–884 (2009)

    Article  Google Scholar 

  27. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatary hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: \(L^2\) stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 42, 593–607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marche, F., Bonneton, P., Fabrie, P., Seguin, N.: Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int. J. Numer. Methods Fluids 53, 867–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rebollo, T.C., Delgado, A.D., Nieto, E.D.F.: A family of stable numerical solvers for the shallow water equations with source terms. Comput. Methods Appl. Mech. Eng. 192, 203–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rena, M.A., Li, F.: Operator bounds and time step conditions for DG and central DG methods. J. Sci. Comput. 62, 532–554 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Synolakis, C.E.: The runup of solitary waves. J. Fluid Mech. 185, 523–545 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vukovic, S., Sopta, L.: ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 179, 593–621 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xing, Y., Shu, C.-W.: High order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms. J. Sci. Comput. 27, 477–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin Methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xing, Y., Shu, C.-W.: A new approach of high-order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

  38. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

  39. Xu, K.: A well-balanced gas-kinetic scheme for the shallow-water equations with source terms. J. Comput. Phys. 178, 533–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, L., Guyenne, P.: Numerical simulation of three-dimensional nonlinear water waves. J. Comput. Phys. 228, 8446–8466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

ML is partially supported by the Fundamental Research Funds for the Central Universities in China (Project No. 106112015CDJXY100008) and the NSFC (Grant No. 11501062). PG is partially supported by the NSF (Grant No. DMS-1615480) and the Simons Foundation (Grant No. 246170). FL is partially supported by the NSF (Grant No. DMS-1318409). LX is partially supported by the NSFC (Grant No. 11371385), the start-up fund of Youth 1000 plan of China and that of Youth 100 plan of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Guyenne, P., Li, F. et al. A Positivity-Preserving Well-Balanced Central Discontinuous Galerkin Method for the Nonlinear Shallow Water Equations. J Sci Comput 71, 994–1034 (2017). https://doi.org/10.1007/s10915-016-0329-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0329-z

Keywords

Mathematics Subject Classification

Navigation